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Scattering coe�cients in SET formalism

I. INTRODUCTION11

The stress-energy tensor formalism was initially introduced by Morse and collaborators12

(Morse and Feshbach, 1956; Morse and Ingard, 1968) in order to describe energy conservation13

in linear acoustics. Many years later, Stanzial and collaborators applied the conservation14

of the stress-energy tensor to room acoustics (Stanzial et al., 2002), focusing on the expres-15

sion of the radiation pressure. In a subsequent paper (Stanzial and Schi↵rer, 2010), they16

introduced the energy velocity as ratio of the sound intensity to the total acoustic energy,17

and derived from the conservation of the stress-energy tensor an expression for the local18

inital reverberation time at the onset of energy decay. Some related ideas, linking wave19

impedance to the complex sound intensity, are also found in (Mann et al., 1987; Stanzial20

and Gra�gna, 2017). Mann et al. focused on energy transfer and analysed in terms of21

energy flux and power what happens in the vicinity of intensity vortex that are created22

by specific configurations of sources. Stanzial and Gra�gna went one step further in the23

definition and measurement of complex intensity. However, both papers are outside the24

scope of the present analysis that focuses on the active stress-energy tensor - see (Polack,25

2023) for an extension to the complex stress-energy tensor and its conservation, together26

with preliminary measurement results.27

A somewhat di↵erent perspective was introduced by Dujourdy et al. (Dujourdy et al.,28

2017, 2019) in order to generalize the di↵usion equation formalism of Ollendorf and Picaut29

(Ollendor↵, 1969; Picaut et al., 1997). Indeed, where the di↵usion equation arbitrarily30

introduces a gradient type relationship between sound intensity and total energy, the stress-31
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energy tensor formalism introduces instead the conservation equation for intensity. When32

integrated in disproportionate enclosures, the stress-energy tensor yields both absorption33

and scattering on the boundaries. Dujourdy et al. stressed the symmetrical role played34

by absorption and scattering coe�cients in the conservation equations, which was then35

systematically investigated and confirmed by Meacham et al. (Meacham et al., 2019). The36

present papers aims at proving this symmetry and the absorbing nature of the scattering37

coe�cient, using the local admittance formalism at the boundaries.38

After presenting the background of the stress-energy conservation, we successively express39

the elements of the stress energy tensor on the boundaries, then the absorption and scattering40

coe�cients, in terms of the local admittance. We then examine the main types of boundaries,41

and discuss the relationship between absorption and scattering coe�cients.42

II. THE BASIC EQUATIONS43

Dujourdy et al. (Dujourdy et al., 2017, 2019) have shown that the wave equation, satisfied44

by the velocity potential, can be extended by a set of conservation equations that reduces45

to the conservation of the stress-energy tensor T .46

Let  be the velocity potential. The conservation of the stress-energy tensor is expressed47

as:48

~r · T = 0 (1)

with49
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In terms of the velocity potential, the elements of the stress-energy tensor are given by:50

Ett = ⇢
2(

1
c2 |@t |

2 + |~r |2)

Etx = �⇢0
c @t @x 

Ety = �⇢0
c @t @y 

Etz = �⇢0
c @t @z 

Exx = ⇢0
2 (

1
c2 |@t |

2 + |@x |2 � |@y |2 � |@z |2)

Eyy = ⇢0
2 (

1
c2 |@t |

2 � |@x |2 + |@y |2 � |@z |2)

Ezz = ⇢0
2 (

1
c2 |@t |

2 � |@x |2 � |@y |2 + |@z |2)

Exy = ⇢0@x @y 

Exz = ⇢0@x @z 

Eyz = ⇢0@y @z 

where ⇢0 is the steady-state density of air and c the speed of sound.51

In the specific cases of long enclosures (Dujourdy et al., 2017) and flat spaces (Dujourdy52

et al., 2019), Dujourdy et al. were able to reduce the conservation of the stress-energy tensor53

(eq. 1) to the telegraphers equation:54
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1

c2
@ttE � @xxE +

A+D

�c
@tE +

AD

�2
E = 0 (2)

where E is the total energy, � is the mean free path of the enclosure, and A and D are55

respectively modified absorption and scattering coe�cients at the boundaries. Eq. (2) is56

symmetrical with respect to the absorption and scattering coe�cients, as was confirmed by57

Meacham et al. (Meacham et al., 2019) who systematically explored the whole space of values58

for the absorption and scattering coe�cients and compared thus obtained reverberation59

times and spatial decays with the measured ones in a hallway. As shown in Fig. 1, the60

measured reverberation times and spatial decays correspond to narrow stripes of values for61

A and D, which do not always overlap; but most striking in Fig. 1 is the symmetry of the62

figure with respect to absorption and scattering coe�cients. Physical justification of this63

symmetry is therefore the goal of the present paper.64
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FIG. 1. Relevant combinations of absorption and scattering coe�cients leading to measured

reverberation times and spatial decays in a hallway (reproduced from (Meacham et al., 2019)).
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III. WALL ADMITTANCE65

Now, wall admittance introduces a relation between the normal derivative and the time66

derivative of the velocity potential on the wall:67

�@n =
�

c
@t =

1

c⇣
@t 

with ~n the exterior normal to the wall, ⇣ the specific acoustic impedance of the wall (Morse68

and Ingard, 1968, p. 580), that is, the wall impedance normalized by the characteristic69

impedance ⇢0c of air, and � = 1
⇣ is the specific acoustic admittance. Let us then consider70

a flat enclosure with vertical coordinate z. We can express the elements E·z of the stress-71

energy tensor, where · takes the values t, x, or y. However, the admittance formalism implies72

a complex velocity potential, whereas the elements of the stress-energy tensor must remain73

real, as is expected from energy quantities. Thus, the expression for the non-diagonal terms74

of the stress-energy tensor must be modified as:75

Etx = �⇢0
c <(@t @x ⇤)

Ety = �⇢0
c <(@t @y ⇤)

Etz = �⇢0
c <(@t @z ⇤)

Exy = ⇢0 <(@x @y ⇤)

Exz = ⇢0 <(@x @z ⇤)

Eyz = ⇢0 <(@y @z ⇤)

where the exponent ⇤ means complex conjugated.76

We thus obtain on the ”ceiling”:77
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Etz = ⇢0
c2 <(@t �

⇤@t ⇤) = ⇢0
c2<(�)|@t |

2

Exz = �⇢0
c <(@x �⇤@t ⇤) = <(�)Etx + =(�)=(⇢0c @x @t 

⇤)

Eyz = �⇢0
c <(@y �⇤@t ⇤) = <(�)Ety + =(�)=(⇢0c @y @t 

⇤)

(3)

and the same equations with opposite sign on the ”floor”. Note that Exz and Eyz correspond78

to the parallel components of the radiation pressure exerted on the ”ceiling” and the ”floor”79

(Stanzial et al., 2002).80

IV. INTERPRETATION81

Recalling that Etx and Ety are the components of the sound intensity in the x and82

y directions, we observe that the boundary conditions for Exz and Eyz involve not only83

the active intensity associated with the real part of the admittance, but also the reactive84

intensity associated with the imaginary part of the admittance. This is not surprising, as85

the reactive intensity corresponds to local recirculation of energy, just as the imaginary part86

of the wall admittance is associated with a non-flat surface. Both phenomena contribute to87

the scattering of the impinging waves.88

However, recalling that admittances are defined for pure waves only, we can further sim-89

plify these expressions by considering the phase angles �x and �y between the space deriva-90

tives of the velocity potential with respect to x and y respectively, and its time derivative.91
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The last two ceiling equations then reduce to:92

Exz = [<(�) + =(�) tan�x]Etx

Eyz = [<(�) + =(�) tan�y]Ety

As for Etz, we must first express Ett as a function of the wall admittance, that is:93

Ett = ⇢0
2 (

1
c2 |@t |

2 + |~r |2)

= ⇢0
2 (

1
c2 |@t |

2 + |@x |2 + |@y |2 + |@z |2)

= ⇢0
2 (

1
c2 |@t |

2 + |@x |2 + |@y |2 + |�c @t |
2)

= ⇢0
2 (

1
c2 [1 + |�|2] |@t |2 + |@x |2 + |@y |2)

Introducing the angle of incidence ✓ of the wave makes it possible to express the last two94

terms in the previous equation as:95

|@x |2 + |@y |2 =
sin2 ✓

c2
|@t |2

that is:96

Ett =
⇢0
2c2

(1 + sin2 ✓ + |�|2) |@t |2 (4)

leading to the following expression for the absorption coe�cient:97

↵(✓) =
Etz

Ett
=

2<(�)
1 + sin2 ✓ + |�|2

(5)

The interpretations of the scattering coe�cients Dx and Dy are similar. We simply98

obtain:99

Dx = Exz
Etx

= [<(�) + =(�) tan�x]

Dy = Eyz

Ety
= [<(�) + =(�) tan�y]

(6)
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V. BOUNDARY CONDITIONS100

The evaluation of eqs. (6) takes di↵erent forms depending on the type of boundary and101

the position of the source.102

A. Plane wave on flat boundary103

FIG. 2. Plane wave reflecting on flat boundary.

For a plane wave impinging on a flat boundary z = 0 (Fig. 2), the velocity potential104

takes the following form:105

 (t, r) = exp�i(!t� kxx� kyy � kzz) +R exp�i(!t� kxx� kyy + kzz) (7)

where ! is the radian frequency, kx, ky and kz the components of the wave number k = !
c106

along the three coordinates, and R the complex reflection coe�cient on the boundary. The107

first term in eq. (7) represents the impinging wave; and the second the reflected wave. The108

time derivative in the neighbourhood of the boundary is given by:109

@t = �i! = �i! exp�i(!t� kxx� kyy) [exp ikzz +R exp�ikzz]

and the space derivatives by:110
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@x = ikx = ikx exp�i(!t� kxx� kyy) [exp ikzz +R exp�ikzz] = �kx
! @t 

@y = iky = iky exp�i(!t� kxx� kyy) [exp ikzz +R exp�ikzz] = �ky
! @t 

@z = ikz exp�i(!t� kxx� kyy) [exp ikzz �R exp�ikzz] = ��
c @t 

(8)

As a consequence, on the boundary z = 0, the phase angles �x and �y between the space111

derivatives of the velocity potential with respect to x and y and its time derivative are both112

equal to 0. In this case, eqs. (6) simply reduce to:113

Dx = Dy = <(�)

that is, the scattering coe�cient is purely created by absorption. Note that the last line114

of eq. (8), together with the relation between the normal component of the wave number115

and the angle of incidence kz = k cos ✓ = !
c cos ✓, gives the expected relation between the116

complex reflection coe�cient and the admittance:117

R =
cos ✓ � �

cos ✓ + �
=

[cos2 ✓ � |�|2]� 2i cos ✓=�
cos2 ✓ + 2 cos ✓<� + |�|2

B. Source at finite distance from flat boundary118

For a spherical wave impinging on a flat boundary (Fig. 3), the velocity potential takes119

a di↵erent form:120

 (t, r) =
exp�i(!t� kr)

4⇡r
+R

exp�i(!t� kr0)

4⇡r0
(9)

where R still is the complex reflection coe�cient on the boundary, r the distance to the real121

source S, and r0 the distance to the virtual image source S 0 (see Fig. 3). The first term in eq.122

(9) represents the impinging wave; and the second the reflected wave. The time derivative123
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FIG. 3. Source at finite distance from flat boundary; S is real source, and S’ virtual image source.

in the neighbourhood of the boundary is now given by:124

@t = �i! = �i!
exp�i!t

4⇡


exp ikr

r
+R

exp ikr0

r0

�
(10)

and the space derivatives by:125

@x = i exp�i!t
4⇡

h
kx

exp ikr
r

�
1 + i

kr

�
+Rk0

x
exp ikr0

r0

�
1 + i

kr0

�i

@y = i exp�i!t
4⇡

h
ky

exp ikr
r

�
1 + i

kr

�
+Rk0

y
exp ikr0

r0

�
1 + i

kr0

�i

@z = i exp�i!t
4⇡

h
kz

exp ikr
r

�
1 + i

kr

�
+Rk0

z
exp ikr0

r0

�
1 + i

kr0

�i

(11)

where kx, ky and kz are the components of the incident wave number k along the three126

coordinates, and k0
x, k

0
y, and k0

z those of the reflected wave number k0. At the boundary, the127

distance to the real and imaginary sources are equal, therefore r = r0; and kx = k0
x, ky = k0

y,128

but k0
z = �kz. The partial derivatives further reduce to:129
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@t = �i! exp�i(!t�kr)
4⇡r (1 +R)

@x = ikx
exp�i(!t�kr)

4⇡r (1 +R)
�
1 + i

kr

�
= �kx

!

�
1 + i

kr

�
@t 

@y = iky
exp�i(!t�kr)

4⇡r (1 +R)
�
1 + i

kr

�
= �ky

!

�
1 + i

kr

�
@t 

@z = ikz
exp�i(!t�kr)

4⇡r (1�R)
�
1 + i

kr

�
= ��

c @t 

(12)

As a consequence, on the boundary, the phase angles �x and �y between the space derivatives130

of the velocity potential with respect to x and y and its time derivative are both equal to131

arctan 1
kr . And eqs. (6) reduce to:132

Dx = Dy = <(�) + =(�)
kr

In this case, the imaginary part of the admittance contributes to the scattering coe�cient,133

and this contribution is inversely proportional to kr. And according to the last line of eq.134

(12), the usual relation between the complex reflection coe�cient and the admittance is135

modified into:136

R =
cos ✓

�
1 + i

kr

�
� �

cos ✓
�
1 + i

kr

�
+ �

=

⇥
cos2 ✓

�
1 + 1

k2r2

�
� |�|2

⇤
� 2i cos ✓

⇥
=� + <�

kr

⇤

cos2 ✓
�
1 + 1

k2r2

�
+ 2 cos ✓

�
<� + =�

kr

�
+ |�|2

Note that this expression is equivalent to introducing a complex angle of incidence ✓.137

C. Curved boundary138

In the case of a curved boundary, the real and virtual sources are not located at the139

same distance from the boundary (Fig. 4). As a consequence, eqs. (10) and (11) for the140

partial time and spaces derivative of the velocity potential are still valid in the vicinity141

of the boundary, provided that x, y and z are now considered as local coordinates at the142
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boundary, the two first ones being parallel to the boundary and the z one perpendicular143

to it. However, they do not simplify into eq. (12) at the boundary, even though kx = k0
x,144

ky = k0
y, and k0

z = �kz, because r0 6= r.145

FIG. 4. Reflection on curved boundary. Left: plane wave impinging; right: source at finite

distance. S is real source, and S’ virtual image source.

On the boundary, we now obtain from eqs. (10) and (11):146

@x = �kx
!

✓
1 + i

exp ikr
kr2

+R exp ikr0
kr02

exp ikr
r +R exp ikr0

r0

◆
@t 

@y = �ky
!

✓
1 + i

exp ikr
kr2

+R exp ikr0
kr02

exp ikr
r +R exp ikr0

r0

◆
@t 

@z = �kz
!

✓h
exp ikr

r �R exp ikr0
r0

i
+i

h
exp ikr
kr2

�R exp ikr0
kr02

i

exp ikr
r +R exp ikr0

r0

◆
@t = ��

c @t 

where147

h
exp ikr
kr2 +R exp ikr0

kr02

i

⇥
exp ikr

r +R exp ikr0

r0

⇤ =

⇥
1

kr2 +
R0

kr02

⇤
⇥
1
r +

R0

r0

⇤ =
1

k

1
r3 +

�
1
r +

1
r0

� <(R0)
rr0 + |R0|2

r03 � i
�
1
r �

1
r0

� =(R0)
rr0

1
r2 +

2<(R0)
rr0 + |R0|2

r02

13
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with148

R0 = R exp ik(r0 � r) =
r0
⇥
cos ✓

�
1 + i

kr

�
� �

⇤

r
⇥
cos ✓

�
1 + i

kr0

�
+ �

⇤

=
r0
⇥
cos2 ✓

�
1 + 1

k2rr0

�
+ cos ✓=�

k

�
1
r �

1
r0

�
� |�|2

⇤

r
⇥
cos2 ✓

�
1 + 1

k2r02

�
+ 2 cos ✓

�
<� + =�

kr0

�
+ |�|2

⇤

+ i
r0 cos ✓

⇥
cos ✓
k

�
1
r �

1
r0

�
� 2=� + <�

k

�
1
r +

1
r0

�⇤

r
⇥
cos2 ✓

�
1 + 1

k2r02

�
+ 2 cos ✓

�
<� + =�

kr0

�
+ |�|2

⇤ (13)

We then obtain:149

tan�x = tan�y =
1

k

1
r3 +

�
1
r +

1
r0

� <(R0)
rr0 + |R0|2

r03

1
r2 +

2<(R0)
rr0 + |R0|2

r02 +
�
1
r �

1
r0

� =(R0)
krr0

(14)

As a consequence, the phase angles �x and �y between the space derivatives of the velocity150

potential with respect to x and y and its time derivative are position dependent - and depend151

on the local angle of incidence ✓ - through the modified reflection coe�cient R0. No simple152

equation subsists for eqs. (6) to reduce to.153

Note that, in the case of a plane wave incident on a curved boundary (left pane of Fig.154

4), recalculating eqs. (13) and (14) gives the simpler formulas:155

R0 =
r0 [cos ✓ � �]

cos ✓
�
1 + i

kr0

�
+ �

= r0
⇥
cos2 ✓ � cos ✓=�

kr0 � |�|2
⇤
� i cos ✓

⇥
cos ✓
kr0 + 2=� � <�

kr0

⇤

cos2 ✓
�
1 + 1

k2r02

�
+ 2 cos ✓

�
<� + =�

kr0

�
+ |�|2

tan�x = tan�y =
1

kr02
<(R0) + |R0|2

r0

1 + 2<(R0)
r0 + |R0|2

r02 � =(R0)
kr02

VI. DISCUSSION156

A. Absorption coe�cient157

The form for the absorption coe�cient given by eq. (5) does not reduce to the form158

given by Morse and Ingard (Morse and Ingard, 1968, p. 580) and introduced in acoustics159

14
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by Paris (Paris, 1927). However, but for a constant multiplicative factor, it is similar to160

an expression given by Bosquet (Bosquet, 1967). As Bosquet further explains, the form161

taken by the absorption coe�cient strongly depends on the weighting function, that is, the162

statistics one chooses for computing the mean absorption coe�cient. In the present case,163

the obvious choice is the so-called star-type statistics introduced by London (London, 1950),164

that is, taking the mean value of the equation Etz = ↵Ett:165

Z ⇡
2

0

Etz sin ✓d✓ = ↵⇤
Z ⇡

2

0

Ett sin ✓d✓ (15)

Compared to the more usual bar-type statistics (Bosquet, 1967; London, 1950), the star-type166

statistics does not include the factor cos ✓; but there is no need to introduce this factor as167

Etz already contains it, since it is the normal flux into the wall. Therefore is the star-type168

statistics the obvious choice. Assuming as usual an isotropic distribution of wave directions,169

the term |@t |2 is then constant for all wave directions in the first line of eq. (3) and in eq.170

(4). The left hand side of eq. (15) simply reduces to the mean value of sin ✓; and the right171

hand side also includes the mean value of sin3 ✓. Therefore, one obtains:172

↵⇤ =
2<(�)

1 + 2
3 + |�|2

(16)

which is the value of ↵(✓) taken for ✓ = 55o, an angle that has repeatedly appeared since173

the 1950s as the incidence angle that represents the mean absorption (Bosquet, 1967; Guig-174

nouard, 1991; Vogel, 1956). Indeed, sin2 55o = 0.67 ⇡ 2
3 .175

Simple calculation shows that the absorption coe�cients given by eq. (5) and (16) take176

values between 0 and a maximum reached when <(�) =
p
1 + sin2 ✓ + =2(�) and <(�) =177

q
1 + 2

3 + =2(�) respectively. This maximum is respectively equal to 1p
1+sin2 ✓+=2(�)

and178
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1p
1+ 2

3+=2(�)
, that is, reaches its absolute maximum for =(�) = 0 with value 1p

1+sin2 ✓
and179

1p
1+ 2

3

⇡ 0.775 respectively. Both absolute maxima are therefore smaller than 1, except at180

normal incidence (✓ = 0) for the first one.181

Last but not least, integrating eq. (16) on octave or third octave energy bands leads to182

the usual definition of band related absorption coe�cients.183

B. Scattering coe�cients184

The scattering coe�cients given by eq. (6) are independent of the incidence angle ✓,185

except through the reflection coe�cient in the expression of tan�x and tan�y for curved186

boundaries. However, the real part of the wall admittance contributes to the scattering187

coe�cients. In other words, absorption on the wall induces scattering. This is a novel188

result.189

Also novel is the observation that scattering coe�cients are not bounded: they can take190

any value between �1 and +1, as is easily seen from eq. (6).191

Traditionally, scattering is considered as the result of two mechanisms (Embrechts, 2002):192

finite dimensions of reflecting surfaces; and roughness of the reflecting surfaces. There is no193

doubt from Sect. VC that the second term of eq. (6) corresponds to scattering by surface194

roughness, since it is driven by the finite distance from the surface to the image source.195

However, this term subsists for sources located at finite distances from a flat reflecting196

surface (see Sect. VB), as long as its admittance admits an imaginary part. But roughness197

is usually associated with locally varying imaginary parts of the admittance, as can be easily198
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demonstrated with Schroeder di↵users, where the depths of the wells drive this imaginary199

part. In the present case, no locally varying admittance is necessary to induce scattering.200

We therefore suspect that the mechanism described in Sect. V does not correspond201

to traditional scattering, but to a di↵erent e↵ect. Indeed, in the work of Dujourdy et al.202

(Dujourdy et al., 2017, 2019) and Meacham et al. (Meacham et al., 2019), the scattering203

coe�cient induces a decrease of steady-state energy with distance. Although scattering does204

induce a decrease of steady-state energy with distance by redirecting part of it toward the205

source, no redirection is here at stake, just a reduction of the acoustical intensity by friction206

on the walls. In other words, total energy and acoustical intensity can be considered as207

two coupled systems that each follow its own conservation equation with some exchange208

between the two systems. As is well known from such coupled systems, the less damped209

system drives the energy decay with time, which precisely is what is obtained in Fig. 1.210

As a consequence, the scattering coe�cient D is ill-named. A better designation would211

be intensity-friction coe�cient, or simply friction coe�cient. For the time being, we stick212

to usage and keep the designation ”scattering coe�cient”.213

Note that, as for the absorption coe�cient, integrating eq. (6) on octave or third octave214

energy bands leads to band related scattering - or friction - coe�cients.215

C. Admittance, impedance, and acoustic resistance216

From the expression of the absorption and scattering coe�cients (eqs. 5 and 6), it becomes217

possible to express the specific acoustic admittance in the case of flat walls, which is the case218
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of Fig. 1. From this expression, the specific acoustic impedance and the acoustic resistance219

of the wall can also be computed.220

Table I presents the value of the octave-band absorption and scattering coe�cients of221

the hallway of Fig. 1, derived from the figure itself by taking the centre of the vertical222

green patches. There is no green patch in Fig. 1 for the 125 Hz octave band, but the two223

stripes are tangent to each other at the point used in Table I. Note that, according to eq.224

(6), the real part of the specific acoustic admittance is equal to the scattering coe�cient225

(plane walls). The imaginary part is obtained from eq. (5) which gives valid values for all226

octave bands. Two possibilities exist here: either considering a di↵use sound field, and use227

the average absorption coe�cient of eq. (16); or considering that the sound field remains228

parallel to the walls, and use eq. (5) with sin ✓ = 0. The latter case gave more consistent229

results.230

The specific acoustic impedance is then computed as the inverse of the specific acoustic231

admittance, and multiplying its real part by the characteristic impedance of air ⇢0c = 410232

Ns/m3 approximates the acoustic resistance of the wall - also in Ns/m3. No attempt has233

been made to compare the obtained values to typical walls, given that they are made of234

particle boards and gyps boards, with a hard plastic floor. Indeed, quick evaluation of235

the resonances of the walls by knocking on them revealed a complex structure with many236

resonances spread over all the octave bands of interest, rendering inconsistent the parsing237

of the measured impedance into resonances.238
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TABLE I. Admittance, impedance and acoustic resistance of the walls of the hallway of Fig. 1.

octave band 63Hz 125Hz 250Hz 500Hz 1kHz 2kHz 4kHz 8kHz

absorption coe↵. 0.025 0.115 0.1 0.095 0.09 0.12 0.14 0.13

scattering coe↵. 0.6 0.125 0.335 0.355 0.22 0.135 0.145 0.23

<(�) 0.6 0.125 0.335 0.355 0.22 0.135 0.145 0.23

=(�) 6.83 1.08 2.036 2.52 1.96 1.11 1.02 1.58

<(⇣) 0.013 0.106 0.059 0.055 0.057 0.108 0.135 0.091

=(⇣) -0.15 -0.92 -0.41 -0.39 -0.50 -0.89 -0.96 -0.62

resistance (Ns/m
3
) 5.23 43.7 24.1 22.5 23.2 44.3 55.5 37.1

VII. CONCLUSION239

Starting with the precedent papers of Dujourdy et al. (Dujourdy et al., 2017, 2019)240

that have shown that integrating the stress-energy tensor in a disproportionate enclosure241

and taking into account the boundary conditions leads to ”loss terms” that correspond to242

absorption and scattering, we expressed the elements of the stress-energy tensor with the243

help of the wall admittance relation between normal derivative and time derivative of the244

velocity potential on the wall.245

As expected, the absorption coe�cients are proportional to the real part of the wall246

admittance. However, they also depend on the angle of incidence of the wave, leading to an247

expression of the absorption coe�cient eq. (16) which has been signaled in the literature,248
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for example by Bosquet (Bosquet, 1967), yet is not very usual; and to scattering coe�cients249

additively involving the real and imaginary parts of the wall admittance, as seen in eq.250

(6), proving the absorptive nature of the scattering coe�cient in the stress-energy tensor251

formalism.252

In the case of plane boundaries, calculations can be extended to evaluate the mean253

impedance of the walls. An example is given for a long hallway.254
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