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Abstract-To speed up the stochastic modeling of the far-

field (FF) electric field of flexible antennas, a novel method 
combining vector spherical harmonics (VSH) and neural 
network (NN) is proposed to construct efficient and 
effective surrogate models. First, we use VSH to 
parsimoniously representing the antenna’s FF electric field 
vector with a limited number of modes; then, we use NN to 
map between the input variables and the VSH mode 
coefficients. We proposed an improved successive halving 
(ISH) algorithm to optimize the selection of 
hyperparameters when constructing the NN model. The 
results show that compared with the polynomial chaos 
expansion (PCE) model, the prediction error of the NN 
model has been reduced by 39.22% at the same modeling 
cost.  

Keywords-surrogate model, neural network, 
hyperparameter optimization, flexible antennas 

I. INTRODUCTION 

Nowadays, flexible antennas are becoming a key 
component for the widely implemented wireless body area 
networks (WBANs) [1]. Different from their rigid 
counterparts, wearable flexible antennas operate in fluctuating 
environments, as a result, their radiation characteristics are 
easily affected by various types of deformations, temperature 
or humidity changes and other factors. Efficiently 
characterizing the electromagnetic (EM) performance of 
flexible antennas is of prominent importance for evaluating 
the quality of service (QoS) of WBAN scenarios.  

Statistical or stochastic modeling, which regards the flexible 
antenna as an uncertain “black-box” and build antenna 
surrogate models based on pre-acquired samples, is a very 
effective approach. Without being exhaustive, we can mention 
the polynomial chao expansion (PCE) methods and its variants 
[2-4], Gaussian process regression [5], support vector machine 
(SVM) [6], and artificial neural network (NN) [7-8]. However, 
these attempts were mainly focused on some of the antenna 
key performance indicators, such as resonance frequency, 
reflection coefficient, input impedance, bandwidth, etc., but 
not on the complete far-filed (FF) radiation, that’s to say, the 
FF electric field vector. Recently, with the massive 
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deployment of multi-in multi-output (MIMO), ultra-wideband, 
and beamforming techniques, the demand of accurate FF 
surrogate model explodes.  

Another key issue for antenna stochastic modeling is that 
the collection of pre-acquired samples usually relies on time-
consuming full-wave EM simulators, such as CST or HFSS, 
which is unaffordable for complex antenna designs. How to 
take full advantage of the pre-acquisition to maximize the 
model accuracy, or to maintain enough accuracy with 
minimized the pre-acquisition cost, is always a major 
challenge. 

In our previous study [9], we proposed a modeling method 
based on vector spherical harmonics (VSH) and PCE to build 
FF surrogate models for flexible antennas. However, the 
model accuracy was not effectively optimized. The purpose of 
this work is to further exploit the same pre-acquired samples. 
We propose a novel modeling method combining VSH and 
NN to build antenna FF surrogate model. An improved 
successive halving (ISH) algorithm is introduced to optimize 
the selection of NN hyperparameters. The feasibility of the 
proposed method is verified on a flexible textile antenna, and 
the results show that the new model helps to reduce the 
average prediction error (in term of the realized gain) from 
0.51 dB to 0.31 dB compared with the PCE model, which is a 
reduction of nearly 39%. 

II. MODELING METHODOLOGY 

The FF electric field vector ( , )∞ fE r  of the flexible antenna 
can be expressed by its equivalent antenna transfer function 
(ATF) ˆ( , )f rH : 

 
1 0

4ˆ( , ) ( , )
( ) η

π ∞= ⋅
jkrref f

a f
r E rH  (1) 

where 1a  is the incident wave at the port of antenna, 0η  is the 
impedance in free space, ˆ ( ,φ)θ=r  is the unit radial vector, k 
is the wave number, and 1= −j . 

It is quite difficult to build a surrogate model for this vector 
function directly, so we divide the modeling process into two 
steps. First, the ATF is expanded using VSH expansion to 
obtain a parsimonious expression; and then we use NN to 
model the coefficients of the discrete modes of this expansion. 
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Figure 1. NN structure (a) Feed-forward neural network (b) Neuron structure 

A. Parsimonious Expression of the FF Electric Field 
The VSH is an orthogonal basis on the Hilbert space formed 

by the square-integrable vector functions defined on the unit 
sphere, which can expand any vector-valued function under 
the spherical coordinates into a linear combination of VSH 
modes. Therefore, the ATF of the antenna disturbed by input 
variables X can be expressed as: 

 mod( , 2)
/ 2

1

ˆˆ ˆ( , ) ( ) ( ) ( )  
=

= −∑
Q

q
q q

q
j jr rψH X XH  (2) 

where X represents the random disturbance, ˆ ˆ( )q rψ  are a set of 
orthogonal bases of vector-valued spherical functions in L2 
space; ( )qH X  are the mode coefficients to be determined, 
and Q the truncation order of the VSH expansion. 

So far, we have provided a parsimonious representation of 
the ATF as a linear combination of a finite number of VSH 
modes, and the problem of modeling the FF electric field 
vector of the antenna is converted into the problem of 
modeling these VSH mode coefficients.  

B. Neural Network Model and Hyperparameter Optimization 
NN has powerful fitting ability and not complex layout. The 

NN consists of one input layer, one output layer, and several 
hidden layers, each layer composed of many neurons. Figure 1. 
(a) shows a classical feed-forward neural network, from which 
it can be seen that each neuron in the hidden layer receives the 
output of the previous layer as its input, and after a series of 
operations, sends its output to the next layer. Figure 1. (b) 
shows the transfer function of a typical neuron, in which z  is 
the weighted sum of the input variables x , and named as the 
net input, 

 
1

D

d d
d

z x bω
=

= +∑  (3) 

where dω  is the weight and b  is the bias. 
The net input z , after a nonlinear function f  called active 

function, yields the activity value a . 
NN contains a large number of weight and bias parameters, 

and is generally trained by empirical risk minimization. For 
example, for regression problems, the mean square error 
(MSE) is generally used as the loss function (LF), and an 
optimization algorithm is used to find the best weights and 
bias that minimizes the LF value. This process is not easy, 
because a large number of hyperparameters need to be 

adjusted during the training, including learning rate, number 
of hidden layers, number of neurons, batch-size, initial 
parameters of weight and bias, activation function, optimizer, 
etc. 

A fast and effective algorithm for optimizing 
hyperparameters is successive halving (SH) [10]. The idea of 
this algorithm is simple: given a budget, divide it equally 
among each hyperparameter configuration, evaluate their 
performance and eliminate the worst half. Looping these steps 
until only one configuration remains. However, this algorithm 
has a drawback, which has particular negative effect when 
used for hyperparameter selection in NN training. Specifically, 
hyperparameter configurations with larger learning rate tend 
to obtain lower LF value at the beginning, but it does not 
necessarily mean that they perform better when given more 
training budget, as oscillations may arise that fail to converge. 
In other words, those configurations that start with poor 
performance and are eliminated may also get better 
performance when given more training budget. We make 
some improvements to SH (ISH) to avoid jumping to 
“premature” conclusions.  

The ISH algorithm is described as follows. First, it selects 
1/3 of the configurations each round; then, it selects 1/4 of the 
remaining configurations according to the LF value, where 
smaller LF value leads to higher possibility of being chosen. 
This would not introduce extra burden during the training 
iterations compared to the conventional SH algorithm, but is 
capable to effectively alleviate the drawbacks of the latter to 
some extent. 

Algorithm: Improved Successive Halving 
Initialization: training budget B, hyperparameter configurations H 
Process: 
While len(H) > 1: 

e = B / len(H) 
For i = 1, 2, …, len(H): 

train the NN model e epochs with the H[i] 
calculate the error MSEi on the validation set 

End For 
sort H according to increasing MSE value 
H1 = H[0: len(H) / 3], Hrest = H[len(H) / 3:  len(H)] 
Randomly select 1/4 of Hrest and assign it to H2 
H = H1 + H2 

End While  

 

 

 

 

 
 

Figure 2. (a) Flexible textile antenna (b) Antenna under bending and 
crumpling 
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III. APPLICATION TO A TEXTILE ANTENNA 

To verify the effectiveness of our proposed modeling 
method, we applied it to build FF surrogate model for a soft 
textile patch antenna, and compared it with the PCE model. 

A. Design of the Textile Antenna 
Figure 2. shows the textile antenna presented in [9], which 

consists of a thin layer of denim and two thin copper sheets. 
Supposing that in the realistic WBAN environment, the 
antenna undergoes random disturbances such as bending, 
crumpling, permittivity variation (due to the humidity for 
example), and operating frequency (due to dynamic frequency 
selection). Please refer to [9] for more details. Finally, five 
independent random parameters are used as the input of the 
model, and their variability ranges are shown in Table Ⅰ.  

Table Ⅰ 
INPUT PARAMETERS OF THE MODEL 

Random parameter Unit Range 
κ  mm-1 [0, 1/30] 
C  mm [0, 5] 
s  - [1, 1/0.6] 

rε  - [1.6, 1.9] 
f  Ghz [2.4, 2.5] 

B. Construction of the Neural Network Model 
First, a parsimonious expression for the ATF is obtained by 

using the VSH expansion. We chose the same truncation order 
as in [9], resulting in 48 dominant VSH modes, which account 
for 99.9% of the total radiated power.  

Then, we chose the appropriate hyperparameters for the NN 
model by applying the ISH algorithm. As a rule of thumb, we 
set the batch size to 16, the optimizer is Adam, and the 
activation function is Elu. The remaining hyperparameters are 
determined by the ISH algorithm. We also use k-fold 
verification to save the modeling cost. We use the number of 
hidden layers as a parameter to be determined, the range is [5, 
6, 7, 8], and the number of neurons per layer is three times the 
number of layers. The range of learning rate is [0.0006, 0.001, 
0.003, 0.006]. The weights and bias are also generated 
randomly for several times to avoid falling into the trap of 
extremely bad starting point. The final choice of ISH is a NN 
structure with 8 hidden layers and learning rate of 0.003. 

Finally, we set the epochs to 1000, and use the selected 
hyperparameter configuration to train the NN model. The 
number of samples in the training set and the test set are 700 
and 2000, respectively. When training epoch iterates to 730, 
the LF value of the NN model reaches the minimum, yielding 
the best model parameters. Then the VSH mode coefficients 
predicted by the NN model were inversely transformed to 
obtain the antenna FF electric field vector. 

We use a representative indicator called average gain error 
to evaluate the performance of the surrogate model. Basically, 
this indicator is the largest absolute difference between the 
realized gain of the initial FF and the predicted FF by the 

surrogate model (please refer to [9] for the definition). As 
shown in Table Ⅱ, the NN model has an average gain error 0.2 
dB less than that of the PCE model presented in [9] on the 
training set, which is a reduction of 39.22%. Moreover, on the 
test set, the NN model did not show obvious overfitting 
phenomenon at all.  

Table Ⅱ 
COMPARISON BETWEEN NN MODEL AND PCE MODEL 

Model Modeling cost Training set error Test set error 
PCE 700 0.51dB 0.53dB 
NN 700 0.31dB 0.33dB 

 

IV. CONCLUSION 

We proposed a new modeling method based on VSH and 
NN for building surrogate models for the FF radiation of 
flexible antennas. The selection of NN hyperparameters are 
automatized and optimized by using an improved SH 
algorithm. Compared with the existing PCE model, the 
established NN model can significantly reduce the prediction 
error. The surrogate model can be utilized for antenna 
optimization purpose, or combined with channel models to 
enable end-to-end radio link assessment. 
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