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Linear optical quantum circuits with pho-
ton number resolving (PNR) detectors are
used for both Gaussian Boson Sampling (GBS)
and for the preparation of non-Gaussian states
such as Gottesman-Kitaev-Preskill (GKP), cat
and NOON states. They are crucial in many
schemes of quantum computing and quan-
tum metrology. Classically optimizing cir-
cuits with PNR detectors is challenging due
to their exponentially large Hilbert space, and
quadratically more challenging in the pres-
ence of decoherence as state vectors are re-
placed by density matrices. To tackle this
problem, we introduce a family of algorithms
that calculate detection probabilities, condi-
tional states (as well as their gradients with
respect to circuit parametrizations) with a
complexity that is comparable to the noise-
less case. As a consequence we can simulate
and optimize circuits with twice the number
of modes as we could before, using the same
resources. More precisely, for an M-mode
noisy circuit with detected modes D and un-
detected modes U , the complexity of our al-
gorithm is O(M2∏

i∈U C
2
i

∏
i∈D Ci), rather than

O(M2∏
i∈D∪U C

2
i ), where Ci is the Fock cutoff

of mode i. As a particular case, our approach
offers a full quadratic speedup for calculat-
ing detection probabilities, as in that case all
modes are detected. Finally, these algorithms
are implemented and ready to use in the open-
source photonic optimization library MrMustard
[29].

1 Introduction
Linear optical quantum circuits with photon number
resolving (PNR) detectors are studied because of two
main reasons. First of all, they are used to perform
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(a) Gaussian Boson Sampling

(b) Conditional non-Gaussian state generation
(e.g. GKP, cat, NOON states, etc.)

Figure 1: Examples of linear optical quantum circuits with
PNR detectors. Vacuum states are squeezed and sent
through an interferometer. A subset of the modes is mea-
sured with PNR detectors.

Gaussian Boson Sampling (GBS). In GBS, squeezed
states are sent through an interferometer and subse-
quently detected by PNR detectors. An example of
such a circuit is depicted in Fig. 1(a).

GBS is a leading approach in pursuing quantum
advantage [14, 17]. Moreover, several quantum algo-
rithms based on GBS have been introduced [1–3, 6–
8, 15, 16, 24], some of which rely on the ability to
train the circuit parameters.

The second (and arguably more useful) applica-
tion for circuits with PNR detectors is the gener-
ation of conditional non-Gaussian states. Exam-
ples of such states include Gottesman-Kitaev-Preskill
(GKP) states, cat states, bosonic-code states, weak
cubic phase states, ON states and NOON states
[11, 21, 22, 25–28, 30]. These states are used in a wide
range of applications, such as generating bosonic er-
ror correction codes, providing resource states for the
implementation of non-Gaussian gates and quantum
metrology. We emphasize the particular interest of
GKP states [13] as they are one of the leading candi-
dates for qubits in optical quantum computation [5].
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Fig. 1(b) depicts a circuit that can be used to gen-
erate non-Gaussian states. Depending on the PNR
detection pattern, a certain state is generated. The
probability distribution of all conditional states is gov-
erned by the circuit parameters. By training these
parameters, we can increase the probability of gener-
ating certain non-Gaussian states of interest and their
quality.

In this work we address these simulation and op-
timization tasks using the framework that we intro-
duced in our previous work [18, 31]. This framework
allows one to recursively calculate elements of the
matrix representation of Gaussian operators in Fock
space. Here, it provides us with the matrix elements
that define the detection probabilities or the ampli-
tudes of conditional states. Moreover, we can recur-
sively calculate the gradients of these elements with
respect to a circuit parametrization, which allows us
to find the parameters that minimize a certain cost
function using gradient descent.

In realistic settings, decoherence effects such as
photon loss affect the output of quantum circuits.
Consequently, we need to be able to include these ef-
fects into our simulations if we want them to be faith-
ful and useful. This motivates us to carry out sim-
ulations using density matrices. Normally, swapping
state vectors for density matrices would make tasks
quadratically more demanding in terms of both mem-
ory and runtime. We will show that we can almost
completely get around this quadratic increase by in-
troducing an algorithm that allows us to apply the re-
currence relations fewer times while still including the
amplitudes of interest. The resulting algorithm works
for circuits with in principle an arbitrary number of
PNR detectors. We will show that the complexity of
our algorithm is comparable to the complexity of the
lossless case, as long as the number of detected modes
is a large fraction of the total number of modes.

The paper is structured as follows. In Section 2
we recall our simulation and optimization framework
[18, 31] and apply it to lossless circuits with PNR
detectors (i.e. using state vectors). In Section 3 we
extend the framework to density matrices. We do
this for GBS circuits (such as Fig. 1(a)) in Section 3.1
and for conditional state generator circuits (such as
Fig. 1(b)) in Section 3.2. In Section 4 we discuss
the complexity of our algorithms. Section 4.1 gives
numerical results for the memory requirements and
speed. Section 4.2 gives a comparison with the state-
of-the-art classical GBS simulation method.

Note that the construction of good ansätze for GKP
generating circuits, as well as the construction of as-
sociated cost functions and target states is a separate
research question in itself that we do not address in
this manuscript.

2 Circuit optimization framework re-
visited
2.1 Representing Gaussian operators in Fock
space
In Reference [18], it was shown that quantum optical
circuits can be simulated by using a recurrence rela-
tion that calculates elements of the matrix representa-
tion of Gaussian operators (i.e. pure Gaussian states,
mixed Gaussian states, Gaussian unitary transforma-
tions or Gaussian channels) in Fock space. We will
denote such a matrix representation by G and call its
elements the ‘Fock amplitudes’ of a Gaussian opera-
tor.
As we are interested in calculating detection prob-

abilities and possible conditional states here, we will
consider G to be the matrix representation of the
multi-mode Gaussian state before the detectors. In
other words, G is either a state vector or density ma-
trix in Fock space. We represent G as a multidimen-
sional array and refer to its total number of dimen-
sions (i.e. indices) as D. Hence, a general Fock ampli-
tude can be written as Gk, where k is an integer vector
of length D. We will refer to k as a ‘Fock index’ of G.
If G is a state vector, we use the convention that every
element of k corresponds to an optical mode. If G is
a density matrix, every pair of consecutive elements
in k corresponds to an optical mode. For example,
k = [m,n, p, q] is a general Fock index for a density
matrix on 2 modes, where the indicesm,n and p, q re-
spectively correspond with the first and second mode.
The expression for the Fock amplitudes using Dirac
notation is Gk = Gmnpq = ⟨m, p| G |n, q⟩. For a general
number of modes M , it follows that:

D =
{
M, if G is a state vector,

2M, if G is a density matrix.
(1)

Fock amplitudes can now be calculated using the
following recurrence relation:

Gk+1i
= 1√

ki + 1

(
Gkbi +

D∑
l=1

√
kl Gk−1l

Ail

)
, (2)

where 1i is a vector of all zeroes except for a single 1
in the ith entry. Note that Fock indices that contain
at least one negative value correspond to a zero Fock
amplitude, as negative photon numbers are nonphys-
ical. Hence, the sum over l may contain less than D
terms.

The matrix A and vector b in Eq. (2) are complex-
valued parameters (of size D×D and D respectively)
that are easily acquired for a specific circuit as they
derive from the parameters of the Gaussian represen-
tation. If G is a density matrix ρ we recall the results
derived in Reference [31] that relate Aρ and bρ to its
complex (i.e. in the a/a† basis) covariance matrix σ

Accepted in Quantum 2023-08-01, click title to verify. Published under CC-BY 4.0. 2



and displacement vector µ:

Aρ = PMσ−σ
−1
+ , (3)

bρ =
(
σ−1

+ µ
)∗ = PMσ

−1
+ µ, (4)

where σ± = σ ± 1
2 12M and PM =

[
0M 1M

1M 0M

]
.

If G is a state vector ψ, then Aψ and bψ can be
obtained from:

Aρ = A∗
ψ ⊕Aψ, (5)

bρ = b∗
ψ ⊕ bψ. (6)

Let us now define the ‘weight’ of a Fock index k as:

w =
D∑

i=1
ki . (7)

We see that Eq. (2) allows us to write D Fock am-
plitudes of weight w + 1 as linear combinations of a
single Fock amplitude of weight w and D Fock am-
plitudes of weight w − 1. In order to refer to these
different roles, we call ‘read’ the group of amplitudes
of weight w − 1 and ‘write’ the group of amplitudes
of weight w + 1 (to refer to the fact that D ampli-
tudes need to be read from memory so that D new
ones can be written to memory), and we refer to the
single amplitude of weight w as the ‘pivot’. Fig. 2
gives a schematic representation of Eq. (2) for the
case where G is 1-dimensional (i.e. for a state vector
on one mode) and 2-dimensional (i.e. for a state vec-
tor on two modes or a density matrix on one mode).
In this figure, the amplitudes marked in blue (write)
are written as linear combinations of the orange ones
(read+pivot). In general, a Fock index k marks a po-
sition in a D-dimensional ‘Fock lattice’. Eq. (2) can
thus be interpreted as a relation between 2D+ 1 am-
plitudes that we can draw as a cross (or hypercross for
higher dimensions). We can repeatedly reposition the
hypercross in G to calculate new Fock amplitudes un-
der the condition that we already computed the read
and pivot amplitudes.

2.2 State vector simulations
Let us now consider how we can apply the recur-
rence relation (that is, how we can move around the
hypercross) to obtain the probabilities of PNR out-
comes or the amplitudes of conditional states using
the state vector formalism in a noiseless, lossless cir-
cuit. As the number of possible measurement results
n = [n1, n2, ..., nM ] (ni ∈ [0, 1, ...,∞]) is in princi-
ple infinite, we limit ourselves to calculating the most
probable ones such that the required resources for our
simulation remain finite. We will consider the Fock
amplitudes Gk for all k of length M that satisfy the
following boundary conditions:

0 ≤ k < cutoffs . (8)

(a) 1-dimensional G
(i.e. state vector on 1 mode)

(b) 2-dimensional G
(i.e. state vector on 2 modes or density matrix on 1 mode)

Figure 2: Schematic representation of how Eq. (2) can be
used to calculate the Fock amplitudes Gk of a Gaussian state.
Every Fock index k marks a position in the Fock lattice.
Every blue node can be written as a linear combination of
the orange nodes.

Here, cutoffs = [C1, C2, C3, ...] is the set of upper
bounds for the photon numbers in all modes. We as-
sume that they are chosen such that the probability of
detecting Ci or more photons in mode i is negligible.
Note that Fock amplitude G0 (where 0 =

[0, 0, ..., 0]) is the vacuum component of G. If G is
a density matrix ρ, it can be computed as:

ρ0 =
exp

[
− 1

2µ
†σ−1

+ µ
]√

det (σ+)
, (9)

If G is a state vector ψ, ignoring a global phase, it
holds that ψ0 = √ρ0.

Starting from G0, we can calculate all of the ampli-
tudes by applying Eq. (2). We start by placing the
pivot of our hypercross at 0 (for which w = 0) and
write amplitudes for which w = 1. Next, we apply
all pivots for which w = 1 and write amplitudes for
which w = 2. By repeatedly increasing w and ap-
plying all pivots of that weight, we can calculate the
required amplitudes. As the amplitudes we write have
a higher weight than the amplitudes we read, we know
that the right amplitudes are always calculated before
we need to read them.

Fig. 3 shows an intermediate step of this process
for circuits that consist of one and two modes. In this

Accepted in Quantum 2023-08-01, click title to verify. Published under CC-BY 4.0. 3



figure, the cutoff values of all modes are chosen to be
7. Dark grey cells depict amplitudes that have already
been used as pivots. Light grey cells are amplitudes
that have been calculated, but have not yet been used
as pivots. At the end of the process all cells in the
figure will be calculated.

(a) 1 mode

(b) 2 modes

Figure 3: Intermediate step of state vector simulations for
circuits consisting of 1 and 2 modes. Fock amplitudes Gk of
the output state vectors are computed recursively. We start
at G0 and apply pivots in order of increasing weight until
all amplitudes are calculated. At this intermediate step, dark
grey cells have been used as pivots. Light grey cells have been
written and will be used as pivots in the next step. Animated
versions of these figures are included in the Supplementary
Materials.

Note that this strategy to calculate Fock amplitudes
allows for two types of parallelization. First, given a
specific pivot, we can parallelize the calculations of
different elements in the ‘write’ group. Second, since
we order pivots according to increasing weight, we can
also apply pivots of the same weight simultaneously.

2.3 Alternative cutoff conditions
The boundary conditions of Eq. (8) are useful for sim-
ulating circuits for which we know the maximum num-
ber of photons that a PNR detectors can measure.
The cutoff in the undetected modes can be chosen
separately, depending on the required accuracy for
calculating the conditional state. However, the recur-
rence relation also allows one to consider other cutoff
conditions.

A first useful example occurs when we want to place
an upper bound on the total number of photons that

is present in all modes. As the total number opera-
tor n̂ =

∑M
i=1 n̂i commutes with the multi-mode Fock

Hamiltonian [12], such an upper bound defines a cut-
off on the energy levels of the multi-mode Gaussian
state before the detectors. More formally, we can re-
place Eq. (8) by:

0 ≤ w(k) < wmax , (10)

which can be related to an upper bound for the total
number of photons Nmax in the circuit:

wmax =
{
Nmax, if G is a state vector,

2Nmax, if G is a density matrix.
(11)

Note that for Eq. (10) the number of amplitudes
Gk that have the same weight increases binomially
with w. For Eq. (8), this number of amplitudes first
increases with w, after which it reaches a maximum
and decreases. Indeed, once w ≥ min(cutoffs), the
right inequality of Eq. (8) starts to exclude general
Fock indices of weight w. Eventually, when w is raised
all the way to

∑D
i=1(Ci − 1) the number of allowed

indices has decreased back to 1.

Another possible cutoff condition is given by the
total sum of the probabilities of PNR outcomes. After
each iteration (in which we apply all pivots of weight
w), we can evaluate this sum and check whether it is
sufficiently close to 1 to stop the process.

2.4 Circuits without displacement gates
In Reference [31] we showed how to compute the pa-
rametersA, b and G0 that define a Gaussian operator.
More specifically for Gaussian states, we showed how
A, b and G0 can be calculated from the covariance
matrix and means vector. Moreover, it can be shown
that for a state with zero displacement vector we have
b = 0. Note that this applies to the states before the
detectors in Fig. 1 as these circuits do not contain
displacement gates.

In the case that there is no displacement, we can
substitute b = 0 in Eq. (2) such that our recurrence
relation turns into:

Gk+1i
= 1√

ki + 1

D∑
l=1

√
kl Gk−1l

Ail . (12)

We find that the only Fock amplitudes that differ
from zero are the ones which have a Fock index k
with even weight. For state vectors, we can alter the
strategy described in Fig. 3 by only considering pivots
that have odd weight. This leads to the checkered
pattern of Fig. 4, where we still apply pivots in order
of increasing weight. Note that now we now fill the
array twice as fast because we only need to compute
half of the amplitudes.
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(a) 1 mode

(b) 2 modes

Figure 4: Intermediate step of state vector simulations for
circuits that do not contain displacement gates (consisting
of 1 and 2 modes). Fock amplitudes Gk are calculated re-
cursively as in Fig. 3, but now they are zero when

∑
i
ki

is odd. Consequently, pivots (i.e. the central nodes of the
hypercross) do not need to be read. At this intermediate
step, dark grey cells have been used as pivots but only for
placing the cross (their value remains zero), while light grey
cells have been actually written.

2.5 Gradients
In this section, we present how the framework above
allows not only to simulate but also to optimize cir-
cuits. Given a loss function L that depends on the
probabilities of the PNR outcomes (and the condi-
tionally generated states), we need to calculate the
partial derivatives of L with respect to the parame-
ters of the circuit. As explained in Reference [18], the
so-called ‘down-stream gradient’ of L with respect to
the conjugate of a complex circuit parameter ξ can be
computed using the chain rule as follows:

∂L

∂ξ∗ =
∑
k

∂L

∂G∗
k

∂G∗
k

∂ξ∗ + ∂L

∂Gk
∂Gk
∂ξ∗ . (13)

We now consider ξ to be equal to bm or Amn and
note that Eq. (2) does not depend on b∗

m or A∗
mn, such

that:

∂L

∂b∗
m

=
∑
k

∂L

∂G∗
k

∂G∗
k

∂b∗
m

=
∑
k

∂L

∂G∗
k

(
∂Gk
∂bm

)∗

, (14)

∂L

∂A∗
mn

=
∑
k

∂L

∂G∗
k

∂G∗
k

∂A∗
mn

=
∑
k

∂L

∂G∗
k

(
∂Gk
∂Amn

)∗

.

(15)

As the upstream gradient tensor ∂L/∂G∗
k can be

provided to us by an automatic differentiation frame-
work such as TensorFlow or PyTorch, we only have to
compute the local gradients ∂Gk/∂bm and ∂Gk/∂Amn.

From Eq. (2) we now derive:

∂Gk+1i

∂bm
= 1√

ki + 1

(
∂Gk
∂bm

bi + Gkδim +
D∑

l=1

√
kl
∂Gk−1l

∂bm
Ail

)
, (16)

∂Gk+1i

∂Amn
= 1√

ki + 1

(
∂Gk
∂Amn

bi +
D∑

l=1

√
kl

[
∂Gk−1l

∂Amn
Ail + Gk−1l

δimδln

])
, (17)

where δjk is the Kronecker delta function. Since both
Eq. (16) and Eq. (17) are structured in a similar
way as Eq. (2), we can implement all three equa-
tions simultaneously. We do so by taking a single
walk through the Fock lattice, that is, by performing
a single iteration over the Fock indices k. We still dif-
ferentiate between the different types of Fock indices
‘read’ (k − 1l), ‘pivot’ (k) and ‘write’ (k + 1i), but
instead of only manipulating amplitudes Gk, we now
also process their partial derivatives with respect to
bm and Amn. Note that every k now corresponds with
one Fock amplitude Gk, D gradients ∂Gk/∂bm and D2

gradients ∂Gk/∂Amn, such that both the memory and
time usage of an optimization are a factor 1 +D+D2

higher than those of a simulation.

3 Extension to density matrix simula-
tions

3.1 Algorithm for Gaussian Boson Sampling
Consider a circuit of which all M modes are detected
(such as the one in Fig. 1(a)). To capture mixed states
(such as can arise in the presence of photon loss) den-
sity matrices must be used in place of state vectors.
For simplicity, let us assume that the photon num-
ber cutoff in each mode is equal to C. To calculate
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the probabilities of the CM possible PNR detection
patterns, one could start by following the procedure
described in Section 2.2 to calculate all C2M Fock am-
plitudes of the multi-mode state before the detector.
The probability of observing a certain photon number
pattern n = [n1, n2, ..., nM ] at the detectors is then
given by:

p(n) = Gn1n1n2n2...nM nM
. (18)

However, as we are only interested in the CM diago-
nal amplitudes, we can construct a more efficient algo-
rithm that selectively applies the recurrence relation
in the Fock lattice. This way we prevent the calcu-
lation of irrelevant amplitudes as much as possible.
After choosing an adequate set of pivot positions, we
can apply them in order of increasing weight.

3.1.1 Single mode

Let us first consider the case where we have a single
mode. Here the Fock lattice only has two dimensions
(i.e. k = [m,n]) and we can use the hypercross of
Fig. 2(b). For now also consider the case where the
circuit under consideration does not contain displace-
ment gates. As explained in Section 2.4, this implies
that the inner ‘pivot’ node of the hypercross cross does
not need to be read. Fig. 5(a) visualizes how Eq. (12)
can be applied in order to calculate the required di-
agonal amplitudes. We have chosen all pivots of the
type [a+1, a] that satisfy [0, 0] ≤ [a+1, a] < [C1, C1].
Note that we could have equivalently chosen pivots
of the type [a, a+ 1] instead. We apply the pivots in
order of increasing weight, i.e. from the top left to the
bottom right. As these pivots only read amplitudes
that are previously written by other pivots, the total
set of pivots can be said to be ‘self-sufficient’.
Fig. 5(b) shows the case where the circuit under

consideration does contain displacement gates. Now,
we also have to read the value of the pivot node in
order to apply the hypercross. These values (at posi-
tions [a+ 1, a]) can be provided by introducing extra
pivots of the type [a, a]. In their turn, the off-diagonal
pivots provide the amplitude values of the diagonal
pivots. In other words, the total set of the diagonal
and off-diagonal pivots is self-sufficient here.

3.1.2 Two modes

We now consider density matrix simulations of GBS
circuits with two modes, such that Eq. (2) can be rep-
resented by a four dimensional hypercross. However,
we still choose to visualize both the hypercross and G
in two dimensions via the Kronecker product. Below,
we explain in more detail how such a representation is
constructed. The hypercross itself is shown in Fig. 6.
Fig. 7 visualizes how this hypercross can be applied
to get the diagonal Fock amplitudes in the case where
cutoffs = [4, 4].

We write k = [m,n, p, q], where [m,n] and [p, q]
are the indices corresponding to the first and second
mode respectively. Note now that if [p, q] would be
fixed, we are left with a 2D matrix that is only in-
dexed by [m,n], such that it can be visualized in a
similar way as Fig. 5. We now combine all such ma-
trices (for all possible values of p and q) in a block
matrix. This leads to a 2D ‘nested representation’.
If M > 2, we can recursively apply this process for
different index pairs (i.e. constructing block matrices
of block matrices), such that we always end up with
a 2D image. Note that pivots are no longer applied
from top left to bottom right in this representation, as
this would not correspond with the order of increasing
weight.

We have to make sure that amplitudes are written
before they are read. In other words, the total set of
pivots used in Fig. 7 has to be self-sufficient. We can
check that this is true by first considering the piv-
ots of the type [a, a, b, b] and [a + 1, a, b, b] (i.e. the
diagonal cells in Fig. 7 and the cells under those).
This set of pivots is almost self-sufficient: within each
C1 × C1 block that lies on the diagonal of Fig. 7
(i.e. within each block containing amplitudes of the
type [m,n, b, b]), almost all of these pivots get their
required ‘read’ and ‘pivot’ amplitudes from the ‘write’
amplitudes from another pivot in those blocks. The
only amplitudes that are missing to complete the self-
sufficiency are the amplitudes of the type [0, 0, b, b]
(marked as ⋆). These last amplitudes act like ‘seed
amplitudes’ in the diagonal C1×C1 blocks, similar to
how G0 acts as a seed in Fig. 5. These missing am-
plitudes can be obtained from the remaining pivots
outside of the diagonal C1 × C1 blocks: [0, 0, b+1, b]
(marked as ). These last pivots ‘bridge’ the gaps be-
tween different diagonal C1 × C1 blocks by providing
the necessary increments of ki for i ∈ {3, 4, 5, ..., 2M}.

3.1.3 General number of modes

The pivot placement strategy of Figs. 5 and 7 can be
generalized to a larger number of modes. The strategy
for 3 modes is visualized in Appendix A.

Algorithm 1 shows how a GBS circuit with an arbi-
trary number of modes can be simulated in the density
matrix formalism. Lines 1 to 5 are used to apply the
diagonal pivots diag = [a, a, b, b, c, c, ...] in order of in-
creasing weight. Note again that these pivots are also
diagonal in the nested representation, while the order
in which we apply them is not necessarily from top left
to bottom right (see for example the animated version
of Fig. 7 in the Supplementary Materials). In order
to apply the diagonal pivots, a variable S is increased
stepwise, starting from 0. Each time, we apply all di-
agonal pivots that satisfy both a+ b+ c+ ... = S and
the boundary conditions of Eq. (8).

Lines 6 to 10 are used to apply the off-diagonal
pivots diag + 12K−1, where K ∈ {1, 2, ...,M}
(i.e. [a+1, a, b, b, c, c, ...], [a, a, b+1, b, c, c, ...],
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(a) Circuit without displacement gates (b) Circuit with displacement gates

Figure 5: Visualisation of how Eq. (2) can be applied to density matrices in order to calculate the detection probabilities
|Gn1n1 |2 of a single mode circuit. Pivots (dark grey) are applied from top left to bottom right, i.e. in order of increasing
weight. Light grey cells are non-pivot amplitudes that are written. White cells do not have to be written, which improves on
the naive idea of applying pivots in all cells (as in Fig. 3(b)). In Fig. a, the pivots are not read as there Eq. (2) simplifies to
Eq. (12). We chose to upper bound the photon number by 10 in this example. Animated versions of these figures are included
in the Supplementary Materials.

[a, a, b, b, c+1, c, ...], etc.). For K=1, the off-diagonal
pivots lie in the diagonal C1 ×C1 blocks. For K > 1,
the off-diagonal pivots are ‘bridge pivots’ that provide
the ‘source amplitudes’ [0, 0, b, b, c, c, ...]. Note that
because of line 8, the number of off-diagonal pivots
decreases with K (see both Fig. 7 and Appendix A
for reference).

In Appendix B, we show that both the total number
of pivots and the total number of written amplitudes
that appear in Algorithm 1 scale like

∏M
i=1 Ci, which

simplifies to CM if the cutoffs on all modes are equal.

Note that if the local cutoff conditions of Eq. (8)
are replaced by the global cutoff condition of Eq. (10),
then the sum of line 1 runs to Nmax = 1

2wmax instead,
while the cutoff conditions in lines 2, 4 and 8 drop out.
As shown in Appendix B, the scaling of the algorithm
then changes to (wmax)M .

3.1.4 Compact storage of the Fock amplitudes

In Appendix B, we show that all amplitudes that
are written in Algorithm 1 can be parameterized as
diag + offset where diag is a diagonal position in the
Fock lattice and offset is an offset vector that only
comes in a select number of types. This parametriza-
tion helps to store the amplitudes in a unique and
compact manner. However, in the case that we detect
all modes, we are only interested in the

∏M
i=1 Ci diag-

onal amplitudes. The off-diagonal amplitudes do not
need long-term storage in memory. It can be shown
that all off-diagonal amplitudes are included in the

‘read’ group of a pivot exactly once. Thus, we can
remove off-diagonal ’read’ amplitudes from memory
once they have been used. We only have to store a
buffer of off-diagonal amplitudes that correspond with
a select number of weight values. In addition to the
animated versions of Figs. 5, 7 and 11, we also include
animations in the Supplementary Materials that ap-
ply this ‘buffer strategy’.
For a circuit consisting of 4 modes (such as the

one in Fig. 1(a)), Fig. 8 shows how the number of
stored amplitudes evolves as we apply more pivots.
We have chosen the photon number cutoff to be 10
in all modes. In contrast to the strategy without
buffer (blue curve), the buffer strategy (orange curve)
reaches a maximum before the end of the algorithm is
reached. This results from the fact that the number
of pivots that have an equal weight reaches a maxi-
mum at w =

∑M
i=1 Ci when we apply the local bound-

ary conditions of Eq. (8). For reference, Fig. 8 also

shows a horizontal dashed line at
∏M

i=1 Ci = CM =
104. Note that after completing Algorithm 1 using
the buffer strategy all off-diagonal amplitudes are re-
moved, such that the orange curve coincides with the
dashed curve.

3.2 Algorithm for conditional state generation
Let us now consider circuits where all but one mode
are detected, such as the one of Fig. 1(b). Our results
can readily be generalized to an arbitrary number of
undetected modes. Our goal is now to calculate the
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Figure 6: Schematic representation of Eq. (2) where G is 4-dimensional. The Fock amplitudes Gmnpq are represented via the
Kronecker product: all C1 × C1 corresponding to different values of p and q are combined in a block matrix.

Algorithm 1 Density matrix simulation of a GBS circuit

1: for S ← 0 to (
∑M

i=1 Ci)− 1 do // Stepwise increase of pivot weight
2: calculate the set diag set of all length-2M indices [a, a, b, b, c, c, ...]

that satisfy a+ b+ c+ ... = S and 0 ≤ [a, b, c, ...] < cutoffs
3: for diag in diag set do
4: if diag1 < C1 − 1 then
5: apply diag as pivot // Diagonal pivot (w = 2S)
6: for diag in diag set do
7: for K ← 1 to M do
8: if the first 2(K − 1) elements of diag are 0 then
9: if diag2K < CK − 1 then

10: apply diag + 12K−1 as pivot // Off-diagonal pivot (w = 2S + 1)

distribution of states that are generated conditionally
on the PNR detection results. As a first example,
we consider a circuit with two modes and one detec-
tor, such that we can use the nested representation of
Fig. 6. In this representation, the targeted distribu-
tion is defined by the Fock amplitudes Gmnpq in the
diagonal C1×C1 blocks. Each detection outcome cor-
responds with one such C1 × C1 block, which is the
unnormalized density matrix of the conditional state.

The targeted blocks can be calculated using the two
step process presented in Fig. 9. First, we calculate

all Fock amplitudes in the upper left C1 × C1 block,
which is the density matrix corresponding with de-
tecting zero photons. For this first step, we can use
the hypercross of Fig. 6 where we choose only to in-
crement indices m and n (not p and q). Note that we
also do not have to decrement p and q, as these am-
plitudes would correspond with negative photon num-
bers. For the second step of our simulation process,
we do have to decrement all indices, but this time we
choose only to increment indices p and q (not m and
n). Moreover, we choose to apply pivots in blocks of
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Figure 7: Visualisation of how Eq. (2) (i.e. the hypercross
from Fig. 6) can be applied to density matrices in order to
calculate the detection probabilities Gn1n1n2n2 of a two mode
circuit. The photon number in both modes is upper bound by
4. Dark grey cells represent pivots. Light grey cells represent
non-pivot amplitudes that are written. The pivots marked
as write to the pivots marked as ⋆. Similar to G0, these
last pivots (⋆) act as ‘seed’ amplitudes in their C1 × C1
blocks. An animated version of this figure is included in the
Supplementary Materials.

Figure 8: The number of stored amplitudes when using a
buffer of off-diagonal amplitudes (orange curve) and without
using such a buffer (blue curve) as a function of the number
of applied pivots. After all pivots are applied, the buffer is
left empty such that the orange curve reaches a value of CM

(dashed curve). This figure is made using 4 modes, all with
photon number cutoff of 10. Both the real and complex part
of the amplitudes are stored as 64-bit-precision floating-point
numbers.

size C1 × C1. By doing so, we can apply a coarse-
grained version of Algorithm 1 as if the circuit un-

der consideration has M − 1 modes. In this example,
M = 2 such that we apply a coarse grained version of
Fig. 5(b). Within each C1 × C1 block of pivots, the
individual pivots still need to be applied according to
increasing weight, similar to Fig. 3(b).

This simulation process for state generator circuits
can be generalized to an arbitrary number of modes
M . Algorithm 2 considers all cases where we have 1
undetected mode andM−1 detected modes. The ex-
tension to an arbitrary number of undetected modes
is straightforward. A similar two step process is fol-
lowed as in Fig. 9. Note that step 2 of Algorithm 2 is
indeed a coarse-grained version of Algorithm 1 as we
apply C1×C1 blocks of pivots. That is, we apply piv-
ots [m,n, a, a, b, b, c, c, ...] for m,n ∈ {0, 1, ..., C1 − 1}
where a, b, c, ... follow from Algorithm 1 after substi-
tuting M by M − 1 and cutoffs by [C2, C3, C4, ...].
As Algorithm 1 scales as

∏M
i=1 Ci, it is clear from

the above that Algorithm 2 scales as C1
2∏M

i=2 Ci. In
the case where we choose all modes to have the same
cutoff C, these scaling factors are CM and CM+1 re-
spectively.

4 Complexity
In the case where we use state vectors, Section 2.2
explains how pivots can be applied to calculate all
Fock amplitudes that satisfy the cutoff conditions of
Eq. (8). The total number of pivots then scales as

O(
∏M

i=1 Ci). In the case where we simulate a GBS
circuit using density matrices, we apply Algorithm 1.
In Appendix B, we show that the total number of
pivots that are used in this algorithm also scales as
O(
∏M

i=1 Ci).
As is clear from Eq. (2), the complexity of apply-

ing a single pivot is given by D2. (Note that Eq. (2)
can be rewritten as the sum of a vector and a matrix-
vector multiplication by rescaling Gk−1l

and Gk+1i

with
√
kl and

√
ki + 1 respectively.) From Eq. (1) it

follows that both using state vectors and density ma-
trices, our algorithms for GBS simulation scale like
O(M2∏M

i=1 Ci). As is clear from Section 3.2, for the
generation of single mode conditional states, this com-
plexity changes to O(M2C2

1
∏M

i=2 Ci). Algorithm 2
can readily be extended to account for a general num-
ber of undetected modes. By doing so, the complexity
changes to:

O(M2
∏

i∈IU

C2
i

∏
i∈ID

Ci), (19)

where IU and ID are the sets of indices i that respec-
tively correspond to undetected and detected modes.

In the remainder of this work, we first demonstrate
how this scaling behaviour can be observed for cir-
cuits with 4 modes. Afterwards, the results for GBS
circuits are compared to the state-of-the-art classical
simulation method.

Accepted in Quantum 2023-08-01, click title to verify. Published under CC-BY 4.0. 9



(a) Calculate upper left C1 × C1 block (b) Apply coarse-grained version of Algorithm 1

Figure 9: Visualisation of Algorithm 2 for a circuit of two modes, one of which is detected. Dark grey cells represent pivots.
Light grey cells represent non-pivot amplitudes that are written. White cells represent amplitudes that are not written. For
the pivots G3300 (in Fig. a) and G2222 (in Fig. b) the hypercross is shown, where we only keep two of its blue nodes. For
both modes, we chose a photon number cutoff of 5. Animated versions of these figures are included in the Supplementary
Materials.

Algorithm 2 Density matrix simulation of a conditional state generator circuit

Step 1 Calculate C1 × C1 block that corresponds with zero photon detections
1: apply all pivots [m,n, 0, 0, ...] for m ∈ {0, 1, ..., C1 − 1}, n ∈ {0, 1, ..., C1 − 2}
▷ only write amplitude types [m+ 1, n, 0, 0, ...] and [m,n+ 1, 0, 0, ...]

Step 2 Coarse-grained version of Algorithm 1
2: for S ←0 to (

∑M
i=2 Ci)-1 do

3: calculate the set diag set of all indices [a, a, b, b, c, c, ...] of length 2(M − 1)
that satisfy a+ b+ c+ ... = S and 0 ≤ [a, b, c, ...] < [C2, C3, C4, ...]

4: for diag in diag set do
5: if diag2 < C2 − 1 then
6: apply all pivots [m,n, diag] for m,n ∈ {0, 1, ..., C1 − 1} // Diagonal C1 × C1 block

▷ do not write amplitude types [m+ 1, n, 0, 0, ...] and [m,n+ 1, 0, 0, ...]
7: for diag in diag set do
8: for K ← 1 to M − 1 do
9: if the first 2(K − 1) elements of diag are 0 then

10: if diag2K < C1+K − 1 then
11: apply all pivots [m,n, diag] + 12K+1 for m,n ∈ {0, 1, ..., C1 − 1}

// Off-diagonal C1 × C1 block
▷ do not write amplitude types [m+ 1, n, 0, 0, ...] and [m,n+ 1, 0, 0, ...]

4.1 Memory usage and simulation time

Fig. 10 visualizes the memory usage and simulation
time for a circuit with 4 modes (such as the circuits
in Fig. 1). We have chosen the photon number cutoff
C to be equal for all modes. As both the memory
usage and simulation time scale with the number of
applications of Eq. (2) (i.e. the number of pivots), the
trends in Figs. 10(a) and 10(b) are similar.

When using state vectors, we calculate CM ampli-

tudes to simulate a circuit, regardless of the number
of PNR detectors (green line in Fig. 10(a)). When
using density matrices, this number would increase to
C2M (orange line in Fig. 10(a)) if we naively applied
the strategy of Section 2.2. When all modes in the cir-
cuit are measured, Algorithm 1 reduces the memory
requirements from the orange curve to the solid blue
curve. This last curve corresponds with the number
of written amplitudes given in Appendix B.3. It can
be lowered further to the dashed blue curve when the
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buffer strategy of Section 3.1.4 is applied. Note that
the memory usage at a cutoff value of 10 corresponds
with the maximum of the orange curve in Fig. 8 .
From the slopes of these curves we verify that the
complexity of Algorithm 1 is equal to the complexity
of a state vector simulation, i.e. CM , as was discussed
in Section 3.1.3. When all but one mode of the circuit
are detected, we can use Algorithm 2 to improve on
the naive strategy without selective pivot placement.
As discussed in Section 3.2, the complexity of this last
algorithm is CM+1.

When calculating both the required amplitudes
(Eq. (2)) and gradients (Eqs. (16) and (17)) to op-
timize the circuit, we know from Section 2.5 that we
can implement all three equations by taking a single
walk through the Fock lattice. As a result, the mem-
ory usage of an optimization is a factor 1 + D + D2

higher than the memory usage of a simulation (where
D = M for state vectors and D = 2M for den-
sity matrices). When we would calculate both ampli-
tudes and gradients for Fig. 10 (where M = 4), this
means that the orange, red and blue curves would
shift up on the log scale corresponding with a factor
of 1 + 2M + 4M2 = 73, while the factor for the green
curve would be 1 +M +M2 = 21.

Note that when performing an optimization using
our technique, the cost function L (which could be
chosen to be the fidelity to a target state for example)
determines only the complexity of the first step of the
chain rule, which consists in calculating ∂L/∂G∗

k (cf.
Eqs. (14) and (15)). This quantity can be provided to
us by an automatic differentiation framework such as
TensorFlow or PyTorch. The subsequent steps of the
chain rule, which are given by the gradients that we
compute in Eq. (16) and (17) are independent of L
and essentially dictate the required computation time
and memory resources.

4.2 Comparison with the state-of-the-art GBS
algorithm
In this section we focus our attention on the case
where all modes are detected. This provides us with
a useful reference point for our algorithms, since clas-
sical GBS algorithms are well studied [9, 14, 17, 20].
We should note that there exist approximate GBS
sampling algorithms such as [19] that vastly outper-
form approaches where the probabilities are computed
exactly in terms of simulation time and memory re-
quirements. These are appropriate for instance in ap-
plications where the samples are needed rather than
the exact probabilities. Such algorithms are not con-
sidered here.

When using state vectors, the state-of-the-art clas-
sical GBS algorithm [9] obtains the probability of a
single detection pattern n = [n1, n2, ..., nM ] with a
complexity that is upper bounded by N32N/2 (where

N =
∑

i ni) and lower bounded by N3∏M
i=1
√
ni + 1.

This algorithm is primarily used to generate samples
from a GBS circuit, i.e. to draw a pattern n from
its measurement probability distribution. A popular
method for this is ‘chain rule sampling’, where the
photon number in each mode is sampled sequentially,
conditioned on the photon numbers in the previous
modes. This method only requires the calculation of
the conditional probability distributions of the modes
instead of the total joint probability distribution.

Instead of sampling from a GBS circuit, here we
obtain its joint probability distribution by calculating
the probabilities of all detection outcomes up to a
certain photon number cutoff. This is useful to study
quantum algorithms based on GBS [4, 8]. Naively,
one could apply the algorithm of Reference [9] to all
detection patterns up to a certain photon number cut-
off. Assuming all probabilities can be obtained at the
lower bound of the complexity, we get:

cutoffs∑
n=0

N3
M∏

i=1

√
ni + 1. (20)

In Appendix C it is shown that this is higher than the
complexity of our algorithm, which is M2∏M

i=1 Ci.
Note that to obtain p(n) using Algorithm 1, we need
to substitute Ci by ni + 1.

Reference [9] also provides a way to obtain all prob-
abilities p([n′, n2, ..., nM ]) (where n′ ∈ [0, 1, ..., C−1]
and all other ni are fixed) at once, with the same
complexity of obtaining only p([C−1, n2, ..., nM ]).
Nonetheless, Appendix C shows that fixing n1 to
C1 − 1 in Eq. (20) still results in a complexity that

is higher than M2∏M
i=1 Ci. Currently, the algorithm

in Reference [9] is not extended to include more than
one ‘batched’ mode, and hence our algorithm is faster
at obtaining the total joint probability distribution of
a GBS circuit. However, if an extension to multiple
batched modes were to be made, it might improve on
our algorithm when using state vectors. This forms
an interesting open research question.

In the case of density matrix simulations, the com-
plexity of our algorithm (M2∏M

i=1 Ci) remains un-
altered, while Reference [9] presents a complexity of

N3∏M
i=1(ni + 1). Note that, although this last ex-

pression is quadratically higher than the lower bound
of their algorithm for state vectors, it denotes the ac-
tual complexity to calculate a single probability p(n).
It follows that for N3 > M2 (e.g. when Ci > 1,
∀ i ∈ [1, 2, ...,M ]), our algorithm scales better, while
it also produces the probabilities of all detection pat-
terns with lower photon numbers. Consequently, two
regimes can be defined for density matrix simulations.
If N3 > M2, a possible extension of Reference [9] to
multiple batched modes would not improve on our al-
gorithm. For N3 < M2 this question remains open
for further study.

Regarding gradients, there exist alternative tech-
niques such as computing gradients analytically or
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(a) Memory usage (b) Simulation time

Figure 10: The memory usage and simulation time of simulating a 4 mode circuit, where the photon number cutoff C is
chosen equal in all modes. The complexities of these algorithms are given by the slopes at large C. Memory and time required
for Algorithm 1 scales as CM , which matches the scaling of a state vector simulation (green). This is quadratic improvement
over the C2M complexity of the naive strategy without selective pivot placement (orange). Similarly, Algorithm 2 scales as
CM+1. The dashed curves show how the memory requirements of Algorithms 1 and 2 are lowered by the buffer strategy of
Section 3.1.4. Note that the atypical behavior of simulation time for small cutoff is a result of time incurred during initialization.

using the parameter shift rule. Computing analyt-
ical gradients, even with a given formula is usually
slower than our technique because typically the an-
alytic formula involves functions that are more com-
plex than the steps of our recurrence relation. For
example, the displacement gate entries in Fock rep-
resentation are given by a combination of Laguerre
polynomials, factorials and exponential functions [10]
and although they can be derived analytically, the re-
sulting derivative function is more complex than the
few multiplications and additions required the recur-
rent formulation of the gradient of the displacement
gate. Parameter shift rules [23] require two forward
passes per parameter, but they are not universal in
the sense that there exists a parameter shift rule only
for specific Gaussian unitaries (displacements, beam-
splitters, squeezers etc). The complexity of the pa-
rameter shift is analogous to the complexity of our
technique, however even though in this paper we have
focused on Gaussian states, using recurrence relations
for gradients works for any Gaussian object, including
Gaussian unitaries and Gaussian channels [31].

5 Conclusions
We have presented an exact procedure to obtain the
detection probabilities and conditional states of noisy
linear optical quantum circuits with PNR detectors.
For a circuit with M modes, we propose an algorithm
for which the memory requirements and speed have a
complexity of O(M2∏M

i=1 Ci), where Ci is the photon
number cutoff of mode i. This constitutes a quadratic

improvement over previous approaches.
The reduction in complexity applies to measured

modes, even when we are after computing marginal
states. Moreover, our methods can easily be adapted
to obtain the gradients of the detection probabili-
ties and conditional states with respect to a circuit
parametrization.

These methods are included in the open-source li-
brary MrMustard [29]. They are written in pure
Python using Numpy and are sped up using the just-
in-time compiling capabilities of Numba. This paves
the way to making simulations and optimizations of
realistic circuits with PNR detectors. We expect our
methods to accelerate the research on both GBS based
algorithms and conditional state generation, with a
particular emphasis on GKP state generation using
ansatze such as the one in Fig. 1(b).
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A Density matrix simulation of a 3 mode GBS circuit

Figure 11: Visual representation of Algorithm 1 for 3 modes, with cutoffs = (4, 3, 3). A generalized version of Fig. 6 is used
to visualize the Fock amplitudes Gmnpqrs. Dark grey cells represent pivots. Light grey cells represent non-pivot amplitudes
that are written. White cells represent amplitudes that are not computed. An animated version of this figure is included in
the Supplementary Materials.

B Further analysis of Algorithm 1
B.1 Total number of pivots
In this section we derive the total number of pivots that are used in Algorithm 1. First consider the diagonal
pivots diag = [a, a, b, b, c, c, ...]. We know there are

∏M
i=1 Ci such amplitudes that satisfy 0 ≤ diag < cutoffs, but

we do not have to use all of them as pivots in order to obtain all diagonal amplitudes. As is clear from Fig. 11,
we do not use the bottom right diagonal amplitude in the diagonal C1 × C1 blocks. In other words, we only
need (C1 − 1)

∏M
i=2 Ci diagonal pivots. In a similar way, it can be seen that we use (C1 − 1)

∏M
i=2 Ci pivots of

the type diag+ 11, (C2− 1)
∏M

i=3 Ci pivots of the type diag+ 13, (C3− 1)
∏M

i=4 Ci pivots of the type diag+ 15,
etc. In general, the number of pivots is equal to:

(C1 − 1)
M∏

i=2
Ci +

M∑
K=1

[
(CK − 1)

M∏
i=K+1

Ci

]
. (21)

If the photon number cutoff is equal for all modes, this simplifies to:

(C − 1)
[
CM−1 +

M∑
K=1

CM−K

]
= 2CM − CM−1 − 1, (22)

which scales as CM .
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If we use the global cutoff condition of Eq. (10) instead, the number of pivots is equal to:

Nmax−1∑
N=0

[
(N +M − 1)!
(M − 1)!N ! +

M∑
K=1

(N +M −K)!
(M −K)!N !

]

=
(
Nmax +M − 1

Nmax

)
+
(
Nmax +M

Nmax

)
− 1

≤ 2(Nmax +M)min(Nmax,M) − 1 .

Assuming M ≪ Nmax, this upper bound scales as (Nmax)M .

B.2 Types of (off-)diagonal amplitudes
Let us consider the amplitudes that are read and written when applying a pivot in Algorithm 1. We subdivide
all pivots in two types: diagonal pivots (diag = [a, a, b, b, c, c, ...]) and off-diagonal pivots (diag + 1K where
K ∈ {1, 3, 5, ..., 2M − 1}).

A diagonal pivot diag reads amplitudes diag− 1i and writes amplitudes diag+ 1i, where i ∈ {1, 2, 3, ..., 2M}.
Each amplitude of the type diag− 1i can always be rewritten as diag′ + 1i′ , where i′ = i + (−1)i+1 and diag′

is obtained by lowering diagi and diagi′ by 1. We conclude that a diagonal pivot reads and writes amplitudes
of the type diag + offset1, where offset1 = 1i (i ∈ {1, 2, 3, ..., 2M}).
An off-diagonal pivot diag + 1K (K ∈ {1, 3, 5, ..., 2M − 1}) reads amplitudes diag + 1K − 1i and writes

amplitudes diag + 1K + 1i, where i ∈ {1, 2, 3, ..., 2M}. In a similar way it can be shown that an off-diagonal
pivot only reads and writes pivots of the type diag + offset, where offset is one of the following types:

• offset0 = 0

• offset2 = 2 · 1K (K ∈ {1, 3, 5, ..., 2M − 1})

• offset1010 = 1K + 1i (K ∈ {1, 3, 5, ..., 2M − 1} and i ∈ {K + 2,K + 4, ..., 2M − 1})

• offset1001 = 1K + 1i (K ∈ {1, 3, 5, ..., 2M − 1} and i ∈ {K + 3,K + 5, ..., 2M})

Note that offset0110 = 1K + 1i (K ∈ {1, 3, 5, ..., 2M − 1} and i ∈ {2, 4, 6, ...,K − 1}) does not occur. As
is clear from line 8 in Algorithm 1, off-diagonal pivots diag + 1K (K ∈ {1, 3, 5, ..., 2M − 1}) always satisfy
diagi = 0 for i ∈ {1, 2, ..., 2(K − 1)}. When reading the required amplitudes for an off-diagonal pivot, indices
k1, k2, ..., k2(K−1) therefore do not need to be lowered.
This parametrization allows all calculated amplitudes to be stored in a structured way, without storing zero

values for amplitudes that do not occur in Algorithm 1. It can be shown that each amplitude in this structure
is written exactly once. In other words, the structure is fully dense and there are no two pivots writing to the
same position in the Fock lattice. As is explained in Section 3.1.4, it can also be shown that every off-diagonal
amplitude is included in the ‘read’ group of a pivot exactly once, after which it can be removed from memory.

B.3 Total number of written amplitudes
From Algorithm 1, it is clear that a diagonal pivot writes at most 2M values, while an off-diagonal pivot
diag + 1K writes at most 2(M − K) amplitudes. The actual number of written amplitudes is determined by
invoking the boundary condition k < cutoffs. Assuming the cutoffs in all modes to be equal to C, a deeper
analysis shows that Algorithm 1 writes the following number of amplitudes:

• (C − 1)CM−1 + (C − 2)CM−1 + (2M − 2)(C − 1)2CM−2 of the type diag + offset1

• CM of the type diag + offset0 (= diag)

• (C − 2)
∑M−1

K=0 C
M−K−1 of the type diag + offset2

• (C − 1)2∑M−1
K=0 (M −K − 1)CM−K−2 of the type diag + offset1010

• (C − 1)2∑M−1
K=0 (M −K − 1)CM−K−2 of the type diag + offset1001

As is also shown in Fig. 10(a), the total number of amplitudes scales as CM . We therefore drastically reduce
the memory requirements of density matrix simulations compared to the naive strategy of calculating all C2M

Fock amplitudes.
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C Scaling behaviour of Equation (20)
In this section we show that our state vector algorithm is faster than the algorithm of Reference [9] at calculating
the probabilities of all PNR outcomes (up to a certain cutoff) of a GBS circuit. The complexity of our algorithm

is given by M2∏M
i=1 Ci. If we apply the algorithm of Reference [9] to all detection patterns (without using

the batched strategy that was discussed in Section 4.2), then its complexity is lower bound by Eq. (20). We

assume the cutoff conditions to be constant for all modes and put C̃ = C−1 for ease of notation. Eq. (20) is
then further lower bound by:

cutoffs∑
n=0

N3 =
C̃M∑
N=0

(
N +M − 1

N

)
N3 (23)

=
C̃M(C̃M + 1)(C̃2M4 + 3C̃2M3 + C̃(2C̃ + 3)M2 + (3C̃ − 1)M + 1)

(C̃M+M

C̃M+1

)
(M + 1)(M + 2)(M + 3) (24)

≥
C̃4M6(C̃M+M

C̃M+1

)
(M + 3)3 ≥ M6C̃M+3

(M + 3)3 ∝M
3CM+3 . (25)

If we do apply the batched strategy for one of the modes, Eq. (20) can be lowered by fixing the value of n1
to C̃1 = C1 − 1. Consequently, the left part of Eq. (23) becomes:

[C̃2,C̃3,...,C̃M ]∑
n=0

(C̃1 +N ′)3. (26)

Assuming the cutoffs to be constant in all modes, we find in a similar way that this is equal to:

C̃(M−1)∑
N ′=0

(
N ′ +M − 2

N ′

)
(N ′)3 ≥ (M − 1)6C̃M+2

(M + 2)3 ∝M3CM+2 , (27)

where N ′ =
∑M

i=2 ni.
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