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ABSTRACT

Isolating the desired speaker’s voice amidst multiple
speakers in a noisy acoustic context is a challenging task. Per-
sonalized speech enhancement (PSE) endeavours to achieve
this by leveraging prior knowledge of the speaker’s voice.
Recent research efforts have yielded promising PSE mod-
els, albeit often accompanied by computationally intensive
architectures, unsuitable for resource-constrained embedded
devices. In this paper, we introduce a novel method to per-
sonalize a lightweight dual-stage Speech Enhancement (SE)
model and implement it within DeepFilterNet2, a SE model
renowned for its state-of-the-art performance. We seek an
optimal integration of speaker information within the model,
exploring different positions for the integration of the speaker
embeddings within the dual-stage enhancement architec-
ture. We also investigate a tailored training strategy when
adapting DeepFilterNet2 to a PSE task. We show that our
personalization method greatly improves the performances
of DeepFilterNet2 while preserving minimal computational
overhead.

Index Terms— Target speech extraction, speech en-
hancement, real-time.

1. INTRODUCTION

Personalized speech enhancement (PSE) aims to extract the
voice of a speaker with prior information on their voice. Such
systems become very interesting when it comes to making a
call in a crowded environment, working from home or even
enhancing the voice of hearing aid users.

Over the years, deep neural network (DNN) based speech
enhancement frameworks have emerged and achieved supe-
rior results, even in particularly noisy environments. How-
ever, such architectures usually perform poorly in an envi-
ronment where interfering voices overlap with the voice of
interest. PSE is therefore well suited for this task, as it ben-
efits from prior information on the target speaker. This in-
formation is usually extracted from a speaker-specific enroll-
ment clip using an encoder model. Then, it is fed to a down-
stream speech enhancement model and used as a cue to iden-
tify the target voice in the noisy content. These two models
can either be trained jointly [1, 2, 3, 4] or separately [5, 6, 7].
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Frameworks like VoiceFilter [5], SpEx [1], SpeakerBeam [8]
or pPercepNet [6] paved the way for the PSE task showing its
superiority to standard SE, especially with interfering voices.

Recently, the multi stage approach has been introduced to
PSE after showing great results in speech enhancement [9].
The task is thus no longer performed as one task, but it is di-
vided into several sub tasks instead. Ju, Yukai, et al. showed
the benefits of the multistage approach in PSE by introduc-
ing the TEA-PSE [10] composed of a sub network called the
MAG-Net, that estimates the clean magnitude, and another,
the COM-Net, that estimates the clean complex spectrogram.

Although the multistage approach has led to smaller and
more effective architectures in standard SE, such as GaG-
Net [11] or DeepFilterNet2 [12], recent dual-stage models in
PSE tend to be much larger. Many studies have worked on
lighter PSE models that can be used in real-time on embed-
ded devices [13, 14, 15]. However, the approach of adapting
a lightweight dual-stage SE framework to PSE has not been
considered yet, despite being critical for PSE on embedded
devices, where system complexity must be controlled.

In this work, we propose a method to adapt a dual stage
state-of-the-art SE model to the PSE task. We apply this
method to DeepFilterNet2, a lightweight dual-stage frame-
work renowned for its performance and its compact archi-
tecture. We seek an optimal integration of speaker informa-
tion within the model, by exploring different positions for the
integration of the speaker embeddings within the dual-stage
enhancement architecture. We demonstrate that our person-
alization approach significantly enhances the performance of
DeepFilterNet2! while maintaining a negligible increase in
computational resource utilization.

2. PROPOSED METHOD

2.1. Speaker Encoder: ECAPA-TDNN

The speaker encoder is used to encode the acoustic informa-
tion of the target speaker into an embedding. Given an ob-
servation s, the speaker encoder transforms it into a vector
z. € RP, where D is the dimension of the latent space of
the embedding. This process is summarized as z. = E(Zops)
where F corresponds to the speaker encoder, and x. to the

! Audio demo available at: http://pdeepfilternet2.github.io/



embedding. In this work, we use the ECAPA-TDNN [16]
as the speaker encoder. This framework achieves state-of-
the-art results in speaker recognition and is widely used in
PSE. Greatly inspired by the X-vector [17], it consists of Time
Delay Neural Network (TDNN) layers followed by an atten-
tion pooling layer. In our case, the encoder is trained before
the enhancement network training, and its weights are frozen
so that they remain unchanged during the training of the en-
hancement model.

2.2. Enhancement Network: DeepFilterNet2
2.2.1. DeepFilterNet2

DeepFilterNet2 [12] is a very light framework that achieves
state-of-the-art results in speech enhancement. Based on a U-
Net type of architecture, this framework is composed of two
separated blocks. The first block performs a coarse estima-
tion using Equivalent Rectangular Bandwidth (ERB) features
as input, and the second block performs a finer estimation us-
ing complex domain spectrograms and Deep Filtering (DF).
The latter is applied to the output of the coarse estimation,
thus instantiating the dual-stage framework. In this work, we
mainly focus on the encoder, which can be summarised as
follows:

Xenc(k) = Fenc(Xerb(k7b)7de(k7fdf)) (1)

where X, is the ERB feature, X4 the complex feature
and F,,. the encoder of DeepFilterNet2. Then, the first stage
estimates only the speech envelope and the second stage per-
forms Deep Filtering on the output of stage 1. The filter co-
efficients are generated from the lower part of the complex
spectrogram and fgr = 5kH .

2.2.2. Personalized model: pDeepFilterNet2

We propose pDeepFilterNet2, the personalized version of
DeepFilterNet2 [12]. The personalization of this framework
is done by introducing the embedding of the pre-trained
ECAPA-TDNN into the speech enhancement model. We thus
investigate several locations to add the embedding. As most
of the feature extraction and analysis occurs within the en-
coder, we mainly focus on the encoder. More precisely, we
propose two architectures: the unified encoder and the dual
encoder (see Fig. 1).

Unified encoder. Our first intuition is to simply concatenate
the embedding where the two branches of the encoder are
joined, as shown on the top schematics of Fig. 1. This is a
straightforward approach that allows the speaker information
to be used by both branches while minimizing the computa-
tional cost. The encoder can thus be modelled as follows.

Xenc(k) - Fenc(Xerb(ka b)» de(kv fdf)a xe) (2)
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Fig. 1: Personalized DeepFilterNet2 with unified encoder
(top) - Personalized DeepFilterNet2 with dual encoder (bot-
tom) - E represents the embedding and C is the concatenation
operation.

where x. corresponds to the embedding. However, this
approach does not allow us to understand what branch bene-
fits the most from the embedding. Therefore, we also propose
a dual encoder version to better leverage the embeddings.
Dual encoder. On the bottom schematics of Fig. 1, we pro-
pose the dual encoder version of the personalized DeepFilter-
Net2, we call it pDeepFilterNet2” . Splitting the encoder into
two independent branches allows us to get a fair comparison
between adding the embeddings in the ERB branch, or in the
DF branch. That way, we can understand how the embedding
is used and where its addition is the most effective. The dual
encoder is modelled as follows.

XEerB(k) = FErB_enc(Xers(k, D), xe) 3)

XDF(]C) = FDF_enc(de(kafdf)7w€) (4)

Thus, this architecture allows us to test three possibili-
ties: adding the embedding in both branches, in the ERB
branch only, and in the DF branch only. These three mod-
els are respectively named as follows: pDeepFilterNetlgth,
pDeepFilterNet?, and pDeepFilterNetfgc.

erb



2.2.3. Loss function

The training objective remains almost the same as the one
used for the training of DeepFilterNet2. It consists of a spec-
tral loss Lspec, a multi-resolution loss £j/r and an over-
suppression loss Log [18]. Lr is computed for the 4 fol-
lowing windows {5,10,20,40} ms. The overall loss can thus
be summarized as follows.

L= )\specﬁspec + )\MREMR + )\OS£OS (5)

where Aspec, Aarr and Apg correspond to loss weights
which are found during training.

3. EXPERIMENTS

3.1. Speaker Encoder training

In this work, we do not focus on the training of the speaker
encoder. Therefore we simply use the pretrained ECAPA-
TDNN? and its weights are frozen during the training of
pDeepFilterNet2. The pretrained version was trained on Vox-
Celeb2 and achieved 0.96% EER on the VoxCelebl test set.
The dimension of the embeddings is set to D = 192.

3.2. pDeepFilterNet training
3.2.1. Dataset

For training set generation, we used the DNS5 personalized
dataset [19] for target speech and noise, and we used Mozilla
Common Voice (MCV) [20] for interfering speech. The
DNSS5 personalized dataset contains 3230 speakers with a
total duration of 750 hours. However, when looking at some
samples of clean speech in the dataset, we found out that
some recordings contained several speakers. This problem
was mentioned in [21] and we used the same method to re-
move unwanted speakers. We reserved VCTK data for test
set generation resulting in 2448 target speakers in the training
set. We then completed our training with the MCV corpus for
interfering speech. We used 261 hours with 7069 different
voices. We generated 950 hours in total and the excerpts were
split into three categories: farget+noise, target+interfering
and voice+interfering+noise. The distribution of those ex-
cerpts in the dataset is respectively 20%, 30% and 50%. The
SNR and SIR are drawn from a Gaussian distribution in [-
5; 35] dB and [-5, 25] dB respectively. Finally, we reserve
around 50 hours of the generated dataset for validation.

3.2.2. Training setup

The training procedure is very similar to the one of Deep-
FilterNet2. The model was trained with the Adam optimizer
with the same learning rate and weight decay as in [12]. We

Zhttps://github.com/TaoRuijie/ECAPA-TDNN

also used batch scheduling from 8 to 128 to speed up the con-
vergence. We perform early stopping on the validation loss
with a patience of 15 epochs. The loss factors are set like
in the original paper: Agpec = 1e3 and Ay = 5e2, and
Aos = He2. We also keep the same computational parame-
ters by choosing 20-ms windows, an overlap of 50%, and a
lookahead of 2 frames resulting in a 40-ms lookahead. Fi-
nally, we also take 32 ERB bands, fqr = 5 kHz, and N = 5
for the Deep Filtering order.

4. RESULTS

We evaluate our models on two test sets. The first one is syn-
thetically generated and the second one is the DNSS5 blind test
set. To generate our test set, we use the VCTK corpus for both
target speech and interfering speech, and DNS5 challenge for
the additive noise. We equally generate target+noise, tar-
get+interfering and voice+interfering+noise excerpts. The
SNR and the SIR are uniformly drawn in [-5, 35] dB and [-5,
25] dB respectively. In total, we generate 3600 files of 5 s.

4.1. Synthetic test set

The results on the synthetic test set are featured in table 1. We
thus compare the four personalization methods mentioned in
2.2.2 to the non-personalized version of DeepFilterNet2 and
we also compare the personalized models together. We use
the same metrics as the one used in [12] which are the PESQ,
the STOI and the composite metric.

Comparison with DeepFilterNet2. We observe that all per-
sonalized models perform better than DeepFilterNet2. This
improvement can especially be seen with the PESQ and the
CSIG metrics. This underlines the added value of the embed-
ding to recover the target voice. This can also be observed
on Fig. 2 where we compare DeepFilterNet2 and pDeepFil-
terNet2 using the PESQ on subsets of the test set. We see
that on the pn subset, both models achieve the same PESQ.
However, on ps and psn subsets, the personalized model per-
forms much better. This result was expected, and showcases
the benefit of the embedding in the presence of an interfering
speaker.

Embedding integration. We also study the position of the
embedding integration. Among all personalized models, the
unified encoder model is the best one. This suggests that
concatenating the speaker embedding with the features of the
two branches leads to a better use of the embedding in the
network. However, even though pDeepFilterNetZ,?oth con-
tains the embedding information in both branches, it does
not lead to the same performance. This underlines the im-
portance of the concatenation of the three features together
compared to independently. Comparing pDeepFilterNet2?,
and pDeepFilterN et2£c allows one to understand the weight of
each branch in the personalization process. We thus observe
that concatenating the embedding in the DF branch only or in



Table 1: Results on generated test set. For evaluation scores, higher is better. Bold means best results.

Model PESQ STOI CSIG CBAK COVL | Params (M) MACs(G) RTF
Noisy 1.81 0.75 299 2.45 2.37 - - -

DeepFilterNet2 2.10  0.75  3.11 2.66 2.58 2.31 0.33 0.03
pDeepFilterNet2 2.36 078 3.66 2.90 3.01 2.31 0.33 0.03
pDeepFilterNet2) 231 0.78  3.60 2.83 2.95 2.71 0.40 0.03
pDeepFilterNet2? 2.21 0.77  3.51 2.76 2.85 2.71 0.40 0.03
pDeepFilterNetZ(?f 232 0.79 3.58 2.85 2.94 2.71 0.40 0.03

Table 2: PDNSMOS P.835 results on the DNS5 blind test set.
Higher is better. Bold means better than noisy. Underline
means best results.

Model Track 1: Headset Track 2: Speakerphone
SIG BAK OVRL | SIG BAK OVRL
Noisy 4.15 237 271 | 4.05 2.16 2.50
Proposed 3.69 3.51 3.04 | 3.63 3.38 2.94
TEA-PSE3.0 4.11 4.05 3.65 | 3.99 3.95 3.49

both branches leads to almost identical results, while concate-
nating it in the ERB branch only leads to lower results. We
can guess that the embedding allow the DF branch to focus
on removing everything but the target voice. In fact, isolating
two voices is a difficult task which may explain why the DF
branch has more impact than the ERB branch as it is used for
fine estimation.

Computational complexity. We finally focus on the im-
pact of personalization on the computational complexity of
DeepFilterNet2. We compare the number of parameters, the
multiply-accumulate operations (MAC) and the real-time fac-
tor (RTF) computed on a Intel® Core™ i7-10870H CPU @
2.20GHz x 16. We can see that simply concatenating the em-
bedding within the unified encoder leads to minimal impact.
Indeed, the MAC, the RTF and the number of parameters re-
main unchanged. Nonetheless, the three other personalization
methods change the complexity of the framework. This was
expected as deunifiying the encoder leads to an additional
GRU that increases the complexity. In the end, even though
the dual encoder architectures are slightly larger than the
unified encoder architecture, the complexity is still very low
compared to most of the recent PSE models.

4.2. Blind test set

We compare our best model on the generated test set, pDeep-
FilterNet2, to a larger model, the TEA-PSE 3.0 [22]. We com-
pare them on the DNSS5 blind test set using the DNSMOS
[23], and we also compare their computational complexity.
We can first see that for both tracks, pDeepFilterNet2 is not as
good as the TEA-PSE 3.0. Yet, the gap between both models
is less important on Track 2 which corresponds to speaker-
phone excerpts. This could be explained by the nature of our

[0 pDeepFilterNet2
[E00 DeepFilterNet2

Ll T
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Fig. 2: Box plot featuring the PESQ for DeepFilterNet2 and
pDeepFilterNet2 (unified encoder version) for different noise
types: primary speaker + noise (pn), primary speaker + sec-
ondary speaker (ps), primary speaker + secondary speaker +
noise (psn).

training set as it is closer to the speakerphone track. Notably,
the TEA-PSE 3.0 has 22.24 million trainable parameters and
the number of MAC is 19.66G. Our model is therefore ten
times smaller and the number of MAC fifty times lower than
TEA-PSE 3.0. Such a light model could be implemented on
low-resource devices which is not the case for bigger models
like the TEA-PSE 3.0.

5. CONCLUSION & FUTURE WORK

In this work, we proposed a robust method to personalize a
lightweight state-of-the-art SE model. We explored the dif-
ferent possibilities to integrate the embedding into this dual-
stage framework and we determined the best implementation.
We showed that our personalization strategy greatly improves
the performances in the presence of interfering speakers while
preserving the low computational complexity of DeepFilter-
Net2 making it a great candidate for real-time PSE on em-
bedded devices. Future work will look into improving the
performances of our model to make it competitive with state-
of-the-art SE metrics while further optimizing its complexity.
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