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Abstract: System development cycles typically follow a V-cycle, where modelers first analyze a system specification
before proposing its design. When utilizing SysML, this process predominantly involves transforming natural
language (the system specification) into various structural and behavioral views employing SysML diagrams.
With their proficiency in interpreting natural text and generating results in predetermined formats, Large Lan-
guage Models (LLMs) could assist such development cycles. This paper introduces a framework where LLMs
can be leveraged to automatically construct both structural and behavioral SysML diagrams from system
specifications. Through multiple examples, the paper underscores the potential utility of LLMs in this context,
highlighting the necessity for feeding these models with a well-defined knowledge base and an automated
feedback loop for better outcomes.

1 INTRODUCTION

Artificial Intelligence (AI), specifically Large Lan-
guage Models (LLMs) like OpenAI’s GPT, surely
have tremendous potential to revolutionize the realm
of system design. The complex nature of design-
ing efficient systems requires a deep understanding of
the interplay between various components. However,
the intricate details, coupled with the need for op-
timal performance, often pose significant challenges
for designers. In this context, AI can play a pivotal
role. LLMs, trained on extensive datasets, can gen-
erate valuable insights and recommendations, aiding
designers in creating highly effective systems. By
leveraging these AI models, designers can navigate
the complexity of system design more effortlessly and
make informed decisions that lead to enhanced sys-
tems.

In particular, with their ability to understand nat-
ural text, Large Language Models (LLMs) can often
get the essence of system specification and output a
view of them according to some aspects (e.g., require-
ments, design) in a selected format, for instance in
SysML.

The research presented in this paper investigates
how customized utilization of large language mod-
els (LLMs), like ChatGPT, can effectively aid sys-
tem architects in developing preliminary designs. In
this context, ’design’ refers to the process of identify-

ing system components, establishing interconnections
between these components, and discerning each com-
ponent’s behavior. As the paper demonstrates, simply
querying these LLM-based AI engines to extract com-
ponents, interconnections, and behaviors from a sys-
tem specification, or from existing diagrams, is not
sufficient. Instead, we need to enhance the AI en-
gine’s context and implement a feedback loop. This
loop helps identify errors in the AI’s responses and
subsequently refine the questioning strategy to pro-
voke more accurate answers.

The paper first explains in Section 2 the context
of the work: SysML, TTool, LLMs and ChatGPT.
Then, Section 3 overviews the general framework of
our contribution. Building on this, Section 4 shows
how our framework can be successfully applied to au-
tomatically design systems with SysML blocks and
state machines from system specifications. Follow-
ing, Section 5 evaluates our contribution in the scope
of several case studies. Finally Section 6 compares
our approach with the state-of-the art, before conclud-
ing in Section 7.



2 CONTEXT

2.1 System Development with SysML

The SysML specification outlines the structure of a
language, yet it doesn’t provide a method detailing
its application. Notwithstanding, numerous published
methods exist that advise on how to leverage SysML
efficiently for system development. One common
approach involves initially capturing system require-
ments from the system specification. Subsequently,
this specification undergoes analysis using a variety
of diagrams, such as use case diagrams, sequence di-
agrams, and activity diagrams.

Use case diagrams primarily aim to encapsulate
the central functions of the system and their inter-
actions with the surrounding environment (actors).
Moreover, sequence diagrams and activity diagrams
concentrate on analyzing the behavior of the system
to be designed. Eventually, a design typically uses
blocks to decompose the system into its constituent
components, and relies on state machines for the be-
havior of block.

The contribution of the paper enables TTool to
identify all the diagrams mentioned above. However,
the paper’s focus is specifically centered on the design
phase.

2.2 TTool

TTool1 is a free and open-source toolkit for the edi-
tion of UML and SysML diagrams, as well as their
subsequent verification. The verification aspect cov-
ers safety, cyber-security, and performance evalua-
tion. This process is achieved via the utilization of
internal tools, such as model-checkers and simulators,
as well as external tools, including ProVerif, which is
used for security evaluation.

Our choice to rely on TTool stems from its ex-
cellent extensibility and its operability through a
command-line interface. These attributes simplify the
connection evaluation to an AI engine.

2.3 LLM

Large Language Models (LLMs), such as OpenAI’s
GPT (OpenAI, 2023), draw upon techniques from
deep learning and neural networks. They are a new
shift in the field of natural language processing with
better understanding and generation capabilities. But
their utility goes beyond merely processing natural
text because they can understand both the syntax

1https://ttool.telecom-paris.fr

and semantics of many different languages (including
computer code) and they can generate their answer in
various formats of data, including models and code.

A key feature developed in the next section is the
capacity of ChatGPT to incorporate custom knowl-
edge as input (also known as ”user-defined contextual
embeddings”). This empowers users to tailor vari-
ous aspects such as the application domain, as well
as the format, constraints, and other aspects of the re-
sponses. As shown, this feature forms the foundation
for the contribution presented in our work.

Another significant advantage of ChatGPT lies in
its API design. With just a simple HTTP request, one
can interact with the ChatGPT AI engine. For ex-
ample, the ’curl’ command-line utility can be used
to make queries to ChatGPT directly from a termi-
nal. However, this isn’t limited to terminal usage.
Any programming language capable of issuing HTTP
requests can interact with the ChatGPT AI engine.
Thus, a standard query encompasses several key ele-
ments: the target URL, authorization (which requires
an API key obtained from OpenAI), the specific lan-
guage model you intend to use (in this case: “gpt-3.5-
turbo”), and the user’s question presented in a JSON
format (for instance, “Hello!”).

$ curl https://api.openai.com/v1/chat/
completions -H "Content -Type:
application/json"
-H "Authorization: Bearer OPENAI_API_KEY"
-d ’{ "model": "gpt-3.5-turbo",
"messages": [{"role": "user",
"content": "Hello!"}] }’

The answer to the HTTP request is in JSON for-
mat, with an id of the chat, the answer given by the
assistant (“Hello! How can I assist you today?”) and
finally the tokens used by the query and by the answer.
The billing is based on both kinds of tokens.

{ "id": "chatcmpl
-7YzJ6Gmh0VjbWl3plUxqwzDrtDnnk",
"object": "chat.completion",
"created": 1688573172,
"model": "gpt-3.5-turbo-16k-0613",
"choices": [ { "index": 0, "message":
{ "role": "assistant",
"content": "Hello! How can I assist you
today?" }, "finish_reason": "stop" } ], \
"usage": { "prompt_tokens": 8,
"completion_tokens": 9,
"total_tokens": 17 } }

https://ttool.telecom-paris.fr


3 CONTRIBUTION OVERVIEW

The principal contribution of this paper is a generic
framework designed to support system architects
throughout the product development cycle. The forth-
coming section initially presents an overview of this
framework, subsequently providing a thorough explo-
ration of its primary elements.

3.1 Our framework: TTool-AI

An overview of our framework, called TTool-AI, is
given in Figure 1.

Since the main idea is to automate the creation
of SysML diagrams from a system specification, the
elements of the top of Figure 1 highlight the neces-
sary inputs: a system specification, and a question
type (e.g., “identify the requirements from the follow-
ing system specification”). The latter is crucial for
guiding the AI in determining the specific type of dia-
gram expected in the output. Depending on the choice
of AI engine, certain proprietary system engineering
knowledge might be required. This knowledge en-
compasses the format of diagrams (for instance, the
output is expected in SysML V2 textual format), their
semantics (e.g., a transition between states in a state
machine is executable only if its guard condition eval-
uates to true), constraints (for instance, two blocks
cannot share the same name), and overarching prin-
ciples (e.g., too many or too few requirements). No-
tably, pre-existing modeled diagrams could also serve
as input to the AI, aiding it in enhancing the resul-
tant diagram and maintaining coherence between the
expected new diagram and the pre-existing ones.

Upon consolidating the aforementioned informa-
tion, the resulting combination is anticipated to be in-
put into an AI engine, such as ChatGPT. The engine
then generates an appropriate response in the form of
a textual output adhering to the specified format (e.g.,
JSON, XML, SysML V2 textual format, etc.).

Given the inherent randomness of Large Language
Model AI engines in answer selection, coupled with
their existing limitations regarding answer relevance,
our framework incorporates an automated feedback
loop. The key objective of this feature is to scrutinize
the AI’s response in order to assess its quality. If this
quality is determined as too low, the feedback loop
is triggered, introducing a revised input text to guide
the AI towards a more precise and effective answer.
This provision for iterative improvement enhances the
robustness and reliability of our framework.

Upon generating a satisfactory response, or after
reaching a predefined limit of automated feedback it-
erations, the framework offers the designer the op-

portunity to seek additional refinements from the AI
engine. Once the designer is pleased with the qual-
ity of the AI-generated output, he/she can instruct the
system to render the resultant diagram automatically
in TTool, demonstrating the seamless integration with
SysML diagramming tools.

The section now delves into each main stage of
TTool-AI.

3.2 Knowledge

As explained before, the idea of knowledge is to cus-
tomize answers provided by the AI engine. The fol-
lowing example emphasizes on the interest of knowl-
edge. Let us consider the following JSON message
sent to ChatGPT:

"messages": [{"role": "user", "content":
"Is Nice sunny today?"}]

A typical answer provided by ChatGPT would be:

"I m sorry, as an AI language model,
I dont have access to current weather
conditions. However, Nice is located
in the French Riviera, which has a
generally sunny and Mediterranean
climate..."

Let us now inject some knowledge, adding a new user
role as well as the answer expected to be provided by
the AI engine. For this, we use the assistant role:

{"messages":[{"role":"user","content":
"Today, in Nice,
the sun shines with no clouds."},
{"role":"assistant","content":"ok"},
{"role":"user","content":
"Is Nice sunny today?"}]

"Yes, you mentioned earlier that the
sun is shining with no clouds in Nice.
So, it is indeed sunny today in Nice.
Enjoy the beautiful weather!"

The same approach can be used for system analysis
design. First, we can specify a general domain for
answers using the system role:

"messages":[{"role":"system",
"content":"You are a helpful
assistant for system engineering."},

However, this is far from sufficient: the AI engine re-
mains uninformed about the specific diagram we ex-
pect, its required format, and the constraints associ-
ated with this diagram. Essentially, our strategy in-
volves defining the expected diagram and its format
first, followed by stipulating the constraints that the
diagram must meet. The subsequent section provides
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Figure 1: Overview of our framework.

tangible examples for both block and state machine
diagrams. Yet, in a generic form, the knowledge typi-
cally looks like this:
"messages":[{"role":"system", "content":
"You are a helpful assistant for system
engineering."},

{"role":"user",
"content":"When you are asked to
identify ..., use the following JSON
format: {element: [{ "name": "Name of
element""}] ...
Also, respect the following contraints:
- 1. do not use ...
- 2. do prefer to list ...
etc.

Splitting the knowledge in different JSON messages
may help if the knowledge becomes too large.

3.3 Automated feedback loop

The automated feedback loops checks two points:
1. The answer respects the expected output format

(e.g., JSON).
2. All constraints provided in the knowledge are sat-

isfied.
Algorithm 1 outlines the operation of the automated
analysis. Essentially, it constructs the subsequent

question q to pose to the AI engine by formulating
a sub-question for each identified error in the cur-
rent answer. If q remains empty after executing Al-
gorithm 1, the feedback loop ends, allowing the user
to take control of the response. Otherwise, the prior
question and answer are incorporated into the knowl-
edge base, and the new question q is submitted to the
AI engine.

Data: Answer a provided by AI engine
Result: String q (question)
q = /0

n = numberO f ErrorsIn(a)
if n! = 0 then

if f ormat(a) = invalid then
append(q, “Invalid format at line ...”)

foreach constraint do
if (error = constraint(a,c))! = null
then

append(q, “constraint c is not
satified: ” + error)

end
Algorithm 1: Feedback loop.

3.4 User is also in the Loop

The user becomes involved in the process once all er-
rors in the preceding response have been rectified, or



when the feedback loop limit has been met.
In the first scenario, the user must review any addi-

tional constraints that are not mathematically express-
ible, such as informal quality parameters of the an-
swer. For example, the block names might not align
with the user’s expectations. To address these issues,
the user can take on the role of the feedback loop
by posing new queries to the AI engine, with each
prior question and answer continuously added to the
knowledge base.

The second scenario poses more of a challenge,
for instance, if the AI engine consistently provides
responses in an incorrect format or does not satisfy
the constraints. The user has the choice to either pro-
vide its own knowledge to better guide the AI engine
to produce the correct response, or to make manual
corrections to all these errors, or finally to amend the
initial system specification or diagrams to typically
impose additional constraints.

Once the user is satisfied with the generated re-
sponse, TTool-AIcan draw the corresponding diagram
from the AI answer’s JSON representation.

4 SYSTEM DESIGN

This section shows how TTool-AI, presented in pre-
vious section, can be used to design a system from
its specification. By system design, we mean a set of
interconnected SysML blocks, with blocks’ behavior
described with state machine diagrams.

4.1 Case study

We first introduce a simple case study—a coffee
machine—that will be used all along this section to il-
lustrate the creation of a SysML design from a system
specification. The evaluation of our approach with
more case studies is done in the next section.

The specification of this case study is: This cof-
fee machine dispenses a beverage only after two coins
have been deposited. If there’s a substantial delay be-
tween the insertion of the first and second coins, the
machine returns the initial coin. Likewise, if a bever-
age isn’t selected promptly after the deposit of the two
coins, both coins are automatically ejected. If either
of the beverage buttons (tea or coffee) is pressed be-
fore the coins are ejected, the machine begins to pre-
pare the selected drink. Notably, it takes 10 seconds
to brew a coffee and 8 seconds to make a tea. Once
the beverage has been collected, the machine is ready
to accept new coins for the next order..

4.2 Structural Aspects

The structural representation involves outlining the
blocks, encompassing their attributes, methods, ports,
and interfaces (as seen in SysML Block Definition
Diagrams), and demonstrating how these blocks can
be instantiated and interconnected (as depicted in
SysML Internal Block Diagrams).

Given the considerable amount of knowledge re-
quired to describe these two diagrams and their con-
straints, we’ve divided it into two subprocesses: one
for identifying blocks, block instances, and block at-
tributes, and another for recognizing signals (i.e., in-
terfaces), ports, and connections between ports. This
division required us to modify the framework de-
picted in Figure 1. We now need to introduce an initial
set of knowledge, engage in a feedback loop focusing
solely on this initial knowledge, and then introduce
the second set of knowledge once the automated feed-
back loop is complete, as illustrated in Figure 2. The
upcoming section delves further into this approach us-
ing the running example.

4.2.1 Knowledge and question for Question #1

Our methodology for identifying blocks is predicated
on the specification of the enforced JSON format and
constraints concerning blocks. The user is only re-
sponsible for supplying the system specification (in
our case study: the one of the coffee machine) and
for selecting the question type (here, identify system
blocks).

The knowledge injected for Question #1 is defined
as follows:

When you are asked to identify SysML
blocks, return them as a JSON
specification formatted as follows:
{blocks: [{"name": "Name of
block", "attributes": ["name":
"name of attribute", "type": "int or
bool" ...} ...]}

The typical constraints added to the knowledge are:

# Respect: each attribute must be of type
"int" or "bool" only
# Respect: Any identifier (block,
attribute, etc.) must no contain any
space. Use "_" instead.
...

Finally, Question #1 which is asked by TTool-AIto the
AI engine is, with the system specification concate-
nated at the end of it:

From the following system specification,
using the specified JSON format, identify
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Figure 2: Application of our framework to the identification
of blocks and their connections.

the typical system blocks and their
attributes. Do respect the JSON format,
and provide only JSON (no explanation
before or after).

4.2.2 Knowledge and question for Question #2

In the process of identifying signals and establish-
ing connections between blocks, the JSON format re-
mains to be used for the output is quite straightfor-
ward. However, it is crucial to respect many syntactic

and semantical constraints. For example, only signals
with corresponding attributes can be linked. Further-
more, in a connection, one signal must be classified
as an output, while the other is an input signal. Since
our diagram is a closed system, a signal must be con-
nected exactly to one other signal, among other con-
siderations.

...
#Respect: Two signals with the same name are
assumed to be connected: this is the only
way to connect signals.
#Respect: Two connected signals must have
the same list of attributes, even if they
are defined in two different blocks.
One of them must be output, the other one
must be input.
#Respect: all input signals must have
exactly one corresponding output signal,
i.e., an output signal with the same name
...

A noteworthy aspect depicted in Figure 2 is that
the input for Question #2 is the result derived from
Question #1. To accomplish this, we ask to update
the JSON of Answer #1 with signals and connections.
Given that the general framework in our system au-
tomatically incorporates the previous round’s answer
into the knowledge between two questions, we merely
need to require the update of the preceding JSON
specification. Finally, Question #2 can be sketched
as follows:

From the previous JSON and system
specification, update this JSON with
the signals you have to identify. If
necessary, you can add new blocks and new
attributes. Connect the signals accordingly
to constraints to be respected.

4.2.3 Example

Let us apply all this to our running example. We set
the maximum number of successive feedback loop it-
erations to 20. We do not specify how many blocks
we expect. In this toy example, no feedback was nec-
essary, i.e., the two questions were answered correctly
with regards to the expected output format (JSON)
and with respect to the constraints (e.g., connection
between signals). The obtained diagram is given in
Figure 3. Blocks, attributes, signals and connections
are correctly defined, as a (good) engineer would do.
The choice to use 5 blocks for this system is the one
of ChatGPT: our solution features four blocks.



block
CoinReturn

~ in collectBeverage()
~ out acceptCoins()

block
Brewer

- brewing = false : bool;
- brewingTime = 0 : int;

~ in brewCoffee()
~ in brewTea()
~ out beverageReady()

block
BeverageButton

- buttonPressed = false : bool;
- coffeeSelected = false : bool;
- teaSelected = false : bool;

~ in coinAccepted()
~ out coffeeSelected()
~ out teaSelected()

block
CoinSensor

- coinInserted = false : bool;

~ in coinInserted(int coin)
~ out coinReturn(int coin)
~ out coinAccepted()
~ in coinEjected()

block
CoffeeMachine

- coinsDeposited = 0 : int;
- firstCoinInserted = false : bool;
- secondCoinInserted = false : bool;
- beverageSelected = false : bool;
- beveragePreparing = false : bool;
- beverageReady = false : bool;
- acceptCoins = false : bool;
- true = false : bool;
- coffeeSelected = false : bool;
- teaSelected = false : bool;

~ out coinInserted(int coin)
~ in coinReturn(int coin)
~ out coinEjected()
~ in coffeeSelected()
~ in teaSelected()
~ out brewCoffee()
~ out brewTea()
~ in beverageReady()
~ out collectBeverage()
~ in acceptCoins()

block
CoinReturn

~ in collectBeverage()
~ out acceptCoins()

block
Brewer

- brewing = false : bool;
- brewingTime = 0 : int;

~ in brewCoffee()
~ in brewTea()
~ out beverageReady()

block
BeverageButton

- buttonPressed = false : bool;
- coffeeSelected = false : bool;
- teaSelected = false : bool;

~ in coinAccepted()
~ out coffeeSelected()
~ out teaSelected()

block
CoinSensor

- coinInserted = false : bool;

~ in coinInserted(int coin)
~ out coinReturn(int coin)
~ out coinAccepted()
~ in coinEjected()

block
CoffeeMachine

- coinsDeposited = 0 : int;
- firstCoinInserted = false : bool;
- secondCoinInserted = false : bool;
- beverageSelected = false : bool;
- beveragePreparing = false : bool;
- beverageReady = false : bool;
- acceptCoins = false : bool;
- true = false : bool;
- coffeeSelected = false : bool;
- teaSelected = false : bool;

~ out coinInserted(int coin)
~ in coinReturn(int coin)
~ out coinEjected()
~ in coffeeSelected()
~ in teaSelected()
~ out brewCoffee()
~ out brewTea()
~ in beverageReady()
~ out collectBeverage()
~ in acceptCoins()

Figure 3: Block diagram obtained for the running example.

4.3 Behavioral aspects

4.3.1 Identification of State Machines

Unlike the identification of blocks that needs two suc-
cessive questions, the identification of the behavior
can be done with only one question, thus following
the generic framework of Figure 1. But contrary to
previous questions, the user must first select an in-
ternal block diagram that the question takes as in-
put. Also, the system specification must preferably
be provided since a definition of blocks is generally
not enough to deduce the correct behaviour of blocks.
Finally, the complexity for the AI mostly lies in the
fact that the semantics of state machines, while being
quite easy to understand for humans, is quite complex
to explain as a knowledge. So, this is frequent that the
feedback loops must operate several times, sometimes
many times, before a syntactically and semantically
correct state machine can be obtained.

Finally, typical constraints that we specify are:

...
# Respect: in actions, use only attributes
and signals already defined in the
corresponding block
# Respect: at least one state must be
called "Start", which is the start state
# Respect: if a guard, an action, or an
after is empty, use an empty string "",

do not use "null\"
# Respect: an action contains either a
variable affectation, e.g. "x = x + 1"
or a signal send/receive
...

The question TTool-AIasks for each block of the de-
sign is the following:

From the system specification, and from
the definition of blocks and their
connections, identify the state machine
of block: ...

4.3.2 Example

We now proceed to apply the process of identifying
state machines to the block shown in Figure 3. We’ve
set a limit of 10 iterations for the feedback loop for
each state machine. Because the block diagram has
two blocks, we have two states machines to identify,
thereby necessitating an execution of the identifica-
tion question for each block (this is automated).

The resulting state machine diagram for the Cof-
feeMachine block is depicted in Figure 4. We didn’t
make any alterations to the states or transitions gen-
erated by the AI engine, and we haven’t incorporated
any user feedback. However, even after 10 iterations,
there is still useless guard (with ”true”), and one sig-
nal is used with the incorrect number of attributes.
These two issues could easily be handled by hand.

Figure 5 presents a screenshot of the AI window
in TTool. Notably, the selected question (”Identify
state machines”) is visible at the top. The left text
area displays the user input (here, the specification),
while the AI’s response can be seen in the right text
area, highlighted in red. Furthermore, the feedback
loop of TTool reports errors in blue in the right text
area: the screenshot reports 4 errors to the AI engine.

5 IMPLEMENTATION AND
EVALUATION

5.1 TTool-AI: Implementation

Integrating the TTool-AI process from Figure 1 into
TTool presents two primary challenges. Firstly, we
must select the most pertinent knowledge to automat-
ically transmit before user interactions, tailoring GPT-
3.5 to suit our particular requirements. Secondly, we
need to handle GPT’s responses in a way that (i) al-
lows easy corrections of any JSON content within the
automated feedback loop, and (ii) ensures a smooth
integration into TTool.
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Figure 4: State machine diagram of block CoffeeMachine obtained for the running example. signal sending and receiving
actions are depicted using a custom operator for a better emphasis on data exchange

Figure 5: Screen capture of TTool when identifying state machines.

5.1.1 Designing the most effective preliminary
knowledge

Preliminary remark: our implementation leverages
the capability of OpenAI’s API to inject knowl-



edge in GPT chats as a couple {input, expected an-
swer}. Thus in this section a knowledge instance
always refers to a couple of Strings that is sent by
TTool-AI prior to the specification injection. In other
terms, these knowledge instances solely encompasses
knowledge on system engineering (and on blocks, at-
tributes and methods) depicted in Figures 1 and 2.

Regarding knowledge injection, GPT-3.5 has two
constraints. Firstly, the context within a chat is re-
stricted to a fixed number of tokens (16,000 in GPT-
3.5 turbo, equivalent to approximately 12,000 words).
This context encompasses the entire conversational
history, including questions and answers exchanged
in the chat. Consequently, the knowledge injection is
subject to these limitations. In addition, the financial
cost of sending data to GPT through its API is propor-
tional to the number of tokens handled by the LLM.
Secondly, during our interactions with GPT, we ob-
served that it often fails to effectively process lengthy
knowledge instances, often facing challenges in as-
similating all the information contained within such
instances. Therefore, the knowledge instances shall
be as concise as possible.

The knowledge instances we inject thus share the
following characteristics:

1. They are limited to 200 words each. If neces-
sary, we divide the injected knowledge into sev-
eral knowledge instances to ensure GPT can pro-
cess them without losing information.

2. As shown in the examples in Section 4, they con-
sist solely of the following elements: (i) the ex-
pected JSON format and (ii) a set of constraints
elucidating the main syntactic features of SysML
profiles utilized in TTool.

It’s worth noting that whenever an incorrect model
is provided in a response, TTool-AI resets the chat
history and reintroduces only the relevant knowledge
instances to solve the errors. This helps maintain a
concise context and prevents potential future errors,
ensuring that GPT doesn’t capitalize on the wrong
model.

5.1.2 Handling GPT’s responses

The process of handling GPT’s responses primarily
involves two key stages: firstly, a syntax analysis of
the JSON content they contain, and secondly, either
generating a new SysML model or modifying an ex-
isting one based on the generated JSON.

In practical terms, when TTool-AI receives a re-
sponse from GPT, it initially attempts to extract a
JSON structure from the response. If this extrac-
tion process fails, as detailed in Algorithm 1, TTool-
AI logs any parsing errors that occurred and appends

them to the feedback question to be sent. If the JSON
is successfully extracted, TTool-AI proceeds to con-
struct a SysML model from it. In this stage, if any
syntax errors are detected, TTool-AI includes them in
the feedback question to be sent. The feedback ques-
tion is subsequently sent to GPT and this syntax anal-
ysis loop continues until one of the following condi-
tions is met: (1) TTool-AI receives a correct response
(i.e., without JSON or syntax errors), or (2) n con-
secutive feedback questions have been sent (default
in TTool: n = 20 or 10). This n prevents excessively
lengthy feedback loops. It’s worth noting that this au-
tomated feedback loop has allowed us to streamline
the set of syntactic constraints included in the knowl-
edge instances, since GPT is generally capable of rec-
tifying its responses effectively through the iterative
feedback questions.

Once the loop has terminated, if the user chooses
to apply the response as depicted in Figures 1 and 2,
then the SysML model built from GPT’s response is
drawn.

5.2 Testing environment

Tests were conducted using the most recent version
of TTool (nightly build, October 2023) paired with
the ChatGPT 3.5 turbo model. All tested systems are
available in a public, anonymous GitHub repository
at https://github.com/zebradile/ttool-ai. Within this
repository, the directories named platooning, space-
basedsystem, and AutomatedBraking contain both the
system specifications (in desc files) and the models
generated by TTool-AI (in .xml files). These system
specifications were sourced from use-case specifica-
tions of European projects. A README file at the
repository’s root offers instructions for replicating the
results. Additionally, a result.ods file details compu-
tation times, grading out of 100, and an overview of
the results which is also visualized in Table 1.

These system specifications were provided to ap-
proximately 15 master-level students after 21 hours of
instruction. These students were allotted 1.5 hours to
design and draw the state machines. They had the
opportunity to practice with at least three different
specifications prior to the assessment. It’s noteworthy
to mention that the grading criteria remained consis-
tent for both TTool-AI and the students. These cri-
teria adhere to the principles of software engineering
quality criteria. They encompass, among others, the
adequacy of the diagrams to the specification (does
the proposed architecture meet the specification? Is
the behavior of the state machines, observed through
the TTool simulator, in line with this specification?),
the quantity of exchanges between blocks, diagrams

https://github.com/zebradile/ttool-ai


readability, number of blocks and states and the con-
sistency of their naming, and the absence of attributes
declared in blocks but not utilized in state-machine
diagrams. They also include the syntactic correctness
of the models (i.e., the number of errors and warnings
detected by TTool’s syntax checker).

5.3 Results and discussion

A summary of the results can be found in Table 1. In
the table, BD stands for Block Diagram and SMD for
State Machine Diagram. In general, TTool-AIslightly
outperforms the students, both in block diagrams and
state machine diagrams. Analogous to the students’
performance, TTool-AI excels more at discerning the
system’s structure than identifying its behavior in the
context of state machines. The grading consistency
for TTool-AI is also notable: it has a standard devia-
tion of 15 points, whereas students exhibit a deviation
near 30 points.

Delving into detailed results (as shown in re-
sults.ods), it’s evident that TTool-AIadeptly man-
ages both the platooning and space-based systems.
However, with the automated braking system, which
boasts a more lengthy, intricate, and ambiguously-
written specification, students have a slight edge over
TTool-AI for state machines (but not for block dia-
grams).

Does this mean that engineers are being over-
shadowed? Fortunately, the answer is no. TTool-
AIexcels as a tool, laying out a system’s structure
and producing initial state machine diagrams swiftly
and with commendable accuracy. Its efficiency does
wane when confronted with intricate systems, iron-
ically where its efficiency would be most desired.
However, it’s essential to note that for this assess-
ment, the human interaction aspect in TTool-AIwas
disabled. We believe that if students had paired their
efforts with TTool-AI within the 1.5-hour timeframe,
they would’ve likely achieved superior grades. Sim-
ilarly, we anticipate engineers to benefit immensely:
harnessing TTool-AIfor initial, time-intensive archi-
tecture and state machine designs, and subsequently
refining these preliminary drafts, whether manually or
in tandem with the AI.

6 RELATED WORK

The automatic generation of (formal) models from
system specifications has been a persistent research
challenge. As elucidated in the comprehensive liter-
ature review contained in (Landhäußer et al., 2014),
this area of study has been active since the late 1990s.

However, the process of model generation often re-
quires imposing constraints on the syntax of input re-
quirements or necessitates manual preprocessing, as
exemplified in the work by Gelhausen et al. (Gel-
hausen and Tichy, 2007). Recent advancements, such
as the ARSENAL framework (Ghosh et al., 2016),
have introduced model generation approaches that
minimize restrictions on the input language. Nonethe-
less, even with these powerful tools, certain natural
language expressions can still pose challenges, elud-
ing their automated transformation into formal mod-
els. We are of the opinion that the recent advance-
ments in the practical applicability of generative AI
models, such as GPT, present an opportunity for han-
dling system specifications written in totally-free nat-
ural language. Leveraging these AI models, as em-
phasized in the preceding sections, helps reducing the
research effort on language processing but directs it
toward tailoring the model to suit the requirements of
the modeling process.

More broadly, the subject of modeling assistants
is not a recent development in research and engineer-
ing. In a comprehensive survey conducted by Savary-
Leblanc et al. (Savary-Leblanc et al., 2023), which en-
compassed papers published between 2010 and 2022,
the authors identified 11 notable papers introducing
tools aimed at aiding engineers in the process of
model design. Among these papers, four specifically
concentrated on UML models, with one of them ad-
dressing SysML models, introducing a tool that offers
support for the design of use-case diagrams (Aquino
et al., 2020). Furthermore, recent research has ex-
plored the development of AI-based Model-Based
Systems Engineering (MBSE) assistants within the
context of the growing trend of AI-based methods and
tools. In this context, Chami et al. (Chami et al.,
2019) introduced a framework grounded in natural
language processing (NLP) that autonomously gener-
ates SysML use-case and block diagrams from tex-
tual requirements inputs. Furthermore, Schräder et
al. (Schräder et al., 2022) introduced three AI-based
MBSE assistants, each serving distinct purposes: a
workshop assistant capable of converting hand-drawn
sketches into formal SysML models, a knowledge-
based assistant offering design suggestions based on
training data derived from a set of models, and a chat-
bot designed to process natural language queries re-
lated to modeling and provide responses in a natural
language format.

However, with the emergence of the use of GPT
3.5 in 2022, chatbots, particularly those harness-
ing the capabilities of large-language models (LLM),
have demonstrated their potential beyond their tradi-
tional role of handling basic question-and-response



Table 1: Evaluation results: time to produce block and state machine diagrams, and related grade

Time BD (s) Grade BD (/100) Time SMD (s) Grade SMD (/100)
Average 40 81 178 63
Std dev. 10 16 97 15

(a) TTool + AI
Time BD (s) Grade BD (/100) Time SMD (s) Grade SMD (/100)

Average 2700 70 2700 58
Std dev. — 26 — 32

(b) Students

interactions. Due to their versatility, LLMs have been
adapted to address a large variety of challenges and
MBSE assistance is no exception. Indeed, these chat-
bots can now generate responses formatted to cater
specifically to the requirements of model designers,
such as producing UML diagrams with a remark-
ably low rate of syntax errors (Cámara et al., 2023).
In this study, the authors assessed ChatGPT’s model
generation capabilities by tasking it with producing
UML class diagrams based on specifications provided
in natural language. An examination of the algo-
rithm’s responses to 40 distinct modeling exercises
led the authors to the observation that ChatGPT fre-
quently succeeded in generating syntactically correct
models. However, it was noted that the semantic ac-
curacy of these models (particularly concerning the
relationships between classes) was not consistently
achieved. Given these imperfections, achieving an ac-
curate model necessitates a series of iterative inquiries
to refine and enhance the output. Consequently, the
authors concluded that the effort required by the user
is still important. We believe that our contribution
plays a role in tackling this issue, thanks to the au-
tomated feedback loop our process involves, which
results in significant time savings. In a more archi-
tecture process-oriented study, Ahmad et al. (Ahmad
et al., 2023) present a comprehensive report detailing
their use of ChatGPT for software architecture tasks,
which include generating requirements, UML mod-
els, and evaluating the proposed architecture. Their
experiment highlights the utility of ChatGPT as an
assistant for software architects, but also raises sev-
eral concerns about its responses, including response
variability and ethics/intellectual property issues. In
both cases, human analysis and, if necessary, itera-
tive questioning are essential to converge towards a
correct system architecture. At an earlier stage in the
design cycle, LLM have also been evaluated on the
generation of goal-models (Chen et al., 2023; Naka-
gawa and Honiden, 2023), yielding promising results
when used judiciously (e.g., through the incorpora-
tion of feedback and/or running multiple prompts).

To the best of our knowledge, our contribution is

the first to report the direct integration of ChatGPT
into an MBSE toolkit, incorporating automatic dia-
gram generation from the LLM’s responses and au-
tomating the feedback loop.

7 CONCLUSION

This paper introduces a novel environment designed
to aid engineers in their modeling endeavors. To
achieve this, we have integrated a tool, TTool, with
a chatbot, ChatGPT. Two primary contributions stand
out: the knowledge we embed within the AI system
and the feedback loop that refines and steers the AI
toward a more accurate model. Our evaluation, with
various systems, underscores the significance of our
approach.

However, applying this to full-scale problems re-
mains a challenge. The constraints on the AI’s knowl-
edge capacity, paired with the degradation in model
quality when overloading it with information, need
addressing. Traditional methods such as hierarchical
modeling, incremental modeling, and refinement pro-
cesses offer potential solutions. We expect to make
further contributions in this realm in the upcoming
months.
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