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Abstract

In this work, we proposed two software countermeasures (CMs) for the detection

of multiple instructions skips caused by Fault Injection (FI). The first CM is

based on code duplication and uses a hardware dedicated counter. The imple-

mentation of this method consists in the duplication of instructions previously

turned into an idempotent form and the insertion of dedicated instructions in-

crementing a hardware counter in between the groups of duplicated instructions.

The second CM is based on the insertion of Sensitive instruction (SI)s into a

block of instructions as sensors of instruction skips. The SI is chosen based

on the observed Fault Model (FM) at bit level. We experimentally validated

the effectiveness of the two CMs in a 32-bit Microcontroller Unit (MCU) using

Laser Fault Injection (LFI) and Electromagnetic Fault Injection (EMFI). First,

the skip of multiple instructions was obtained with a fault rate of 100%. The

FM at bit level was identified to be bit-reset rather than bit-set. Second, we

carried out LFI and EMFI experiments to the protected codes to validate the

effectiveness of the CMs. In both cases, the results showed that the proposed

methods are effective to detect multiple instructions skip faults.
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1. Introduction

MCUs carry plenty of valuable information such as password, account num-

ber, identity, critical data, etc. Attackers have hence turned their attention to

study how to attack and steal the information they contain. One of the most

powerful attack techniques that poses a significant threat to MCU security is5

FI.

FI is an active attack technique in which the attacker uses a physical tool to

disturb the target, inducing faults or errors into the target for the purpose of ex-

tracting the secret information they may contain. The most common techniques

used for FI attack are: Clock or voltage tampering [1, 2, 3], Electromagnetic FI10

(EMFI) [4, 5, 6, 7], and Optical FI [8, 9, 10].

Recently, many researches have been conducted to study the threat that

FI poses to the MCU. In [11], the authors reported the EMFI-induced skip of

instructions and used it to bypass a verify pin function, allowing a potential

adversary to access the system without being authorized. In [12], the authors15

used EMFI for zeroing and setting an Advanced Encryption Standard (AES)

key, which allows an attacker to retrieve the plain text without having the orig-

inal key. Recently, [13] experimentally proved that instructions can be faulted

at several points along the instruction channel, from the Flash interface to the

execution pipeline, and also up to the fetch and execution stages in the pipeline20

itself using LFI.

What is called a Fault Model (FM), is the description of the faults main char-

acteristics. At bit level, common FMs are: bit-set, bit-reset, and bit-flip [14].

While at instruction level, the FMs include modification of instructions, skip

of instructions, and replay of instructions. Among which, skip of instruction(s)25

FMs draw great attention from attackers because it is as if some instructions

were erased on-the-fly from the program, making it interesting for exploitation

purposes. Based on the number of faulted instructions, the skip FM can be

classified into single instruction skip and multiple instructions skip. Obviously,

multiple instructions skip is more threatening as compared to the single instruc-30
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tion skip. Dutertre et al. [10] reported on a powerful multiple instructions skip

obtained with LFI. Recently, [13] and [15] reported the ability to respectively

achieve multiple instruction skips with both LFI and EMFI.

In response to the increasing threat from the attack side, a great deal of

effort has been put into the development of CMs for device protection. CMs35

can be classified as either hardware or software. Hardware CMs can be very

effective when implemented on a specific device against a specific type of fault

based on its physical properties. However, it may be ineffective for another type

of fault and it is impossible to change (or update). For example, in [16], the

author proposed a hardware CM at Integrated Circuit (IC)-level that monitors40

the unusual bulk currents induced by LFI. However, these techniques may not be

able to offer protection against EMFI. While software CMs are more attractive

because they can be updated constantly; and more interestingly, they bring no

redesign cost to the existing devices[17, 18, 19].

Many of the existing software CMs are developed considering FMs at in-45

struction level, which includes: instruction skip, and instruction modification.

In [18], the authors proposed CM based on redundancy. In [17], the authors pro-

posed a CM against the single instruction skip FM ; they also formally verified

its effectiveness. However, these methods mainly consider single instruction skip

fault. In this work, we experimentally demonstrated that it can be extended50

to the multiple instructions skip FM, and proposed two CMs for detection of

multiple instruction skip. We implemented both CMs in a 32-bit MCU and

experimentally tested their effectiveness.

This paper is organized as follows. Section 2 provides the information

about the target, experimental setups, test procedure, and FMs definitions.55

Section 3 provides a survey on the state-of-the-art of the existing CMs against

FI. Section 4 introduces the principle of the two proposed software CMs. Section

5 reports on the implementation of the two proposed CMs in the target and

theirs effectiveness when exposed to LFI and EMFI attacks. In section 6, we

discuss the limitations of the two CMs. Finally, section 7 provides the main60

conclusions and perspectives.
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2. Experimental setup and methodology

2.1. Device under test

Our test target is a 32-bit MCU: a SAMD21G18A [20] which uses an ARM

Cortex-M0+ core (2-stage pipeline). This core implements an ARMv6 thumb65

architecture and the Thumb-2 ISA of which most of the instructions have a

16-bit length [21]. The MCU is equipped with a 256 Kb Flash, and a 32Kb

SRAM; the data transfer between the memories and the processor is performed

via 32-bit AHB bus. A cache memory of 8× 64-bit lines is included to improve

the performances of the MCU. For all the reported experiments, the MCU was70

configured to work at 12MHz with zero wait states which guarantees that there

is no delay during the data read operations from the Flash memory.

Figure 1: Schematic of debugging target using Openocd

The MCU was debugged using an Atmel-ICE Debugger which allows stop-

ping the program at a breakpoint and collecting register data for further anal-

ysis. Fig. 1 shows the block diagram of the debugging system we used using75

Atmel-ICE. In this system, an Openocd server is run with Atmel ICE which is

connected to the SAMD21 via a SWD interface. The servers accepts connec-

tions from client such as GDB and telnet. In our test, a telnet client was used

to send commands to and receive data from the Openocd server.

2.2. Experimental setup80

During the reported experiments we carried out EMFI and LFI on the device

under test.
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2.2.1. EMFI bench

Figure 2: Schematic of the EMFI experimental setup

Fig. 2 depicts the experimental setup used for conducting EMFI on the MCU

target. It consists of an oscilloscope, an arbitrary waveform generator (AWG), a85

power amplifier, an injection probe, a computer, and the device under test. The

AWG is the Keysight Pulse generator 81160A, which is capable of generating a

voltage pulse as short as 1.5 ns with a rising time of 1.0 ns. Its output is fed to a

CBA 400M-260 Power Amplifier, which delivers an amplified voltage pulse to a

handmade injection probe. The latter is built with four loop turns of a 150 µm90

insulated copper wire around a ferrite core designed as a circular truncated cone,

with a top diameter of 1.5 mm and a bottom diameter of 0.8 mm. As a result,

a strong EM perturbation is created in the vicinity of the injection probe, which

may in turn induce faults into the device under test at run time (it is placed

at a distance of a few hundreds of µm from it). Synchronization between the95

operations of the target (the execution time of the test code being under EMFI)

and the EM perturbation onset is made thanks to trigger signal generated from

the device under test prior to the start of the test code. The trigger signal is

used to trigger the AWG pulse with a tunable delay. The oscilloscope is used
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to observe and set the synchronization.100

2.2.2. Laser bench

Figure 3: LFI experimental setup: (a) laser bench schematic, (b) target backside image taken

using an IR camera

Fig. 3 shows the experimental setup we used for conducting LFI on the MCU.

The laser platform, as shown in Fig. 3(a), consists of a laser source, a microscope,

an XYZ stage, an IR camera, and a computer. The laser source can produce laser

pulses with a wavelength of 1,064 nm which allows the light to pass through105

several hundreds of µm of silicon. The laser Pulse Width (PW) is tunable in

the range from 50 ns to 1 s. In addition, the laser source allows obtaining a

programmable delay, and a power ranging from 0 to 3 W. The light is conducted

to and focused by a microscope. In our experiments, we used a 5× objective to

focus the laser beam on the transistors of the device under test. The diameter110

of the laser spot was 20 µm. The device under test was mounted on a XYZ stage

which allows controlling the position of the laser spot with an accuracy of 0.1

µm. The Infrared (IR) camera was used to observe the active part of the device

and the location of the laser spot through the bulk (Fault Injection Attacks

(FIA) were carried out through the target backside). The computer was used115

to control the laser pulse parameters as well as communicate with the device

under test.

The MCU was unpackaged from the backside to ensure that the light is able

to reach the transistor layer. Notice that the laser power is strong enough to
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reach the circuit layer of the MCU without the requirements of thinning it down.120

Fig. 3(b) shows the image taken with the IR camera from the backside of the

MCU. The positions of the Flash and SRAM memories are marked with black

rectangular shapes. Other structures in the circuit layer can also be seen.

2.3. Test procedure

A scan of the chip surface was performed to find the positions sensitive to125

FI. The probe , or laser spot, position was then fixed at an optimal position that

provides the highest fault rate. All the registers were initialized to a known value

at the beginning of all the tests to ensure fault traceability. One test iteration

follows three main steps: (1) the target is reset and all systems registers are

initialized; (2) the trigger for the pulse generator (either EMFI pulse or LFI130

pulse) is set, and the test code is executed; (3) all the register values are collected

as the program reaches a configured breakpoint, or when an interrupt routine

is performed.

During the experiments, 100 FI tests using either laser or Electro-

magnetic (EM) with a specific configuration of power, delay time and135

pulse width were performed. And the attack position remained un-

changed for all the experiments. Before each test, we ran the considered

test code without FI. we collected the value of all the registers to confirm the

that the program functions correctly in the normal condition and used it as a

reference to detect EMFI or LFI induced faults.140

2.4. Instruction(s) Skip FM definitions

At software level, common FMs are: instruction replay, instruction modifi-

cation and instruction(s) skip. Among which the instruction(s) skip FM poses

a significant threat. In this FM, one or more instruction(s) are replaced by

no-operation(s) (nop) instructions (or by another random instruction that has145

no effect on the executed code and thus can be considered as skipped [10]).

Based on the number of faulted instructions, the faults are classified into

single and multiple instruction(s) skip. In single instruction skip FM, FI impacts
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only one instruction. Effective CM has been proposed against it [17]. In multiple

instructions skip FM, two or more consecutive instructions are impacted by FI.150

This FM is more complex to obtain, and so as the CM to thwart it.

Skips of multiple instructions were achieved with both EMFI and LFI. In

[11], the authors were able to achieve up to six instructions with EMFI. While

in [10], Dutertre et al. were able to obtain a skip of up to 300 instructions using

a relatively long laser pulse width. Recently, [15] reported the skip of a block of155

up to four instructions using EMFI (faults were induced into the memory Flash

interface buffer). Using LFI, the same authors were able to fault instructions

when traveling from the Flash interface to the execution pipeline stages.

In this work, we focused on EMFI and LFI induced instructions(s) skips.

The experiments we conducted were tuned in order to inject various forms of160

skips as shown in Table 1. It provides four test codes to exemplify the definition

of the instruction skip FMs we used throughout this work.

Table 1: Skip FM fault definitions

Reference code skip i5i6i7i8 skip i5i6 skip i5

i1. add r0, r0, #1 i1. add r0, r0, #1 i1. add r0, r0, #1 i1. add r0, r0, #1

i2. add r0, r0, #2 i2. add r0, r0, #2 i2. add r0, r0, #2 i2. add r0, r0, #2

i3. add r0, r0, #4 i3. add r0, r0, #4 i3. add r0, r0, #4 i3. add r0, r0, #4

i4. add r0, r0, #8 i4. add r0, r0, #8 i4. add r0, r0, #8 i4. add r0, r0, #8

i5. add r1, r1, #1 i5. nop i5. nop i5. nop

i6. add r2, r2, #1 i6. nop i6. nop i6. add r2, r2, #1

i7. add r3, r3, #1 i7. nop i7. add r3, r3, #1 i7. add r3, r3, #1

i8. add r4, r4, #1 i8. nop i8. add r4, r4, #1 i8. add r4, r4, #1

The reference code consists in eight instructions (additions of immediate val-

ues in registers r0 to r4). For convenience, these eight instructions are denoted

as (i1, i2, i3, i4, i5, i6, i7, i8). Notice that concerning instruction(s) skip FM,165

we assume that a skipped instruction is replaced by an instruction equivalent

to a nop.

• skip i5i6i7i8: four instructions (i5, i6, i7, i8) are turned into instructions
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equivalent to (nop, nop, nop, nop).

• skip i5i6: two instructions (i5, i6) are turned into (nop, nop).170

• skip i5: a single instruction (i5) is turned into (nop).

It should be pointed out that to differentiate between the replay and skip

FMs, nop instructions should not be used in test codes, because the replay and

skip of a block of nop instructions are equivalent [15].

3. State-of-the-art - CMs against the single skip FM175

In this section, we discuss the existing CMs that have been developed against

FI and their main features.

3.1. Randomization

The instruction skip FM assesses the ability for an attacker to skip a cho-

sen instruction (or group of instructions) with a 100% success rate provided an180

accurate synchronization of the injection process w.r.t. the target’s activity is

achieved. This is a strong requirement that suggests to use desynchronization

as a CM. Indeed, introducing a certain level of randomization into a program

execution [22] will deny an attacker the ability to target specifically any of its

instructions. Randomization can be built from random numbers of dummy in-185

structions inserted in the course of a program, or by jumping randomly between

different of its subparts (when compatible with the considered algorithm). For

example, inserting randomness in the PIN verification of [11] would have pre-

vented it from succeeding.

However, randomization is not an absolute defense:190

• it only delays an attack success if the attacker is allowed to carry out

several attack attempts in a row (thus degrading the attack success rate),

• some attack schemes do not require an accurate timing of FI to succeed

(e.g. the attack of a RSA algorithm reported in [23]).
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3.2. Redundancy195

Redundancy is a long-established defense against faults [24, 22, 25, 26, 27,

28]. It consists in executing several times the same subprogram and to compare

the outputs. It is based on the assumption that an attacker is not able to

induce an identical fault into each execution. There exists several variants of

redundancy, the more common are:200

• code duplication with comparison that makes it possible to detect FI,

• code triplication with majority vote that provides the ability to correct

faults injected in one execution,

• duplication with inverse computations (e.g. for an encryption algorithm:

perform the encryption and then decrypt the obtained cipher, any differ-205

ence from the initial input indicates that a fault was injected) that further

reduces the ability of an attacker to induce several times the same fault

because the target’s computations are different.

However, redundancy-based CMs suffer from a high overhead in execution

time which is at least doubled or tripled (and possibly in code size as for dupli-210

cation with inverse computations). The previous state-of-the-art in FI reported

an ability to skip two instructions sufficiently away in time (several ms for laser

injection [23], and possibly less for EM injection given the 50µs repetition rate

of the used voltage pulse generators).

As a result, duplication techniques applied at instruction level were intro-215

duced for the purpose of choosing carefully the protected instructions. In addi-

tion, it may save code overhead (all instructions are not equally sensitive), allow

quasi-immediate detection or mitigation of the injected fault. These defenses

were built on the assumption that a fault (an instruction skip in our case) is

restricted to a single instruction.220

Barenghi et al. introduced in [18] a framework based CMs solution applied

at the instruction level of a program. Three techniques within the framework are

considered: instruction duplication, instruction triplication, and a parity check
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Table 2: Redundancy-based software defense against FI - FI detection [18]

Initial code Redundancy-based defense

ldr r1, [r0] ldr r1, [r0]

ldr r2, [r0]

cmp r1, r2

bne <error>

method. The main principle of this defense is based on duplication and compar-

ison. It is illustrated in Table 2 for a load instruction of a value stored in RAM225

into a register: ldr r1, [r0] . A second register r2 is used in the duplicated

instruction. Then two additional instructions are used to compare the values

stored in the two registers and branch into an error handler if the content of the

two registers differs (hence revealing a store instruction was faulted). This de-

fense is designed to provide data and code integrity. The authors detailed these230

CMs with tests on a AES implementation and suggested that the framework is

employable on the whole ARM processor family. From the overhead point

of view, execution time and code size are quite high. For example, as

shown in Table 2, to protect a single load instruction three additional

instructions are needed.235

Moro et al. proposed in [17] a variation on this CM based on duplication

without detection to cope with the single instruction skip FM. It is exemplified in

the top part of Table 3 for an instruction adding 1 to the content of a register and

storing the result in a second register. A simple duplication of this instruction

is sufficient to assure a mitigation against a single instruction skip (i.e. assuring240

that the correct result is stored in the destination register even if one of the two

instruction is skipped). This defense was suitable for this specific instruction

because its duplication did not change the result, a property called idempotence.

Duplication of the addition instruction in the lower part of Table 3 was not

feasible without changing the result because the same register r1 is used both245

as a source and a destination register. However, using an additional register r3
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Table 3: Duplication-based software defense against the single instruction skip FM [17]

Initial code Idempotent instructions Duplication-based defense

add r1, r0, #1 add r1, r0, #1

add r1, r0, #1

add r1,r1,r2 add r3, r1, r2 add r3, r1, r2

mov r1, r3 add r3, r1, r2

mov r1, r3

mov r1, r3

with a move instruction turns it into an idempotent series of two instruction that

can be safely duplicated (see resp. the mid and last columns of Table 3). The

authors formally verified the efficiency of this countermeasure on a 32-bit ARM

Cortex-M3 MCU, based on an ARMv7-M architecture that runs the Thumb-250

2 instruction set; the application tests were applied to the AES and SHA-0

algorithms. The overhead, when applying this countermeasure, is important as

reported by the authors: it may be higher than 100% in clock cycles number

and 200% in code size. Hence, they suggest that it shall be applied in selected

sensitive parts only of the target program to reduce the overhead.255

This countermeasure was applied by Barry et al. in [29] on a modified

Low Level Virtual Machine (LLVM) compilation tool as a generic mechanism

to protect a code. The authors introduced a new approach that generates for

all instructions an equivalent idempotent instructions and then proceeds with

the related duplication process. They also proposed an instruction schedul-260

ing mechanism that proceeds to rearrange the execution order of the modified

instructions to ensure a better execution time and an increased resistance to

instruction skips. With this approach, it was possible to reduce the execution

speed overhead and code cost by approximatively the half from the results ob-

tained by [17]. However, the code with this CM may become more265

vulnerable to either FIA or side-channel attacks as discussed in[30].
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3.3. Hardware-assisted software countermeasures

Danger et al. provide in [31] a solution based on extra hardware imple-

mented block named Code and Control-Flow Integrity (CCFI). The method is

presented as a generic countermeasure and is not intrusive since it does not need270

any modification of the core. This extra block is composed of two parts: a first

part is used to store metadata related to the code and control flow information,

and the second module is needed for the integrity check of both the code and the

control flow. This method was tested on an implementation of PicoRV32 based

on RISC-V ISA (three-stage pipeline). Their evaluation showed that it provided275

protection against simulated fault attacks. While, in [32], Yuce et al. demon-

strate a new and flexible strategy against FIA. The presented countermeasure

is based on a hardware detector combined with a software block that handle the

fault flag and run the application specific fault response. A low-level hardware

checkpointing mechanism is used to recover from FI; and the application-specific280

response is enabled by a software secure trap. The evaluation was proceeded

by comparison of the protected code to both its unprotected version and its

protected version using the instruction duplication method.

These CMs, though interesting, require to modify the hardware of the pro-

tected device. Our choice in this work was to devise software CMs that can be285

used for already existing devices (with no need of hardware modification/upgrade)

with a simple update of their program.

4. Proposed CMs against multiple instructions skip FM

4.1. CM based on code duplication and a dedicated counter

The CM proposed and formally verified in [17] is effective only for a single290

instruction skip (or distinct skips that cannot target simultaneously the dupli-

cated instructions). The implementation of this method includes two steps: (1)

transformation of instructions into idempotent form (as exemplified in Table 3),

(2) duplication of the instructions obtained in step 1. However, the CM is not

effective for multiple instructions skip, i.e skip of more than one instruction.295
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Table 4: Steps to implement the detection method based on code duplication and a hardware

dedicated counter

Reference code Step 1 Step 2 Step 3

i1 inst1 inst1 inst1

i2 inst2 inst1 cnt = cnt+ 1

i3 inst3 inst2 inst1

i4 inst4 inst2 inst2

inst3 cnt = cnt+ 1

inst3 inst2

inst4 inst3

.... .... .... ....

By introducing a hardware counter and inserting an instruction incrementing

this counter in between the duplicated instructions, we obtained a CM that is

effective for both single and multiple instructions skips. Table 4 depicts the

implementation of the CM. Here, we consider a piece of code to be protected

consisting of four instructions (i1, ...,i4 ) as shown in the first column of Table 4.300

Step 1 is to transform all the instructions into idempotent instructions (inst1,

...,inst4) (noted that the transformation may not be a one-to-one mapping). In

Step 2, the idempotent instructions are duplicated. After Step 2, the protected

code is the same as the one proposed by Moro et al. [17], which was proved

to be effective against single instruction skip FM. In Step 3, an instruction to305

increase the dedicated counter is added in between the duplicated instructions.

The value of the counter is initialized at the beginning of the program and its

final value is also collected at the end and compared with the expected value to

detect any injected fault. Notice that the code to check the counter value can

be implemented at several points in the program to timely detect the fault as310

well as to make sure that this part is not skipped by the attack.

Table 5 shows how the CM works against single and multiple instructions

skip FM. In Case 1, if a single instruction skip targets an instance of the

duplicated inst1, there will be no effect on the result, the code is protected
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Table 5: Working principle of the method based on code duplication and a hardware dedicated

counter against skip(s) FM

Case 1 Case 2 Case 3 Case 4 Case 5

inst1 inst1 inst1 inst1 inst1

cnt = cnt+ 1 cnt = cnt+ 1 cnt = cnt+ 1 cnt = cnt+ 1 cnt = cnt+ 1

inst1 inst1 inst1 inst1 inst1

inst2 inst2 inst2 inst2 inst2

cnt = cnt+ 1 cnt = cnt+ 1 cnt = cnt+ 1 cnt = cnt+ 1 cnt = cnt+ 1

inst2 inst2 inst2 inst2 inst2

inst3 inst3 inst3 inst3 inst3

.... .... .... .... ....

without detection. Case 2 reports how a counter increment instruction may315

be skipped. As a result, the final value of the counter is corrupted and finally

detected when compared to the expected values (note that the program still

produces an error-free result). In Case 3, if two instructions cnt=cnt+1 and

inst1 are skipped, the final result of the cnt is changed and does no longer

match with the expected value, therefore the fault can also be detected. In320

Case 4, if instructions inst1 and inst2 are skipped, the fault is corrected

without detection. Finally, in Case 5, if the fault models are three instructions

skip (or more) we can be sure that the value of the cnt is faulted and not

matched with any expected value. Therefore it can be detected. Notice that

the value of cnt can be checked at several points in the program to increase the325

effectiveness of the CM. In addition, an error may be introduced as illustrated

by skipping both duplicated inst1 instructions.

From the above analysis, we see that the proposed method is effective with

both single and multiple instruction(s) skip. Specifically, for the single

instruction skip, the CM can either automatically correct the result330

or detect fault via checking counter’s value and all the instructions

including branches, calls can be protected. The dedicated counter

provides a means for detecting the multiple instructions skip fault.
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The working mechanism of the dedicated counter here is quite the

same with the signature monitoring for detecting control flow error335

in [26]. Therefore, it can also be use for detection of control flow

error fault. However it is out of the scope of this paper. It should

be also noticed that in here the counter is inserted in between the

duplicated instruction while in [26] the counter is inserted after every

instruction.340

Figure 4: Proposed schematic for implement the CM using LLVM

The generalization and automation of this CM can be completed following

the method described in [29] in which the author used modified LLVM com-

piler to transform instructions into idempotent form and duplicate it afterward.

The procedure to implement this CM is shown in Fig. 4. Notice that the blocks

marked with white color have already been implemented and verified in [29, 17].345

We propose to add three blocks marked with grey color to implement this CM:

(1) pre hardware counter insertion to check and reallocate the use of the reg-

isters, (2) hardware counter insertion to insert an instruction to increase the

counter between the duplicated instructions, (3) check value block insertion to

insert a block for checking the counter value. As an example, we applied350

the CM to the verifyPIN program automatically using LLVM and

ran it in an ARM MCU emulated with QEMU to evaluate the per-

formance. The result shows that the code size overhead is 293% and

the execution time overhead is 201%.

4.2. Counter-measure using a SI as a sensor355

In MCU, the program instructions are stored in the non-volatile memory

such as an embedded Flash. Normally, several instructions are loaded into

the Flash interface buffer before being transferred to the core for execution.
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Unfortunately, the process related to loading instructions into the Flash interface

buffer is quite sensitive to FI. And the block of instructions being loaded each360

time can be targeted as a whole resulting into a multiple instructions skip. In

[6], the author reported the replay of a block of instructions caused by EMFI.

In [33], the authors provided an in-depth analysis of EMFI-induced instruction

buffer fault. Recently, the work in [34, 13, 15] reported on experimental basis

the ability to fault the instruction buffers and to obtain multiple instructions365

skip with both EMFI and LFI. A closer inspection at bit level revealed that

bits corruptions inside the buffer were induced. As a result, the opcodes of

the instructions loaded into the buffer were changed into non-existent opcodes

and hence not recognized by the core. In effect, they were considered as nops

resulting into a multiple instructions skip (which number was that of the buffer370

size expressed in number of instructions). The CM we propose takes into account

that FM at block level by inserting so-called SIs. The idea here is to insert a

SI into the block, and check its result to detect if the block of instructions was

skipped. Notice that the SI is carefully chosen based on the FM at bit level. If

the FM is bit-set, the SI should be an instruction having an opcode containing375

as many bits at 0 as possible. In contrast if the FM is bit-reset, the SI should

be an instruction having an opcode containing as many bits at 1 as possible.

Table 6: Implementations of detection method based on SI as a sensor

Reference code Implementation 1 Implementation 2

i1 #block1 #block1

i2 SI1 SI1

i3 i1 i1

i4 i2 i2

i3 SI2

#block2 #block2

SI2 SI3

.... i4 i3

.... .... ....
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Table 6 illustrates the implementation of this method. Here we consider the

case in which the size of the buffer corresponds to four instructions. The code

needs to be protected is shown in the Reference code column. The second380

column Implementation 1 shows the code with each block containing one

SI, and the third column Implementation 2 shows the code with each block

containing two SIs.

The result produced by instructions SIN (with N being 1, 2, 3..) is used to

detect if there is any fault caused by the FI. And notice that it can be checked385

at several points in the program to timely detect the fault.

Figure 5: Proposed schematic for implement the CM using LLVM

The generalization and automation of this CMs can also be accomplished

using the compiler such as LLVM. We proposed the steps to implement this CM

using LLVM in Fig. 5. There are three additional boxes marked with grey color

includes (1) pre SI insertion to check and reallocate the use of registers, (2) SI390

insertion to insert the SI into each block of instructions, (3) check value box

insertion to check the value of the register used in SI. We also used LLVM to

generate the CM for verifyPIN program and ran it in an ARM MCU

emulated with W to evaluate the performance. The result shows that

the code size overhead is 200%, and the execution time overhead is395

149.5%.

5. Validation of the proposed CMs against LFI and EMFI on ARM

cortex M0+

To evaluate the effectiveness of the CMs proposed in Section 4, we used

LFI and EMFI with parameters that makes it possible to skip two and four400

successive instructions.
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5.1. CM based on code duplication and dedicated counter

Table 7 shows the test codes we wrote for the evaluation of this CM. For

Table 7: Test codes used for evaluation of the CM based on code duplication and a dedicated

counter on ARM Cortex-M0+

Code to be Code protected with Protected code as

protected CM proposed [17] proposed in Section 4.1

i1. add r1, r0, #1 i1. add r1, r0, #1 i1. add r1, r0, #1

i2. add r2, r0, #1 i2. add r1, r0, #1 i2. add r5, r5, #1

i3. add r3, r0, #1 i3. add r2, r0, #1 i3. add r1, r0, #1

i4. add r4, r0, #1 i4. add r2, r0, #1 i4. add r2, r0, #1

i5. add r3, r0, #1 i5. add r5, r5, #1

i6. add r3, r0, #1 i6. add r2, r0, #1

i7. add r4, r0, #1 i7. add r3, r3, #1

i8. add r4, r0, #1 i8. add r5, r5, #1

i9. add r3, r3, #1

..... ..... .....

simplicity, the four instructions were all chosen to be idempotent. The instruc-

tions are simple add rx, r0, #1 adding operations, which adds 1 to r0 register405

and stores the result into rx register, with x being 1, 2, 3, 4. The second column

shows the test code protected with the CM proposed in [17]. The third column

shows the test code protected with the detection method described in Section

4.1, in which register r5 is used as the hardware counter. The counter r5 is

initialized at 0 at the beginning of the program (not shown in the CM code),410

and increased by 1 after each instruction.

These three codes were experimentally tested in terms of their ability to

mitigate (or not) the skip of two instructions. Fig. 6 reports the obtained

results (from left to right: unprotected code, code from [17], code implementing

the duplication with the hardware counter increment CM). The LFI and EMFI415

were used to produced skip of first two instructions in each test code. LFI results
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Figure 6: Test result with LFI-induced two instructions skip: (a) Skip of two instructions

obtained with LFI-induced fault on data loaded into AHB bus, (b) Bypassing available CM

with success rate of 100%, (c) Detecting the fault with dedicated counter, Test result with

EMFI-induced two instructions skip: (a) Skip of two instructions obtained with LFI-induced

fault on data load into Flash interface buffer, (b) Bypassing available CM with success rate

of 100%, (c) Detecting the fault with a dedicated hardware counter.

are given in the figure top part, and EMFI results in its bottom part. We used

the following denominations to identify the various results shown in Fig. 6:

• attack_success: the obtained result is faulted (incorrect) and the attack

is undetected.420

• sys_fault: the MCU stops working due to the attack.

• other: the faults are not the skip of two instructions.

• attack_detected: the attack is detected by the CM.

• attack_not_detected: the attack is not detected by the CM.

The result tested with LFI are presented in Fig. 6 (a), (b), and (c). The425

laser power was 1.5 W, and the PW was 50 ns. Notice that by using the LFI

20



to fault the data loaded into the AHB bus [13], we were able to achieve FM of

skip of two instructions with a success rate of 100 % as shown Fig. 6 (a). It

can also be used to bypass the CM proposed in [17] with a success rate of 100%

as shown in Fig. 6(b). For the CM, it is quite obvious from Fig. 6 (c) that all430

the attacks were detected.

Notice that the skip of two instructions with a fault rate of 100% was ob-

tained with EMFI by faulting the data loaded into Flash interface buffer [15].

The result tested with EMFI are presented in Fig. 6 (d), (e), and (f). The Pulse

Amplitude (PA) was 0 dB, while the PW was 7.0 ns. As shown in Fig. 6 (d),435

skip of two instructions with a fault rate of 100% was obtained. As compared

to the result obtained with LFI, the EMFI-induced fault are more complex, as

shown in Fig. 6 (d), apart from the skip of two instructions, there are also

the other fault and system fault. Similarly, as applied to the code with CM

proposed in [17], for the the time interval which the two instruction skip occurs,440

the attack success rate can reach 100% as shown in Fig. 6 (e). For our CM, the

detection rate at the corresponding time interval can also be 100%. However

there are some faults that are not detected by our detection method (i.e at the

delay time from 568 to 571 ns in Fig. 6. This is because these faults are

related to the modification of register r0, resulting into the fault of the value of445

the registers r1 to r4, while the value of the register r5 is still correct. In short,

we can see that the proposed CM is effective for instruction(s) skip FM caused

by the LFI and EMFI.

5.2. Counter-measure using a SI as a sensor

The idea behind the CM using SI is to insert into every instructions block450

one or several instructions that are particularly sensitive to both LFI and EMFI.

As a result, any FI attempt would likely corrupt these SIs providing evidence

that an attack in under way. A preliminary work was to identify the relevant

FMs. To do so, we wrote three test codes (given in Table 8). The first one

consists in four instructions add rx, rx, #1. The second one consists in four455

lsl r0,r0,#0 instructions (i.e. instructions which opcode is 0x0000) in order
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Table 8: Test codes for characterization of FMs at instruction level and bit level on ARM

Cortex-M0+

Test code for instruction Test code for bit-set Test code for bit-reset

level FM detection fault detection fault detection

i1. add r1, r1, #1 i1. lsl r0, r0, #0 i1. sub r7, r7, #0xff

i2. add r2, r2, #1 i2. lsl r0, r0, #0 i2. sub r7, r7, #0xff

i3. add r3, r3, #1 i3. lsl r0, r0, #0 i3. sub r7, r7, #0xff

i4. add r4, r4, #1 i4. lsl r0, r0, #0 i4. sub r7, r7, #0xff

to be sensitive to bit-set faults. The third one consists in four sub r7,r7,#0xff

instructions (instructions which opcode is 0x3fff i.e. instructions with as many

bit at 1 as possible) in order to be sensitive to bit-reset faults.

Figure 7: characterization of LFI and EMFI -induced fault at bit level and instruction level,

LFI-induced fault: (a) skip of four instructions, (b) bit-reset fault rate, (c), bit-set fault,

EMFI-induced fault:(d) skip of four instructions, (e) bit-reset fault rate, (f), bit-set fault rate

The laser power was set to 1.5 W, and the PW to 50 ns. The MCU was460

configured to work in cache enable mode, meaning that the Flash interface

buffer size is 64-bits i.e. it contains a block of four instructions. Fig. 7 reports
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the experimental results of LFI and EMFI on the three previous test codes.

Fig. 7(a) provides the results at instruction level: the success rate in skipping

the whole block of four instructions. The sensitivity window has a range of ∼465

125 ns (for a clock period of ∼ 83 ns) and it repeats itself with a period of four

clock cycles. Fig. 7(b) shows the fault rate obtained when most of their bits

in the buffer are 1, many faults were observed (with a success rate of 100% for

some timings). Fig. 7 (c) shows the fault rate obtained when the buffers were

filled with bits at 0 , almost no faults were induced.470

We also conducted the same test with EMFI to characterize its FM at in-

struction level and bit level. The results are shown in Fig 7(d), (e), and (f). We

can see that at instruction level skip of four instructions can be achieved with

EM pulse as shown in Fig 7(d). Concerning the FM at bit level, we can see that

the fault mostly occurs when the buffers are filled with bits at one, while very475

few faults occur when the buffers are filled with zero bits. Through this test, we

assume that: (1) at bit level, the faults induced by LFI and EMFI are bit-reset

rather than bit-set, (2) at instruction level the fault is skip of instruction(s). In

other words, instructions skip is caused by EMFI- or LFI-induced multiple bits

reset on instructions’ opcode loaded into buffer, and are fully reproducible as480

shown in Fig. 7 (b) and (e).

Based on the analysis above, we applied the CM proposed above to our

target. For simplicity, we used four instructions corresponding to one block

loaded into the Flash interface buffer as the code needed to be protected as

shown in Table 9 (first column). After inserting the SI instructions, we obtained485

the protected code as shown in Table 9 (second column). Notice that now it

becomes two blocks of four instructions. The sub r7, r7, #0xff is used as

the SI. At the beginning of r7 is initialized, and the end, its value is

check and compared with the expected value to detect whether there

is a fault or not. We used the LFI to target theses instructions. The fault490

are also classified into: (1) attack_detected , (2) attack_not_detected, (3)

sys_fault . The result obtained with LFI are presented in Fig. 8 (a), (b) and

(c). The laser PW was 50 ns and the laser powers were 1.5 W, 1.1 W, 0.9 W. In
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Table 9: Implementation of the CM using a SI as a sensor on ARM Cortex-M0+

Code to be protected Protected code with CM

proposed in 4.2

#initialization of r7

i1. add r1, r1, #0x01 #block1

i2. add r2, r2, #0x01 i1. sub r7, r7, #0xff

i3. add r3, r3, #0x01 i2. add r1, r1, #0x01

i4. add r4, r4, #0x01 i3. add r2, r2, #0x01

.... i1. sub r7, r7, #0xff

.... #block2

.... i1. sub r7, r7, #0xff

.... i2. add r3, r3, #0x01

i3. add r4, r4, #0x01

i1. sub r7, r7, #0xff

#check value r7

most of the case, the attacks are detected by monitoring the value of register

r7. No attack_not_detected was observed when tested with the LFI. The495

result strongly recommends that the CM is effective for detecting the multiple

instructions skip.

The result obtained with EMFI are presented in Fig. 8 (d), (e), and (f).

The PW was 7 ns and the PAs are 0 dB, -4 dB, -8 dB. It is also obvious that

most of the attacks can be detected using our detection method. There is a500

very few attack_not_detected fault. In short, the result shows that the CM

is effective for detecting either LFI and the EMFI.

Also notice that our method here differs from the one proposed in

[26] in the way the SI is selected and inserted into to the instructions

block. For the SI, it can be selected based on the FM at bit level. For505

example, in our case: (1) if the FM is bit-set the lsl r0, r0, #0x00 is

used, (2) if the fault at bit level is bit-reset then the sub r7, r7, #0xff

is used, (3) if the fault at bit level is bit-flip, both instructions can be
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Figure 8: detection rate of CM based on SI, LFI: (a), 1.5 W, (b), 1.1 W (c) 0.9 W, EMFI: (d)

0 dB, (e) -4 dB, (f) -8 dB

used for detection. The block of instructions is formed based on the

number of instructions loaded into buffer at one time which is highly510

related to the architecture of the device.

Concerning the code size overhead of this CM, we can see that a block of four

instructions are formed by two SIs and two original instructions. In addition,

blocks to check the value of the register related to SI are needed at some specific

points in the program. Therefore, the code size overhead is approximately 100%.515

And the execution time overhead should be less than 100% because the execution

time of the SI is only one clock cycle.

6. Limitations of the proposed CMs

The two CMs proposed in this paper show the their effectiveness for detection

of multiple instructions skip caused by fault injection including LFI and EMFI.520

However, there are several limitations of the two CMs.

For the CM based on duplication and dedicated counter, the limitations

includes the followings. (1) the implementation of this method is quite complex.

25



First, we need to implement the method proposed in [17] and then insert the

counter in between the duplicated instructions, finally the code to check the525

counter value is also needed to implemented. (2) the code size over head of

the protected code is quite heavy (approximately 300%). Indeed, we see that

after the instruction transformation and duplication the code size is increased

significantly. Here the insertion of the dedicated counter and the code to check

its value also adds more code size overhead to the program.530

For the CM based on SI instruction as the sensor, the limitation includes

the followings. In this method, the SIs need to be found and this is a complex

process due to the fact that instruction sets vary depending on the target’s

architecture. And this CM only works with the fault related to a block of

instructions. Notice that the SIs and size of the block of instructions largely535

depend on the architecture of the devices and the type of attacks. And this

CM can not be used for detection of the attack in which the attackers

are able to target specific instruction(s) in side one protected block.

Additionally, the efficacy of the two CMs against other faults such

as control flow error has not been tested.540

7. Conclusions & perspectives

In conclusion, in this paper, we proposed two software CMs against multi-

ple instructions skip FM. The first CM is based on instruction duplication and

dedicated counter. In this CM, the instructions are first transformed into idem-

potent ones which is further duplicated. Finally, the dedicated counter is added545

in between the instructions. We experimentally proved the CM is effective for

detection of multiple instruction skip. The second CM is proposed based on

the bit level and instruction level FM. We noticed that the fault at bit level is

bit-reset rather than bit-set. While the FM instruction level is related to a block

of four instructions. Based on these facts, we constructed the CM by using SI550

instructions containing maximum bits of value 1 to detect the fault. Notice each

faulted block needs to contain at least one SI. Experimental result shows that
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the method is effective to detect skip of multiple instructions due to bit reset

caused by FI.

Our future works will be centering on: (1) the validation of the methods pro-555

posed in this works on other devices, (2) the development of tool for automation

of protected code generation, (3) the more precise evaluation in code size

and execution time overhead of the proposed CMs using statistical

approaches.
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