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ABSTRACT

Cardiac longitudinal relaxation time (747) and extracellular volume
(ECV) are valuable bio-markers used for the quantitative character-
ization of cardiac tissue properties, showing great potential in many
clinical applications such as diffuse fibrosis. However, cardiac 11
and ECV mapping is difficult because of respiratory and cardiac
motions. A unique challenge for post-contrast 77 mapping is that
the concentration of contrast agent also changes over time. Re-
cently, a linear tangent space alignment (LTSA) model-based fast
MRI method has been proposed to enable high-resolution, high-
frame-rate dynamic MR with sparsely sampled (k, t)-space data by
leveraging the intrinsic low-dimensional manifold structure of dy-
namic MR images, showing superior performance over the low-rank
model-based methods. This work extends the LTSA method by
imposing an additional sparsity constraint on the subspace align-
ment matrix of the LTSA model for improved image reconstruction.
The performance of the proposed method is validated in 3D free-
breathing, pre- and post-contrast cardiac 77 mapping as well as ECV
mapping using in vivo data acquired on healthy volunteers at 3T.

Index Terms— MR image reconstruction, cardiac 77 mapping,
cardiac extracellular volume mapping, linear tangent space align-
ment (LTSA), manifold learning

1. INTRODUCTION

Cardiac 7 mapping is a useful diagnostic tool for detecting car-
diac diseases that alter the myocardium tissue composition, such as
myocarditis, amyloidosis, or Anderson-Fabry disease [1, 2]. Car-
diac 71 mapping, performed before and after contrast agent injec-
tion, enables the quantification of extracellular volume (ECV). This
emerging bio-marker is important for diseases such as diffuse fibro-
sis, a condition particularly challenging to detect using the qualita-
tive late gadolinium enhancement (LGE) [1, 2]. However, cardiac
T1 and ECV mapping is difficult because of respiratory and cardiac
motions. A unique challenge for post-contrast 7 mapping is that
the concentration of contrast agent also changes over time. Clini-
cally, cardiac 71 and ECV mapping are performed using the Modi-
fied Look-Locker Inversion recovery (MOLLI) method [3], which is
a 2D imaging technique with electrocardiogram (ECG)-gated acqui-
sition during breath holding. Depending on the heart beat rate, the
subjects need to hold their breath for more than 10 seconds, impos-
ing a substantial burden on patients especially for multi-slice acqui-
sitions to cover the whole heart. Various efforts have been made to
enhance the applicability of MOLLI for multiple 2D slices [4] or 3D
[5] cardiac 71 mapping, leveraging sparse sampling strategies such

as Compressed Sensing and Parallel Imaging. These approaches
have shown promise in addressing some of the existing challenges
associated with cardiac 77 and ECV mapping but still require breath-
holding and/or provide limited spatial coverage and resolution in the
slice direction.

Over the past decade, many advanced reconstruction models
have been proposed to enable high-resolution artifact-free dynamic
images from highly undersampled (k,t)-space data. The Low-
Rank model (LR) [6] assumes the (k,t)-space data lie on a low-
dimensional subspace, which significantly reduces the number of
unknowns in the resultant image reconstruction problem. The LR-
based method has been applied to free-breathing 3D joint Tlle
mapping of the heart and shown good agreement between the es-
timated myocardium 7% values with the MOLLI method in the
presence of transmit B; inhomogeneities at 3T [7]. This model
has been further extended to Local Low-Rank (LLR) model [8, 9],
which exploits the local low rank structures adapted to the neigh-
borhood of image patches. Another extension of the LR model,
termed multi-scale Low-Rank [10] model, seeks to harness the ad-
vantages of both sparse LR and LLR methods, accommodating a
broad spectrum of dynamic variations. Methods based on Low-Rank
tensor (LRT) decomposition [11] leverage the inherent correlations
of high-dimensional multi-array data along multiple directions, e.g.,
the correlation of the dynamic images along the temporal changes
due to respiratory motion, cardiac motion, and 7 contrast changes,
respectively, as in the MR Multitasking method [12, 13] and a patch-
based LRT model [14] for cardiac 77 mapping. Deep learning-based
methods [15, 16] have also been developed to reduce the number
of heartbeats required in cardiac 77 mapping with breath-holding
acquisitions.

This work presents a 3D free-breathing cardiac ECV mapping
method using a Linear Tangent Space Alignment (LTSA) model-
based framework for data acquisition and image reconstruction [17].
The LTSA model exploits the intrinsic low-dimensional manifold
structure of high-dimensional dynamic MR images via a bi-linear
model, which can be considered a nonlinear generalization of the
linear LR and LRT model. The LTSA model has been applied to
reconstruct high-resolution, high-frame-rate dynamic images from
sparsely sampled (k,t)-space, showing superior performance over
the state-of-the-art real-time imaging methods. In this study, we ex-
tended this method by incorporating an additional sparsity penalty
on the alignment matrix of the LTSA model for improved image re-
construction performance. We demonstrated the performance of the
proposed method in 3D cardiac ECV mapping on healthy subjects.
Specifically, the contributions of this work are:

* Introduce an additional sparsity constraint on the subspace align-



ment matrix to the LTSA model for improved image reconstruc-
tion;

* Compare the performance of the sparsity constrained LTSA
model against two state-of-the-art methods (i.e., the LTSA
method without sparsity constraints on the alignment matrix and
the LR+S method);

* Validate the performance of the proposed model in 3D free-
breathing, pre- and post-contrast cardiac 77 and ECV mapping
using in vivo data acquired on healthy volunteers at 3T.

2. METHODS

2.1. Linear Tangent Space Alignment (LTSA) model for dy-
namic MRI

The Linear Tangent Space Alignment (LTSA) model [17, 18] as-
sumes that high-dimensional dynamic MR images lie in a low-
dimensional manifold of dimension D:

Xm = f(Tm),m=1,....,.M €))

where x,, € CV*! denotes the temporal signal at voxel m, N the
number of time frames, M the number of voxels, T, € CP*! the
corresponding coordinate in the feature space, and f the unknown
nonlinear mapping between the feature and input spaces.

The local structure of the underlying manifold is constructed by
grouping frames of the dynamic MR images into several neighbor-
hoods based on certain similarity metrics or surrogate signals (e.g.,
motion navigators or ECG signals). The temporal signals of a voxel
at 7, in a neighborhood ¢ € {1, ..., Q} can be expressed as:

X0 =[e(rn, 57), . w(r, )]
=Igxpm = g f(Tm),

€]

where TT, € RP2*¥ s a selection operator that selects the frames
in the g-th neighborhood from the whole dynamic image series and
t;q) € {t1,...,tn},p = 1,..., P, denote the time stamps of the
selected frames in the g-th neighborhood. The first order Taylor ex-
pansion yields the following approximation of the signals in the g-th
neighborhood :

X%) ~ I f(Tq) + Mg Js (Tg) (Tm — T4q), (3)

where I, f(7) is the centroid of the signals in the g-th neighbor-
hood, 7, is the corresponding coordinate in the feature space, and
J;(-) € CV*P denotes the Jacobian matrix of .

On the other hand, the signals in the g-th neighborhood can be
expressed by a local Casorati matrix X, € CMxFq g

w(ry, ") w(ry, t50)
X, = : : . 4)
(’l’M,t(q)) (TM,t(q))

As in the LR model, the Casorati matrix X, can be approximated by
a (D + 1)-dimensional subspace:

X, =0,%, ®)

where the columns of ®, € CP1*(P+Y are the temporal bases
spanning the subspace and ®, € CM*P*Y denotes the corre-
sponding local coordinates.

With additional assumptions regarding smoothness and regular-
ity of the underlying manifold and by combining Eq. (3) and Eq. (5),
we obtain the following linear tangent space alignment model [17,
18]:

Q Q
X = X, I, = > TL®;I, (6)

where X denotes the Casorati matrix formed by the entire dynamic
image series, T € CM* (D+1) denotes the augmented global coor-
dinates of the manifold, and L, € CPTVXP+D) o — 1
denote the linear transform matrices that align the local coordinates
to the global ones.

2.2. LTSA-based image reconstruction with sparsity constraints

We formulate the image reconstruction problems as the following
optimization problem:
T 2
= I Tl

argmlnH ( ZTL <I’T )d
, )

S ILIE + Az ID(TL) |, + A [lvec(L)]l; ,

2

where d denotes the measured data in the (k, ¢)-space, Q a (k, t)-
space sampling operator, Fs the Non-Uniform Fast Fourier Trans-
form (NUFFT) operator [19], ||-||  the Frobenius norm, D the finite
difference operator, and L = [Ly, ..., Lg]. In addition to the data
fidelity term, a total variation penalty is added to promote smooth-
ness in the local coordinates. The second and third term of the cost
function are ¢>-norm regularization, added to improve numerical sta-
bility. Finally, a sparsity constraint on the L matrix is added using
the ¢;-norm. The cost function in Eq. (7) extends the one used in
[17] by enforcing sparse linear transform matrices L, in order to
better select the tangent spaces to be aligned, leading to improved
reconstructions. The temporal basis ®, can be estimated directly
from the acquired data via singular value decomposition (SVD) as
in [17].

The non-convex optimization problem in Eq. (7) can be solved
using a nested variation of the Alternating Direction Method of Mul-
tipliers (ADMM) [20] algorithm as follows, where we use subscripts
“out” and “in” to refer to variables of the outer and inner ADMM
loops:
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where Gt is the augmented Lagrangian split variable, n,,,, is the
dual variable, po.+¢ is a scalar relaxation parameter, and S, /pout is
a soft-thresholding operator with threshold *r/p,... The optimiza-
tion problem in Eq. (8) is convex and can be solved using the conju-
gate gradient method.

The update of L in Eq. (9) is performed using a nested ADMM,
resulting in the following updates:

2

Q

LHLID g mﬁn% Q <Fs ZT(k+1)Lq‘I’};Hq> —d
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The first sub-problem can be readily solved using conjugate gradient
while the other updates have a closed-form solution.

2.3. Implementation

The reconstruction algorithm in Section 2.2 was implemented on
graphics processing units (GPUs) using Python and the CuPy li-
brary [21] with custom kernels implemented using the Compute
Unified Device Architecture (CUDA). The solver was based on
the SigPy framework [22], and the MMRT package' was used to
perform NUFFT on GPUs. Reconstructions were preformed on a
computing cluster featuring four Tesla V100-SXM2 GPUs, each
equipped with 16 GB of memory. Reconstructions were performed
coil-by-coil parallelized over the four GPUs and later combined by
computing the root-mean-square average of per-coil reconstructions.

3. RESULTS

3.1. Data acquisition

Experiments were performed on four healthy subjects (1 male and 3
females; 43 =+ 16 years) under a study protocol approved by the local
institutional review board (IRB). A 3T PET/MR scanner (Biograph
mMR, Siemens Healthcare, Erlangen, Germany) was used for imag-
ing with a body coil for transmission and spine and surface coils
for reception. Cardiac 7} mapping was performed before and 10
minutes after the administration of contrast agent (0.1 mmol/kg of
Dotarem) using a 3D, free-breathing, ECG-gated, FLASH sequence
with 10 — (3) — 10 — (3) protocol and sparse sampling along a
stack-of-stars trajectory [7]. The imaging parameters were: field-
of-view (FOV) = 308 x 308 x 144 mm?®, spatial resolution =
1.9x 1.9 x 4.5 mm’, TR/TE = 4.2/1.7 ms, FA = 9°, inversion de-
lay times = 100/180 ms, acquisition window per frame = 138.6 ms,
and total number of frames = 900 which corresponds to an imaging
time of 14.3 &= 2.3 min and 12.7 4 2.4 min for pre- and post-contrast
acquisitions, respectively.

3.2. Image reconstruction results

Throughout the rest of this paper, we refer to the original formulation
of the LTSA method (with A, = 0 in Eq. (7)) as LTSA and the pro-
posed method (A, > 0) as sparse-LTSA (sLTSA). Fig. 1 shows the

lavailable at https://github.com/mritools/mrrt.nufft

results from the proposed method in comparison with those from the
LTSA method and the LR method with a TV-sparsity penalty to pro-
mote piece-wise smoothness of the reconstructed images (LR+S) as
in [23]. Table 1 summarizes the parameters employed for the recon-
structions. The same set of parameters was used across all subjects,
demonstrating robust performance across the subjects.

H LTSA sLTSA H
ur le-5 le-5
1153 le-10 le-10
AT le-10 le-10
AL 0 le-12
pout  0.0001  0.0001
Pin le-8

Table 1. Hyper-parameters used for the LTSA-based image recon-
structions.

While all three methods yield reasonable reconstructions, the
SLTSA method better mitigated the aliasing artifacts arising from
undersampling compared to the other methods (as indicated by red
arrows in the middle row of Fig. 1). Specifically within the car-
diac region, the myocardium wall in the images reconstructed by
the SLSTA method appeared sharper when compared to the LR or
the LTSA method (yellow arrows in the middle and bottom row of
Fig. 1).

frame #43 frame #24

frame #541

LR LTSA

sLTSA

Fig. 1. Representative reconstructed frames using: the LR (left col-
umn), the original LTSA (middle column) and the proposed sLTSA
(right column) methods.

3.3. 71 and ECV mapping results

Joint 7% /B, mapping was performed as described in [24], on the LR,
LTSA and sLTSA reconstructions. The variable projection method
was used to isolate the nonlinear components of the model. Basis
functions were synthesized using the Bloch equation simulation on
a grid of 7% and B; values. For each respiratory phase, voxel-by-
voxel fitting was performed to select the T1/B; pair that best fitted
the data. As 77 values vary over time in the post-contrast acquisition,
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Fig. 2. T1 maps obtained via MOLLI acquisition (left) compared to
different methods: LR (second column), LTSA (third column) and
SsLTSA (fourth column) shown for basal and mid-ventricular slices
for the pre- and post-contrast injection. Last two rows are the cor-
responding ECV maps with a HCT of 40.9% measured from blood
samples.

a linear T evolution model was assumed and an additional 77 rate
of change variable was incorporated in the basis functions and the
grid search for post-contrast 71 mapping.

ECV maps were derived from estimated pre- and post-contrast
T7 maps [1]:

1 1
post-contrast Ty (7 - pre-contrast T1 (T
ECV(r) = (1—HCT)x st 11 (r) B (15)
post-contrast T1 blood - pre-contrast T1 blood

where HCT represents the hematocrit value, a measure between 0
and 1, indicating the proportion of red blood cells in the subject’s
blood and determined through a blood sample, and 7 is the position
in the spatial domain after affine registration was performed to align
pre- and post-contrast 7% maps.

Fig. 2 shows the representative pre- and post-contrast 77 maps
as well as ECV maps obtained by the LR, LTSA, and sLTSA, respec-
tively. The results obtained by the MOLLI method in the same slice
positions acquired with breath-holding are also shown as reference.
ECV maps obtained from the proposed method display reduced ar-
tifacts in the intracavitary blood pool compared to LR and LTSA.
Fig. 3 shows the mean and standard deviation of the estimated 71
values in the intracavitary blood pool and myocardium for the com-
pared methods. As can be seen, the pre-contrast 77 maps obtained
by the LR method overestimated the 7% values of both myocardium
and blood pool both qualitatively as shown in Fig. 2 and quantita-
tively as shown in Fig. 3. Compared to the LR method, the LTSA
and sLTSA methods produced more accurate pre- and post-contrast
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Fig. 3. T4 values from the mid-ventricular slice in the intracavi-
tary blood pool and myocardium. Horizontal lines correspond to the
MOLLI reference. Error bars indicate the standard deviation in the
region.

T7 maps that are in good agreement with MOLLI. Compared to
the LTSA method, the additional sparsity constraint in the sLSTA
method further improved the quality of the reconstructed paramet-
ric maps. Notably, the myocardium walls in the pre-contrast 77 and
ECV maps obtained by the sSLTSA method were better defined than
those by the LTSA method.

4. CONCLUSION

This work presents a sparsity constrained Linear Tangent Space
Alignment (sLTSA) model for free-breathing 3D cardiac 77 map-
ping. The performance of the proposed method is validated using
in vivo MR data acquired from healthy subjects at 3T. The pro-
posed method produced pre- and post-contrast 77 maps and ECV
maps in good agreement with the reference 2D MOLLI method and
showed superior performance both qualitative and quantitatively
when compared to the Low-Rank method and the original LTSA
method.
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