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Abstract. Attribute-Based Signature (ABS), introduced by Maji et al.
(CT-RSA’11), is an advanced privacy-preserving signature primitive that
has gained a lot of attention. Research on ABS can be categorized into
three main themes: expanding the expressiveness of signing policies, en-
abling new functionalities, and providing more diversity in terms of com-
putational assumptions. We contribute to the development of ABS in all
three dimensions, by providing a fully dynamic ABS scheme for arbitrary
circuits from codes. The scheme is the first ABS from code-based assump-
tions and also the first ABS system offering the full dynamicity func-
tionality (i.e., attributes can be enrolled and revoked simultaneously).
Moreover, the scheme features much shorter signature size than a lattice-
based counterpart proposed by El Kaafarani and Katsumata (PKC’18).
In the construction process, we put forward a new theoretical abstrac-
tion of Stern-like zero-knowledge (ZK) protocols, which are the major
tools for privacy-preserving cryptography from codes. Our main insight
here actually lies in the questions we ask about the fundamental princi-
ples of Stern-like protocols that have remained unchallenged since their
conception by Stern at CRYPTO’93. We demonstrate that these long-
established principles are not essential, and then provide a refined frame-
work generalizing existing Stern-like techniques and enabling enhanced
constructions.

1 Introduction

Attribute-Based Signatures. Introduced by Maji et al. [68], attribute-based
signature (ABS) is an advanced signature primitive that simultaneously pro-
vides fine-grained authentications and protects the privacy of signers. In an ABS
scheme, a user possessing an attribute x certified by an authority can anony-
mously sign message M along with a policy P , as long as x satisfies the given
policy, i.e., P (x) = 1. Thanks to its versatility and privacy-preserving features,
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ABS may find applications in various contexts, such as attribute-based messag-
ing, attribute-based authentication and trust negotiation, leaking secrets and
non-transferable access control (see [68,54] for comprehensive discussions). Since
the pioneering work of Maji et al. [68], significant attention has been paid to the
developments of ABS systems, which can be categorized into the following three
major research themes.

Similar to other access-control primitives, a prominent line of work in ABS
is devoted to expanding the expressiveness of the class of signing policies a given
ABS can allow. Okamoto and Takashima [75] proposed efficient ABS schemes for
non-monotone access structures, improving Maji et al.’s schemes that can only
handle monotone ones. Systems allowing more expressive policy families, such
as bounded-depth circuits [85], unbounded arithmetic branching programs [31]
and non-deterministic finite automata [80], were subsequently developed. This
line of research reached high success with constructions supporting very general
policies, in the form of arbitrary circuits [79,37] and Turing machines [80].

The second important direction focuses on defining and designing ABS sys-
tems with new functionalities. Examples of these features include decentraliza-
tion [76] (that removes the need for a central authority), traceability [38,36] (that
incorporates a group-signature-like [27] opening mechanism), linkability [35,87]
(that allows to link two ABS signatures under certain conditions), forward se-
curity [89], hierarchy [33] and revocability [55,84,13,83,46]. Among them, re-
vocability is arguably one of the most non-trivial functionalities to achieve. In
the original model of ABS [68], the authority can enroll new signing keys for
attributes, but the model does not support revocations of certified attributes.
In fact, for advanced multi-user systems, efficient key revocation is a desirable
feature (e.g., to address situations such as membership terminations or key mis-
uses), yet typically challenging to realize, since one has to ensure that revoked
keys are no longer usable without having to reinitialize the system or affecting
other key owners. While in the related context of group signatures [27], nice so-
lutions have been proposed, e.g., [61,60,16], existing proposals for ABS are still
somewhat unsatisfactory. In a nutshell, they either suggest to revoke users’ iden-
tities (which is an artificial and unnecessary concept in the ABS setting) instead
of attributes; or they do not propose a clear model for handling revocations.

The third major research direction aims to provide more diversity regarding
the pool of computational assumptions used to instantiate ABS. A long line
of pairing-based constructions started with Maji et al.’s work [68]. The first
scheme that does not rely on pairings was suggested by Herranz [49]. The recent
emergence of post-quantum cryptography raised interest in designing ABS from
post-quantum assumptions, and lattice-based constructions [7,37,46] have been
introduced. To our knowledge, no other ABS from alternative post-quantum
foundations, e.g., codes, multivariates, isogenies, has been proposed.

In this work, we aim to contribute to the development of ABS systems in
all three dimensions discussed above. In terms of supporting techniques, we will
also enhance the area of code-based zero-knowledge protocols, specifically, those
that operate in Stern’s framework [81,82].
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Code-Based and Stern-like ZK Protocols. A beautiful and influential
cryptographic notion introduced by Goldwasser, Micali and Rackoff [48], zero-
knowledge (ZK) protocols allow to prove the truth of a statement without leaking
any additional information. In the last three decades or so, ZK protocols have be-
come a foundational subject of study and essential building blocks in the develop-
ment of countless cryptographic constructions. Specifically, via the Fiat-Shamir
transform [45], ZK protocols have been the basis for developing ordinary signa-
ture schemes, including those in NIST’s Post-Quantum Cryptography project5,
such as Dilithium [66,34] and Picnic [25,52,90]. An equally important application
domain of ZK protocols comprises privacy-preserving authentication systems,
such as group signatures [27], ring signatures [78], anonymous credentials [26],
functional signatures [20], policy-based signatures [8], mesh signatures [19], and
– of our particular interest – attribute-based signatures [68].

In the context of code-based ZK, a recent line of work [43,42,14,24] has ob-
tained efficient Fiat-Shamir-based ordinary signatures by cleverly employing the
MPC-in-the-head paradigm [50] for variants of the Syndrome Decoding problem.
However, for developing advanced code-based privacy-preserving cryptosystems,
where sophisticated algebraic structures are required, the major technical step-
ping stone is still Stern’s protocol [81,82].

The original protocol of Stern addresses the following relation

RStern =
{(

(M,v),w
)
∈ (ZD0×D

2 × ZD0
2 )× B(D,ω) : M ·w = v

}
,

where D,ω ∈ Z+ such that D > max{D0, ω}, and B(D,ω) denotes the set of all
vectors in {0, 1}D having Hamming weight ω. The protocol is a Σ-protocol [29] in
the generalized sense defined in [51,11] (where three valid transcripts are needed
for extraction, instead of just two), and is based on the following two main ideas.

(i) To prove the linear equation M ·w = v, use a uniformly random r ∈ {0, 1}D,
and prove instead that M · z = M · r⊕v. Here, z = w⊕ r, where ⊕ denotes
the addition modulo 2, is uniformly random over {0, 1}D, as r acts as a
one-time pad.

(ii) To prove that w ∈ B(D,ω), use a uniformly random permutation ϕ in the
symmetric group SD to permute the coordinates of w. The permuted vector
t = ϕ(w) is then uniformly distributed over B(D,ω).

Moreover, the two ideas are compatible with each other thanks to the ho-
momorphism ϕ(z) = ϕ(w)⊕ ϕ(r), since there are two different ways to compute
ϕ(z), based on either (ϕ, z) or (ϕ(w), ϕ(r)). That is, the prover can show the
honest computation of ϕ(z) via either of the pairs, depending on the verifier’s
challenge. Since 1993, there have been a large number of works built upon Stern’s
ideas. Most notably, they enabled privacy-preserving code-based constructions
such as proofs of plaintext knowledge [70], proofs of valid openings for commit-
ments and proofs for general relations [51] and committed Boolean functions [62],
5 https://csrc.nist.gov/Projects/post-quantum-cryptography

https://csrc.nist.gov/Projects/post-quantum-cryptography
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ring signatures [30,69,21,74], group signatures [40,41,2,74], group encryption [73],
accumulators and range proofs [74].

Stern’s ideas have also been shown useful in the lattice setting, including the
first proposals [53,63] of “exact” ZK protocols6 for the Short Integer Solution [1]
and Learning With Errors [77] problems, as well as the first lattice-based group
signatures [58,59] without trapdoors [47], the first policy-based signatures [28],
accountable tracing signatures [64], multimodal private signatures [71], bicameral
and auditably private signatures [72].

In terms of developing Stern’s framework, Libert et al. [56] proposed an
abstraction of Stern-like protocols that captures the contexts where one’s witness
vectors may simultaneously be involved in many linear equations. In Libert et
al.’s formulation, the set of valid witnesses is generalized from B(D,ω) to some
set VALID ⊂ {0, 1}D. Furthermore, to handle vectors w whose coordinates are
arranged according to certain patterns, the random permutations applied to w
are not necessarily uniform over SD, e.g., they could be uniformly random over
some fine-grained subset S ′ of SD.

However, Libert et al.’s work as well as all other existing Stern-like protocols
all methodically adhere to the two original ideas, namely, use uniformly random
permutations of coordinates and uniformly random masking vectors over the
entire space {0, 1}D. In this paper, we challenge these fundamental ideas. The
new perspectives acquired during our revisiting process could then help us to
move forward with new formulations, which in turn, could potentially inspire
new and enhanced cryptographic applications, in particular, code-based ABS.
Our contributions. We make several contributions to the area of attribute-
based signatures. In the process, we also introduce new insights and techniques
for Stern-like protocols, which help enhance our code-based ABS scheme and
could be of independent interest. Our contributions are summarized as follows.
Contributions to attribute-based signatures. Our results for ABS subsume
all the three discussed aspects: additional functionality, expressiveness of signing
policies and diversity of (post-quantum) computational assumptions.

We first propose a model for fully dynamic attribute-based signatures (FD-
ABS). By “full dynamicity”, we mean that the system simultaneously supports:
(i) Dynamic enrollments of new attributes; (ii) Key updates for users who
changed their attributes; and (iii) Revocations of expired/misused keys. Our
model is equipped with rigorous definitions and stringent security requirements
that extend the privacy and unforgeability notions put forward by Maji et al. [68]
to the fully dynamic setting.

Next, we provide an instantiation of FDABS based on codes. Being the first
code-based ABS, our scheme helps to enrich the pool of ABS from post-quantum
assumptions. In terms of policy expressiveness, the scheme supports arbitrary
Boolean circuits. In the quantum random oracle model (QROM), we prove that
the scheme satisfies the proposed security requirements for FDABS, based on
6 “Exactness” here roughly means that there is no difference between the language

used for defining ZK and the one ensured by soundness. This is a desirable feature
for lattice-based ZK proofs and arguments. See, e.g., [88,18,39].
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a well-studied variant of the Syndrome Decoding problem [5,6,12]. In terms of
efficiency, our scheme has signature size Õ(C ·λ+λ2), where C denotes the size
of a circuit representing the signed policy, and λ is the security parameter.

Prior to our work, the only ABS construction for arbitrary circuits based on
well-studied post-quantum assumptions is the one introduced in [37], which has
signature size Õ(C · λ2 + λ3). Our signature size is smaller by a factor Õ(λ),
which is quite a surprising and counterintuitive feat, as code-based signatures
are generally considered to be much inferior to their lattice-based counterparts
in terms of efficiency. Here, the improvement is achieved thanks to an enhanced
approach that allows us to prove circuit satisfiability in a direct manner and
that is compatible with our refined abstraction of Stern (discussed below). In
a nutshell, in [37] one has to commit to all the input and output wires of the
circuit and prove relations among them in zero-knowledge with communication
cost Õ(λ2) bits for each gate. Here, in contrast, we prove the circuit satisfiability
directly (without relying on commitments) by reducing it to C simple binary
equations that involve witness vectors constructed in a specific way. Then, our
new Stern-like techniques help us to prove with communication cost 4 bits per
gate for soundness error 2/3 and O(λ) bits per gate for soundness error 2−λ.
Moreover, while the ABS scheme in [37] was only analyzed in the ROM [9], our
scheme here is proven secure in the QROM [15] and it is technically the first
post-quantum ABS for arbitrary circuits.7.

In Table 1, we provide a comparison among known ABS schemes for expres-
sive policy classes and from well-established assumptions. Note that, while we
obtain noticeable improvements over previous work, our scheme is still far from
being practical (with an estimated signature size of tens MBs). We therefore
mainly view our work as a theoretical one and consider the problem of designing
practically usable post-quantum ABS for circuits as a fascinating open question.
Contributions to Stern-like and code-based ZK protocols. We revisit the
fundamental ideas Stern introduced in his seminal work [81,82], namely, the uses
of uniformly random permutations of coordinates and uniformly random masking
vectors. Viewing them from new angles, we observe a highly intriguing fact: these
ideas are not essential for Stern-like protocols! Indeed, we show that there are
examples where it is unnecessary (and sub-optimal) to use a uniformly random
masking r or a uniformly random permutation ϕ to hide witness vector w. These
new understandings inspire us to formulate an abstract ZK protocol for proving
linear relations of binary witness vectors, with the following nice features.

– It captures previous approaches and techniques for Stern-like protocols, in-
cluding Stern’s original work [81,82], Libert et al.’s formulation [56], as well
as those used in code-based constructions such as [69,70,51,40,2,74,73].

– It paves the way for the designs of more efficient protocols in which one
may securely hide a witness vector w via non-traditional methods: a mask-

7 To be fair, it could also be possible make the scheme in [37] secure in the QROM.
Intuitively, the scheme also employs Stern-like protocols, and can as well benefit
from the variant of Unruh’s transform [86] presented in [44].
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Scheme Policy expressiveness Assumptions SM/
(Q)ROM

Signature
size

Fully
dynamic

OT11 [75] Non-monotone
access structures pairings SM O(S · λ) ✗

SAH16 [79] Arbitrary circuits pairings SM O(C · λ) ✗

SKAH18-1 [80] Turing machines pairings SM O(T 2 · λ) ✗

SKAH18-2 [80] Non-deterministic
finite automata pairings SM O(W · λ) ✗

DOT19 [31] Branching programs pairings SM O(L · λ) ✗

Tsa17 [85] Bounded-depth
circuits lattices SM Õ(D · λ) ✗

EKK18 [37] Arbitrary circuits lattices ROM Õ(C · λ2 + λ3) ✗

Ours Arbitrary circuits codes QROM Õ(C · λ+ λ2) ✓

Table 1: A summary of known ABS for expressive policy classes and from well-
established computational assumptions. For all schemes, λ denotes the security
parameter. For [75], S denotes the access structure size; For [80], T and W denote
the running time of a Turing machine and the input length of a finite automa-
ton, respectively; For [31], L denotes the branching program length; For [85], D
denotes the circuit depth; For [79,37] and ours, C denotes the circuit size.

ing vector r that is not necessarily uniform, or a function F (·) that is not
necessarily a permutation.

In particular, these new views allow us to obtain sub-protocols with en-
hanced efficiency for commonly seen statements in code-based privacy-preserving
cryptography, such as proving knowledge of a binary vector of fixed Hamming
weight [81,82] or with special arrangements of non-zero bits [40,58,74], or for
handling products of secret bits [57]. These improved sub-routines are helpful
for our instantiation of ABS from codes.

We would like to stress that our major innovation here actually lies in the
questions we ask about the fundamental principles of Stern-like protocols that
have been remaining unchallenged since their conception in 1993. Once the ques-
tions are spot on, the counterexamples as well as the refinements would come
rather naturally and might look somewhat “simple” in hindsight. We also would
like to admit that our refinements have not yielded a noteworthy efficiency im-
provement for the cryptographic applications we are currently aware of. In par-
ticular, our techniques of replacing uniform masks by odd-weight masks and
replacing coordinate permutations by affine functions only give improvement
factor O(1), which could be considered small – in theory and in practice. Never-
theless, we believe that our refined framework has the potential to enable more
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significant improvements for cryptographic applications, which we have been
unable to fully exploit.

Technical Overview. Let us give a high-level discussion for each of our
technical contributions.

Defining FDABS. In order to bring full dynamicity into the context of ABS,
we adapt the definitional framework of Bootle et al. [16,17] in their work on
fully dynamic group signatures, which captures the two most commonly adopted
approaches for revocations, namely, accumulator-based [23] and revocation-list-
based [22]. Similar to [16,17], the lifetime of an FDABS system is divided into
time epochs. We assume that the specification of the epochs (e.g., from 8:00:00am
UTC on Monday to 7:59:59am UTC on next Monday) is publicly known. We
also assume that the updated system information is announced at the beginning
of each epoch and is publicly accessible. For example, such information may be
appended to a public database at 8:00:00am UTC on each Monday. Hence, the
signers and verifiers are required to download the updated information at most
once per epoch. Such a requirement is natural and necessary to formulate the
correctness and security properties in the fully dynamic setting. In fact, unlike
the partially dynamic setting (in which users can join the system at any time
but cannot be revoked) – where the public parameters do not need to change
over time, all known fully dynamic signatures inherently demand some updates
of system information per time period: either in the form of an updated keys or
updated lists of active/revoked users.

In our model, a signature Σ is always attached to a message-epoch pair
(M, τ). To verify Σ, one should use the corresponding system information at
epoch τ – which can be publicly downloaded if it has not been in one’s local
storage. We formalize the stringent security requirements of privacy and unforge-
ability for FDABS, which are extended from those in Maji et al.’s model [68].

Regarding privacy, the adversary is provided with the strongest capability:
it is allowed to maliciously generate the keys of the authority and even the
challenge attributes. Furthermore, different flavors of privacy are presented to
capture different computational powers of the adversary.

In terms of unforgeability, we formulate a strict notion, in which an attribute
is not authorized to sign unless it is not revoked and also active at the epoch
associated with the signature. Furthermore, a signature generated at epoch τ
should only be verified w.r.t. τ , i.e., verification w.r.t. any different epoch τ ′

should fail. This, in particular, eliminates the possibility that an attribute is
used to sign before it is introduced into the system.

Designing code-based FDABS for circuits. A typical approach for de-
signing ABS is “sign-then-prove”, which relies on an ordinary signature scheme
and a zero-knowledge protocol. The signing key for an attribute x is then set
as a signature s of the authority on “message” x. When signing with policy P ,
one proves knowledge of a message-signature pair (x, s) that is valid under the
authority’s public key, and additionally proves that P (x) = 1. This approach, in
particular, was used in existing lattice-based ABS in the ROM [7,37,46].
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In the code-based setting, however, ordinary signature schemes compatible
with ZK proofs of a message-signature pair are currently unavailable. Note that
the state-of-the-art code-based signature schemes, such as [4,32,42,14,24], resort
to the (Q)ROM, and are unsuitable for our purpose – since it is not known how
to efficiently prove in ZK the knowledge of a message hashed by a RO. Thus, at
a high level, the current lack of code-based signature schemes in the standard
model is arguably the major reason why constructing ABS from codes remains
an open question to date.

To overcome the above issue, we start with a somewhat disparate approach,
which we name “commit-then-accumulate-then-prove”. Specifically, we employ
different technical building blocks: an updatable Merkle-tree accumulator [74,73],
a commitment scheme [74] and a companion ZK protocol. The general idea
is inspired by the constructions from [65,73], but here, we put commitments
d = com(x, r) to attributes x at leaves of the tree. Then, when signing with policy
P , one proves that: (i) d is contained in the tree; (ii) d is a valid commitment
to some attribute x; (iii) x satisfies the Boolean circuit relation P (x) = 1. Here,
(ii) can be viewed as a bridge connecting two layers (i) and (iii).

In fact, a ZK protocol for the combined relation above can be developed
based on existing Stern-like techniques from [74] – for the Merkle trees and
commitments, and [51] – for circuits. However, [51] requires to commit to all
input and output wires in the circuit, which yields communication cost O(C ·λ2)
for the circuit layer (similar to the situation in [37]).

Fortunately, as we will discuss below, our refined framework for Stern-like
protocols together with our techniques for proving (x1 NAND x2) ⊕ x3 = 0
enable us to handle the NAND gates in the circuit and realize the sub-protocols
in a much more efficient manner. In particular, we manage to reduce the com-
munication cost for the circuit layer to O(C · λ).

Let us now discuss how we enroll and revoke an attribute x. Initially, all the
leaves of the tree are associated with 0. To enroll x, we commit it to d, and
add d to the tree if d has odd Hamming weight (which happens with probability
negligibly close to 1/2). To revoke x, we set d back to 0 and update the tree
accordingly. When signing, one additionally proves that attribute x is active
(i.e., it has been enrolled and has not been revoked) by showing that d has
odd weight – which then can be done very efficiently by proving that the inner
product of d and the all-1 vector is 1. We remark that, in previous works [65,73],
an active d was set to be non-zero, causing a relatively inefficient sub-protocol
for proving d ̸= 0. That sub-protocol relies on an extension trick from [63]. The
latter requires the use of a random permutation of bit-size O(n logn), where n
is the dimension of d. Here, in contrast, by working with odd-weight d, our cost
is only n bits.

Revisiting Stern. Recall that Stern’s two fundamental ideas [81,82] are to
employ a one-time pad r ∈ {0, 1}D to additively mask witness w, and to use a
uniformly random permutation ϕ ∈ SD to permute the coordinates of w.

Our first observation is that r does not necessarily have to be uniform over the
entire space {0, 1}D. This sounds particularly counterintuitive (and contrary to
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the usual notion of one-time pads), but we can demonstrate that it is true when
w has a specific constraint. For instance, let us consider the case w ∈ B(D,ω)
as in [81,82], and denote by BD

even (resp., BD
odd) the set of all length-D vectors

with even (resp., odd) Hamming weight. Then, if we use r $←− BD
odd to mask w,

the sum z = w⊕ r will be uniformly random in the set BD
q , where q = odd if ω

is an even integer and q = even otherwise. Here, we note that elements of BD
even

and BD
odd can be described by (D − 1) bits instead of D bits, yielding smaller

complexity.
Another example is for vectors of the form w = (w1∥ · · · ∥wD) ∈ {0, 1}2D,

where each wi ∈ {01, 10}, as considered in code-based privacy-preserving con-
structions like [40,74]. If for each wi, we apply a mask ri

$←− {01, 10}, then the
sum zi = wi ⊕ ri will be uniformly random over {00, 11}. Because elements
of {01, 10} and {00, 11} can be represented by just 1 bit, we can reduce the
communication cost for proving knowledge of w from 2D bits to D bits.

Inspired by the above observation, we suggest a new abstraction for Stern-
like ZK protocols, in which we assume the existence of (possibly proper) subsets
VALID, R, Z of {0, 1}D, such that for all witness vectors w ∈ VALID, the distri-
butions of {z = w ⊕ r | r $←− R} and {z $←− Z} are identical. We remark that,
while this refined masking framework only helps to save a small portion of overall
communication cost for our zero-knowledge protocols (Section 4), the underly-
ing motive could potentially be more useful in related contexts. For example, if
one only requires statistical closeness between the two distributions, then one
might possibly work with sets R,Z of smaller cardinalities, via techniques such
as rejection samplings [66,32].

Next, we ask the question of whether it is really essential to employ permuta-
tions of coordinates to prove the membership of witness w in some predetermined
set VALID, as done in all previous Stern-like protocols. To answer this question,
we abstract out the properties we would need for a function F that can be used
to prove w ∈ VALID and that is compatible with our linear masking framework
discussed above. Let us define F as F : S × {0, 1}D → {0, 1}D, where S is a
finite set. Then, we would need F to satisfy the following requirements.

First, F must “behave nicely” w.r.t. the set VALID, namely, for all ϕ ∈ S, we
require that t = F (ϕ,w) ∈ VALID if and only if w ∈ VALID and furthermore, t
is uniform whenever ϕ is uniform (in their respective sets). Second, we define
functions F ′ : S ×R → R (for the mask r) and F ′′ : S ×Z → Z (for the sum z),
and demand that they together with F satisfy a “homomorphism” property:

F ′(ϕ, r)⊕ F ′′(ϕ, z) = F (ϕ, r⊕ z), ∀ (ϕ, r, z) ∈ S ×R×Z.

Our new formulations capture the case of Stern’s original protocol, with
S := SD, R = Z = {0, 1}D and F (ϕ, ·) = F ′(ϕ, ·) = F ′′(ϕ, ·) = ϕ(·). These
formulations are particularly helpful for a technical step in our protocol of Sec-
tion 4.3, where we would like to prove knowledge of bits x1, x2, x3 such that
(x1 NAND x2) ⊕ x3 = 0 and x1, x2, x3 may satisfy other relations (e.g., they
are committed and may appear in other wires in the considered circuit).
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To the above end, we would need highly non-trivial definitions of the cor-
responding sets and functions. Specifically, letting b̄ = b ⊕ 1 for any bit b, we
encode (x1, x2, x3) as w ∈ {0, 1}4 of the form

ENC(x1, x2, x3) := [ x̄1 · x̄2 ⊕ x3 | x̄1 · x2 ⊕ x3 | x1 · x̄2 ⊕ x3 | x1 · x2 ⊕ x3 ]⊤.

Next, we define valid :=
{

ENC(x1, x2, x3) | (x1, x2, x3) ∈ {0, 1}3}
, and prove

instead that w ∈ valid and its last coordinate is equal to 1.
In the process, we note that valid = B4

odd, allowing us to use our refined
masking framework (with R = B4

odd, Z = B4
even) for proving linear equation

[0 | 0 | 0 | 1] ·w = 1 – which implies that the last coordinate of w is 1.
Meanwhile, we would need specifically designed functions F, F ′, F ′′ to prove

that w is a well-formed element of valid. To this end, we employ a permuting
function T : {0, 1}2 × {0, 1}4 → {0, 1}4, first suggested in [57], that, on input
(e1, e2) and y = [y0,0 | y0,1 | y1,0 | y1,1]⊤, outputs [ye1,e2 | ye1,ē2 | yē1,e2 | yē1,ē2 ]⊤.
Then, we let S = {0, 1}3 and define

F : S × {0, 1}4 → {0, 1}4, F ((e1, e2, e3),y) = T
(
(e1, e2),y

)
+ [e3 | e3 | e3 | e3]⊤;

F ′ : S ×R → R, F ′((e1, e2, e3), r) = T
(
(e1, e2), r

)
;

F ′′ : S × Z → Z, F ′′((e1, e2, e3), z) = T
(
(e1, e2), z

)
+ [e3 | e3 | e3 | e3]⊤.

Now, it is crucial to remark that F does not act as a permutation of coor-
dinates (due to the shift of [e3 | e3 | e3 | e3]⊤), but it interacts well with the set
valid, since we have

F ((e1, e2, e3),ENC(x1, x2, x3)) = ENC(x1 ⊕ e1, x2 ⊕ e2, x3 ⊕ e3).

Moreover, F, F ′, F ′′ satisfy the described homomorphism property. As a re-
sult, we obtain a sub-protocol for proving (x1 NAND x2) ⊕ x3 = 0, which can
further be extended to additionally prove that x1, x2, x3 satisfy other relations
(by using the same bits e1, e2, e3 at those places). We stress that techniques
from [57] could also lead to a sub-protocol achieving the same goals, but our
refinements here allow to save 1/2 of the communication cost.

Encouraged by the above new insights, new formulations and their usefulness,
we put forward a new abstract Stern-like ZK protocol. It serves as a blueprint
for the development of the ZK protocol supporting our code-based FDABS con-
struction. It also enables more efficient methods for proving knowledge of binary
vectors satisfying various different constraints, and can be used to improve the
efficiency of existing and future code-based privacy-preserving constructions.

2 Fully Dynamic Attribute-Based Signatures

In this section, we formalize the primitive of fully dynamic attribute-based sig-
nature (FDABS). An FDABS scheme involves the following entities: a trusted
authority who initializes the system; an attribute-issuing authority who gen-
erates attribute keys and periodically announces updated system information;
users/signers and signature verifiers.
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We let X be the universe of possible attributes and P = {P : X → {0, 1}} be
a policy family. We say an attribute x ∈ X satisfies a policy P ∈ P if P (x) = 1.

2.1 Syntax

An FDABS scheme consists of the following polynomial-time algorithms.

Setupinit(1λ): This algorithm, run by a trusted authority, takes as input the
security parameter 1λ and generates public parameter pp. We assume that
pp contains the description of an attribute space X , a policy family P, a
time space T , and a message space M.

Setupauth(pp): This algorithm is run by an attribute-issuing authority. It takes
as input pp and outputs a key pair (mpk,msk). The authority also initializes
the system information info0 and a public registration table reg. Note that
the record stored in reg depends on the scheme specification and may be
used by the authority for updating the system information. For simplicity, pp
and mpk are inputs of the following algorithms even not explicitly written.

AttrGen(msk, x, infoτcurrent , reg): This algorithm is run by the authority when
receiving attribute key generation request from a user. It takes as input the
authority’s secret key msk, an attribute x and current system information
infoτcurrent and outputs an attribute key (or a signing key) skx to the user.
The authority will then add a new record to the table reg.

Update(msk,S, infoτcurrent , reg): This algorithm is run by the authority who will
advance the epoch and update system information. Given msk, a set S ⊂ X
of to-be-revoked attributes, infoτcurrent , and reg, the authority computes new
system information infoτnew and may also update reg. If there is no change
to the system or S contains inactive attributes (which either have not been
issued signing keys or have been revoked previously), this algorithm aborts.

Sign(skx,M, P, infoτ ): This algorithm is run by the user who possesses the sign-
ing key skx. Given skx, a message M ∈ M, a policy P ∈ P, and infoτ , it
returns a signature Σ.

Verify(M,P, infoτ , Σ): This algorithm is run by any verifier. Given the inputs,
it outputs a bit indicating the validity of signature Σ on message M with
respect to policy P and system information infoτ .

Additional algorithm. To ease the notion, we introduce another algorithm
that will only be used in the definitions of security requirements.

IsActive(x, infoτ ): This algorithm returns 1 if x has been issued a signing key and
has not been revoked at time τ . We call x an active attribute. Otherwise, it
returns 0 and we call x an inactive attribute.

Remark 1. Algorithm Update intends to capture all the changes to the activeness
of attributes, which occur between epochs τcurrent and τnew. Since Update takes
the registration table reg as an input, the changes it makes may include not
only the revocations but also the enrollments and re-enrollments of attributes.
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An attribute x could be active at epoch τ1, revoked at epoch τ2, and active
again at epoch τ3. To handle such dynamicity, we demand that each signature
is bound to a specific epoch: a signature generated by x in epoch τ1 should be
rejected when verified w.r.t. to either τ2 or τ3 (even if x is active at τ3).

Correctness. Basically, correctness of FDABS demands that: if x is active at
time epoch τ and if P (x) = 1, then a signature Σ ← Sign(skx,M, P, infoτ )
should be accepted by Verify(M,P, infoτ , Σ). We model this requirement in an
adversarial experiment Expcorrect

A (1λ) in Figure 1. Below, we define some oracles
available to the adversary.

AddHX(x): This oracle issues a signing key for an attribute x at current time
epoch τcurrent when invoked by the adversary A. If x has never been issued
any signing key, it runs skx ← AttrGen(msk, x, infoτcurrent , reg) and adds x to
an honestly maintained list HL. Otherwise, it returns ⊥. Note that as in the
algorithm AttrGen, a new record is also added to reg.

Update(S): This oracle allows A to remove a set S of active attributes from the
system at current epoch. It executes Update(msk,S, infoτcurrent , reg) to get
infoτnew , and may also update reg as specified in Update.

Definition 1. Let Advcorrect
A (1λ) = Pr[Exptcorrect

A (1λ) = 1] be the advantage
of an adversary A against correctness of an FDABS scheme in experiment
Exptcorrect

A (1λ). An FDABS scheme is correct if, for any PPT adversary A,
its advantage is negligible in λ.

2.2 Formulation of the Security Requirements

Security requirements for static attribute-based signatures (see e.g., [68,79]) are
perfect privacy and unforgeability. The former requires signatures not to reveal
any information on the attribute beyond the fact that the attribute satisfies the
policy. The latter requires that no colluding set of signers (even being able to
see signatures on messages of their choices) can create valid signatures under a
policy that is not satisfied by any individual attribute in the collusion. Below we
carefully extend these two security requirements to the fully dynamic case.
Privacy. This notion is adapted from the static case and requires that signatures
do not leak the underlying attributes. It protects the signer from a malicious ad-
versary who tries to extract the attribute information from signatures. We model
this requirement in adversarial experiments Exptprivacy-b

A (1λ) for b ∈ {0, 1}. In
the following, we define some oracles that will be used in the experiments.

SndToHX(x): This oracle simulates an honest user who requests an attribute
key for x at τcurrent from an adversarially controlled authority. It maintains
a list CL. Let the output of this oracle be skx. It adds x to CL if skx is valid.

Chalb(x0, x1,M, P, τ): This is a challenge oracle that is called only once. It com-
putes Σ ← Sign(skxb

,M, P, infoτ ) and outputs Σ if and only if x0, x1 ∈
X , M ∈ M or P ∈ P, τ ∈ T , infoτ ̸= ⊥, and xb ∈ CL, P (xb) = 1,
IsActive(xb, infoτ ) = 1 for b ∈ {0, 1}.
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In experiment Exptprivacy-b
A (1λ), the adversary A fully controls the authority

and enrolls honest users to the system by interacting with the oracle SndToHX.
We require A to output the randomness r used for generating the authority’s
key pair to verify its well-formedness. The adversary is also allowed to introduce
fully corrupted users to and remove existing users from the system by updating
info and reg at its will, so long as info and reg are well-formed.

Note that the two challenge attributes x0, x1 are required to be active at the
challenge time τ . However, A could update the system (since it fully controls
the authority) by revoking either attribute at an arbitrary time period τ ′ ̸= τ .
This does not help A to win the experiment, since revocation of skx0 or skx1 at
time τ ′ does not affect the validity of signatures generated at challenge time τ .

Experiment Exptcorrect
A (1λ)

pp← Setupinit(1λ);
(mpk,msk)← Setupauth(pp).
HL← ∅.
(x,M,P, τ)← AAddHX,Update(pp,mpk).
If x ̸∈ X or M ̸∈ M or P ̸∈ P

or τ ̸∈ T , return 0.
If x ̸∈ HL or infoτ = ⊥ or P (x) = 0 or

IsActive(x, infoτ ) = 0, return 0.
Σ ← Sign(skx,M, P, infoτ ).
If Verify(M,P, infoτ , Σ) = 1, return 0.
Else return 1.

Experiment Exptprivacy-b
A (1λ)

pp← Setupinit(1λ);
((mpk, r), aux)← A(pp); CL← ∅.
If mpk is not well-formed, return 0.

If info or reg is not well-formed
at any epoch, return 0.

b′ ← ASndToHX,Chalb (aux).
Return b′.

Experiment Exptunforge
A (1λ)

pp← Setupinit(1λ);
(mpk,msk)← Setupauth(pp).
HL← ∅,BL← ∅, SL← ∅.
(M,P, τ,Σ)← AAddHX,RevealX,Sign,Update(pp,mpk).
If M /∈M or P /∈ P or τ /∈ T return 0.
If Verify(M,P, infoτ , Σ) = 0, return 0.
If (M,P, τ,Σ) ∈ SL, return 0.
If ∃ x ∈ BL so that P (x) = 1 and

IsActive(x, infoτ ) = 1, return 0.
Else return 1.

Fig. 1: Definitions of correctness, privacy and unforgeability of FDABS.

Definition 2. Let the advantage of an adversary A against privacy be defined
as Advprivacy

A = |Pr[Exptprivacy-1
A (1λ) = 1] − Pr[Exptprivacy-0

A (1λ) = 1]|. An FD-
ABS scheme is perfectly private (statistically private) if for any computationally
unbounded adversary A, the advantage of A is 0 (negligible in λ).

Remark 2. Note that the above definitions on privacy are in the strongest sense.
Slightly weaker requirement such as computational privacy, where the adversary
is any PPT algorithm, might also be useful for most applications.

Unforgeability. This notion extends from the static case carefully to capture
the full dynamicity. It protects the verifier from accepting a signature with re-
spect to a policy not satisfied by any attribute in the colluding set. We model
this requirement in experiment Exptunforge

A (1λ) which utilizes oracles AddHX and
Update, and the following oracles RevealX and Sign.
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RevealX(x): This oracle allows the adversary to learn an honest attribute key.
It maintains a list BL. When an attribute x is queried, it returns the corre-
sponding attribute key skx and adds x to BL if x ∈ HL, and aborts otherwise.

Sign(M,P, τ): This oracle allows the adversary to see a signature on any message
with respect to any policy and any time epoch of the adversary’s choices.
It maintains a signature list SL. When a tuple (M,P, τ) is queried, it re-
turns Σ ← Sign(skx,M, P, infoτ ) with arbitrary skx such that P (x) = 1 and
IsActive(x, infoτ ) = 1 and then adds (M,P, τ,Σ) to the list SL. If no such x
is found, it aborts.

Definition 3. Let Advunforge
A = Pr[Exptunforge

A (1λ) = 1] be the advantage of
an adversary A against unforgeability in an FDABS scheme. The scheme is
unforgeable, if for any PPT adversary A, the advantage of A is negligible in λ.

3 Code-Based FDABS for Boolean Circuits

3.1 Preliminaries on Code-Based Cryptographic Tools

Notations. Let a, b ∈ Z. Denote [a, b] as the set {a, . . . , b}. We simply write [b]
when a = 1. Let⊕ denote the bit-wise addition operation modulo 2. If S is a finite
set, then x $←− S means that x is chosen uniformly at random from S. Throughout
this paper, all vectors are column vectors. When concatenating vectors x ∈
{0, 1}m and y ∈ {0, 1}k, for simplicity, we use (x∥y) ∈ {0, 1}m+k instead of
(x⊤∥y⊤)⊤. The Hamming weight of vector x ∈ {0, 1}m is denoted by wt(x).
The Hamming distance between vectors x,y ∈ {0, 1}m is denoted by dH(x,y),
and is equal to wt(x ⊕ y). Denote by B(n, ω) the set of all binary vectors of
length n with Hamming weight ω.

Let Z+ be the set consisting of all positive integers. For c ∈ Z+ and k divisible
by c, define the following.

Regular(k, c) is the set containing all vectors of the form w = (w1∥ . . . ∥w k
c
) ∈

{0, 1}2c· k
c that consists of k

c blocks, each of which is an element of B(2c, 1).
We call w regular word if w ∈ Regular(k, c) for some k, c.

2-Regular(k, c) is the set of all x ∈ {0, 1}2c· k
c such that there exist regular words

v,w ∈ Regular(k, c) satisfying x = v ⊕ w. We call x a 2-regular word if
x ∈ 2-Regular(k, c) for some k, c.

RE : {0, 1}k → {0, 1}2c· k
c is a regular encoding function mapping x ∈ {0, 1}k to

RE(x) ∈ {0, 1}2c· k
c . Let x = (x1∥ . . . ∥x k

c
), where xj = [xj,1| . . . |xj,c]⊤ for

all j ∈ [1, k
c ]. Then, compute tj =

c∑
i=1

2c−i · xj,i. Let re(xj) ∈ B(2c, 1) whose

sole 1 entry is at the tj-th position for some tj ∈ [0, 2c − 1]. RE(x) is then
defined as (re(x1)∥re(x2)∥ · · · ∥re(x k

c
)) ∈ Regular(k, c).

We now recall the 2-RNSDn,k,c problem, introduced by Augot, Finiasz and
Sendrier (AFS) [6]. The problem asks to find low-weight 2-regular codewords
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in random binary linear codes, and is closely related to the Small Codeword
Problem [67] and binary Shortest Vector Problem [3], with an additional con-
straint that the solution codeword must be 2-regular.

Definition 4 (2-RNSDn,k,c Problem). Given a uniformly random matrix B ∈
Zn×m

2 , where m = 2c · k/c, find a non-zero vector z ∈ 2-Regular(k, c) ⊆ {0, 1}m

such that B · z = 0.

The problem is known to be NP-complete in the worst case [6]. In practice, for
appropriate choices of n, k, c, the best known algorithms require exponential
time in the security parameter. See [12] for a comprehensive discussion of known
attacks and parameter settings.
Our construction below also employs an efficiently updatable code-based Merkle-
tree accumulator and a commitment scheme from [74,73]. The accumulator con-
sists of five algorithms TSetup,TAcc, TWitGen,TVerify, and TUpdate that can
efficiently accumulate values, generate witnesses and update a value. The com-
mitment scheme achieves statistical hiding by choosing appropriate parameters.
Security of these two schemes relies on the security of 2-RNSD problems. For
completeness, we also recall them in Appendix A.

3.2 Description of the Scheme

We now present our construction of a code-based ABS for arbitrary Boolean
circuits. In the QROM, the scheme satisfies the security requirements defined
in Section 2. The scheme makes use of the code-based updatable Merkle-tree
accumulator and commitment scheme from [74,73] (also recalled in Appendix A),
together with ZK protocols operating within our new framework of Stern from
Section 4.1. Initially, the attribute-issuing authority maintains an all-zero Merkle
tree. When a user possessing attribute x requests an attribute key, the authority
computes a commitment d ∈ {0, 1}n to x and adds d to the tree by associating
it with a leaf. When signing a message with respect to policy P and time τ , the
signer generates a NIZK argument to prove that (i) d is correctly accumulated
to the current tree root; (ii) d is a valid commitment to x; (iii) x satisfies P .
Here the commitment acts as a connecting layer between (i) and (iii). Note that,
our NIZK argument is obtained by applying the Unruh transform [86,44] to the
refined Stern protocol, resulting in QROM security.

As in [65,73], we set the leaf nodes to all zero values 0n initially and change
it back to 0n when an attribute is revoked. However, we enroll an attribute x
to the system iff the commitment d has odd Hamming weight8. Next, when
signing a message, the signer additionally proves that d has an odd Hamming
weight. This is different from [65,73], where an active d is set to be non-zero.
Our advantage here is that we can prove knowledge of an odd-weight d with
8 For the commitment scheme from [74], a commitment d to an arbitrary x is sta-

tistically close to uniform over Zn
2 , thanks to a left-over hash lemma. Hence, it is

expected to repeat the process around 2 times to obtain an odd-weight d.
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cost only O(n) bits, while proving knowledge of a non-zero d would incur cost
O(n logn) bits.

Setupinit(1λ): Given the security parameter 1λ, this algorithm performs the fol-
lowing steps.

– Let L = poly(λ) be a positive integer. It then specifies the time space
T = {0, 1, 2, 3, . . .}, the message space M = {0, 1}∗, the attribute space
X = {0, 1}L, and the policy family P = {P : X → {0, 1}} that consists
of all possible polynomial-size Boolean circuits with L-bit input.

– Specify an integer ℓ = ℓ(λ) that determines the maximum number N =
2ℓ = poly(λ) of potential attributes.

– Choose n = O(λ), c = O(1) such that c divides both L and n and set
m = 2 · 2c · n

c .
– Sample a random matrix B $←− Zn×m

2 that specifies a hash function hB
as in Definition 5.

– Choose k ≥ n+ 2λ+O(1) such that c divides k. Let m0 = 2c · L/c and
m1 = 2c · k/c. Sample C0

$←− Zn×m0
2 and C1

$←− Zn×m1
2 that specifies a

statistically hiding and computationally binding commitment scheme.
– Let COM : {0, 1}∗ × {0, 1}k → {0, 1}n be the extended commitment

scheme as described in Appendix A.1, which will be used in our zero-
knowledge argument system (though not explicitly in the description
below).

– Pick two secure hash functions HG : {0, 1}T → {0, 1}T , for some positive
integer T such that the bit size of each input queried to HG is upper-
bounded by T and T is super-logarithmic in λ, and HFS : {0, 1}∗ →
{1, 2, 3}κ, where κ = O(λ), to be modeled as random oracles in the
Unruh transform [86,44].

It then outputs public parameter

pp = {L, T ,M,X ,P, ℓ,N, n, c,m, k,m0,m1,B,C0,C1,COM,HG,HFS}.

Setupauth(pp): This algorithm is run by the attribute-issuing authority. On input
parameter pp, it runs (mpk,msk)← AuthGen(pp)9. In addition, it initializes
the following.

– A registration table reg := (reg[0], . . . , reg[N − 1]) so that reg[i][1] =
0n, reg[i][2] = −1, and reg[i][3] = −1 for all i ∈ [0, N − 1]. Looking
ahead, reg[i][1] will store a (non-zero) commitment of an attribute while
reg[i][2] and reg[i][3] represent the epochs an attribute is enrolled in and
removed from the system, respectively.

– A Merkle treeMT built on top of reg[0][1], reg[1][1], . . . , reg[N − 1][1].
We remark that this MT is all-zero at this stage. However, it will be
eventually updated either when an attribute is enrolled in or revoked
from the system.

9 Here, we assume the existence of a functionality AuthGen, which enables an attribute-
issuing authority’s key pair to be derived as (mpk,msk) ← AuthGen(1λ). In prac-
tice, the authority may use an ordinary signature with verifying-signing key pair
(mpk,msk) to authenticate the updated system information.
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– A counter of enrolled attributes j := 0, initial time epoch τ = 0, and
initial system information info0 = ∅.

The authority will then publish public key mpk and broadcast reg and info0
while keeping MT and j for itself. We assume that both reg and info are
visible to everyone but only editable by a party who owns msk. It is further
required that one can efficiently verify the well-formedness of reg and info.

AttrGen(msk,x, infoτcurrent , reg): When a user requests an attribute key for his
provided attribute x ∈ {0, 1}L at current epoch τcurrent, the authority exe-
cutes this algorithm and proceeds as follows.
1. Issue an identifier for this attribute x as the binary representation of j,

denoted as bin(j) ∈ {0, 1}ℓ.
2. Sample randomness r $←− {0, 1}k and compute a commitment of x as

d = C0 · RE(x) ⊕ C1 · RE(r). Repeat the process until the weight of d
is odd. Return skx = (x, r, bin(j)) to the user. From now on, we write
skxj = (xj , rj , bin(j)) to distinguish signing keys of different attributes.

3. UpdateMT by running the algorithm TUpdateB(bin(j),d), register the
attribute to reg as reg[j][1] = d, reg[j][2] = τcurrent, and increase the
counter j to j + 1.

Update(msk,S, infoτcurrent , reg): This algorithm is run by the authority to update
the system and advance the epoch. Let S = {xi1 , . . . ,xir

} contain attributes
to be revoked. If there exists t ∈ [1, r] so that IsActive(xit

, infoτcurrent) = 0,
this algorithm aborts. Otherwise it performs the following steps.
1. For each t ∈ [1, r], run TUpdateB(bin(it),0n) to update MT and set

reg[it][3] = τnew.
2. Note that all the zero leaves in updated MT are associated with either

revoked attributes or potential attributes that have not registered to the
system yet. In other words, only active attributes have their odd-weight
commitments, denoted as {dj}, accumulated in the root uτnew of the
updated tree.
For each j, let w(j) ∈ Zℓ

2 × (Zn
2 )ℓ be the witness for the fact that dj

is accumulated in uτnew . (This can be obtained by running algorithm
TWitGenB as described in Appendix A.2). The authority then announces
the updated system information as

infoτnew = (uτnew , {w(j)}j).

We remark that unnecessary for a signer or a verifier to download infoτnew

as a whole. In fact, as we describe below, a signer with an active attribute
only needs to download its corresponding witness w(j) of O(λ · ℓ) bits once
so as to sign messages at time τnew. Meanwhile, it suffices for a verifier to
download uτnew of O(λ) bits to verify all signatures associated with τnew.

Sign(skxj
,M, P, infoτ ): This algorithm is run by a user possessing an attribute

key skxj
= (xj , rj , bin(j)) who wishes to sign a message with respect to a

policy P . It aborts if P (xj) = 0 or infoτ does not include a witness containing
bin(j). Otherwise, it proceeds as below.
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1. Download uτ and the witness w(j) = (bin(j), (wℓ, . . . ,w1)) from infoτ .
2. Generate a proof to show the possession of tuple

ξ = (dj ,xj , rj , bin(j),wℓ, . . . ,w1) (1)

such that
(a) dj is correctly accumulated in the root uτ , i.e.,

TVerifyB(uτ ,dj , bin(j), (wℓ, . . . ,w1)) = 1.

(b) dj is an odd-weight commitment of xj , i.e.,

dj = C0 · RE(xj)⊕C1 · RE(rj) and wt(dj) = 1 mod 2.

(c) The attribute xj satisfies the claimed policy P . In other words,
P (xj) = 1.

To this end, we run the Stern-like protocol in Section 4.3. It is repeated
κ times to achieve negligible soundness error and made non-interactive
via Unruh transform. The resultant NIZK proof is

Π = ({CMTi}κ
i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3}\{chi},CH, {RSPi,chi

}κ
i=1)

where, for all i ∈ [1, κ] and all j ∈ {1, 2, 3}, RSPi,j is a response with
respect to CMTi and challenge j, RSPi,j = HG(RSPi,j), and

CH = [ch1| . . . |chκ]⊤

:= HFS({CMTi}κ
i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3},M, P, τ,uτ ,B,C0,C1)

∈ {1, 2, 3}κ.

Notice that RSPi,chi
, for all i ∈ [1, κ], are excluded from Π since it can

be recovered by invoking HG(RSPi,chi
).

3. Return signature as Σ = Π.
Verify(M,P, infoτ , Σ): This algorithm checks the validity of the message signa-

ture pair (M,Σ) with respect to the policy P and time epoch τ . It parses
Σ = ({CMTi}κ

i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3}\{chi},CH, {RSPi,chi
}κ

i=1) and per-
forms the following steps.
1. Download uτ from infoτ .
2. Compute RSPi,chi

:= HG(RSPi,chi
) for all i ∈ [1, κ].

3. If CH ̸= HFS({CMTi}κ
i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3},M, P, τ,uτ ,B,C0,C1),

return 0.
4. Parse CH = [ch1| . . . |chκ]⊤.
5. For i ∈ [1, κ], verify the validity of RSPi,chi with respect to commitment

CMTi and challenge value chi. If any of the verifications does not hold,
return 0. Else return 1.
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3.3 Analysis of the Scheme

Efficiency. The efficiency of our construction is summarized as follows.

– The public parameter includes several matrices and has bit size O(λ2 +λ·L).
– The attribute key skx has bit size O(λ+ L).
– At each epoch, the signer downloads data of bit size O(λ · ℓ) = O(λ · log λ)

while the verifier downloads data of bit size O(λ).
– The bit-size of signature Σ is O(ζ+T ) ·κ = O(L+ |P |+λ · log λ+T ) ·O(λ),

where T is the output size of HG, ζ is the average communication cost of
the protocol in Section 4.3 and |P | is the size of a circuit representing P .

Correctness. We show that the construction is correct with probability 1. In
fact, experiment Exptcorrect

A (1λ) outputs 1, i.e., the adversary breaks correctness,
iff A outputs a tuple (x,M, P, τ) with P (x) = 1 and IsActive(x, infoτ ) = 1
such that an honestly generated signature Σ is invalid. However, due to perfect
correctness of the underlying NIZK protocol, the signature Σ is always valid.
Security. In Theorem 1, we prove that our construction satisfies the security
requirements proposed in Section 2.2, based on the hardness of the 2-RNSD
problems associated with parameters (n, 2n, c) and (n,L+ k, c).

Theorem 1. In the QROM, the described FDABS scheme satisfies statistical
privacy and unforgeability assuming the hardness of 2-RNSD problems.

The proof of Theorem 1 relies on the following facts and is deferred to Ap-
pendix C.

1. The employed Stern-like protocol described in Section 4.3 is statistical ZK
and sound, based on the security of the underlying commitment COM.

2. The Merkle tree accumulator is secure as given in Lemma 3, which relies on
the hardness of the 2-RNSDn,2n,c problem.

3. The commitment scheme used to commit the attributes is statistically hid-
ing and computationally binding, which depends on the hardness of the
2-RNSDn,L+k,c problem.

We now present how to simulate an FDABS signature, without using a wit-
ness, that is statistically indistinguishable from a real one by programming the
hash function HFS. Then we show how to extract a valid witness of form (1) from
a valid signature by programming HG. These are essential in proving Theorem 1.
Simulating an FDABS signature. Let M,P, τ,uτ ,B,C0,C1 be the public
input involving a signing process and SIM is the simulator of the Stern protocol
from Theorem 2. The simulator SIMfdabs is described in Figure 2.

It is straightforward to verify that the above simulated signature is statisti-
cally indistinguishable from a real one, assuming the special honest-verifier ZK
property of our Stern protocol in Figure 4.
Extracting a witness from an FDABS signature. To be able to extract a
witness from an FDABS message-signature pair (M,Σ) with respect to a policy
P , we follow [86,44] to simulate random oracle HG as a polynomial pG over
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Inputs: M,P, τ,uτ ,B,C0,C1.
Our simulator SIMfdabs works as follows.

1. Sample CH := [ch1| . . . |chκ]⊤ $← {1, 2, 3}κ.
2. For each i ∈ [1, κ]:

(a) Run SIM of the Stern protocol from Theorem 2, to obtain simulated transcript
(CMTi, chi,RSPi,chi ).

(b) Compute RSPi,chi := HG(RSPi,chi ).
(c) RSPi,j

$← {0, 1}T for all j ∈ {1, 2, 3} \ {chi}.
3. Program HFS({CMTi}κ

i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3},M, P, τ,uτ ,B,C0,C1) := CH.
4. Return a simulated FDABS signature

Π = ({CMTi}κ
i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3}\{chi},CH, {RSPi,chi}

κ
i=1)

where CH = [ch1| . . . |chκ]⊤.

Fig. 2: Simulator SIMfdabs of FDABS.

Inputs: M,P, τ,uτ ,B,C0,C1, Σ,HG = pG.
Our extractor Efdabs works as follows.

1. Parse Σ = ({CMTi}κ
i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3}\{chi},CH, {RSPi,chi}

κ
i=1). Return 0

if Verify(M,P, infoτ , Σ) = 0. Otherwise RSPi,chi is a valid response with respect to
commitment CMTi and challenge chi for all i ∈ [1, κ].

2. For all i ∈ [1, κ] and j ∈ {1, 2, 3} \ {chi}, compute
RSPi,j := p−1

G (RSPi,j). Then CH = [ch1| . . . |chκ]⊤ coincides with
HFS({CMTi}κ

i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3},M, P, τ,uτ ,B,C0,C1).
3. Let t∗ ∈ [1, κ] such that RSPt∗,1,RSPt∗,2,RSPt∗,3 are three valid responses for

challenges {1, 2, 3} with respect to CMTt∗ . If no such t∗ exists, abort.
4. Let w′ ← E(CMTt∗ ,RSPt∗,1,RSPt∗,2,RSPt∗,3).
5. By “backtracking” the transformation steps we have performed, we are able to

extract ξ′ = (d′,x′, r′, bin(j′),w′
ℓ, . . . ,w′

1) from w′ for Rfdabs.
6. Return ξ′.

Fig. 3: Extractor Efdabs of FDABS.

GF(2T ) of a sufficiently large degree, in particular, degree at least 2qG − 1, such
that it is perfectly indistinguishable from a random function. Here qG is an upper
bound on the number of queries from all possible parties to HG, and T should
be super-logarithmic in λ. From previous results [10], the inverse function p−1

G

can be efficiently computed.
Let M,P, τ,uτ ,B,C0,C1, Σ be public input and E be the extractor of the

protocol from Theorem 2. Our extractor Efdabs is formally described in Figure 3.
Assuming the online extractability of the Unruh transform [86,44], and the

special soundness of our Stern protocol in Figure 4, the above extractor Efdabs
outputs ξ′ such that all the conditions specified in Sign algorithm from Sec-
tion 3.2. In particular, the existence of t∗ at Step 3 is guaranteed by the online
extractability of the Unruh transform.
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4 Supporting Zero-Knowledge Protocols

This section provides the supporting ZK layer for the FDABS scheme described
in Section 3. We first present our refined abstraction of Stern’s protocol in Sec-
tion 4.1. Then, in Section 4.2, we discuss our enhancement of previous Stern-like
techniques in light of the refined abstraction. Then, the ZK protocol used in
the signing algorithm of the proposed FDABS is presented in Section 4.3, as a
special instance of the abstraction.

4.1 A Refined Abstraction of Stern’s Protocol

Here, we present our refined framework for Stern-like protocols. As discussed in
Section 1, our approach significantly departs from Stern’s original work [81,82]
and Libert et al.’s abstraction [56], in two fundamental aspects: we do not require
that additive masking vectors to be uniformly random in the whole space, and
we do not even assume that the functions applied to witness vectors are random
permutations of coordinates.

Let D ∈ Z+ and VALID, R, Z be subsets of {0, 1}D. Let S be a finite set,
and F, F ′, F ′′ be functions with domains/ranges defined as follows:

F : S × {0, 1}D → {0, 1}D; F ′ : S ×R → R; F ′′ : S × Z → Z.

We assume VALID, R, Z, S, and F, F ′, F ′′ satisfy the following 4 conditions.

(1) “Homomorphism”: For all (ϕ, r, z) ∈ S × R × Z, F ′(ϕ, r) ⊕ F ′′(ϕ, z) =
F (ϕ, r⊕ z).

(2) “Closure of F w.r.t. VALID”: For all (ϕ,w) ∈ S ×{0, 1}D, w ∈ VALID ⇐⇒
F (ϕ,w) ∈ VALID.

(3) For all w ∈ VALID, the distributions of {t = F (ϕ,w) | ϕ $←− S} and {t $←−
VALID} are identical.

(4) For all w ∈ VALID, the distributions of {z = w ⊕ r | r $←− R} and {z $←− Z}
are identical.

Let D0 ∈ Z+ such that D0 ≤ D. We aim to construct a Σ-protocol for the
following abstract relation:

Rabstract =
{(

(M,v),w
)
∈ (ZD0×D

2 × ZD0
2 )× VALID : M ·w = v

}
.

The interaction between prover P and verifier V is described in Figure 4. The
protocol employs an auxiliary string commitment scheme COM that is statisti-
cally hiding and computationally binding, and that has commitment size n bits
and randomness size r bits. (Such a commitment scheme can be obtained based
on codes, see [74, Section 3.1] and Appendix A.1.)



22 S. Ling, K. Nguyen, D. H. Phan, K. H. Tang, H. Wang, Y. Xu

Inputs: The common input is (M,v) ∈ ZD0×D
2 ×ZD0

2 . Prover’s witness is w ∈ VALID.

1. Commitment: Prover samples r $←− R, ϕ $←− S and randomness ρ1, ρ2, ρ3 for
COM. Then it sends commitment CMT =

(
C1, C2, C3

)
to the verifier, where

C1 = COM
(
ϕ, M · r; ρ1

)
, C2 = COM

(
F ′(ϕ, r); ρ2

)
,

C3 = COM
(
F ′′(ϕ,w⊕ r); ρ3

)
.

2. Challenge: The verifier sends a challenge Ch $←− {1, 2, 3} to the prover.
3. Response: Depending on Ch, the prover sends RSP computed as follows:

– Ch = 1: Let t = F (ϕ,w), y = F ′(ϕ, r), and RSP = (t,y, ρ2, ρ3).
– Ch = 2: Let ψ = ϕ, z = w⊕ r, and RSP = (ψ, z, ρ1, ρ3).
– Ch = 3: Let χ = ϕ, s = r, and RSP = (χ, s, ρ1, ρ2).

Verification: Receiving RSP, the verifier proceeds as follows:

– Ch = 1: Check that t ∈ VALID, y ∈ R, and that C2 = COM(y; ρ2), C3 =
COM( t⊕ y; ρ3 ).

– Ch = 2: Check that ψ ∈ S, z ∈ Z, and that C1 = COM( ψ, M · z ⊕ v; ρ1 ),
C3 = COM( F ′′(ψ, z); ρ3 ).

– Ch = 3: Check that χ ∈ S, s ∈ R, and that C1 = COM( χ, M · s; ρ1 ), C2 =
COM( F ′(χ, s); ρ2 ).

In each case, the verifier outputs 1 if and only if all the conditions hold.

Fig. 4: A Σ-protocol for the relation Rabstract.

Theorem 2. Assume that the auxiliary string commitment scheme COM is sta-
tistically hiding and computationally binding. Then the protocol in Figure 4 is a
Σ-protocol for the relation Rabstract with perfect completeness and average com-
munication cost ζ bits, where

ζ = 3n+ 2r + log(|VALID|) + 2 log(|R|) + log(|Z|) + 2 log(|S|)
3 . (2)

In particular, the protocol satisfies

– Special honest-verifier ZK. There exists a PPT simulator that, on input
(M,v) and Ch ∈ {1, 2, 3}, outputs an accepted transcript statistically close
to that produced by the real prover.

– Special soundness. There exists a PPT extractor E that, on input a com-
mitment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible
values of Ch, outputs w′ ∈ VALID such that M ·w′ = v.

Proof. The proof uses the conditions (1)-(4) specified above, as well as the
statistical hiding and computational binding properties of COM.
Completeness. An honest prover with witness w ∈ VALID such that M ·w =
v will always get accepted by the verifier. Apart from the checks for well-
formedness of C1, C2, C3, it suffices to note the following points.
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– Case Ch = 1. We have t = F (ϕ,w) ∈ VALID by condition (2), and y =
F ′(ϕ, r) ∈ R, by the definition of F ′. Furthermore, by condition (4), we
know that z = w⊕ r ∈ Z, and then, by condition (1), we have

y⊕ F ′′(ϕ,w⊕ r) = F ′(ϕ, r)⊕ F ′′(ϕ, z) = F (ϕ, r⊕ z) = F (ϕ,w) = t,

which implies that F ′′(ϕ,w⊕ r) = t⊕ y.
– Case Ch = 2. We have z = w⊕ r ∈ Z. Since v = M ·w, it holds that

M · z ⊕ v = M · (w⊕ r) ⊕ v = M ·w⊕M · r ⊕ v = M · r.

Honest-verifier ZK. We construct a simulator SIM that, on input (M,v) and
Ch ∈ {1, 2, 3}, returns a transcript statistically close to the real one produced
by an honest prover. Depending on the value of Ch, SIM proceeds as follows.

– Case Ch = 1. SIM samples t $← VALID, ϕ $← S, r $← R and randomness
ρ1, ρ2, ρ3 for COM. Then it computes y = F ′(ϕ, r) and commitment CMT =
(C ′

1, C
′
2, C

′
3) where C ′

1 = COM(0; ρ1), C ′
2 = COM(y; ρ2) and C ′

3 = COM(t⊕
y; ρ3). It defines RSP = (t,y, ρ2, ρ3). By condition (3), the distribution of t
is identical to that of the real transcript. Also, y is computed in the same
way as in the real transcript.

– Case Ch = 2. SIM samples ψ $← S, z $← Z and randomness ρ1, ρ2, ρ3
for COM. Then it computes commitment CMT = (C ′

1, C
′
2, C

′
3) where C ′

1 =
COM(ψ,M · z ⊕ v; ρ2), C ′

2 = COM(0; ρ2), C ′
3 = COM(F ′′(ψ, z); ρ3), and

response RSP = (ψ, z, ρ1, ρ3). Here, note that the simulated z and the one
in real transcript are both uniformly random over Z, by condition (4).

– Case Ch = 3. SIM samples ψ $← S, s $← R and randomness ρ1, ρ2, ρ3
for COM. Then it computes commitment CMT = (C ′

1, C
′
2, C

′
3) where C ′

1 =
COM(χ,M · s; ρ1), C ′

2 = COM(F ′(χ, s); ρ2) and C ′
3 = COM(0; ρ3), and re-

sponse RSP = (χ, s, ρ1, ρ2).

In every case, SIM outputs the simulated transcript (CMT, Ch,RSP). It then
follows from the statistical hiding property of COM that the distributions of
simulated and real transcripts are statistically close.
Special Soundness. Let RSP1 = (t,y, ρ2, ρ3), RSP2 = (ψ, z, ρ1, ρ3) and RSP3 =
(χ, s, ρ1, ρ2) be the 3 valid responses to the same commitment CMT = (C1, C2, C3)
with respect to all 3 values of Ch. Then, the following conditions hold.

t ∈ VALID, y ∈ R, z ∈ Z, s ∈ R, ψ ∈ S, χ ∈ S,
C1 = COM(ψ,M · z ⊕ v; ρ1) = COM(χ,M · s; ρ1),
C2 = COM(y; ρ2) = COM(F ′(χ, s); ρ2),
C3 = COM(t⊕ y; ρ3) = COM(F ′′(ψ, z); ρ3).

Since COM is computationally binding, we deduce that

t ∈ VALID, ψ = χ, M · z ⊕ v = M · s, y = F ′(χ, s), t⊕ y = F ′′(ψ, z).
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By condition (1), we have

t = y⊕ (t⊕ y) = y⊕ F ′′(ψ, z) = F ′(ψ, s)⊕ F ′′(ψ, z) = F (ψ, s⊕ z).

Since t ∈ VALID, condition (2) implies that w′ := s⊕ z ∈ VALID. Moreover, as
M · z ⊕ v = M · s, we deduce that M ·w′ = M · (s⊕ z) = v. In other words,
we have ((M,v),w′) ∈ Rabstract. ⊓⊔

4.2 Stern-like Techniques: Previous Ideas and Our Enhancements

Techniques for handling arbitrary binary vectors. To prove knowledge of
a vector x ∈ {0, 1}n, define the following extension Encode and a function Fbin.

– For x = [x1| . . . |xn]⊤, let Encode(x) = [x1|x1| . . . |xn|xn]⊤ ∈ {0, 1}2n.
– Let I∗

n ∈ Zn×2n
2 be an extension of the identity matrix In, obtained by

inserting a zero-column 0n right before each column of In. Form a new matrix
M = M0 · I∗

n ∈ ZD0×2n
2 . Therefore, x = I∗

n · Encode(x) and M0 · x = v is
equivalent to M · Encode(x) = v.

– For b = [b1| . . . |bn]⊤ ∈ {0, 1}n and w = [w1,0 |w1,1 | . . . |wn,0 |wn,1 ]⊤ ∈
{0, 1}2n, define a function Fbin : {0, 1}n×{0, 1}2n → {0, 1}2n as Fbin(b,w) =
[w1,b1 |w1,b1

| . . . |wn,bn
|wn,bn

]⊤. It can be verified that for all b ∈ {0, 1}n

and all w,w′ ∈ {0, 1}2n, the following holds:

Fbin(b,w)⊕ Fbin(b,w′) = Fbin(b,w⊕w′). (3)

Define validbin = {w : ∃ x ∈ {0, 1}n s.t. w = Encode(x)}. Then. ∀x,b ∈ {0, 1}n,

w = Encode(x) ∈ validbin ⇐⇒ Fbin(b,w) = Encode(x⊕ b) ∈ validbin. (4)

In Stern’s framework (see e.g. [58]), to prove knowledge of x, the prover
extends x to w ∈ validbin and shows that w is indeed from the set validbin by
employing equivalence (4). In addition, if b is chosen randomly, it perfectly hides
w and hence x. Furthermore, to prove in ZK that the linear equation holds, the
prover samples a masking vector rw

$←− R = {0, 1}2n and convinces the verifier
that M · (w⊕ rw) = M · rw ⊕ v. We can see that the number of masking bits is
2n. We now present our refined techniques so that n bits suffice.
Our techniques. Before presenting our techniques, let us define some notions.

– Let Bk
odd = {y ∈ {0, 1}k : wt(y) = 1 mod 2} and Bk

even = {y ∈ {0, 1}k :
wt(y) = 0 mod 2}.

– For simplicity, denote by B = (Bk
odd∥ . . . ∥Bk

odd) ⊂ {0, 1}k·k0 the set that
contains all vectors of the form y = (y1∥ . . . ∥yk0), where each yi ∈ Bk

odd.

We aim to reduce the above statement, i.e., proving knowledge of w = Encode(x)
so that it satisfies the equation M ·w = v, to an instance of the abstract relation
Rabstract from Section 4.1. To this end, let Sbin = {0, 1}n and

Rbin = (B2
odd∥ . . . ∥B2

odd) ⊂ {0, 1}2·n, Zbin = (B2
even∥ . . . ∥B2

even) ⊂ {0, 1}2·n.
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F
′

bin : Sbin×Rbin → Rbin and F ′′

bin : Sbin×Zbin → Zbin are defined as F ′

bin(b,w) =
Fbin(b,w) and F

′′

bin(b,w) = Fbin(b,w), respectively. Since Fbin(b, ·) is indeed
a permutation, then F

′

bin(b,w) ∈ Rbin if w ∈ Rbin and F
′′

bin(b,w) ∈ Zbin if
w ∈ Zbin. Thus, these two functions are well defined.

We now demonstrate that the four conditions specified in Section 4.1 are all
satisfied. First, “homomorphism” and “closure of F with respect to validbin” are
satisfied due to (3) and (4), respectively. Next, observe that Rbin = validbin and
for any w = Encode(x) ∈ validbin, we have10

{t = Fbin(b,w) | b $←− Sbin} ≡ {t = Encode(b⊕ x) | b $←− {0, 1}n}

≡ {t = Encode( b ) | b $←− {0, 1}n}

≡ {t | t $←− validbin};

{z = w⊕ r | r $←− Rbin} ≡ {z = w⊕ (r1∥ . . . ∥rn) | ∀ i ∈ [1, n] : ri
$←− B2

odd}

≡ {z = (z1∥ . . . ∥zn) | ∀ i ∈ [1, n] : zi
$←− B2

even}

≡ {z | z $←− Zbin}.

Thus, the remaining two conditions hold. Therefore, we have successfully reduced
the above statement to an instance of Rabstract. Now the prover can simply
run the protocol as described in Figure 4, in which the cost of communicating
masking vectors is log(|Rbin|) = n bits, reduced from 2n bits.
Techniques for handling regular words. Let M · RE(x) = v for M ∈
ZD0×2c·n/c

2 , x ∈ Zn
2 and v ∈ ZD0

2 . To prove knowledge of a regular word
w = RE(x) (as defined in Appendix A), we recall the following notions from [74].

– For b = [b1| . . . |bc]⊤ ∈ {0, 1}c, w = [w0,0,...,0| . . . |wi1,i2,...,ic
| . . . |w1,1,...,1]⊤ ∈

{0, 1}2c , define a function fre : {0, 1}c × {0, 1}2c → {0, 1}2c as fre(b,w) =
[w′

0,0,...,0| . . . |w′
i1,i2,...,ic

| . . . |w′
1,1,...,1]⊤ satisfying

w′
i1,i2,...,ic

= wi1⊕b1,i2⊕b2,...,ic⊕bc

for each [i1| . . . |ic]⊤ ∈ {0, 1}c. It is verifiable that for any x,b ∈ {0, 1}c,

w = re(x)⇐⇒ fre(b,w) = re(x⊕ b). (5)

– For b = (b1∥ . . . ∥bn/c) ∈ {0, 1}n containing n/c blocks of size c and for
w = (w1∥ . . . ∥wn/c) ∈ {0, 1}2c·n/c containing n/c blocks of size 2c, define
Fre : {0, 1}n × {0, 1}2c·n/c → {0, 1}2c·n/c as

Fre(b,w) = ( fre(b1,w1) ∥ . . . ∥ fre(bn/c,wn/c) ).

One can check that for all b ∈ {0, 1}n, all w,w′ ∈ {0, 1}2c·n/c,

Fre( b, w ) ⊕ Fre( b, w′ ) = Fre( b, w ⊕ w′ ). (6)
10 We use the “≡” sign to represent that two distributions are identical.
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Define validre = {w : ∃ x ∈ {0, 1}n s.t. w = RE(x)}. For any x,b ∈ {0, 1}n,
it follows immediately from (5) that the following equivalence holds,

w = RE(x) ∈ validre ⇐⇒ Fre(b,w) = RE(x⊕ b) ∈ validre. (7)
Equivalence (7) is fundamental in Stern’s framework for proving knowledge of
a regular word w = RE(x). The prover first samples a random b and shows to
the verifier that Fre(b,w) ∈ validre. Due to the equivalence, the verifier should
be convinced that w ∈ validre as well. In addition, the uniformity of b per-
fectly hides w. Furthermore, to prove in ZK that the equation holds, the prover
randomly chooses a masking vector rw

$←− R = {0, 1}2c·n/c and persuades the
verifier that M · (w⊕ rw) = M · rw ⊕ v.

From the above description, we see that the number of bits to represent rw

is 2c · n/c. Let us now present our refined techniques to reduce the cost of
communicating masking vectors.
Our techniques. As in the case of handling arbitrary binary vectors, the goal
is to reduce the considered statement to an instance of Rabstract. Let

Rre,n = (B2c

odd ∥ . . . ∥ B2c

odd) ⊂ {0, 1}2c·n/c,

Zre,n = (B2c

even ∥ . . . ∥ B2c

even) ⊂ {0, 1}2c·n/c, Sre = {0, 1}n.

Define F ′

re : Sre ×Rre → Rre, F
′′

re : Sre × Zre → Zre as F ′

re(b,w) = Fre(b,w) and
F

′′

re(b,w) = Fre(b,w), respectively. These functions are well defined because Fre
is a permutation.

We now verify that the requirements in Section 4.1 all hold. Due to (6)
and (7), “homomorphism” and “closure of F with respect to validre” are met.
Next, let x = (x1∥ . . . ∥xn/c ) ∈ {0, 1}n where all xi have the same length. For
w = RE(x) = (re(x1)∥ . . . ∥re(xn/c)) ∈ validre, we have re(xi) ∈ B2c

odd and:

{t = Fre(b,w) | b $←− Sre} ≡ {t = RE(b ⊕ x) | b $←− {0, 1}n}

≡ {t = RE(b) | b $←− {0, 1}n}

≡ {t | t $←− validre};

{z = w ⊕ r | r $←− Rre,n} ≡ {z =
(
re(xi)⊕ ri

)n/c

i=1 | ∀ i ∈ [1, n/c] : ri
$←− B2c

odd}

≡ {z = (z1 ∥ . . . ∥ zn/c) | ∀ i ∈ [1, n/c] : zi
$←− B2c

even}

≡ {z | z $←− Zre,n}.

Therefore, the last two conditions are satisfied as well. The prover and verifier
now interact as in Figure 4, which incurs masking vectors of length (2c− 1) ·n/c
rather than 2c · n/c since log(|Rre,n|) = (2c − 1) · n/c.

At the first glance, the size of Rre,n is not lowered significantly. We, however,
remark that this is indeed optimal. Let B2c ⊂ {0, 1}2c andR′ = (B2c∥ . . . ∥B2c) ⊂
{0, 1}2c·n/c. Consider two arbitrary w,w′ ∈ validre, the fourth condition required
by Rabstract implies that for all i ∈ [1, n/c]:

{ zi = re(xi) ⊕ ri | ri
$←− B2c

} ≡ { z′
i = re(x′

i) ⊕ r′
i | r′

i
$←− B2c

}. (8)
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Also note that {re(x0) : x0 ∈ {0, 1}c} forms a basis of the vector space {0, 1}2c .
Note that if B2c ever contains a single vector with odd weight, then B2c contains
all vectors with odd weight, i.e., B2c ⊇ B2c

odd. Thus, the size of Rre,n is optimal.
We also remark that the size of Rre,n is optimal only because we transform

the considered statement to an instance of Rabstract. It remains open if we can
further reduce the size of Rre,n by considering a different abstract relation.

Techniques for handling bit multiplication. Let M0 · (x1 · x2) = v for
M0 ∈ ZD0×1

2 , x1, x2 ∈ {0, 1} and v ∈ ZD0
2 . To prove knowledge of x3 = x1 · x2,

Libert et al. [57] proposed the following notations and techniques.

– For bits x1, x2, x3 = x1 ·x2, denote ext(x1, x2) = [ x1 ·x2 | x1 ·x2 | x1 ·x2 | x1 ·
x2 ]⊤ ∈ {0, 1}4 as the extension of the bit product x3. Then x3 = [ 0 | 0 | 0 | 1 ]·
ext(x1, x2).

– For b = [ b1 | b2 ]⊤ ∈ {0, 1}2 and w = [w0,0 |w0,1 |w1,0 |w1,1 ]⊤ ∈ {0, 1}4,
define a function Fmult : {0, 1}2 × {0, 1}4 → {0, 1}4 as

Fmult(b,w) = [wb1,b2 |wb1,b2
|wb1,b2

|wb1,b2
]⊤.

Define validmult = {w : ∃ x1, x2 ∈ {0, 1} s.t. w = ext(x1, x2)}. Then for any
x = [ x1 | x2 ]⊤ ∈ {0, 1}2, and b = [ b1 | b2 ]⊤ ∈ {0, 1}2,

w = ext(x1, x2 ) ∈ validmult ⇔ Fmult(b,w) = ext(b1 ⊕ x1, b2 ⊕ x2 ) ∈ validmult.(9)

Equivalence (9) is essential in Stern’s framework to prove knowledge of x3 such
that x3 = x1 · x2. In addition, the prover samples a random masking vector
r ∈ R = {0, 1}4 and shows to the verifier that M · (ext(x1, x2)⊕ r) = M · r⊕ v,
where M = M0 · [0 |0 |0 |1] ∈ ZD0×4

2 .
Here, 4 bits are needed to represent r. We will show how to reduce to 3 bits.

Our techniques. Let Rmult = B4
odd, Zmult = B4

even, Smult = Z2
2. Define

F
′

mult : Smult ×Rmult → Rmult : F
′

mult(b,w) = Fmult(b,w);
F

′′

mult : Smult ×Zmult → Zmult : F
′′

mult(b,w) = Fmult(b,w).

These two functions are well defined since Fmult is actually a permutation. Now
we show that the four requirements in Section 4.1 are satisfied. For all b ∈ Smult,
w ∈ Rmult and w′ ∈ Zmult, it is not hard to see that F ′

mult(b,w)⊕F ′′

mult(b,w′) =
Fmult(b,w⊕w′). Next, equivalence (9) shows that Fmult is closed with respect to
validmult. For all w ∈ validmult, note that {t = Fmult(b,w) : b ∈ Smult} = validmult.
It then follows that the third condition holds. Finally, wt(w) = 1 mod 2 for all
w ∈ validmult. Thus, the distributions {z = w⊕ r|r $←− Rmult} and {z|z $←− Zmult}
are identical for all w ∈ validmult. Therefore, we have successfully reduced the
above statement to an instance of Rabstract. Therefore, to prove knowledge of x3
such that x3 = x1 ·x2 for x1, x2 ∈ {0, 1} it suffices to sample a masking value rw

from Rmult. As a result, 3 bits are sufficient to represent rw since log |Rmult| = 3.
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4.3 Supporting Zero-Knowledge Protocol for Algorithm Sign

This section presents the zero-knowledge protocol invoked by the signer who exe-
cutes the algorithm Sign in Section 3.2. Let L, ℓ,N, n, c,m, k,m0,m1 as specified
in Section 3.2. For completeness, the protocol is summarized below.

– The public input consists of P, uτ , B, C0, C1.
– The secret input consists of ξ = (dj ,xj , rj , bin(j),wℓ, . . . ,w1).
– The goal of the prover is to prove in ZK that
• dj is correctly accumulated in the root uτ , i.e.,

TVerifyB(uτ ,dj , bin(j), (wℓ, . . . ,w1)) = 1. (10)

• dj is an odd-weight commitment of xj , i.e.,

dj = C0 · RE(xj)⊕C1 · RE(rj) and wt(dj) = 1 mod 2.

• The attribute xj satisfies the claimed policy P , i.e., P (xj) = 1.

Let Rfdabs be the corresponding relation. Our strategy is to reduce Rfdabs to an
instance of Rabstract from Section 4.1. We remark that we will transform the
secret input to a secret vector wfdabs ∈ {0, 1}Dfdabs and design a masking vector
space Rfdabs such that the log(|Rfdabs|) is strictly smaller than Dfdabs.
Handling the accumulator layer. In [74], Nguyen et al. devised a statistical
zero-knowledge argument of knowledge that allows a prover P to convince a
verifier V in ZK that P knows a value that was honestly accumulated in the
root of the Merkle tree. Using the techniques presented in Section 4.2, we are
able to obtain a protocol with fewer communication cost. Specifically, proving
knowledge of dj , bin(j),wℓ, . . . ,w1 such that (10) holds is the same as proving
knowledge of wacc ∈ {0, 1}Dacc such that Macc ·wacc = vacc for Macc ∈ Zℓn×Dacc

2 ,
vacc ∈ Zℓn

2 , wacc ∈ {0, 1}Dacc , and Dacc = 2ℓm + 2(ℓ − 1)n. In addition, the
sets validacc, Racc, Zacc, Sacc, and the functions Facc, F

′

acc, F
′′

acc are given so
that the accumulator layer is reduced to an instance of Rabstract. Particularly,
log |Racc| = 2ℓm+ (ℓ− 1)n < Dacc. Details are given in Appendix B.1.
Handling the commitment layer. We will employ the techniques presented
in Section 4.2 to prove knowledge of regular words RE(xj) and RE(rj). We now
show how to prove that dj has odd weight. To this end, observe that

wt(dj) = 1 mod 2⇐⇒ 11×n · dj = 1 mod 2. (11)

Let yℓ = Encode(dj) ∈ Z2n
2 . We have dj = I∗

n · yℓ and M1 · yℓ = 1, where
M1 = 11×n · I∗

n ∈ Z1×2n
2 . Therefore, the commitment layer is now equivalent to

proving knowledge of yℓ,RE(xj),RE(rj) such that

M1 · yℓ = 1 and C0 · RE(xj)⊕C1 · RE(rj)⊕ I∗
n · yℓ = 0n. (12)

Through some basic algebra, one can form public matrix Mcom ∈ Z(n+1)×Dcom
2

and vector vcom ∈ Zn+1
2 , secret wcom = ( yℓ ∥ RE(xj) ∥ RE(rj) ) ∈ ZDcom

2 with
Dcom = 2n+m0 +m1 such that (12) is equivalent to Mcom ·wcom = vcom.
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Handling the policy layer. To prove knowledge of xj so that it satisfies the
policy P , we first convert P to a Boolean circuit C entirely represented by NAND
gates. Next we show knowledge of each wire value so that the output of C is 1
and that for each triple (x1, x2, x3) connected by a NAND gate, x1 ·x2⊕x3 = 1.

Note that the above transformation of the policy circuit P to C is for presen-
tation purpose. In fact, for a triple (x1, x2, x3) connected by an AND gate and an
OR gate, we have x1 ·x2⊕x3 = 0 and x1 ·x2⊕x3⊕x1⊕x2 = 0, respectively; for
(x1, x2) connected by a NOT gate, we have x1 ⊕ x2 = 1. Therefore, we can use
the same techniques that handle the NAND gates and arbitrary binary vectors
to handle x1 · x2⊕ x3 and the linear terms x1, x2, respectively. Therefore, it will
not be an issue even if there is a blowup in C’s size due to the transformation.

Now, let us present the notations and techniques for handling NAND triples.

– For x1, x2, x3 ∈ {0, 1}, let

X = ENC(x1, x2, x3) = [ x1·x2⊕x3 | x1·x2⊕x3 | x1·x2⊕x3 | x1·x2⊕x3 ]⊤ ∈ Z4
2.

It is easy to see that [ 0 | 0 | 0 | 1 ] ·X = x1 · x2 ⊕ x3.
– Define validnand = {X : ∃ x1, x2, x3 ∈ Z2 s.t. X = ENC(x1, x2, x3)}. It is

worth noting that validnand = B4
odd, i.e., the set that contains all length-4

binary vectors with odd weight. Set Rnand = B4
odd, Znand = B4

even, Snand = Z3
2.

– Let b = [ b1 | b2 | b3 ]⊤ ∈ Z3
2 and X = [ x0,0 | x0,1 | x1,0 | x1,1 ]⊤ ∈ Z4

2, define
Fnand : Snand × Z4

2 → Z4
2 as

Fnand(b, X) = [xb1,b2 ⊕ b3 | xb1,b2
⊕ b3 | xb1,b2

⊕ b3 | xb1,b2
⊕ b3]⊤,

F
′

nand : Snand×Rnand → Rnand as F ′

nand(b, X) = [xb1,b2 | xb1,b2
| xb1,b2

| xb1,b2
]⊤,

and F
′′

nand : Snand ×Znand → Znand as

F
′′

nand(b, X) = Fnand(b, X) = [xb1,b2 | xb1,b2
| xb1,b2

| xb1,b2
]⊤⊕[ b3 | b3 | b3 | b3 ]⊤.

First, we show that F ′

nand and F
′′

nand are well defined. Note that F ′

nand(b, ·) is
indeed a permutation, thus X ∈ Rnand implies F ′

nand(b, X) ∈ Rnand. Regarding
F

′′

nand, it suffices to see that [ b3 | b3 | b3 | b3 ]⊤ ∈ Znand.
Next, we will demonstrate that the four conditions specified in Section 4.1

with respect to validnand,Rnand,Znand,Snand and Fnand, F
′

nand, F
′′

nand are satisfied.
Looking ahead, this is crucial in reducing Rfdabs to an instance of Rabstract.

For all b = [ b1 | b2 | b3 ]⊤ ∈ Snand, and X ∈ Rnand, X
′ ∈ Znand,

Fnand( b, X ⊕X ′ ) = [xb1,b2 | xb1,b2
| xb1,b2

| xb1,b2
]⊤

⊕ [x′
b1,b2
| x′

b1,b2
| x′

b1,b2
| x′

b1,b2
]⊤ ⊕ [ b3 | b3 | b3 | b3 ]⊤

= F
′

nand( b, X ) ⊕ F
′′

nand( b, X ′ ).

Thus, “homomorphism” is satisfied. Also, due to the design of Fnand, it is not hard
to verify that for all b ∈ Snand, all X ∈ Z4

2, the equivalence X ∈ validnand ⇐⇒
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Fnand(b, X) ∈ validnand holds. Therefore, “closure of Fnand with respect to validnand”
is also fulfilled. Finally, observe that for all X ∈ validnand, {Fnand(b, X) : b ∈
Snand} = validnand, {z = X + r : r ∈ B4

odd = Rnand} = B4
even = Znand. There-

fore, the last two conditions are satisfied as well. Being prepared with the above
technique, we are ready to describe the transformations for the policy layer.

LetK be the number of NAND gates in C. We distinguish the input wires, the
internal wires, and the output wire by 1, . . . , L, L+ 1, . . . , L+K, where 1, . . . , L
are the input wires, L+1, . . . , L+K−1 are the internal wires while L+K is the
output wire. The topology of C is specified by two publicly known functions g, h
mapping {1, . . . ,K} → {1, . . . , L + K − 1}. Given an L-bit input (x1, . . . , xL),
the assignments to non-input wires in C are denoted as xL+1, . . . , xL+K and are
as computed xL+i = xg(i) NAND xh(i) for i ∈ [1,K]. Equivalently,

xg(1) · xh(1) ⊕ xL+1 = 1,
· · ·
xg(K−1) · xh(K−1) ⊕ xL+K−1 = 1,
xg(K) · xh(K) ⊕ xL+K = 1.

(13)

Thus, the policy layer is equivalent to proving knowledge of x1, x2, . . . , xL+K−1,
and xL+K = 1 such that equations in (13) hold. For every i ∈ [1,K−1], let Xi =
ENC(xg(i), xh(i), xL+i) and XK = ext(xg(K), xh(K)). Denote h4 = [ 0 | 0 | 0 | 1 ] ∈
Z1×4

2 . Then (13) is equivalent to

h4 · X1 = 1, . . . , h4 · XK−1 = 1, h4 · XK = 0. (14)

Through some basic algebra, one can form public matrix Mcir ∈ ZK×4K
2 and

vector vcir ∈ ZK
2 , secret vector wcir = (X1∥ . . . ∥XK−1∥XK) ∈ Z4K

2 such that (14)
is equivalent to Mcir ·wcir = vcir.
Putting it together. We are ready to transform the considered relation Rfdabs
into one equation of the desired form Mfdabs · wfdabs = vfdabs. The first step is
to form appropriate public Mfdabs ∈ ZD0×Dfdabs

2 and vfdabs ∈ ZD0
2 , and secret

wfdabs ∈ {0, 1}Dfdabs , with D0 = ℓn+ n+ 1 +K and Dfdabs = Dacc +Dcom + 4K,
and wfdabs being the following form:

wfdabs = ( wacc ∥ yℓ ∥ RE(xj) ∥ RE(rj) ∥X1 ∥ . . . ∥XK−1 ∥XK ), (15)

so that Mfdabs · wfdabs = vfdabs. The next step is to specify the sets validfdabs,
Rfdabs, Zfdabs, Sfdabs, and Ffdabs, F

′

fdabs, F
′′

fdabs such that the four constraints in
Section 4.1 are satisfied. Once we have reduced the considered statement to an
instance of Rabstract, the prover and verifier can run the protocol in Figure 4.
Due to space limit, details are in Appendix B.2.
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A Additional Code-Based Cryptographic Tools

The AFS hash functions. Let λ be the security parameter. The AFS family
of hash functions Hafs maps {0, 1}k to {0, 1}n, where n, k = Ω(λ) and k > n.
Each function in the family is associated with a matrix B $←− Zn×2c·k/c

2 , for
some properly chosen constant c dividing k. To compute the hash value of x ∈
{0, 1}k, one encodes it to the corresponding regular word RE(x) ∈ {0, 1}2c·k/c

and outputs B · RE(x).
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The above hash functions are collision-resistant assuming the hardness of the
2-RNSDn,k,c problem. Suppose that the adversary can produce distinct x0,x1
such that B · RE(x0) = B · RE(x1). Let z = RE(x0) ⊕ RE(x1) ̸= 0 then we
have z ∈ 2-Regular(k, c) and B · z = 0. In other words, z is a solution to the
2-RNSDn,k,c problem associated with matrix B.
The Modified AFS Hash Function. Nguyen et al. [74] recently modified the
AFS hash function family [6] so that it takes 2 inputs (instead of just 1) and
hence is suitable for building Merkle hash trees. The definition is given below.

Definition 5. Let m = 2 · 2c · n/c. The function family H mapping {0, 1}n ×
{0, 1}n to {0, 1}n is defined as H = {hB | B ∈ Zn×m

2 }, where for B = [B0|B1]
with B0,B1 ∈ Zn×m/2

2 , and for any (u0,u1) ∈ {0, 1}n × {0, 1}n, we have:

hB(u0,u1) = B0 · RE(u0)⊕B1 · RE(u1) ∈ {0, 1}n.

The collision resistance of the hash function family relies on the hardness of the
2-RNSD problem.

Lemma 1 ([74]). The function family H, defined in Definition 5 is collision-
resistant, assuming the hardness of the 2-RNSDn,2n,c problem.

A.1 Code-Based Commitment Scheme

Let us recall the statistically hiding and computationally binding commitment
scheme proposed in [74].

CSetup(1λ): Given the security parameter 1λ, it chooses n = O(λ), k ≥ n +
2λ + O(1), and specifies the message space X = {0, 1}L. It also chooses
c = O(1) that divides both k and L. Let m0 = 2c · L/c and m1 = 2c · k/c.
Sample C0

$←− Zn×m0
2 and C1

$←− Zn×m1
2 . Output public parameter pp =

{λ, n, k, L, c,m0,m1,C0,C1}.
CCom(pp,x): To commit to a message x ∈ {0, 1}L, this algorithm samples a

randomness r $←− Zn×k
2 , computes c = C0 · RE(x)⊕C1 · RE(r), and outputs

commitment c as well as the opening r.
COpen(pp, c, (x, r)): Given the inputs, it outputs 1 if c = C0 ·RE(x)⊕C1 ·RE(r)

and 0 otherwise.

Lemma 2 ([74]). The above commitment scheme is correct. For any x ∈ {0, 1}L,
the distribution of commitment c is statistically close to the uniform distribution
over Zn

2 . In particular, the scheme satisfies the statistical hiding property. More-
over, if 2-RNSDn,L+k,c problem is hard, then the scheme is also computationally
binding.

As pointed out in [74], the above commitment scheme can be extended to commit
messages of arbitrary length using Merkle-Damg̊ard technique. In this work, we
will employ the above commitment scheme to commit to attributes and the
extended one as a building block for Stern’s ZK protocols.
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A.2 Efficiently Updatable Code-Based Merkle-tree Accumulator

We now recall the updatable code-based Merkle-tree accumulator [74,73].

TSetup(1λ): This algorithm first chooses n = O(λ), c = O(1) so that c divides
n. Set m = 2 · 2c · n/c. It then samples B $←− Zn×m

2 , and outputs the public
parameter pp = {λ, n, c,m,B}.

TAccB(R = {d0, . . . ,dN−1} ⊆ ({0, 1}n)N ): Assume N = 2ℓ without loss of gen-
erality. Re-write dj as uℓ,j and call dj the leaf value of the leaf node bin(j)
for j ∈ [0, N − 1]. Build a binary tree upon N leaves uℓ,0, . . . ,uℓ,2ℓ−1 in the
following way. For k ∈ {ℓ − 1, ℓ − 2, . . . , 1, 0} and i ∈ [0, 2k − 1], compute
uk,i = hB(uk+1,2i,uk+1,2i+1). Output the accumulated value u = u0,0.

TWitGenB(R,d): If d /∈ R, the algorithm outputs ⊥. Otherwise, it outputs the
witness w for d as follows.
1. Set d = dj for some j ∈ [0, N − 1]. Re-write dj = uℓ,j . Let bin(j) =

[j1| . . . |jℓ]⊤ ∈ {0, 1}ℓ be the binary representation of j.
2. Consider the path from uℓ,j to the root u, the witness w then con-

sists of bin(j) as well as all the sibling nodes of the path. Let w =(
bin(j), (wℓ, . . . ,w1)

)
∈ Zℓ

2 ×
(
Zn

2
)ℓ. We give an example in Figure 5.

TVerifyB
(
u,d, w

)
: Let w be of the following form:

w =
(
[j1| · · · |jℓ]⊤, (wℓ, . . . ,w1)

)
.

This algorithm then computes vℓ, . . . ,v0. Let vℓ = d and

∀i ∈ {ℓ− 1, . . . , 1, 0} : vi =
{
hB(vi+1,wi+1), if ji+1 = 0;
hB(wi+1,vi+1), if ji+1 = 1.

(16)

Output 1 if v0 = u or 0 otherwise.
TUpdateB(bin(j),d∗): Let dj be the existing leaf value of the leaf node bin(j). It

executes the algorithm TWitGenB(R,dj), obtaining w = (bin(j), (wℓ, . . . ,w1)).
It then sets vℓ = d∗ and recursively computes vℓ−1, . . . ,v0 as in (16). Finally,
for i ∈ [0, ℓ], it sets ui,⌊ j

2ℓ−i ⌋ = vi.

Lemma 3 ([74]). Assume that the 2-RNSDn,2n,c problem is hard, then the given
accumulator scheme is correct and secure, i.e., it is infeasible to prove that a
value d∗ was accumulated in a value u if it was not (see, e.g., [58,23] for formal
definition).

B Detailed Descriptions of Supporting ZK Protocols

B.1 New Zero-Knowledge Proof of Set Membership

This section presents our new ZK protocol for proving set membership. Let n
be an integer and m = 2 · 2c ·n/c. Given a random matrix B = [B0|B1] ∈ Zn×m

2
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u0,0

u3,0 u3,7u3,3 u3,4u3,2 u3,5u3,1 u3,6

d0 d7d3 d4d2 d5d1 d6

u2,0 u2,3u2,1 u2,2

u1,0 u1,1

Fig. 5: A Merkle tree with 23 = 8 leaves, which accumulates the data blocks
d0, . . . ,d7 into the value u = u0,0 at the root. Let j = 5. Then the path from
u3,5 = d5 to the root consists of the yellow nodes, whose siblings are the pink
nodes. Hence, bin(j) as well as the pink nodes form a witness to the fact that d5
is accumulated in u. If one needs to update d5 to d∗, it suffices to update the
yellow nodes.

and the accumulated value u, the target of P is to convince V that it possesses
a value d ∈ {0, 1}n and a witness w ∈ {0, 1}ℓ × ({0, 1}n)ℓ. Define the associated
relation as follows:

Racc =
{((

B,u
)
;
(
d, w

))
∈

(
Zn×m

2 × Zn
2

)
×

(
{0, 1}n × {0, 1}ℓ × ({0, 1}n)ℓ

)
:

TVerifyB(u,d, w) = 1
}
.

Before constructing our ZK protocol, let us first recall some notions from [74].

– For d ∈ {0, 1} and x ∈ {0, 1}m
2 , denote Ext(d,x) = ( d ·x ∥ d ·x ) ∈ {0, 1}m.

– For a ∈ {0, 1}, for b ∈ {0, 1}n, for p = (p0 ∥ p1) ∈ {0, 1}m with pi ∈
{0, 1}m/2, define a function Ψ : ({0, 1} × {0, 1}n) × {0, 1}m → {0, 1}m as
Ψ( (a,b), p ) =

(
Fre(b,pa) ∥ Fre(b,pa)

)
. Namely, it rearranges the blocks

of p according to a and then applies the function Fre to the rearranged
blocks. Due to “homomorphism” of the function Fre (see (6)), for all a ∈
{0, 1},b ∈ {0, 1}n, and all p,p′ ∈ {0, 1}m, we obtain the following

Ψ( (a,b), p ) ⊕ Ψ( (a,b), p′ ) = Ψ( (a,b), p⊕ p′ ). (17)

– For any d, a ∈ {0, 1} and v,w,b, c ∈ {0, 1}n, it follows from (7) that the
following equivalences hold:{

p = Ext
(
d, RE(v)

)
⇐⇒ Ψ( (a,b), p ) = Ext

(
d⊕ a, RE(v⊕ b)

)
q = Ext

(
d, RE(w)

)
⇐⇒ Ψ

(
(a, c), q

)
= Ext

(
d⊕ a, RE(w⊕ c)

)
.

(18)

Let us now take a closer look at Racc. Recall that w = (bin(j),wℓ, . . . ,w1)
and the TVerify algorithm computes vℓ = d,vℓ−1, . . . ,v0 = u, where vi for
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i ∈ {ℓ− 1, . . . , 1, 0} is computed as

vi =
{

B0 · RE(vi+1)⊕B1 · RE(wi+1) if ji+1 = 0;
B0 · RE(wi+1)⊕B1 · RE(vi+1) if ji+1 = 1.

= B · Ext
(
ji+1, RE(vi+1)

)
⊕ B · Ext

(
ji+1, RE(wi+1)

)
.

For the sake of simplicity, define the following notions for all i ∈ [1, ℓ].

pi = Ext(ji, RE(vi)) ∈ {0, 1}m, qi = Ext(ji, RE(wi)) ∈ {0, 1}m,

yi = Encode(vi) ∈ {0, 1}2n. (19)

Recall that we have vi = I∗
n · yi for i ∈ [1, ℓ]. It is then observed that it is

sufficient for P to prove knowledge of bin(j) = [j1| . . . |jℓ]⊤ ∈ {0, 1}ℓ, p1, . . . ,pℓ,
q1, . . . ,qℓ, y1, . . . ,yℓ−1 of form (19) such that

B · p1 ⊕ B · q1 = u; B · p2 ⊕ B · q2 ⊕ I∗
n · y1 = 0;

· · · · · · · · ·
B · pℓ−1 ⊕ B · qℓ−1 ⊕ I∗

n · yℓ−2 = 0; B · pℓ ⊕ B · qℓ ⊕ I∗
n · yℓ−1 = 0.

(20)

Through some basic algebra, we can transform the equations in (20) to a unified
equation of the form Macc ·wacc = vacc, where Macc ∈ Zℓn×Dacc

2 and vacc ∈ Zℓn
2

are public and wacc ∈ {0, 1}Dacc is secret with Dacc = 2ℓm+ 2(ℓ− 1)n and

wacc = ( p1 ∥ . . . ∥ pℓ ∥ q1 ∥ . . . ∥ qℓ ∥ y1 ∥ . . . ∥ yℓ−1 ). (21)

Now let us specify the sets validacc,Racc,Zacc,Sacc as well as three functions
Facc, F

′

acc, F
′′

acc so that validacc contains our secret vector wacc and all four re-
quirements specified in Section 4.1 are fulfilled. Let validacc contain all vectors
of the form ŵacc = (p̂1∥ . . . ∥p̂ℓ∥q̂1∥ . . . ∥q̂ℓ∥ŷ1∥ . . . ∥ŷℓ−1) ∈ {0, 1}Dacc satisfying
the following constraints:

– For i ∈ [1, ℓ], there exist ĵi ∈ {0, 1}, v̂i, ŵi ∈ {0, 1}n such that

p̂i = Ext(ĵi,RE(v̂i)) ∈ {0, 1}m; q̂i = Ext(ĵi,RE(ŵi)) ∈ {0, 1}m,

ŷi = Encode(v̂i) ∈ {0, 1}2n. (22)

Regarding Racc and Zacc, define the following sets where Rbin,Zbin are as in (5).

Racc =
(
{0, 1}2ℓm∥Rbin∥ . . . ∥Rbin︸ ︷︷ ︸

ℓ−1 copies

)
⊂ ZDacc

2 ,

Zacc =
(
{0, 1}2ℓm∥Zbin∥ . . . ∥Zbin︸ ︷︷ ︸

ℓ−1 copies

)
⊂ ZDacc

2 .

Let Sacc = ({0, 1})ℓ × ({0, 1}n)ℓ × ({0, 1}n)ℓ. Then for each ϕ ∈ Sacc and ŵacc ∈
{0, 1}Dacc of forms

ϕ = (g1, . . . , gℓ,b1, . . . ,bℓ, c1, . . . , cℓ), (23)
ŵacc = (p̂1∥ . . . ∥p̂ℓ∥q̂1∥ . . . ∥q̂ℓ∥ŷ1∥ . . . ∥ŷℓ−1), (24)
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where p̂i, q̂i ∈ Zm
2 for i ∈ [1, ℓ] and ŷi ∈ Z2n

2 for i ∈ [1, ℓ − 1], define Facc :
Sacc × {0, 1}Dacc → {0, 1}Dacc as

Facc( ϕ, ŵacc ) = ( p⋆
1 ∥ . . . ∥ p⋆

ℓ ∥ q⋆
1 ∥ . . . ∥ q⋆

ℓ ∥ y⋆
1 ∥ . . . ∥ y⋆

ℓ−1 ),

where for i ∈ [1, ℓ],

p⋆
i = Ψ

(
(gi, bi), p̂i

)
, q⋆

i = Ψ
(

(gi, ci), q̂i

)
, y⋆

i = Fbin( bi, ŷi ). (25)

Similarly, F ′

acc : Sacc × Racc → Racc, F
′′

acc : Sacc × Zacc → Zacc are defined as
F

′

acc( ϕ, ŵacc ) = Facc( ϕ, ŵacc ), F ′′

acc( ϕ, ŵacc ) = Facc( ϕ, ŵacc ), respectively.
Note that Facc( ϕ, ·) is indeed a permutation, thus F ′

acc, F
′′

acc are well defined. We
now show that the four requirements in Section 4.1 are satisfied.

First, “homomorphism” is satisfied due to that of Ψ and Fbin (see (17) and (3),
respectively). Next, observe that if ŵacc ∈ validacc, i.e., (22) is satisfied, then due
to equivalences observed in (18) and (4), formulas in (25) are equivalent to the
following.

p⋆
i = Ext(ĵi ⊕ gi, RE(v̂i ⊕ bi)), q⋆

i = Ext(ĵi ⊕ gi, RE(ŵi ⊕ ci)),
y⋆

i = Encode(v̂i ⊕ bi). (26)

For all ϕ ∈ Sacc, all ŵacc ∈ {0, 1}Dacc , we then conclude that ŵacc ∈ validacc
if and only if Facc(ϕ, ŵacc) ∈ validacc. Thus, “closure of Facc with respect to
validacc” is satisfied. In addition, formulas in (26) also imply that for all ŵacc ∈
validacc, distributions {t = Facc(ϕ, ŵacc) | ϕ

$←− Sacc} and {t | t $←− validacc} are
identical. Finally, since we use random vectors in the set {0, 1}2ℓm to mask
( p̂1 ∥ . . . ∥ p̂ℓ ∥ q̂1 ∥ . . . ∥ q̂ℓ ) and Rbin to mask ŷi, it follows that the distribu-
tions {z = ŵacc ⊕ r | r $←− Racc} and {z | z $←− Zacc} are the same.
The interactive protocol. Given the above preparations, the interactive pro-
tocol works as follows.

– The public input consists of matrix Macc ∈ Zℓn×Dacc
2 and vector vacc ∈ Zℓn

2
that are built from u, B.

– The prover’s witness is a vector wacc ∈ validacc, which is obtained from the
witness (d, w).

Both parties run the protocol as in Figure 4. The protocol employs a statistically
hiding and computationally binding commitment scheme COM from [74], as de-
scribed in Appendix A.1. The following theorem follows directly from Theorem 2.

Theorem 3. Let COM be a statistically hiding and computationally binding
string commitment scheme with commitment n bits and randomness r bits. Then
the protocol presented above is a Σ-protocol for the relation Racc, with perfect
completeness and average communication cost O(λ log λ).
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Proof. For honest-verifier ZK, we simply run the simulator of Theorem 2. Re-
garding special soundness, we invoke the PPT extractor of Theorem 2 to obtain
a vector w′ ∈ validacc such that Macc · w′ = vacc. Now, by “backtracking” the
transformation steps, we are able to extract (d′, w′) from w′ for the relation Racc.
The perfect completeness and average communication cost directly follow from
those of the abstract relation Rabstract. Therefore, the average communication
cost is

ζ = 3n+ 2r + log(|validacc|) + 2 log(|Racc|) + log(|Zacc|) + 2 log(|Sacc|)
3

= O(λ log λ),

where log(|Racc|) = log(|Zacc|) = 2ℓm + (ℓ − 1)n, log |Sacc| = ℓ + 2ℓn and
log |validacc| = ℓ+ 2ℓn.

B.2 Details of Combining the Three Layers of the Main
Zero-Knowledge Protocol for Algorithm Sign

We now specify the sets validfdabs, Rfdabs, Zfdabs, Sfdabs, and Ffdabs, F
′

fdabs, F
′′

fdabs
such that the four constraints in Section 4.1 are obeyed. Let validfdabs contain all
vectors of the following form:

ŵfdabs = ( ŵacc ∥ ŷℓ ∥ ẑ0 ∥ ẑ1 ∥ X̂1 ∥ . . . ∥ X̂K−1 ∥ X̂K ), (27)

such that

– ŵacc ∈ validacc, and there exists v̂ℓ ∈ {0, 1}n such that ŷℓ = Encode(v̂ℓ).
– There exist x̂ = [x1| . . . |xL]⊤ ∈ ZL

2 and r̂ ∈ Zk
2 such that ẑ0 = RE(x̂) ∈ Zm0

2 ,
ẑ1 = RE(r̂) ∈ Zm1

2 .
– There exist xL+1, . . . , xL+K−1 ∈ Z2 such that X̂i = ENC(xg(i), xh(i), xL+i)

for i ∈ [1,K − 1] and X̂K = ext( xg(K), xh(K) ).

It is clear that our vector wfdabs ∈ validfdabs. LetRfdabs, Zfdabs, Sfdabs be as follows.

Rfdabs =
(
Racc ∥ Rbin ∥ Rre,L ∥ Rre,k ∥ Rnand ∥ . . . ∥ Rnand︸ ︷︷ ︸

K−1 copies

∥ Rmult

)
,

Zfdabs =
(
Zacc ∥ Zbin ∥ Zre,L ∥ Zre,k ∥ Znand ∥ . . . ∥ Znand︸ ︷︷ ︸

K−1 copies

∥ Zmult

)
,

Sfdabs =
(
Sacc ×

(
{0, 1}

)L+K−1 × {0, 1}k
)
.

For ϕ = (ϕacc, d1, . . . , dL, dL+1, . . . , dL+K−1, e) ∈ Sfdabs and ŵfdabs ∈ ZDfdabs
2 of

form (27), define the function Ffdabs : Sfdabs × {0, 1}Dfdabs → {0, 1}Dfdabs as

Ffdabs( ϕ, ŵfdabs ) =
(
Facc( ϕacc , ŵacc) ∥ Fbin( bℓ, ŷℓ ) ∥ Fre( d, ẑ0 ) ∥ Fre( e, ẑ1 ) ∥

Fnand( f1, X̂1 ) ∥ . . . ∥ Fnand( fK−1, X̂K−1 ) ∥ Fmult( fK , X̂K )
)
, (28)
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where bℓ is an element of ϕacc (see (23) for details), d = [d1| . . . |dL]⊤, fi =
[dg(i)|dh(i)|dL+i]⊤ for i ∈ [1,K − 1] and fK = [dg(K)|dh(K)]⊤. Now we define
F

′

fdabs : Sfdabs × Rfdabs → Rfdabs and F
′′

fdabs : Sfdabs × Zfdabs → Zfdabs similarly
by changing all the sub-functions to F ′

acc, F
′

bin, F
′

re, F
′

nand, F ′

mult and F ′′

acc, F
′′

bin, F
′′

re ,
F

′′

nand, F ′′

mult, respectively. Since all the sub-statements with respect to sets validsub,
Rsub,Zsub,Ssub and functions Fsub, F

′

sub, F
′′

sub for sub ∈ {acc, bin, re, nand,mult} all
satisfy the four conditions in Section 4.1, it is not hard to verify that validfdabs,
Rfdabs, Zfdabs, Sfdabs, and Ffdabs, F

′

fdabs, F
′′

fdabs satisfy the four constraints as well.
Now we have successfully reduced the considered statement to an instance of

Rabstract.
The interactive protocol. Given the above preparations, our interactive pro-
tocol works as follows.

– The public input consists of matrix Mfdabs ∈ ZD0×Dfdabs
2 and vector vfdabs ∈

ZD0
2 that are built from P , uτ , B, C0, C1.

– The prover’s witness is a vector wfdabs ∈ validfdabs, which is obtained from
the witness ξ.

Both parties run the protocol as in Figure 4. The protocol employs a statistically
hiding and computationally binding commitment scheme COM from [74], as de-
scribed in Appendix A.1. The following theorem follows directly from Theorem 2.

Theorem 4. Let COM be a statistically hiding and computationally binding
string commitment scheme with commitment n bits and randomness r bits. Then
the protocol presented above is a Σ-protocol for the relation Rfdabs associated with
our FDABS scheme, with perfect completeness and average communication cost
ζ = O(λ log λ+ L+K).

Proof. For honest-verifier ZK, we simply run the simulator of Theorem 2. Re-
garding special soundness, we invoke the PPT extractor of Theorem 2 to obtain
a vector w′ ∈ validfdabs such that Mfdabs ·w′ = vfdabs. Now, by “backtracking” the
transformation steps, we are able to extract ξ′ = (d′,x′, r′, bin(j′),w′

ℓ, . . . ,w′
1)

from w′ for the relation Rfdabs. The perfect completeness and average communi-
cation cost directly follow from the counterparts of the abstract relation Rabstract.
Therefore, the average communication cost is

ζ = 3n+ 2r + log(|validfdabs|) + 2 log(|Rfdabs|) + log(|Zfdabs|) + 2 log(|Sfdabs|)
3

= O(λ log λ+ L+K),

where

log(|Rfdabs|) = log(|Zfdabs|) = 2ℓm+ ℓn+ (2c − 1) · L
c

+ (2c − 1) · k
c

+ 3K,

log |Sfdabs| = log |validfdabs| = ℓ+ 2ℓn+ L+K − 1 + k.
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C Proof of Theorem 1

The proof of Theorem 1 is established by Lemma 4 and Lemma 6.
Lemma 4. If the underlying NIZK protocol is statistically zero-knowledge, then
our construction is statistically private.

Proof. Let A be any (computationally unbounded) privacy adversary against
our FDABS scheme with advantage ϵ. We will prove ϵ = negl(λ) using the
statistical ZK property of the underlying NIZK system, which in turn relies on
the statistical ZK of the interactive Stern-like protocol in Section 4.3. Specifically,
we construct indistinguishable games Gb, G2 such that Gb is the experiment
Exptprivacy-b

A (1λ). Denote Wi as the event that Gi outputs 1 for i ∈ {0, 1, 2}.

Game Gb: This game is the original privacy experiment Exptprivacy-b
A (1λ) for

b = 0 and b = 1. The challenger runs Setupinit(1λ) to obtain pp and then
gives pp to adversary A. Upon receiving pp, A is allowed to compute the
authority’s key pair (mpk,msk) as A wishes. Furthermore, A has full control
of the registration table reg and system information info during the lifetime
of the scheme. However, A is required to guarantee the well-formedness of
the key pair (mpk,msk) and reg, info at any time. A can introduce hon-
est attributes to the system by interacting with the oracle SndToHX. In
the challenge phase, A outputs two honest attributes x0,x1, a message M
together with a policy P and epoch τ . If both attributes satisfy the pol-
icy and are active at time τ , the challenger computes a challenge signature
Σ = Π ← Sign(skxb

,M, P, infoτ ) and sends it to A. The adversary is still
allowed to access the oracle SndToHX as well as updating reg, info. Queries
to HFS and HG are processed by choosing random strings at their respective
domains. Finally, A outputs a guess b′ and halts. This experiment then out-
puts whatever A outputs. By definition, Pr[Exptprivacy-b

A (1λ) = 1] = Pr[Wb].
Game G2: In this game, the following modification is introduced. Instead of

generating the NIZK proof Π faithfully, the challenger simulates it without
using the witness tuple of form (1). This is done by running our simulator
SIMfdabs as described in Figure 2. Note that now the challenge signature Π
does not depend on the challenger’s bit b and is statistically close to the one
in Game Gb. Hence |Pr[Wb]− Pr[W2]| ≤ negl(λ) holds for any A.

It then follows that

ϵ = |Pr[Exptprivacy-0
A (1λ) = 1]− Pr[Exptprivacy-1

A (1λ) = 1]| = |Pr[W0]− Pr[W1]|
≤ |Pr[W0]− Pr[W2]|+ |Pr[W1 −W2]| ≤ negl(λ).

We introduce the following lemma that will be utilized in the proof of Lemma 6.

Lemma 5. Let C1 ∈ Zn×m1
2 , where m1 = 2c · k/c and k ≥ n + 2λ + O(1) as

specified in Section 3.2. If r is uniformly chosen from {0, 1}k, then with prob-
ability 1 − 2−2λ, there exists a different r′ ∈ {0, 1}k such that C1 · RE(r) =
C1 · RE(r′) mod 2.
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Proof. There are at most 2n− 1 elements r ∈ {0, 1}k for which there is no other
r′ such that C1 · RE(r) = C1 · RE(r′) mod 2. Therefore, for a randomly chosen
r, the probability that it does have a corresponding r′ such that C1 · RE(r) =
C1 · RE(r′) mod 2 is at least (2k − 2n + 1)/2k ≥ 1− 2−2λ. ⊓⊔

Lemma 6. If the underlying NIZK protocol is online extractable and statistically
zero-knowledge, 2-RNSDn,2n,c and 2-RNSDn,L+k,c problems are hard, then our
construction is unforgeable.

Proof. Assume the underlying NIZK protocol is online extractable. If a PPT
adversary A breaks the unforgeability of our FDABS scheme with advantage ϵ,
then we construct a PPT algorithm B that uses A as a subroutine to solve an
instance of the 2-RNSDn,2n,c or 2-RNSDn,L+k,c problems. We also show that the
success probability of B is polynomially related to ϵ. Since these two problems
are assumed to be hard, it then follows ϵ is negligible. This will complete the
proof.

Given a matrix B ∈ Zn×m
2 for the 2-RNSDn,2n,c problem and matrices

C0 ∈ Zn×m0
2 ,C1 ∈ Zn×m1

2 for the 2-RNSDn,L+k,c problem, B simulates the
experiment Exptunforge

A (1λ) as follows. It first generates the remaining public pa-
rameter as specified in the algorithm Setupinit, produces the key pair (mpk,msk)
for the attribute-issuing authority, initializes the registration table reg, system
information info and several lists HL,BL,SL. Next, it invokes A by sending over
pp,mpk and making reg and info visible to A. When A makes queries to oracles
AddHX,RevealX,Sign,Update, B handles them honestly and faithfully, since B
has all the required information. In our construction, A will also query the hash
function HFS and HG. For the former, this is managed by replying randomly
chosen elements r from {1, 2, 3}κ. For the latter, this is managed by program-
ming it as a polynomial pG over GF(2T ) of degree at least 2qG − 1, where qG is
an upper bound of all queries to HG and T is super-logarithmic in λ.

Eventually, A outputs a tuple (M∗, P ∗, τ∗, Σ∗). Suppose the output satisfies
all the conditions required in Exptunforge

A (1λ) to return 1. Then (M∗, P ∗, τ∗, Σ∗)
is not obtained from oracle queries and Verify(M∗, P ∗, infoτ∗ , Σ∗) = 1. B then
exploits the forgery as follows.

LetΣ∗ = ({CMT∗
i }κ

i=1, {RSPi,j}i∈[1,κ],j∈{1,2,3}\{ch∗
i

},CH∗, {RSP∗
i,chi
}κ

i=1). Since
Σ∗ is valid, we run our extractor Efdabs described in Figure 3, obtaining a witness
ξ∗ = (d∗,x∗, r∗, bin(j∗),w∗

ℓ , . . . ,w∗
1) of the form (1) such that

(i) d∗ = C0 · RE(x∗)⊕C1 · RE(r∗) and wt(d∗) = 1 mod 2;
(ii) TVerifyB(uτ∗ ,d∗, bin(j∗), (w∗

ℓ , . . . ,w∗
1)) = 1;

(iii) P ∗(x∗) = 1.

We consider the following three cases.

Case 1: The attribute corresponding to the j∗-th leaf is inactive at epoch τ∗. (Either
this leaf has not been assigned an attribute at all or the assigned attribute
has been revoked no later than τ∗.) In other words, the real leaf value dj∗

associated with leaf bin(j∗) is 0n. Therefore, there are two different paths
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starting from leaf bin(j∗) to the root uτ∗ . Thus, one can find a non-zero
vector z ∈ 2-Regular(2n, c) such that B · z = 0n mod 2. This solves the
2-RNSDn,2n,c problem.

Case 2: The attribute corresponding to the j∗ leaf is active at epoch τ∗ and dj∗ ̸= d∗.
This, however, results in two different paths from the leaf bin(j∗) to the root
as Case 1 and would solve the 2-RNSD(n, 2n, c) problem.

Case 3: The attribute corresponding to the j∗ leaf is active at epoch τ∗ and dj∗ =
d∗. Let the corresponding attribute and opening of dj∗ be xj∗ and rj∗ ,
respectively. We distinguish two subcases.
• If xj∗ ∈ BL, i.e., A learns signing key skxj∗ , we claim P ∗(xj∗) = 0. To

prove the claim, first note that for the tuple (M∗, P ∗, τ∗, Σ∗) output by
A, either P ∗(x) = 0 or IsActive(x, infoτ∗) = 0 for all x ∈ BL. However,
xj∗ is active at τ∗, i.e., IsActive(xj∗ , infoτ∗) = 1, implies P ∗(xj∗) = 0.
Having both P ∗(xj∗) = 0 and P ∗(x∗) = 1, one concludes that xj∗ ̸= x∗.
Let z =

(
RE(x∗)⊕RE(xj∗)∥ RE(r∗)⊕RE(rj∗)

)
∈ 2-Regular(L+k, c). Then

z is non-zero and [C0|C1] ·z = 0n mod 2. This solves the 2-RNSDn,L+k,c

problem.
• If x∗

j /∈ BL, we claim that rj∗ ̸= r∗ with probability at least 1/2.
This again solves the 2-RNSDn,L+k,c problem. To argue rj∗ ̸= r∗ with
probability at least 1/2, let us summarize what A learns about rj∗ .
In the extreme case, A learns dj∗ and xj∗ and hence C1 · RE(rj∗),
which is dj∗ ⊕ C0 · RE(xj∗). However, by Lemma 5, with overwhelm-
ing probability there exists at least another vector r∗ ̸= rj∗ for which
C1 · RE(r∗) = C1 · RE(rj∗). In addition, the statistical zero knowledge
property of the NIZK protocol reveals at most negligible information
about which witness among rj∗ and r∗ is used to sign messages. There-
fore, with probability at least 1/2, rj∗ ̸= r∗. This proves the claim.

⊓⊔
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