
HAL Id: hal-04462010
https://telecom-paris.hal.science/hal-04462010

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Embeddings and Rules for Fact Prediction
Armand Boschin, Nitisha Jain, Gurami Keretchashvili, Fabian M. Suchanek

To cite this version:
Armand Boschin, Nitisha Jain, Gurami Keretchashvili, Fabian M. Suchanek. Combining Embeddings
and Rules for Fact Prediction. International Research School in Artificial Intelligence in Bergen, 2022,
Bergen (NO), Norway. �10.4230/OASIcs.AIB.2022.4�. �hal-04462010�

https://telecom-paris.hal.science/hal-04462010
https://hal.archives-ouvertes.fr

Combining Embeddings and Rules1

for Fact Prediction2

Armand Boschin !3

Télécom Paris4

Institut Polytechnique de Paris, France5

Nitisha Jain !6

Hasso Plattner Institute7

University of Potsdam, Germany8

Gurami Keretchashvili !9

Télécom Paris10

Institut Polytechnique de Paris, France11

Fabian Suchanek !Ï12

Télécom Paris13

Institut Polytechnique de Paris, France14

Abstract15

Knowledge bases are typically incomplete, meaning that they are missing information that we would16

expect to be there. Recent years have seen two main approaches to guess missing facts: Rule Mining17

and Knowledge Graph Embeddings. The first approach is symbolic, and finds rules such as “If18

two people are married, they most likely live in the same city”. These rules can then be used to19

predict missing statements. Knowledge Graph Embeddings, on the other hand, are trained to predict20

missing facts for a knowledge base by mapping entities to a vector space. Each of these approaches21

has their strengths and weaknesses, and this article provides a survey of neuro-symbolic works that22

combine embeddings and rule mining approaches for fact prediction.23

2012 ACM Subject Classification Information systems → Information systems applications24

Keywords and phrases Rule Mining, Embeddings, Knowledge Bases, Deep Learning25

Digital Object Identifier 10.4230/OASIcs.AIB.2022.426

Category Invited Paper27

Acknowledgements This work was partially funded by ANR-20-CHIA-0012-01 (“NoRDF”).28

1 Introduction29

A knowledge base (KB) is a computer-processable collection of knowledge about the world.30

KBs typically contain real-world entities (such as organizations, people, movies, or locations)31

and their relationships (who was born where, which movie plays where, etc.). Thousands of32

such KBs are publicly available, including, e.g., Wikidata [60], DBpedia [4], and YAGO [53].33

These KBs contain millions of entities and relationships between them, saying, e.g., who34

was born in which city, which actor acted in which movie, or which city is located in which35

country. Such KBs are used for question answering, Web search, text understanding, personal36

assistants, and other AI applications [66].37

KBs are usually never complete; there are always facts that are missing from the KB. This38

is due to the way in which KBs are constructed: Some of them are constructed automatically39

by extracting facts from Web sources. Such an extraction may fail to extract all information,40

and the underlying sources can be incomplete themeselves. Other KBs are fed by a community,41

and may be incomplete simply because not all facts have yet been added. Fact prediction is42

the task of predicting facts that are true in the real world, but missing in the KB. Although43

© Armand Boschin and Nitisha Jain and Gurami Keretchashvili and Fabian Suchanek;
licensed under Creative Commons License CC-BY 4.0

International Research School in Artificial Intelligence in Bergen (AIB 2022).
Editors: Camille Bourgaux, Ana Ozaki, and Rafael Peñaloza; Article No. 4; pp. 4:1–4:30

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:armand.boschin@telecom-paris.fr
mailto:Nitisha.Jain@hpi.de
mailto:gkeretch@ip-paris.fr
mailto:suchanek@telecom-paris.fr
https://suchanek.name
https://doi.org/10.4230/OASIcs.AIB.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2 Combining Embeddings and Rules for Fact Prediction

x

y

z

livesIn

married

live
sIn

Rule Mining Embeddings

lives
In(r)

x + r = zx

z

Figure 1 Rule Mining and Embeddings

this may never make the KB complete, it will at least add facts that were missing. There are44

two major approaches to this end: Rule Mining and Knowledge Graph Embeddings. Rule45

mining is a symbolic approach. It finds rules such as the following in a KB:46

married(x, y) ∧ livesIn(x, z)⇒ livesIn(y, z)47

This rule means that if some person x is married to some person y, and x lives in a city z,48

then y also lives in that city. Such rules are usually not true in all instances, and typically49

come with a confidence score. Modern systems [30, 34, 40] can find such rules automatically50

on KBs of millions of entities. These rules can then be used to predict missing facts: If we51

know that some person lives in some city, but we do not know the place of residence of their52

spouse, we can use the rule to predict that, with high likelihood, the spouse lives in the same53

city.54

The other methods to predict missing facts are embedding-based methods. These methods55

are a gift of the renaissance of neural networks in the 2010’s. They project the entities56

and facts of a KB into a vector space. In its simplest variant, an entity x is mapped to57

its embedding, the vector ~x. A relationship r, likewise, is mapped to a vector ~r. These58

embeddings have the following property: If ~r is the vector for the livesIn relationship, then we59

can walk from the embedding ~x of a person x to the embedding ~z of their place of residence60

z by computing ~z = ~x+ ~r. This gives us another way of guessing the place of residence for61

some person y: We just find the city whose embedding is closest to ~y + ~r.62

Each of these methods has its advantages and disadvantages: While rules are easy to63

understand for humans (and embeddings are less intuitively accessible), embeddings can64

take into account signals from all facts in which an entity occurs (and not just the ones65

mentioned in the rule, which are typically few). Therefore, recent years have seen fruitful66

endeavors to combine neural methods with symbolic methods. Both rule mining techniques67

and embedding techniques have been surveyed in recent articles [62, 9, 46, 73], among which68

is our own previous tutorial article [54]. Hence, in this tutorial, we survey approaches that69

combine both techniques.70

The article is structured as follows: Section 2 introduces knowledge bases, rule mining71

techniques, and embedding techniques, following largely [54]. Section 3 discusses embeddings72

in more detail. Section 4 discusses embedding techniques that use rule mining techniques.73

Section 5, vice versa, discusses rule mining techniques that use embedding techniques. We74

conclude in Section 6.75

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:3

2 Preliminaries76

2.1 Knowledge Bases77

Knowledge Bases. To define a knowledge base [54], we need a set I of entities. An entity is78

anything that can be an object of thought [67]. General-purpose KBs are typically concerned79

with entities such as places (e.g., Paris, or India), people (such as politicians, scientists,80

or actors), organizations (such as companies or associations), or artworks (such as movies,81

books, etc.). But knowledge bases can also be concerned with biomedical entities, geological82

formations, scientific articles, or any other type of entities.83

In what follows, we assume a set R of binary relation names (also called relations,84

relationships, or predicates). For example, the relation locatedIn holds between a city and a85

country; the relation actedIn holds between an actor and a movie; and the relation president-86

Of holds between a person and a country. Finally, we need a set L of literals. These are87

strings or numbers. A fact (or an assertion, triple, or statement) is then of the form 〈s, r, o〉88

with a subject s ∈ I, a relation r ∈ R and an object o ∈ I ∪ L [30]1. An example of a fact is89

〈Paris, locatedIn, France〉. The inverse of a relation r is a relation r−, so that 〈x, r, y〉 holds90

if and only if 〈y, r−, x〉 holds. For example, the inverse of hasNationality is hasCitizen. A91

knowledge base K over the sets I,R,L is then a set of facts over these sets. Whenever K is92

clear from the context, we write 〈s, r, o〉 to mean 〈s, r, o〉 ∈ K.93

Taxonomies. Knowledge bases typically also define classes. Intuitively, a class can be94

understood as a set of entities, its instances. For example, the class of capital cities contains95

the city of Paris, the city of Beijing, etc. Many formalisms use unary predicates to express96

class membership, stating, e.g., city(Paris). If every instance of some class y is also an97

instance of some class y′, then y is called a subclass of y′. For example, the class capitalCity98

is a subclass of the class city, which is itself a subclass of geographicLocation. This gives us a99

hierarchy of classes – the taxonomy. Figure 2 shows an example of a taxonomy of classes.100

Many KBs express the taxonomy by binary relations. To say that an entity x belongs to101

a class y, the KB adds the triple 〈x, type, y〉. To say that a class y is a subclass of a class y′,102

we add 〈y, subclassOf, y’〉. However, a taxonomy has an inherent semantics that is different103

from other facts that hold between entities, and therefore, one is usually ill-advised to treat104

the link 〈Paris, type, city〉 in the same way as 〈Paris, locatedIn, France〉.105

Axioms. KBs typically come with a set of logical constraints. For example, we can impose106

that if x is an instance of a class y, and if y is a subclass of the class y′, then x must also be107

an instance of y′:108

〈x, type, y〉 ∧ 〈y, subclassOf, y′〉 ⇒ 〈x, type, y′〉109

Typical axioms are the following:110

Domain and Range Constraints say that the subject (resp. object) of a relation must111

belong to a certain class, as in “People are born in places (and not, say, in organizations)”.112

Cardinality Constraints say that the number of objects per subject for a certain113

relation is restricted, as in “People can have at most one birth place”.114

Symmetry, transitivity, and inverse constraints say that a relation is symmetric,115

transitive, or the inverse of another relationship.116

Disjointness constraints say that two classes cannot have instances in common, e.g.,117

places and people.118

1 For our purpose, in line with the other works [17, 18, 40], we do not consider blank nodes.

AIB 2022

4:4 Combining Embeddings and Rules for Fact Prediction

Animals

Without BackboneWith Backbone

Arthropoda Annelida PoriferaWarm-blooded Cold-blooded

Birds

Mammals

Reptiles

Fish

Figure 2 Taxonomy Example

Such axioms exist in packages of different complexity: The Resource Description Framework119

Schema RDFS is a system of basic axioms that are concerned mainly with class membership.120

The axioms are so basic that they cannot result in contradictions. The Web Ontology121

Language OWL is a system of axioms that exists in several flavors – from the simple to122

the undecidable [54]. Such packages of axioms, together with the taxonomy, are sometimes123

called ontology or schema. Automated reasoners can be used to (1) predict facts that follow124

logically from these axioms and (2) determine whether a KB is inconsistent with respect to125

these axioms.126

Fact Prediction. In what follows, we will assume an ideal knowledge base K∗, which127

contains all facts of the real world (see [44] for a discussion of such a KB). One typically128

assumes that all facts in some given KB K are also true in the real world, i.e., K ⊆ K∗.129

However, the KBs are typically incomplete, i.e., there are facts in the real world that are not130

in the KB (i.e., K (K∗). Predicting a fact f that is true in the real world, but not yet in131

the KB, is called the problem of fact prediction.132

World Assumptions. Fact prediction is complicated by the fact that the KBs typically do133

not store negative information [43]. That is: while a KB may store that Elvis Presley has134

sung the song “All Shook Up”, it will not store the fact that he did not sing the song “The135

Winner Takes It All”. This raises the question what we should do if the KB does not contain136

certain statements (e.g., the KB does not contain the fact that Elvis sang “Always on my137

mind”, which is true in the real world). In a database, one would assume that any fact that138

does not appear in our data is not true in the real world – an assumption known as the139

Closed World Assumption. This assumption, however, is usually false for KBs, as KBs are140

highly incomplete and miss many facts from the real world. Hence, it is more appropriate to141

make the Open World Assumption, which says that if an assertion is not in the KB, it may142

or may not be true in the real world. Thus, in our example, if the KB does not contain the143

assertion that Elvis sang “Always on my mind”, we would not be entitled to conclude that144

this assertion would be false in the real world (which it is indeed not).145

Negative assertions. A negative assertion is a statement that is known to be false. Such146

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:5

statements are essential as counter-examples in rule mining and fact prediction, so as to147

avoid an over-generalization. For example, Woody Allen married his step-daughter. If we148

find 10 other people who married their step-daughter, and no person who is not married to149

their step-daughter, we would conclude that people in general marry their step-daughters.150

The problem is now that KBs do not contain negative assertions. No KB tells us that Elvis151

Presley was not married to his step-daughter. And the Open World Assumption prevents us152

from assuming this negative assertion from the facts that are in the KB. This means that we153

have, in theory, no way to generate counter-examples for rule mining and fact prediction.154

Hence, we could mine the rule “Everybody is married to their step-daughter” without any155

obstruction.156

Several remedies have been proposed. One is the Partial Completeness Assumption, or157

Local Closed World Assumption [17]. It says that if a KB contains the facts 〈s, r, o1〉, ...,158

〈s, r, on〉, then any fact 〈s, r, o′〉 with o′ 6∈ {o1, ..., on} must be false in the real world. The159

rationale is that if some contributor made the effort to add the objects o1, ..., on, they would160

for sure also have added any remaining object o′. It can be shown that this assumption is161

generally true for relations that have few objects, such as hasBirthDate or hasNationality [18].162

Indeed, in most KBs, the relations are designed in such a way that the average number of163

objects per subject is lower than the average number of subjects per object [18]. For example,164

a KB is more likely to contain the relation hasNationality (one person has few nationalities)165

rather than hasCitizen (one country has millions of citizens). A relation that has a higher166

average number of objects per subject than subjects per object can simply be replaced by its167

inverse [18]. With this, the PCA works generally well.168

The method can be used as follows to generate a large number of negative examples: take169

any fact 〈s, r, o〉 from the KB, replace o by a randomly chosen object o′ such that 〈s, r, o′〉 is170

not in the KB, and assume that 〈s, r, o′〉 is a negative assertion. The assertion 〈s, r, o′〉 is171

called a corrupted variant of 〈s, r, o〉. The method is also often applied in the same way to172

the subjects of the triples. This, however, creates a problem: Since relations generally have173

more subjects per object than vice versa, the PCA is much less plausible in this setting. For174

example, while it is, under the PCA, safe to assume that if some person Mary is American,175

she is not French, it is not safe to assume there are no more Americans than those in the176

KB. This is why the original PCA is applied only to the objects.177

2.2 Rule Mining178

Rules and Axioms. We have already seen that KBs can come with axioms, such as the179

symmetry of a relation. These axioms are usually defined manually, and they allow no180

exceptions. In what follows, we will be concerned with rules. These also express constraints181

on the data, but different from axioms, they are not imposed on the data, but automatically182

mined from the data. As such, they also allow for exceptions. For example, we can find that183

marriedTo is “usually” symmetric in the data of a given KB, meaning that for most couples,184

the marriedTo fact holds in both directions – although there are some couples for which the185

relation holds only in one direction, presumably because of missing data. This is why such186

rules are also called soft rules (as opposed to the “hard” axioms). Let us now make this idea187

more formal.188

Atoms and Rules. An atom is an expression of the form 〈α, r, β〉, where r is a relation189

and α, β are either entities or variables [30] (we write variables in lower case, and entities in190

upper case). For example, 〈x, livesIn,Berlin〉 is an atom with one variable, x. An atom is191

instantiated if at least one of its arguments is an entity. If both arguments are entities, the atom192

is grounded and tantamount to a fact. A conjunction of atoms B1, ..., Bn is of the form B1∧...∧193

AIB 2022

4:6 Combining Embeddings and Rules for Fact Prediction

Bn. For example, we can build the conjunction 〈x, livesIn, Paris〉∧〈x,wasBornIn,Berlin〉,194

which, intuitively, designates all people x who were born in Berlin and live in Paris. To make195

this intuition more formal, we need the notion of a substitution. A substitution σ is a partial196

mapping from variables to entities. Substitutions can be straightforwardly extended to atoms197

and conjunctions. For example, the substitution σ = {x → Mary} can be applied to our198

conjunction above, and it yields 〈Mary, livesIn, Paris〉 ∧ 〈Mary,wasBornIn,Berlin〉.199

A (Horn) rule is a formula of the form B1 ∧ ... ∧Bn ⇒ H, where the B1 ∧ ... ∧Bn is a200

conjunction of body atoms, and H is the head atom. An example for a rule is201

〈x,married, y〉 ∧ 〈x, livesIn, z〉 ⇒ 〈y, livesIn, z〉202

Let us call this rule R∗ in what follows. Two atoms A, A′ are connected if they have common203

variables. It is common [17, 18, 40] to impose that all atoms in a rule are transitively204

connected and that rules are closed. A rule is closed if every variable in the head appears in205

at least one atom in the body. A rule is grounded if all of its atoms are grounded.206

Predictions. Given a rule R = B1∧...∧Bn ⇒ H and a substitution σ, we can apply σ to both207

the body and the head of R, and obtain an instantiation of R, which we denote by σ(R). In our208

example, we could instantiate the above rule R∗ by σ = {x→Mary, y → Bob, z → Paris},209

and obtain σ(R∗) as210

〈Mary,married,Bob〉 ∧ 〈Mary, livesIn, Paris〉 ⇒ 〈Bob, livesIn, Paris〉211

If σ(Bi) ∈ K ∀i ∈ {1, ..., n}, we call σ(H) a prediction ofR fromK, and we writeK∧R |= σ(H).212

Suppose, e.g., that we have a KB K = {〈Paris, locatedIn, France〉, 〈Mary,married,Bob〉,213

〈Mary, livesIn, Paris〉}. Here, our example rule R∗ can be instantiated as before by214

σ = {x→Mary, y → Bob, z → Paris}. Then, all body atoms of the instantiated rule σ(R∗)215

appear in K. Hence, the rule predicts the head atom of σ(R∗), which is 〈Bob, livesIn, Paris〉.216

Hence, we write K ∧R∗ |= 〈Bob, livesIn, Paris〉.217

Mining Rules. Inductive Logic Programming (ILP) is the task of finding rules automatic-218

ally [54]. Typically, one provides a set of positive examples (i.e., facts that the rules shall219

predict), and a set of negative examples (facts that the rules must not predict). In the220

context of KBs, ILP faces several challenges: First, KBs usually do not provide negative221

examples. We have discussed a method to generate negative examples above, the Partial222

Completeness Assumption (Section 2.1). Another challenge is that a strict application of223

the definition of ILP to rule mining would find only rules that are true in all instantiations.224

However, in real-world KBs, there can be exceptions to rules, e.g., due to faulty or missing225

data. Hence, rule mining typically aims for rules that have a high support (the number of226

positive examples predicted by the rule), and a high confidence (the proportion of examples227

it predicts that are positive). In this way, the methods can find rules even if they do not228

apply in all instances, such as “If two people are married, then the children of one of them229

are also the children of the other”.230

AMIE [17] was one of the first rule mining systems for large KBs under the Open World231

Assumption. It starts with the most general rules (such as “everybody is married with232

each other”), and refines them until their confidence is high enough (e.g., “if two people are233

parents of the same children, they are most likely married”). This relies on the observation234

that the support of a rule decreases monotonically when a rule is made more specific. The235

RuDiK system [40] can mine logical rules like AMIE, but brings a number of improvements:236

First, RuDiK can also mine negative rules, such as “If two people are siblings, they are not237

married”. Second, RuDiK can mine relations between literals, such as “Someone’s birth date238

is always before someone’s death date”. Finally, RuDiK removes facts that have been covered239

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:7

by a rule, so that subsequent rules are forced to predict facts that have not already been240

predicted. This allows not just for some optimizations of the mining algorithm, but also to241

mine rules that predict more unknown facts correctly.242

The AnyBURL system [34] is a bottom-up rule mining system: It starts with path rules243

that are specific to one instance, and generalizes them to achieve good support. A particular244

advantage of the system is that the user can trade running time for rule quality, i.e., get245

better rules by waiting longer.246

The DRUM system [49] is a linear formulation of the rule mining problem using one-247

hot-encoding vectors for entities and adjacency matrices for relations. As it is linear, the248

problem is fully differentiable and can then be solved using gradient descent techniques. This249

solving appraoch proved to be very good for predictions involving previously unseen entities250

or relations.251

Let us now turn to the second family of methods that can be used to predict missing252

facts: Knowledge Graph Embeddings.253

2.3 Embeddings254

Embeddings. An embedding for a group of objects (e.g. words, relations, or entities) is an255

injective function that maps each object to a real-valued vector, so that the intrinsic relations256

between the objects are maintained [54]. In the case of KBs, we are looking to embed entities257

and relations. In particular, given a KB, we would want the entities that are semantically258

similar in the KB to be mapped to vectors that are close to each other in the vector space.259

The most basic embeddings [7] are designed so that, for a fact 〈s, r, o〉, we have ~s+ ~r ≈ ~o,260

where~· is the embedding vector of the underlying entity or relation. For example, if we know261

〈Elvis, marriedTo, Priscilla〉, then we would want the vector
−−−→
Elvis+

−−−−−−−−→
marriedTo to be close262

to the vector
−−−−−−→
Priscilla. An embedding with these properties has several advantages: First,263

the embedding allows us to feed entities and relations into machine learning methods that264

work on vectors (e.g., classification algorithms). The vectors are typically low in dimension265

(e.g., a few hundred), which makes them particularly suited for such applications. Second,266

the embedding provides a natural way of grouping together similar entities, so that given267

one entity, we can find its peers by scanning the vector space. In our example, we would268

expect Elvis to be close in the vector space to other singers. Finally, the embeddings allow269

for link prediction: If we do not know the spouse of Elvis, we can just compute the vector270 −−−→
Elvis +

−−−−−−−−→
marriedTo and propose that the person that we find there is the spouse. If the271

embedding is well designed, that would actually work.272

Terminology. In the literature about KB embeddings, the KB is often called a knowledge273

graph (KG) instead of a knowledge base. This is because embedding approaches typically274

project away literals and facts with literals. Consequently, fact prediction is known as link275

prediction in this scenario. Furthermore, the approaches typically do not deal with classes,276

taxonomies, or axioms. What remains is then a graph where the nodes are entities, and the277

edges are relations. In this scenario, facts are usually called triples, the subject is called the278

head of the triple, and the object is called the tail.279

Link prediction with embeddings. Knowledge graph embeddings are created by trainable280

machine-learning models, typically neural networks. We will discuss these methods in detail281

in Section 3. All of these models take as input a fact 〈h, r, t〉, and output a score of its282

likelihood of being true: the higher the score, the more likely the model believes the fact283

to be. This score is typically denoted by f(〈h, r, t〉) or f~r(~h,~t). To train such a model,284

we need a KB of true facts. We train the model to give a high score to these facts. To285

avoid over-generalization, we also have to train the model with counter-examples. These are286

AIB 2022

4:8 Combining Embeddings and Rules for Fact Prediction

typically generated by corrupting the facts from the KB (Section 2.1), i.e., by taking a fact287

〈h, r, t〉 from the KB and replacing the tail by a random entity t′. The model is then trained288

to give the true triples from the input KB a higher score than the corrupted triples.289

We can then use the models for link prediction as follows: We take a partially-filled triple290

for which we would like to know the head or tail entity, e.g., 〈Elvis, marriedTo, ?〉. We try291

out all possible tail entities from the KB, and score the resulting triple using the scoring292

function. The predicted entity is intuitively the one with the highest resulting score. All293

entities can be sorted according to the scores of their triple. Each entity is then associated294

to its prediction rank, i.e., to the position that it has in the ranked list of predictions.295

In the supervised setting, we often know the true answer (Priscilla), and we can compute296

its prediction rank PR〈Elvis,marriedTo,?〉(Priscilla). Several metrics are computed from the297

prediction ranks of head and tail entities. If T the set of known true facts, the metrics are298

the following:299

Mean Rank (MR): the average prediction ranks of the correct entities

MR = 1
2 |T |

 ∑
(h,r,t)∈T

PR〈?,r,t〉(h) + PR〈h,r,?〉(t)


Mean Reciprocal Rank (MRR): the average of the inverse of the prediction ranks

MRR = 1
2 |T |

 ∑
(h,r,t)∈T

1
PR〈?,r,t〉(h) + 1

PR〈h,r,?〉(t)


Hit at k (Hit@k): proportion of the tests in which the prediction rank is better than k
(typical values for k are 1, 3 and 10)

Hit@k = 1
2 |T |

 ∑
(h,r,t)∈T

1{PR〈?,r,t〉(h) ≤ k}+ 1{PR〈h,r,?〉(t) ≤ k}


Both MRR and Hit@k have values between 0 and 1, higher values indicate better results. In300

some cases, multiple entities can be correct answers (e.g. for 1-N relations) and the model301

should not be penalized for predicting another true answer that is simply more likely than302

the one at hand. Those metrics are usually computed in a filtered setting in which prediction303

ranks are computed by removing the other true entities ranked better than the one at hand.304

3 Embedding Models305

In the last decade, numerous methods for computing knowledge graph embeddings have been306

proposed. The methods differ from one another in terms of how they relate the entities and307

relations of the KG in the latent space. The existing models can be categorized as geometric,308

tensor-based or convolutional. In this section, we introduce and discuss a few popular models309

from each category.310

In the following, let us consider a KG with n entities E = {e1, . . . en} and m relations311

R = {r1 . . . rm} that is to be embedded in a d-dimensional vector space. R (resp. C) is the312

field of real (resp. complex) numbers.313

3.1 Geometric models314

Geometric models interpret relations as geometric operations in the vector space. The earliest315

of these models is TransE, which we now describe in detail.316

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:9

TransE [7] is a translation-based model, i.e., it uses a geometric distance to measure the317

similarity of the entities. Given a fact 〈h, r, t〉, its goal is to find vectors ~h,~r,~t, so that318

~h+ ~r ≈ ~t.319

One way to do that is to design a neural network [54]. We first create a vocabulary,320

i.e., an ordered list of all entities in the KG. Then we create, for each entity, its one-hot321

encoding. This is simply a vector that has as many dimensions as there are entities. Every322

element of the vector is set to zero, and only the ith element is set to one, where i is the323

position of the entity in the vocabulary. The same is done for the relations. Then we design324

a network as follows: The input is the one-hot encoding of the head, the one-hot encoding of325

the relation, and the the one-hot encoding of the tail of a given fact from the KB. That is, if326

n is the number of entities, and m is the number of relations, the network has m+ 2 × n327

input neurons. The first hidden layer of the network then maps each of these vectors to a328

d-dimensional real vector in Rd. An entity e is mapped to a vector ~e, and a relation r is329

mapped to ~r. The further layers then reduce these vectors to a single output that scores the330

input assertion. More precisely, the network computes, for an input fact 〈h, r, t〉 from the331

KB, the function f~r(~h,~t) = −||~h+ ~r − ~t|| (where || · || is either the 1-norm or the 2-norm).332

The network is then trained with facts from the KB to maximize this score for these facts. It333

is trained with negative assertions to minimize this score. This leads to embeddings that334

verify the simple arithmetic equation ~h+ ~r ≈ ~t [54]. The important thing here is that the335

later hidden layers take their decision based solely on the output of the first hidden layer.336

The vectors computed by the first layer thus contain all the necessary information to assess337

the truth value of an assertion – and this is what we want from a good embedding. Thus, we338

will use the vectors that the first layer outputs as the embeddings of the input entities.339

One limitation of TransE is the inability to model symmetric relationships [65]: if r340

is symmetric (i.e. 〈h, r, t〉 true implies 〈t, r, h〉 to be true as well), then r tends to have341

an embedding vector close to ~0 because minimizing both ||~h + ~r − ~t||2 and ||~t + ~r − ~h||2342

simultaneously happens if and only if ~r = ~0. Another problem appears with one-to-many343

relations. Consider for example the facts 〈ElonMusk, founderOf, SpaceX〉 and 〈ElonMusk,344

founderOf, Tesla〉. TransE would give very similar embeddings to both SpaceX and Tesla,345

and thus fail to differentiate between the two companies. TransE also has problems modeling346

many-to-one, reflexive, and transitive relations, and to capture multiple semantics of a347

relation.348

TransH [65] tries to alleviate some limitations of TransE by allowing an entity to have349

different representations in the embedding space depending on the relation it is involved350

with. Each relation r is represented not only by a vector ~r, but also by an hyperplane (i.e. a351

sub-space of one dimension less than the embedding space). Algebraically an hyperplane can352

be defined by a single vector, namely the vector that is orthogonal to it. Thus, each relation353

r is associated with a set of two vectors: ~r for the relation itself, and ~hr for its hyperplane.354

To compute the score of a triple 〈h, r, t〉, the embeddings ~h, ~t of the entities are first355

projected onto the hyperplane defined by ~hr, and they are then connected by the translation356

vector ~r of the relation. Given a relation r, let pr be the linear orthogonal projection357

on the hyperplane defined by ~hr. Then the loss function of TransH can be written as358

f(〈h, r, t〉) = f~r(~h,~t) = −||pr(~h) + ~r − pr(~t)||22.359

This is designed to solve the limitations of TransE: a reflexive relation r can have a360

translation vector ~r close to ~0, since all information is contained in ~hr. For relations with361

several objects, likewise, the objects can be embedded in the same place in the hyperplane362

only for that specific relation.363

TransR [31] extends the idea of sub-space projection of TransH by proposing that the364

AIB 2022

4:10 Combining Embeddings and Rules for Fact Prediction

projection step is now done on any sub-space of a given dimension. Let d be the dimension of365

the embedding space and d′ the dimension of the relation-specific sub-spaces. Algebraically a366

linear projection from a vector space of dimension d into one of its sub-spaces of dimension d′367

is simply represented by a matrix of dimension d× d′. Each relation r is then represented by368

a vector ~r and a projection matrix Mr. Thus, TransR is simply an evolution of TransH that369

increases the expressiveness of the model by increasing the number of parameters. Intuitively,370

this should allow the model to learn a greater amount of useful information from the known371

facts it is trained on. CTransR [31] is an extension of TransR, which operates by clustering372

diverse head-tail entity pairs into groups and learning distinct relation vectors for each group.373

TransD [25] in turn proposes to keep the idea of projecting on any possible sub-space but374

reduces the number of parameters compared to TransD in order to limit the risk of overfitting.375

This is done by allowing only the sub-space projections that are defined by a low-rank matrix:376

that is a matrix that can be decomposed as a product of vectors.377

Several other improvements have also been proposed in the direction of translation378

embedding methods, including TransG [68], TransF [16], and KG2E [21]. Other geometric379

models perform rotation-like transformations in the vector space instead of pure translations.380

Its most prominent examples are RotatE [55] and HAKE [72].381

RotatE [55] aims to be particularly suited for relations that are symmetric, anti-symmetric,382

inverses of each other, and compositions of each other, which are typical for KGs. For instance,383

the relation marriedTo is a symmetric relation: 〈x, marriedTo, y〉 implies 〈y, marriedTo,384

x〉. Further, many relations such as familial relations are compositional. For example, 〈x,385

hasParent, y〉 and 〈y, hasParent, z〉 imply 〈x, hasGrandParent, z〉. RotatE captures these386

relation patterns by defining each relation as a rotation from the head entity to the tail entity387

in the vector space. Specifically entities and relations are now embedded in Cd and for any388

relation r, the modulus of each component ~ri is 1. For a triple 〈x, r, y〉, the model then tries389

to achieve ~y ≈ ~x ◦ ~r, where ◦ is the element-wise product. Intuitively, a relation r applies a390

coordinate-wise rotation on the head entity so as to come close to the tail entity. The score391

function is then ||~x ◦ ~r − ~y||. A relation is symmetric if and only if its embedding belongs to392

{−1,+1}d (i.e. coordinate-wise rotations of 0 or π radians), r1 and r2 are are symmetric if393

and only if their embeddings are complex conjugates, and a relation r3 is the composition of394

two relations r1 and r2 if and only if ~r3 = ~r1 ◦ ~r2 (i.e., the coordinate-wise rotations of r3 are395

the successive rotations of r1 and r2).396

HAKE [72] extends the RotatE embeddings by taking into account and preserving the397

semantic hierarchies of the entities in the KGs. For example, the entity Paris is part of398

France, which is a part of the EU. Such hierarchies between entities are quite common in399

most KGs such as Yago and Freebase. To model these relations between entities, HAKE400

represents an entity e (and a relation r) in the vector space in two parts: as ~em and ~rm401

in the modulus part and as ~ep and ~rp in the phase part. The modulus part is aimed at402

differentiating entities at different hierarchies from each other, such as Paris from France,403

while the phase part distinguishes the different entities at the same hierarchy level, e.g. Paris404

and Lyon. In this manner, HAKE is able to represent the semantic hierarchies associated405

with KGs, and outperform other techniques by learning better embeddings.406

3.2 Semantic Matching models407

Another common category of embedding methods compares the vector of the subject and408

the vector of the object directly in order to assess how likely the fact is to be true.409

RESCAL [38] is the simplest model in this category. Entities are represented as vectors410

and relations become bilinear functions (simply represented as square matrices). A triple411

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:11

〈h, r, t〉 is then scored by the application of the relation-specific bilinear function to the entity412

embeddings: f(〈h, r, t〉) = ~ht ·Mr · ~t, where ~h (resp. ~t) is the embedding of h (resp. t) and413

Mr ∈ Rd×d is the representing matrix of r. Intuitively, this bi-linear scoring function can414

be interpreted as some sort of scalar product between the entities in some relation-specific415

distortion of the embedding space. This is simply an intuition as no sufficient constraints416

are imposed on the relation matrices to make them scalar products. Precisely, they are not417

forced to be symmetric nor positive definite.418

DistMult [69] is a variation of the RESCAL models where the relation matrices are all419

forced to be diagonal. This simplifies the computations, and reduces the parameter space.420

As a drawback, DistMult gives the same score for the triples 〈h, r, t〉 and 〈t, r, h〉. Thus, it is421

unable to model asymmetric relations such as sonOf, actedIn etc. Despite these limitations,422

DistMult has been recently shown to perform as well as many recently proposed models,423

presumably due to its simplicity and scalability [48].424

ComplEx [58] improves upon the DistMult model by using the same diagonal constraint, but425

with complex-valued embedding vectors. Entities and relations are then simply represented426

as vectors in Cd and the Hermitian product is used instead of the bi-linear product in the427

scoring function. This allows the approach to take into account asymmetric relations in the428

KGs, as in the triple 〈Paris, capitalOf, France〉 (where France is not the capital of Paris).429

The scoring function is defined as f(〈h, r, t〉) = Re(~h ·MR · ~̄t) where Re(c) is the real part of430

c ∈ C and Mr is the diagonal matrix with ~r on its diagonal. The fact that the Hermitian431

product is not commutative solves the problem of representing asymmetric relations and432

switching to complex vector space doubles the number of parameters thus increasing the433

expressiveness of the model.434

SimplE [27] proposes to extend one of the most generic multiplicative methods: Canonical435

Polyadic (CP) decomposition [22]. This method is used for decomposing tensors into a sum of436

products. It can be applied to KG embeddings because a KG with n entities and m relations437

is simply represented as a 3-dimensional adjacency tensor T ∈ {0, 1}n×n×m: T [i, j, k] = 1438

if 〈ei, rk, ej〉 is true and 0 else. As explained in [27], CP decomposition represents entities439

e with two vectors (~he, ~te) ∈ (Rd)2 and relations r with a vector ~r ∈ Rd where d is the440

dimension of the embedding. These vectors are learned in order to be able to reconstruct441

the tensor T by estimating T̂ [i, j, k] = 〈 ~hei , ~tej , ~rk〉 =
∑

`=1..d
~hei [l] × ~tej [l] × ~rk[l]. This442

estimation is used in the case of KG embeddings as a scoring function of triples. SimplE443

just proposes to represent relations r with two vectors ~r and ~r−1, the scoring function being444

now f(ei, r, ej) = 1
2 (〈 ~hei

, ~tej
, ~r〉+ 〈 ~hej

, ~tei
, ~r−1〉). The authors show that their model is fully445

expressive, meaning that if given enough embedding dimensions it can exactly represent any446

KG. It is then argued that simple logical constraints can be implemented in the model by447

applying constraints on the relation embeddings. We will later see one such application in448

Section 4.3.449

3.3 Deep Models450

Deeper neural architectures have also been introduced for KB embeddings, with the hope that451

hidden layers can capture more complex interaction patterns between entities and relations452

(and then estimate more complex scoring functions). In such models, the first part of the453

network (which, in shallow networks, just maps facts to their embeddings or their projections)454

now adds additional layers (possibly numerous) that receive as inputs the embeddings, and455

produce as outputs some extracted features. The second part of the network now computes456

the scoring function from the features extracted by the first part of the network, and not457

directly from the embedding (or its projection) as in shallow models. The scoring function458

AIB 2022

4:12 Combining Embeddings and Rules for Fact Prediction

also becomes a parameter of the model (to be trained) and is not defined a priori anymore.459

This often entails that we lose the interpretability of the scoring function [54]. There are460

many deep neural network based models that have been proposed over the years, early461

examples of such models are SME, NTN and MLP [6, 52, 14].462

NTN [52] was introduced by Socher et al. as a generalization of the RESCAL model. It463

employs a combination of linear transformations and nonlinear activation functions to obtain464

head and tail embeddings. As such, while this is a more expressive model, it is also quite465

complex with a large number of parameters that are harder to train. Better and lightweight466

architectures have been since proposed, such as MLP, where the paramaters are shared467

among all the relations.468

ConvE and ConvKB [12, 10] are popular examples of models that are based on convolu-469

tional neural networks (CNN). These can learn complex nonlinear features of the entities470

and relations with fewer parameters by using 2D convolutions over embeddings. ConvE has471

been shown to be particularly effective for complex graph with nodes having a high number472

of incoming edges. The model introduced the 1-N scoring scheme where for a given triple473

〈h, r, t〉 where t is to be predicted, the matching is performed with all the tail entities at the474

same time, leading to speedier training. ConvE has proven to be a competitive embedding475

model and a popular baseline for more recent deep learning approaches.476

Graph Convolutional Networks (GCNs) have recently gained popularity for performing477

link prediction in knowledge graphs in tandem with standard embedding techniques. GCNs478

are a form of message passing multi-layer neural networks, first introduced by [28] for semi-479

supervised node classification on graph structured datasets. One layer of GCN encodes480

information about the immediate neighbours of a node in feature vector, and k layers stacked481

on top of each other can encode the information of the neighbourhood k hops away. GCNs482

can overcome the limitations of knowledge graph embedding models in terms of neglecting483

the attributes of the entities and ignoring the graph structure by encoding the entities based484

on their neighbours in the graph. Several extensions of GCNs have been suggested for485

multi-relational knowledge graphs.486

Relational GCNs (R-GCNs) [50] are GCNs for graphs with a large number of relations,487

which makes them particularly suitable for knowledge graphs. Link prediction is essentially488

an auto-encoder framework: An encoder creates the feature representations for the entities489

from its neighbours (these features are generated from relation-specific transformations that490

are dependent on the type and direction of the relations). A decoder (in this case, DistMult491

factorization) is a scoring function to predict the labelled edges. R-GCNs show improvements492

compared to DistMult, HolE and ComplEx for the link prediction task. While R-GCN493

extended the GCN models on knowledge graphs by including the different types of relations494

during the generation of entity representations, they do not represent relations themselves.495

VR-GCN [70] is an extension of the R-GCN model that generates both entity and relation496

embeddings explicitly. It ensures relation representation and different entity roles (head or497

tail in different triples), and it conforms to the translation representation from translational498

embeddings where ~h+ ~r ≈ ~t. While the primary goal of this technique is to enable graph499

alignment, the performance of VR-GCN is also discussed in terms of the link prediction task,500

with VR-GCN acting as the encoder and DistMult as the decoder for scoring the triples.501

SACN [51] leverages a variant of the existing knowledge graph embeddings ConvE and502

TransE as decoder along with a variant of GCN (weighted GCN) as encoder. The weighted503

GCN encoder learns representations for the entities in the graph by utilizing the graph504

structure, node attributes and the associated relations while weighing different relations505

differently and learning these weights during the training. The entity representations are506

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:13

Dataset Number
of entities

Number
of relations

Number of
training facts

Number of
evaluation facts

Number of
test facts

FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
Yago3-10 123,182 37 1,079,040 5,000 5,000
Table 1 Details on the various KBs used for embedding evaluation.

given to the decoder, which is a combination of ConvE and TransE (based on ConvE but507

having the translational property of TransE model) that performs better than the ConvE508

model. The encoder and decoder are trained jointly to learn the entity representations and509

score triples to verify and improve the representations.510

CompGCN [59] generalizes previous GCN methods by jointly learning the representation511

of the nodes and the relations in the multi-relational KGs while leveraging composition512

functions from embedding approaches. CompGCN is able to scale well with the increasing513

number of relations and outperforms several previous models including TransE, DistMult,514

ComplEx, R-GCN and SACN.515

3.4 Evaluation of Embedding Methods516

3.4.1 Evaluation Protocol517

Evaluation. Rule methods are typically evaluated under the open world assumption, i.e.,518

any fact that is predicted is manually evaluated to see whether it holds in the real world519

or not. Thus, even a fact that does not appear in the KB can be counted as correct. This520

evaluation is obviously very labor-intensive, but it targets what rule mining is interested521

in: the prediction of yet-unknown facts. KB embedding models, in contrast, are typically522

evaluated under the closed world assumption: Given a KB, one removes a certain portion of523

it to obtain a training KB. One then trains the embeddings on this reduced KB, and uses the524

embeddings to predict facts. If these facts appear in the original KB, they count as correct,525

otherwise they count as incorrect.526

Datasets. Three very common KBs for evaluating embedding approaches are FB15k [7],527

WN18 [6] and Yago3-10 [12]. FB15k and WN18 were both proposed by Bordes et al.528

respectively in 2013 and 2014. FB15k is an extraction from Freebase where entities were529

selected based on the number of citations in the original KB. WN18 is a subset of Wordnet530

in which entities are synsets, that is semantic senses of words (selected on their popularity in531

the KB) and predicates are lexical relations between those senses. Yago3-10 was proposed by532

Dettmers et al. in 2018 as a subset of Yago3 [33] in which most of the facts describe people533

(e.g., by citizenship, gender, and profession). The three KBs have been initially randomly534

split into training, validation and test subsets and those splits always stay the same. Table 1535

shows some statistics about these datasets.536

3.4.2 Shortcomings of Benchmarks537

While embedding models have gained popularity for the link prediction task and obtained538

state-of-the-art results, several studies have recently taken a critical look at the performance539

and evaluation aspects of these models. The benchmark datasets on which the embedding540

AIB 2022

4:14 Combining Embeddings and Rules for Fact Prediction

models are trained have also been scrutinized. Toutanova et al. [57] were the first to541

find data leakage issues in the FB15k dataset. More precisely, the authors noted that, for542

certain relations r, the inverse relation r− was also present in the data. This makes the543

prediction of a fact 〈x, r, y〉 trivial if the fact 〈y, r−, x〉 is already there. As a remedy, the544

authors constructed the dataset FB15k-237 by removing the inverse triples and keeping only545

one relation out of the reverse relations. Dettmers et al. [12] similarly found issues with the546

WN18 dataset and created the WN18RR dataset. Table 1 shows the statistics about these547

datasets. With the introduction of these new datasets and their adoption for the evaluation548

of newer embedding models, it could be ensured that the models are not just learning trivial549

entailment, but learning to correctly predict non-trivial facts that require actual inference.550

However, most papers still showed the results for the evaluation of new models on both the551

old and new version of the datasets.552

Akrami et al. [2] conducted a further detailed study questioning the performance of553

embedding models in the presence of data leakage and data redundancy. The study found554

a sizeable percentage of inverse, duplicate, and Cartesian product relations in the popular555

datasets FB15k, WNRR and Yago3-10. Duplicate relations are relations with different556

names that share the same facts (e.g., hasCitizenship and hasNationality). Cartesian product557

relations are relations that hold between all instances of a class (e.g., sameSpeciesAs). Such558

relations can be predicted trivially. Hence, the authors argued, the performance of these559

models would be significantly worse for link prediction on actual unseen data in realistic560

settings. Their experiments analysed various popular embeddings models including TransE,561

TransH, TransR, TransD, DistMult, ComplEx, ConvE, Tucker, and RotatE and showed562

substantial drops in performance with different datasets after removing the unrealistic triples,563

so much so that simple rule based techniques could achieve better accuracy than complex564

embedding techniques. The authors therefore strongly advocated the need to re-evaluate565

existing embedding approaches to find an effective solution for the link prediction task.566

Rossi et al. [47] take a critical look at the properties of the entities in the benchmark datasets567

that are used to evaluate link prediction performance of embedding models. They focused568

on the Freebase and Wordnet datasets and performed a detailed experimental analysis of the569

features of these datasets and their limiting effect on the performance of embedding models.570

For instance, the authors showed that embedding models perform artificially better for the571

most frequent entities in the dataset. In FB15k, the entity United States appears in a lot of572

triples, and therefore, the TransE and DistMult models show better scores while predicting573

this entity as the missing entity. If the most frequent entities were removed from these574

datasets, the model performance (counter-intuitively) improved, indicating the over-fitting of575

the models on the most representative entities. Therefore, the authors advocated that better576

benchmarking practices and metrics are needed to determine the capability and fairness of577

the models.578

Pujara et al. [42] performed an interesting study on the effect of sparsity and unreliable579

data on the performance of embeddings. Existing curated KGs like Wordnet and Freebase580

were modified in different experiments to introduce sparsity (in terms of relations or entities)581

and unreliable or corrupted triples, so that they resemble real-world KGs derived from text582

(such as NELL [8]). The authors found that performance is closely linked with sparsity,583

i.e. embeddings work well for relations and entities that have a dense representation and584

sparsity adversely affects their performance. Experiments showed that unreliable triples also585

degraded the performance. However, the authors made an interesting conclusion, namely586

that corrupted triples still improved embeddings marginally, therefore it is better to have a587

large noisy KG rather than a small set of very high quality triples.588

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:15

These studies helped in bringing into focus the flaws that are inherent in all the popular589

benchmark datasets due to which global metrics for the evaluation of embedding models are590

proved to be insufficient and misleading. Thus, there is a need for careful and fine-grained591

evaluation of the performance of embedding models for their application in realistic use cases.592

3.4.3 Shortcomings of the protocol593

Several works have studied the shortcomings of the evaluation protocol for KB embed-594

dings. Pezeshkpour et al. [41] focused on the evaluation metrics and pointed out the595

need and importance of calibration of the embedding models before they can be deployed596

in real-world scenarios. For example, if the model says with 0.5 confidence that a triple597

is true, then the actual probability of the triples with this confidence should also be 0.5.598

In particular, they found that the model calibration as well as the ranking metrics were599

highly susceptible to the choice of negative sampling during training, with random re-600

placement of subject or object entity (Random-N) leading to worst results. In order to601

improve the evaluation techniques, the authors proposed the CarefulN method to select602

negative samples. Here, the highest scoring negative sample having an entity type which603

is different from the target entity type is selected as a negative sample. E.g. given a triple604

〈Barack Obama, presidentOf,USA〉, if USA is the target entity to be predicted, and the605

ranked list of predicted entities is (USA, Hawaii, United Nations, Michelle Obama, . . .),606

then we choose 〈Barack Obama, presidentOf,Michelle Obama〉 as the negative sample since607

the type for Michelle Obama is different from USA. This technique explicitly ensures that the608

negative sample being generated is a true negative. Following this technique, they derived a609

new benchmark dataset Yago3-TC for evaluating KG completion that consists of both true610

and false facts for facilitating the correct measurement of triple classification accuracy.611

Sun et al. [56] looked into the very specific issue of the recent neural-networks based612

embedding models showing inconsistent performance gains across different datasets such613

as FB15k-237 and WNRR18. They investigated in detail the models ConvKB [10] and614

CapsE [61] and found an unusual score distribution to be the reason for this discrepancy. For615

instance, many negatively sampled triples were given the same score as the correct triple. To616

break ties for the triples with the same score, they proposed a RANDOM evaluation protocol,617

i.e. if multiple triples have the same score, one of them is chosen randomly. Experiments618

demonstrated that recent deep models such as ConvKB, and CapsE were indeed affected by619

different evaluation protocols (unlike other models like ConvE and RotatE) and this could620

be detected with the proposed RANDOM protocol.621

Kadlec et al. [26] were among the first to question the performance gains achieved by622

the newly proposed model architectures. The authors were able to perform suitable fine623

tuning the hyper-parameters for DistMult, one of the first embedding models proposed, and624

outperform several new models. This raised concerns on the performance gains by the newer625

models, advocating for a closer inspection of the training practices and objectives.626

Ruffinelli et al. [48] re-implemented several existing models and performed extensive627

analysis of the performance of these models to compare them on a common ground. Going628

beyond previous works such as [36] (which studied the loss functions) and [29] (which looked629

into the negative sampling strategies), this paper performed a comprehensive and empirical630

evaluation of the effect of different training strategies and parameters such as the regularizer,631

optimizer and loss functions on a number of new and old embedding models. Their analysis632

indicated that the training parameters play a major role in the embedding performance.633

With a systematic fine tuning of these parameters, even the older model architectures such634

as RESCAL can match or outperform the recently introduced improved models. This work635

AIB 2022

4:16 Combining Embeddings and Rules for Fact Prediction

makes a strong point of the need for re-assessing the individual benefits claimed by recent636

and newer embedding models in light of the older models. The authors caution that the637

performance gain reported by newer models could be mitigated by merely fine tuning of the638

training strategies and therefore, this warrants close inspection.639

Jain et al. [23] raised questions regarding the very semantic representation learned by640

the embeddings models in the first place. They performed classification and clustering641

experiments on the embeddings in order to analyse their semantic capability. The authors642

challenge the common notion that entities having similar meaning (i.e. belonging to the643

same class or type) such as politicians, actors etc. would be represented by similar vectors.644

They constructed a dataset with entities belonging to different levels of the taxonomy645

for Yago3-10 and DBpedia datasets, such as from person to artist to painter. Detailed646

experiments demonstrated that both clustering and classification showed poor results for647

entities having fine-grained classes. This means that embeddings are unable to capture the648

semantics of entities beyond the top level classes (person, organization, places in Yago).649

These surprising results indicated that though embeddings might show good performance on650

the link prediction task, their utility for other semantic tasks such as reasoning etc. should651

be carefully examined.652

Wang et al. [64] inspected the evaluation protocol of the embedding techniques for the KB653

completion task. They argue that the Entity Ranking (ER) protocol, where the missing head654

or tail entity is predicted for a triple, is more suitable for evaluating a question answering655

task, but not for the KB completion task. This is due to the fact that the context of the656

missing information in terms of a head or tail entity would not be available when attempting657

to find new missing triples of the form 〈?, r, ?〉. With the ER protocol, the models may not658

be penalized for ranking certain incorrect triples higher since they are not encountered at all.659

The paper instead proposes a Pairwise Ranking (PR) protocol where all possible entity pairs660

are considered and ranked with respect to a particular relation. Extensive experiments show661

that popular embedding models provide worse performance with PR protocol than with the662

ER protocol, even on seemingly easy datasets.663

These studies have emphasized the need for better evaluation protocols and a critical664

look at the training strategies of the embedding models for the task of KB completion in665

realistic settings.666

4 Embedding Methods with Logical Components667

4.1 Rationale668

Rule mining methods and embedding methods are complementary for the purpose of link669

prediction:670

Rule mining produces patterns that can be understood by humans. Thus, their predictions671

can be explained and justified.672

Rule mining can, in principle, work together with the schema of the KB, axioms, and673

other types of logical constraints.674

Rule mining methods can deal with literals and numerical values, while embedding675

methods typically project these away. Rule mining can find, e.g., that the death date is676

always later than the birth date.677

Rule mining is typically evaluated under the open world assumption: it is explicitly678

designed to predict facts that are not yet in the KB. Embedding methods, in turn, are679

typically tuned to predict what is already there.680

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:17

On the flip-side, rule mining methods typically predict based on a single rule; it is harder681

to predict facts with several rules that reinforce or contradict each other.682

Rule mining methods do not have a holistic view on an entity, with all its relations; they683

are restricted to the relations that appear in the rules.684

Rule mining methods often generate rules with a low confidence, i.e., with a high rate of685

false predictions.686

For these reasons, several works have taken to combine symbolic and embedding methods.687

Here, the symbolic component does not necessarily come from Rule Mining, but can also688

come from the logical axioms of the ontology of the input KB. The existing approaches fall689

into three classes:690

Adding simple axioms. Some approaches constrain the embeddings by simple ax-691

ioms, which concern inverse, symmetric, or equivalent relations. We discuss them in692

Sections 4.2 [13], 4.3 [15], and 4.4 [35].693

Complex constraints. Other approaches support more general and complex logical694

constraints on the embeddings. We discuss them in Section 4.5 [23], 4.6 [11], and 4.7 [63].695

Joint learning. Finally, a number of approaches jointly embeddings and confidences for696

rules. We discuss them in Section 4.8 [19] and 4.9 [20, 71].697

4.2 Improving Knowledge Graph Embeddings Using Simple Constraints698

A first simple combination of logical rules and embeddings is presented by Ding et al. [13].699

The authors focus on relation entailments, i.e., rules of the form 〈x, r, y〉 ⇒ 〈x, r′, y〉 that can700

also be denoted as r ⇒ r′. For example, if two people are married, then they also know each701

other: marriedTo⇒ knows. Such entailments can either be axioms from the ontology, or702

they can be soft rules, i.e., rules with a confidence score that do not hold in all instantiations.703

For example, a soft rule can be: If a person is born in a country, then the person probably704

has the citizenship of that country. This is very often the case though not always. Such soft705

rules can be mined by a rule mining system, and from now on, a set of such entailments is706

assumed to be available.707

If it is known that a relation r entails a relation r′ and that 〈x, r, y〉 holds for some entities708

x, y, then 〈x, r′, y〉 holds. Thus, the score that an embedding model gives to the fact 〈x, r, y〉709

should not be larger than the score it gives to 〈x, r′, y〉:710

f(〈x, r, y〉) ≤ f(〈x, r′, y〉) (1)711

The authors enforce this condition on the ComplEx model (see Section 3) by imposing that712

for a given entity x, all the real parts of the components of the embedding vector ~x ∈ Cd
713

have to be non-negative, and all the imaginary parts have to be smaller than or equal to one.714

Given an entity x, d the embedding dimension, the constraints are formalized in Equation 2715

where Re(·) (resp. Im(·)) returns the real (resp. imaginary) part of a complex number and716

~xi is the ith component of the vector ~x.717

∀i ∈ {1, . . . , d} : Re(~xi) ≥ 0 ∧ Im(~xi) ≤ 1 (2)718

This constraint can be intuitively justified by seeing each component of ~x as a feature, whose719

value is zero if the feature does not apply to the entity x, and greater than 0 if the feature720

applies to x, but never below zero. The constraint on the imaginary component serves as a721

kind of normalization. With this non-negativity constraint, the desideratum of Equation 1722

can be achieved by requiring:723

∀i ∈ {1, . . . , d} : Re(~ri) ≤ Re(~r′i) ∧ Im(~ri) = Im(~r′i) (3)724

AIB 2022

4:18 Combining Embeddings and Rules for Fact Prediction

If the entailment does not hold strictly, but only with a certain confidence, the condition can725

be relaxed by introducing a real-valued confidence level λ and vector slack variables ~α, ~β,726

which turn Equation 3 into727

∀i ∈ {1, . . . , d} : λ× (Re(~ri)−Re(~r′i)) ≤ ~αi, λ× (Im(~ri)− Im(~r′i))2 ≤ ~βi (4)728

The larger the confidence level λ, and the smaller the slack variables ~α and ~β, the more729

Equation 4 resembles the hard constraint of Equation 3.730

When these constraints are imposed on the ComplEx model, then the model is forced to731

give a high score to facts that are logically entailed by other facts to which it gave a high732

score. The authors then show that this improves the performance of link prediction over the733

original model.734

4.3 Improved Knowledge Graph Embedding Using Background735

Taxonomic Information736

Fatemi et al [15] introduce another way to improve knowledge graph embeddings, which uses737

the taxonomy of the KB. For example, a knowledge base might contain the information that738

Emmanuel Macron is a president, but it does not contain information that he is a mammal,739

because it is implied by taxonomical knowledge. With this knowledge, if we know that740

mammals are warm-blooded, we can conclude that Emmanuel Macron is warm-blooded as741

well, without having explicit facts about this relation in the KG. Going one step further than742

relation entailment, this work leverages the subsumption property of the relations as well as743

the classes in KG. For example, the relation presidentOf is a sub-property of managerOf,744

which in turn is a sub-property of employedBy. Formally, if a relation r1 is a sub-property of745

a relation r2, then ∀x, y : 〈x, r1, y〉 ⇒ 〈x, r2, y〉. To represent class subsumption, the authors746

model the entities as the characteristic functions of the class they belong to. This means that747

if entity e is in class C i.e. 〈e, type, C〉, then the characteristic function between e and C is748

true – written as 〈e, C, true〉. Hence, class subsumption can be expressed as a special case749

of relation subsumption. For instance, if president is subclass of mammal in the taxonomy,750

then 〈EmmanuelMacron, president, true〉 ⇒ 〈EmmanuelMacron,mammal, true〉.751

The proposed framework is a modification of the SimplE [27] embedding model (see752

Section 3.2), which makes use of these axioms. SimplE considers two embeddings for each753

relation: one embedding r+ for relation itself and another r− for its inverse relation. Similarly,754

there are two embeddings for each entity: one as a head entity e+, and another as the tail755

entity e−. These embeddings are concatenated to obtain the final embedding for a relation756

or entity. The proposed modification of this model is restricting the entity embeddings to be757

element-wise non-negative.758

In order to enforce the axiom that a relation r is a sub-relation of a relation s (∀x, y :759

〈x, r, y〉 ⇒ 〈x, s, y〉), the model adds an equality constraint as ~r = ~s − ~δr where ~δr is a760

non-negative vector, which expresses how r is different from s. This vector is learned during761

training. With this, the function µ (that maps embeddings to the probability of a triple)762

obeys the constraint µ〈x, s, y〉 ≥ µ〈x, r, y〉.763

Thus, the resulting SimpleE+ model is able to enforce subsumption properties for entities764

and relations and therefore, incorporate taxonomic knowledge in the embeddings to learn765

more interpretable representation for words [37]. The experimental evaluation shows that766

the proposed model is able to outperform traditional SimplE for the KG completion task767

and also has a faster convergence rate when taxonomic information is available.768

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:19

4.4 Regularizing Knowledge Graph Embeddings via Equivalence and769

Inversion Axioms770

We have so far seen approaches that concentrate on subproperty axioms. We shall now look771

into two other types of axioms [35]: Given two relations r1 and r2, an equivalence axiom772

r1 ≡ r2 means that r1 and r2 are semantically equivalent though distinct in the KB (e.g.,773

part of and component of). An inverse axiom r2 ≡ r̄2 means that r1 is the inverse predicate774

of r2 (e.g., part of and has part). The approach assumes that these axioms are defined in775

the ontology of the input KB.776

Given the two sets of equivalence and inversion axioms, constraints are enforced in the777

training of the models. Let r1 ≡ r2 be an equivalence (resp. inversion) axiom. This means778

that relations r1 and r2 are equivalent (resp. inverse) and then the scoring function f of779

an embedding model should verify f(〈h, r, t〉) = f(〈h, r2, t〉) (resp. f(〈h, r, t〉) = f(〈t, r2, h〉))780

given any entities h and t.781

In the case of equivalence, this is simply implemented by forcing the embeddings of782

r1 and r2 to be the identical. In the case of an inversion axiom, the constraint has to be783

specified for each model in the form of a model-dependent function Φ such that the constraint784

~r2 = Φ(~r1) results in f(〈h, r1, t〉) = f(〈t, r2, h〉). For example, in the case of TransE [7], using785

Φ : ~r2 7→ −~r1, one gets f(〈h, r1, t〉) = ||~h+ ~r1 − ~t|| = || − ~h− ~r1 + ~t|| (by homogeneity of the786

norm) and then f(〈h, r1, t〉) = ||~t+ Φ(~r1)− ~h|| = f(〈t, r2, h〉). Note that Φ needs to be an787

involution, i.e., ∀r,Φ(Φ(r)) = r.788

These constraints are called hard constraints because they entirely determine some789

embeddings. Another possibility is to use soft constraints in order to enforce axioms that790

are not entirely true. For example married with and partner of are not entirely semantic791

equivalents but their embeddings are similar to one another. Intuitively the objective of792

soft constraints is to nudge the model to adopt some desired properties rather than enforce793

hard-coded requirements. This is done by adding two weighted terms to the usual training794

loss: L̂ = L+ λ
[∑

r1≡r2
||~r1 − ~r2||22 +

∑
r1≡r̄2

||~r2 − Φ(~r1)||22
]
where λ is an hyper-parameter795

that needs to be determined during training.796

4.5 Improving Knowledge Graph Embeddings with Ontological797

Reasoning798

Until now, we have concentrated mainly on very simple types of axioms to improve embeddings.799

ReasonKGE [24] is a method that can use complex constraints as well. The idea is to use800

symbolic reasoning to find predictions by the model that are logically inconsistent, and to801

feed these as negative samples into a retraining step. Traditionally, embedding methods802

generate negative triples by randomly replacing the head entity or tail entity in a triple803

from the KB (Section 2). This method, however, has two problems: First, as we have804

already discussed, it does not work as well for the head entities (Section 2.1). Furthermore,805

traditional methods do not necessarily create negative statements that violate domain and806

range constraints. For example, a triple such as 〈Elvis, hasNationality, Priscilla〉 cannot be807

true since hasNationality requires a country as object. If such triples are not generated as808

negative examples, the model may produce them as predictions. Therefore, ReasonKGE sets809

out to generate negative examples by axioms – inspired by the NELL system [8], which also810

uses axioms for the generation of examples.811

The framework of the proposed method is shown in Figure 3. The inputs of the framework812

are the KG and its ontology, whereas the outputs are negative samples, which can then be813

used for training the model in the next iteration. The first iteration simply generates the814

AIB 2022

4:20 Combining Embeddings and Rules for Fact Prediction

Standard Negative
SamplingKG

Positive
Samples

Negative
Samples

Embedding Training Fact Prediction Predicted
Triples

Consistency
Checking

Ontology

Inconsistent
Predicted

Triples
Generalization

1 2 3

45

Figure 3 ReasonKGE Framework

baseline model with a default sampling method. Here, traditional sampling methods are815

used to generate the negative facts, and the model is trained based on positive and negative816

facts to obtain the predictions. The predicted triples are checked for inconsistencies with817

respect to the underlying ontology with the help of a reasoner. The inconsistent triples818

are then generalized to other semantically similar triples which would also cause the same819

inconsistencies. Lastly, all the generated negative samples are fed back to the model for820

the next iteration of training. With each round of training, the model learns to identify821

inconsistencies and therefore make more consistent predictions.822

The consistency checking procedure(step 4) is one of the main steps, that detects823

which predictions made by embedding model are inconsistent with the original KG (G) and824

ontology O. For computational purposes, this check is done only on the subset of relevant825

facts. The relevant set is defined as follows:826

Relv(α,G) = {α} ∪ {β ∈ G|Ent(β) ∩ Ent(α) 6= ∅} (5)827

Here, α is the predicted triple and β are triples in the KG. For example, consider α =828

〈Samsung, locatedIn, Emmanuel Macron〉. For this prediction the relevant set could consist829

of the following triples:830

Relv(α,G) = {〈Emmanuel Macon, livesIn, France〉,831

〈Emmanuel Macron, spouse,Brigitte Macron〉,832

〈Emmanuel Macron, type, person〉,833

〈Samsung, type, company〉}834
835

It is sufficient to perform consistency checking on Relv(α,G) ∪ O, instead of α ∪ G ∪ O. In836

our example, a reasoner would flag this prediction as inconsistent, because the ontology tells837

us that locatedIn requires a location, and hence 〈Samsung, locatedIn, Emmanuel Macron〉838

implies that the type of Emmanuel Macron is location. That contradicts the fact 〈Emmanuel839

Macron, type, person〉, together with the axiom that states that people and locations are840

disjoint. Thus, this triple can serve as a negative sample.841

Further, in Step 5, the negative samples obtained via consistency checking are fed to842

a generalization module to obtain multiple similar inconsistent facts that have a similar843

structure within KG. This is beneficial in 2 ways: firstly, by generating several negative844

samples that cause the same inconsistency, the model would be able to learn the inconsistency845

pattern and thus, the prediction of similar incorrect triples in next training iterations would846

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:21

be avoided. Secondly, it enables us to obtain sufficient number of negative samples for a given847

triple during the training of the model. The generalization of inconsistent predictions is done848

in the following way: in an inconsistent predicted fact 〈h, r, t〉, t can be replaced with another849

entity k that has similar triples. For example, if α = 〈Samsung, locatedIn, Emmanuel Macron〉850

is a predicted inconsistent triple, then we can take α = 〈Samsung, locatedIn, Joe Biden〉 as851

another negative example if Joe Biden has the same neighbour triples as Emmanuel Macron,852

i.e. 〈Joe Biden, type, person〉.853

The authors show experimentally that ReasonKGE achieved better results on the link854

prediction task as compared to traditional methods (TransE, ComplEx). Experiments855

conducted on the Yago3-10 dataset were particularly significant, as the model achieved856

more than 10% improvement for all the measures as compared to TransE. Additionally,857

ReasonKGE reduced the ratio of inconsistent predictions over the test set when compared858

to other models that employ static or random sampling techniques. A limitation of this859

method is the use of DL-Lite [3] ontologies, due to which, theoretically, not all possible860

similar negative samples will be obtained based on a given inconsistent prediction in the861

generalization step.862

4.6 Injecting Background Knowledge into Embedding Models for863

Predictive Tasks on Knowledge Graphs864

Similar to ReasonKGE, this paper proposes to improve KG embeddings by injecting available865

background knowledge in the form of ontological axioms [11]. The authors propose TransOWL866

and TransROWL models, as improved versions of the traditional embedding methods TransE867

and TransR respectively.868

The injection of background knowledge during the training phase involves two main869

components - reasoning to add negative samples and Background Knowledge (BK) injection870

to add constraints on the scoring function.871

During reasoning, negative samples are generated by leveraging the ontological properties872

such as domain, range, disjointWith, functionalProperty with the help of the Apache Jena873

framework. For example, if a particular entity type (or concept in ontology terminology),874

let’s say location is disjoint with another type e.g. person, then negative samples are875

generated by replacing the person entity in a triple with all location entities present in the876

KG. Thus, for a triple 〈Samsung, locatedIn, South Korea〉, a list of negative samples can877

be generated by replacing South Korea with Joe Biden, Barack Obama, John Smith878

and so on.879

During BK injection, ontological properties such as equivalentClass, equivalentProp-880

erty, inverseOf and subClassOf are applied for the definition of additional constraints881

on the scoring function such that resulting embedding vectors can reflect these prop-882

erties. New triples corresponding to these properties are generated and added to the883

training set of the model. For example, for the equivalentClass property, if class A884

is equivalent to class B, then for a triple 〈entity1, type,A〉, it is possible to generate885

another triple 〈entity1, type,B〉 as well. Similarly this is performed for other properties as886

well and a considerable number of additional triples is generated before training the model.887

888

The basic loss function for TransE is defined as889 ∑
〈h,r,t〉∈∆,〈h′,r,t′〉∈∆′

[γ + fr(t, h)− fr(t′, h′)] (6)890

AIB 2022

4:22 Combining Embeddings and Rules for Fact Prediction

here γ ≥ 0 is the hyperparameter margin. For TransOWL, this loss function is more complex891

due to the additional constraints from the axioms. For example, the addition of the the892

inverseOf axiom would add a term to the loss function as893 ∑
〈t,s,h〉∈∆,〈t′,s,h′〉∈∆′

[γ + fs(t, h)− fq(t′, h′)] (7)894

where f is the scoring function, ∆ refers to the set of additional triples generated by a reasoner895

and s is the inverse relation of r. Similarly, the constraints are added in the loss function for896

the other axioms as well. Experimental evaluation shows that the models generated through897

this procedure show improvement for link prediction as well as triple classification in KGs as898

compared to the original TransE and TransR models.899

4.7 Knowledge Base Completion Using Embeddings and Rules900

In [63], the authors propose to constrain knowledge graph embeddings by an altogether901

different type of axioms: cardinality axioms. This is done by an Integer Linear Programming902

problem: the objective function is computed using the scoring function of an embedding903

model under the constraints from the symbolic axioms.904

Let the E = {e1, e2, . . . , en} and R = {r1, r2, . . . , rm} be the sets of entities and relations
in a KG at hand. The linear problem is defined with mn2 decision variables {xk

i,j , 1 ≤ i, j ≤
n, 1 ≤ k ≤ m} such that xk

i,j indicates whether the fact 〈ei, rk, ej〉 is true or false. The weight
of a triple is computed using the scoring function f of an embedding model. This results in
an objective function of the form:

max
xk

i,j

∑
i

∑
j

∑
k

f(〈ei, rk, ej〉) · xk
i,j

The constraints of this optimization problem are derived from four types of rules:905

Type 1: noisy observation. Observed triples are very likely to be true but KBs are906

prone to noise. In order to take into account the rare cases in which an observed fact is907

false, slack variables εki,j are introduced for each observed triple and the R1 constraint is908

added along with a penalization term in the objective function. This is a classical method909

in linear programming, which allows the easy identification of noisy triples.910

Type 2: argument type expectation. Some predicate-specific type constraints should911

be respected by the head and tail entities. This results in the R2 constraint in which Sk912

(resp. Ok) contain the indexes of the entities that have the type of the head (resp. tail)913

of the relation rk.914

Type 3: at-most-one restraint. Some relations can handle at most one head per915

tail (many-to-one) or one tail per head (one-to-many). For example, the relation city-916

LocatedInCountry is a one-to-many relation meaning that a city can be located in at most917

one country. Other relations are one-to-one. Those three types of relations result in three918

constraints R3.1, R3.2 and R3.3 in which R1−M , RM−1 and R1−1 are respectively the919

sets of one-to-many, many-to-one and one-to-one relations.920

Type 4: simple implication. A relation r1 can imply another relation r2, if 〈x, r1, y〉 ⇒921

〈x, r2, y〉 for any entities x and y. It is denoted r1 ⇒ r2. This gives us the constraint R4.922

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:23

With this, the final Integer Logic Program is:923

max
xk

i,j

∑
i

∑
j

∑
k

f(〈ei, rk, ej〉) · xk
i,j924

(R1) xk
i,j + εki,j = 1,∀(i, j, k) : 〈ei, rk, ek〉 is observed925

(R2) xk
i,j = 0,∀k, ∀i : ei /∈ Sk,∀j : ej /∈ Ok926

(R3.1)
∑

i

xk
i,j ≤ 1,∀k : rk ∈ R1−M ,∀j927

(R3.2)
∑

j

xk
i,j ≤ 1,∀k : rk ∈ RM−1,∀i928

(R3.3)
∑

i

xk
i,j ≤ 1,

∑
j

xk
i,j ≤ 1,∀k : rk ∈ R1−1,∀i,∀j929

(R4) xk1
i,j ≤ x

k2
i,j ,∀k1, k2 s.t. rk1 ⇒ rk2930

where xk
i,j ∈ {0, 1},∀i, j, k; εki,j ∈ {0, 1},∀(i, j, k) : 〈ei, rk, ek〉 is observed931

932

In spite of their promising results, the authors highlight two main limitations to this approach.933

First, constraints do not take into account the possible many-to-many relations, possibly934

missing out some ontology information. Second, solving the integer linear programming935

problem is time consuming and the approach then lacks scalability. In this regard, the936

authors propose a divide-and-conquer strategy for future work.937

4.8 Jointly embedding KGs and Rules938

So far, we have constrained embeddings by axioms. There are, however, also approaches that939

use soft rules instead of axioms, and that learn embeddings jointly with confidence scores940

for these soft rules. The first of these [19] improves the training procedure of the TransE941

model [7] by a new training loss that integrates both observed triples and groundings of some942

logical rules. The method focuses on rules of only two shapes: ∀x, y, 〈x, r1, y〉 ⇒ 〈x, r2, y〉943

and ∀x, y, 〈x, r1, y〉 ∩ 〈y, r2, z〉 ⇒ 〈x, r3, z〉, where r1, r2 and r3 are relations from the graph.944

Following Rocktäschel et al. [45], the truth value of a grounded rule is computed from
the truth values of the constituent triples and t-norm logic principles. For this, the truth
value of a single triple is first defined as:

f(〈x, r, y〉) = 1− 1
3
√
d
||~x+ ~r − ~y||

This is simply a normalization of the TransE [7] scoring function. To compute the truth945

value of more complicated logical formulae, this definition has to be broaden to negation,946

conjunction, and disjunction. The truth value of a negated triple ¬p is simply 1 − f(p).947

The truth value of a conjunction is given by a t-norm, i.e., a function that is commutative,948

associative, and monotonous, and that has 1 as the identity element. The work of [19] uses949

simply the product as the t-norm, i.e., f(p ∧ q) = f(p)× f(q). With this, the truth value f950

of an implication is951

f(p⇒ q) = f(¬p ∨ q) = f(¬(p ∧ ¬q))952

= 1− f(p)× (1− f(q))953

= 1− f(p) + f(p)× f(q)954
955

The only question left is how to generate the logical rules that are taken as input of this956

improved training procedure. A natural method could be to run a logical approach such957

AIB 2022

4:24 Combining Embeddings and Rules for Fact Prediction

Soft Rules

Soft Label Prediction

Embedding
Rectification

Labeled Triples

Unlabeled Triples

Em
beddingsSo

ft
La

be
ls

Figure 4 RUGE

as AMIE or RuDiK [17, 40]. The authors of [19] have a different approach that uses their958

method of scoring rule groundings to select the best ranking rules in a greedy manner.959

4.9 Knowledge Graph Embedding with Iterative Guidance from Soft960

Rules (RUGE)961

The Rule-Guided Embedding (RUGE) algorithm [20] is another method that learns embed-962

dings jointly with confidence scores for logical rules. Its main steps are shown in Figure 4.963

The system starts out with soft rules (top of the figure), mined by the AMIE system [17].964

These are instantiated to make predictions (see Section 2.1) – each with a confidence. The965

Embedding Step (bottom of the figure) takes as input the predictions of the rules as well as966

labeled triples from the KB. The embedding is trained on these two sources. This allows967

the prediction of new facts, which will in turn predict new facts by help of the rules. This968

process is iterated, thereby amplifying automatically the number of labeled examples.969

The rule mining system gives each rule a confidence. However, this confidence concerns970

the rule as a whole, not an individual grounded variant of the rule, where all variables are971

instantiated. To compute the confidence of an individual grounded rule, the approach uses972

the scores φ(·) of the embeddings of the facts that appear in the rule, as well as the score973

s(·) of the fact that the rule predicts, and proceeds according to the definitions of t-norm974

based fuzzy logics, in much the same way as [19].975

The approach then aims to find a scoring function s(·) that is as close as possible to976

the current scoring function φ(·), while at the same time making the confidences π(·) of977

all grounded rules as close as possible to 1 (the maximum). This is done by solving an978

optimization problem. This yields scores s(·) for facts that are predicted by the rules.979

In the second step, the approach then corrects its embeddings φ(·) so that they mirror (1)980

the truth value of facts that appear already in the KB and (2) the score s(·) for facts that981

do not appear in the KB, but were predicted by the rules. This updated embedding is then982

fed again into the rules, and the process is iterated. Experiments show that this method983

achieves significant improvements in link prediction task on Freebase and YAGO.984

A variant of this approach is the SoLE system [71] (“Soft Logical rules enhanced Embed-985

dings”), whose architecture is shown in Figure 5. Like RUGE, SoLE takes as input a KB986

and rules. It uses the rules to predict new facts in an iterative manner until no more facts987

can be predicted (a technique called forward chaining). The rules are then grounded, and a988

confidence score is computed for each grounded rule, not unlike this is done in RUGE as well.989

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:25

Rule Mining KGGenerated Soft Rules
with Confidence

Forward Chaining
Reasoning

Groundings

Embedding Learning

Joint Loss

Embedding 1 Embedding 2

Facts

Figure 5 SoLE Architecture (stage 1 in yellow, stage 2 in blue)

Different from RUGE, SoLE then minimizes a joint loss so as to find embeddings that can990

(1) predict the labels of triples contained the KB, while also (2) imitating the confidences of991

rules.992

5 Rule Mining with embedding techniques993

In the previous section, we have discussed several embedding methods that use logical994

techniques to improve their performance. The other direction is much less common: there are995

few methods that use embedding models in order to improve logical rule mining techniques.996

We will now present the most prominent ones.997

5.1 ILP Rule Mining998

A first small application of embeddings for rule mining is presented in an extension of999

RuDiK [40] by Ahmadi et al. [1]. The new system can also mine rules about class membership,1000

such as “Politicians are not married to officeholders of a different party”:1001

[〈x, party, xp〉 ∧ 〈y, party, yp〉 ∧ xp 6= yp1002

∧ 〈x, type, Politician〉 ∧ 〈y, type,Office Holder〉]⇒ ¬〈x, spouse, y〉1003
1004

The question is now what classes should be considered in such rules. Considering all classes1005

may lead to rules that are too fine-grained. It would also be inefficient. Using only the1006

top-level classes, in contrast, may miss out on useful rules that hold in a subclass.1007

RuDiK therefore clusters the instances of the KB. The method of choice here are entity1008

embedding methods. The authors observe that the clusters obtained this way are more1009

uniform in what concerns the structural similarity of entities (i.e., the outgoing relations that1010

they share) than class membership. This is because two entities with different relations can1011

belong to the same class, and entities with the same relations can belong to different classes.1012

The embedding, in contrast, groups entities by their relations, which is more amenable to1013

the rule mining.1014

It turns out that entities with popular classes, such as Person, can be spread across1015

multiple clusters, but classes with finer granularity, such as Politician and OfficeHolder are1016

grouped together. For each cluster, RuDiK then determines a class (e.g., the class that most1017

AIB 2022

4:26 Combining Embeddings and Rules for Fact Prediction

entities in the cluster belong to). This class is then used for mining rules such as the one1018

above.1019

5.2 Few-shot learning for label propagation1020

As stated in Section 2.1, a recurrent problem when working on KBs is the lack of negative1021

statements. That makes it difficult to classify a prediction of any model. In an ideal situation,1022

an operator would be available during training in order to manually tag generated facts as1023

positive or negative. This is rarely the case because it is very costly but it could be very1024

useful in the generation of false statements for example. This problem of manually tagging1025

samples (here triples) is not specific to KB processing and it has given birth to a field of1026

research called few-shot learning. This is the study of learning algorithms that work on a1027

very small number of samples. It often applies in fields were the creation of supervision labels1028

is costly, for example computer vision.1029

In [32] the authors propose a few-shot rule-based knowledge validation framework that1030

uses an embedding model (HypER [5]) in order to propagate the decisions of a human1031

operator to whom triples to tag are submitted. The goal of the method is to enrich the KB1032

with positive and negative examples that allow a better evaluation of a set of rules. The1033

proposed propagation method relies on a measure of similarity between facts. To compute1034

the similarity, a vector representing each triple is computed by concatenating the embeddings1035

of the entities. The propagation of manual labels is done locally to triples sharing the same1036

relation, and so their embedding is omitted in the concatenation. For example, let’s say that1037

an operator labeled the fact 〈Barack Obama,marriedTo, Sasha Obama〉 as false, this label1038

is going to be propagated to triples involving Barack Obama and MarriedTo or MarriedTo1039

and Sasha Obama that are similar enough to the initial one. Eventually the set of manually1040

labeled triples along with the automatically labeled ones improve the evaluation process of1041

the rules. The authors apply their method to rules mined with AMIE [17] and RuDiK [40].1042

The proposed method uses HypER as embedding model but the authors insist on the fact1043

that any model can be used for this task.1044

5.3 Approximate algorithms1045

AMIE [17] is an exhaustive rule mining system, i.e., it finds all rules above user-specified1046

confidence and support thresholds. This makes AMIE quite heavy to run on large knowledge1047

bases. AMIE+ [18] improved the runtime by approximating the computation of the confidence1048

value of rules. This comes at a minor cost in the precision of the algorithm but allows1049

reducing the computation time by several orders of magnitude.1050

Another way to speed up the rule mining is by sampling. The underlying intuition is1051

that a rule of the form 〈e, r1, e1〉 ∧ 〈e1, r2, e2〉 ∧ · · · ∧ 〈en, rn+1, e
′〉 ⇒ 〈e, r, e′〉 can be seen as1052

the co-occurrence in the knowledge graph (KG) of two paths from e to e′: one of length 11053

(passing through the relation r), and one of length 2n+ 1 (through the entities e1, e2, . . . ,1054

en and the relations r1, r2, . . . , rn+1). Exploring the possible rules then comes down to1055

finding possible paths from one entity to another. This graph exploration is computationally1056

expensive, and so the authors of [39] propose a two-step acceleration of the graph exploration1057

and of the evaluation of the rules.1058

First, the size of the graph is reduced by sampling the KG. Given a relation r that should1059

appear in the head atom of the rule and a maximum length l ≥ 2, the neighborhood of r1060

is computed iteratively. We start from a set E0, which includes any entity involved in a1061

fact with r. We then compute Ei for 1 ≤ i ≤ l − 2 by including entities linked to some1062

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:27

entity of Ei−1 by any predicate. The neighborhood of r is then defined as N (r) = ∪l−2
i=0Ei1063

and it includes all entities relevant to find paths of maximum length l and then rules1064

involving l atoms in the body and p in the head.1065

Subsequently, instead of exhaustively exploring all the possible paths in the neighborhood1066

of the relation r, the authors suggest to use a bilinear embedding model to learn matrix1067

representations of relations (see Section 3.2). A relation path r1, r2, . . . , rl in the graph1068

can then be represented as the product of the matrices of the relations Mr1 ·Mr2 · · · · ·Mrl
.1069

The similarity between the path (corresponding to the body of the potential rule) and r1070

is computed using the matrix Frobenius norm sim(r, [r1, r2, . . . , rl]) = exp(−||Mr −Mr1 ·1071

Mr2 · · · · ·Mrl
||F).1072

The authors compare their approach to AMIE+, and show that the new approach mines1073

more rules, and rules of better quality in terms of confidence. Furthermore, the process is1074

much faster for rules that have the shape of paths.1075

6 Conclusion1076

Knowledge Bases (KBs) find many uses in AI applications, such as personal assistants,1077

question answering systems, or text analysis. And yet, KBs are usually incomplete and miss1078

facts. Two avenues of research have taken to predict missing facts: a symbolic one, based1079

on rule mining, and a neural one, based on embeddings. Each of them has their respective1080

strengths, and in this article we have presented an overview of both. We have also discussed1081

recent studies on the criticism of the benchmark and protocols used during evaluation of1082

embedding models. We have then presented approaches that successfully combine both1083

symbolic and neural methods to perform fact prediction in KBs. While there are several1084

approaches that use rules in order to improve embeddings, there are rather few approaches1085

that use embeddings to improve rule mining. This may thus be an interesting direction for1086

further research.1087

References1088

1 Naser Ahmadi, Viet-Phi Huynh, Vamsi Meduri, Stefano Ortona, and Paolo Papotti. Mining1089

expressive rules in knowledge graphs. Journal of Data and Information Quality (JDIQ),1090

12(2):1–27, 2020.1091

2 Farahnaz Akrami, Mohammed Samiul Saeef, Qingheng Zhang, Wei Hu, and Chengkai Li.1092

Realistic re-evaluation of knowledge graph completion methods: An experimental study. In1093

ACM SIGMOD, 2020.1094

3 Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The1095

dl-lite family and relations. Journal of artificial intelligence research, 36:1–69, 2009.1096

4 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and1097

Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In ISWC, 2007.1098

5 Ivana Balažević, Carl Allen, and Timothy M Hospedales. Hypernetwork knowledge graph1099

embeddings. In ICANN, 2019.1100

6 Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic matching1101

energy function for learning with multi-relational data. Machine Learning, 94(2):233–259,1102

2014.1103

7 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.1104

Translating embeddings for modeling multi-relational data. In NeurIPS, 2013.1105

8 Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka, and1106

Tom M Mitchell. Toward an architecture for never-ending language learning. In AAAI, 2010.1107

AIB 2022

4:28 Combining Embeddings and Rules for Fact Prediction

9 Yuanfei Dai, Shiping Wang, Neal N Xiong, and Wenzhong Guo. A survey on knowledge graph1108

embedding: Approaches, applications and benchmarks. Electronics, 9(5):750, 2020.1109

10 Tu Dinh Nguyen Dai Quoc Nguyen, Dat Quoc Nguyen, and Dinh Phung. A novel embedding1110

model for knowledge base completion based on convolutional neural network. In NAACL,1111

2018.1112

11 Claudia d’Amato, Nicola Flavio Quatraro, and Nicola Fanizzi. Injecting background knowledge1113

into embedding models for predictive tasks on knowledge graphs. In ESWC, 2021.1114

12 Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional1115

2d knowledge graph embeddings. In AAAI, 2018.1116

13 Boyang Ding, Quan Wang, Bin Wang, and Li Guo. Improving knowledge graph embedding1117

using simple constraints. arXiv preprint arXiv:1805.02408, 2018.1118

14 Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas1119

Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to1120

probabilistic knowledge fusion. In ACM SIGKDD, 2014.1121

15 Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved knowledge graph embedding1122

using background taxonomic information. In AAAI, volume 33, 2019.1123

16 Jun Feng, Minlie Huang, Mingdong Wang, Mantong Zhou, Yu Hao, and Xiaoyan Zhu.1124

Knowledge graph embedding by flexible translation. In KR, 2016.1125

17 Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie: Association1126

rule mining under incomplete evidence in ontological knowledge bases. In WWW, 2013.1127

18 Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining1128

in Ontological Knowledge Bases with AMIE+. In VLDBJ, 2015.1129

19 Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Jointly embedding knowledge1130

graphs and logical rules. In EMNLP, 2016.1131

20 Shu Guo, Quan Wang, Lihong Wang, Bin Wang, and Li Guo. Knowledge graph embedding1132

with iterative guidance from soft rules. In AAAI, 2018.1133

21 Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowledge graphs1134

with gaussian embedding. In CIKM, 2015.1135

22 Frank Lauren Hitchcock. The expression of a tensor or a polyadic as a sum of products.1136

Journal of Mathematics and Physics, 6:164–189, 1927.1137

23 Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, and Ralf Krestel. Do embeddings actually1138

capture knowledge graph semantics? In ESWC, 2021.1139

24 Nitisha Jain, Trung-Kien Tran, Mohamed H Gad-Elrab, and Daria Stepanova. Improving1140

knowledge graph embeddings with ontological reasoning. In ISWC, 2021.1141

25 Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge graph embedding1142

via dynamic mapping matrix. In ACL, 2015.1143

26 Rudolf Kadlec, Ondřej Bajgar, and Jan Kleindienst. Knowledge base completion: Baselines1144

strike back. In RepL4NLP, 2017.1145

27 Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge1146

graphs. In NeurIPS, 2018.1147

28 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional1148

networks. arXiv preprint arXiv:1609.02907, 2016.1149

29 Bhushan Kotnis and Vivi Nastase. Analysis of the impact of negative sampling on link1150

prediction in knowledge graphs. arXiv preprint arXiv:1708.06816, 2017.1151

30 Jonathan Lajus, Luis Galárraga, and Fabian M. Suchanek. Fast and Exact Rule Mining with1152

AMIE 3. In ESWC, 2020.1153

31 Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and relation1154

embeddings for knowledge graph completion. In AAAI, 2015.1155

32 Michael Loster, Davide Mottin, Paolo Papotti, Jan Ehmüller, Benjamin Feldmann, and Felix1156

Naumann. Few-shot knowledge validation using rules. In TheWebConf, 2021.1157

33 Farzaneh Mahdisoltani, Joanna Asia Biega, and Fabian M. Suchanek. YAGO3: A Knowledge1158

Base from Multilingual Wikipedias. In CIDR, 2015.1159

A. Boschin, N. Jain, G. Keretchashvili, and F. Suchanek 4:29

34 Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli, and Heiner Stuckenschmidt.1160

An introduction to anyburl. In KI, 2019.1161

35 Pasquale Minervini, Luca Costabello, Emir Muñoz, Vít Nováček, and Pierre-Yves Vanden-1162

bussche. Regularizing knowledge graph embeddings via equivalence and inversion axioms. In1163

ECML PKDD, 2017.1164

36 Sameh K Mohamed, Vít Novácek, Pierre-Yves Vandenbussche, and Emir Muñoz. Loss functions1165

in knowledge graph embedding models. DL4KG@ ESWC, 2377:1–10, 2019.1166

37 Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning effective and interpretable1167

semantic models using non-negative sparse embedding. In COLING, 2012.1168

38 Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective1169

learning on multi-relational data. In ICML, 2011.1170

39 Pouya Ghiasnezhad Omran, Kewen Wang, and Zhe Wang. An embedding-based approach to1171

rule learning in knowledge graphs. IEEE Transactions on Knowledge and Data Engineering,1172

33(4):1348–1359, 2021.1173

40 Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. Robust discovery of1174

positive and negative rules in knowledge bases. In ICDE, 2018.1175

41 Pouya Pezeshkpour, Yifan Tian, and Sameer Singh. Revisiting evaluation of knowledge base1176

completion models. In AKBC, 2020.1177

42 Jay Pujara, Eriq Augustine, and Lise Getoor. Sparsity and noise: Where knowledge graph1178

embeddings fall short. In EMNLP, 2017.1179

43 Simon Razniewski, Hiba Arnaout, Shrestha Ghosh, and Fabian M. Suchanek. Completeness,1180

Recall, and Negation in Open-World Knowledge Bases. In VLDB, 2021.1181

44 Simon Razniewski, Fabian M. Suchanek, and Werner Nutt. But What Do We Actually Know?1182

In AKBC workshop, 2016.1183

45 Tim Rocktäschel, Sameer Singh, and Sebastian Riedel. Injecting logical background knowledge1184

into embeddings for relation extraction. In NAACL, 2015.1185

46 Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.1186

Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions1187

on Knowledge Discovery from Data (TKDD), 15(2):1–49, 2021.1188

47 Andrea Rossi and Antonio Matinata. Knowledge graph embeddings: Are relation-learning1189

models learning relations? In EDBT/ICDT, 2020.1190

48 Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks!1191

on training knowledge graph embeddings. In ICLR, 2019.1192

49 Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum:1193

End-to-end differentiable rule mining on knowledge graphs. In NeurIPS, 2019.1194

50 Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and1195

Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.1196

51 Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou. End-to-end1197

structure-aware convolutional networks for knowledge base completion. In AAAI, 2019.1198

52 Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural1199

tensor networks for knowledge base completion. In NeurIPS, 2013.1200

53 Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago - A Core of Semantic1201

Knowledge . In WWW, 2007.1202

54 Fabian M. Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard Weikum. Knowledge1203

Representation and Rule Mining in Entity-Centric Knowledge Bases. In RW, 2019.1204

55 Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph1205

embedding by relational rotation in complex space. In ICLR, 2018.1206

56 Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha Talukdar, and Yiming Yang. A1207

re-evaluation of knowledge graph completion methods. In ACL, 2020.1208

57 Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and1209

text inference. In CVSC workshop, 2015.1210

AIB 2022

4:30 Combining Embeddings and Rules for Fact Prediction

58 Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard.1211

Complex embeddings for simple link prediction. In ICML, 2016.1212

59 Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based1213

multi-relational graph convolutional networks. In ICLR, 2019.1214

60 Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase.1215

Commun. ACM, 57(10):78–85, 2014.1216

61 Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen, Dinh Phung, et al. A capsule network-based1217

embedding model for knowledge graph completion and search personalization. In NAACL,1218

2019.1219

62 Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey1220

of approaches and applications. IEEE Transactions on Knowledge and Data Engineering,1221

29(12):2724–2743, 2017.1222

63 Quan Wang, Bin Wang, and Li Guo. Knowledge base completion using embeddings and rules.1223

In ICOAI, 2015.1224

64 Yanjie Wang, Daniel Ruffinelli, Rainer Gemulla, Samuel Broscheit, and Christian Meilicke.1225

On evaluating embedding models for knowledge base completion. In RepL4NLP, 2019.1226

65 Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by1227

translating on hyperplanes. In AAAI, 2014.1228

66 Gerhard Weikum, Luna Dong, Simon Razniewski, and Fabian M. Suchanek. Machine Know-1229

ledge: Creation and Curation of Comprehensive Knowledge Bases. In Foundations and Trends1230

in Databases, 2021.1231

67 Alfred North Whitehead and Bertrand Russell. Principia mathematica. Cambridge University1232

Press, 1913.1233

68 Han Xiao, Minlie Huang, Yu Hao, and Xiaoyan Zhu. Transg: A generative mixture model for1234

knowledge graph embedding. arXiv preprint arXiv:1509.05488, 2015.1235

69 Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and1236

relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575, 2014.1237

70 Rui Ye, Xin Li, Yujie Fang, Hongyu Zang, and Mingzhong Wang. A vectorized relational1238

graph convolutional network for multi-relational network alignment. In IJCAI, 2019.1239

71 Jindou Zhang and Jing Li. Enhanced knowledge graph embedding by jointly learning soft1240

rules and facts. Algorithms, 12(12):265, 2019.1241

72 Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie Wang. Learning hierarchy-aware1242

knowledge graph embeddings for link prediction. In AAAI, 2020.1243

73 Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, and Fabian M. Suchanek. An Experimental1244

Study of State-of-the-Art Entity Alignment Approaches . In TKDE, 2020.1245

	1 Introduction
	2 Preliminaries
	2.1 Knowledge Bases
	2.2 Rule Mining
	2.3 Embeddings

	3 Embedding Models
	3.1 Geometric models
	3.2 Semantic Matching models
	3.3 Deep Models
	3.4 Evaluation of Embedding Methods
	3.4.1 Evaluation Protocol
	3.4.2 Shortcomings of Benchmarks
	3.4.3 Shortcomings of the protocol

	4 Embedding Methods with Logical Components
	4.1 Rationale
	4.2 Improving Knowledge Graph Embeddings Using Simple Constraints
	4.3 Improved Knowledge Graph Embedding Using Background Taxonomic Information
	4.4 Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms
	4.5 Improving Knowledge Graph Embeddings with Ontological Reasoning
	4.6 Injecting Background Knowledge into Embedding Models for Predictive Tasks on Knowledge Graphs
	4.7 Knowledge Base Completion Using Embeddings and Rules
	4.8 Jointly embedding KGs and Rules
	4.9 Knowledge Graph Embedding with Iterative Guidance from Soft Rules (RUGE)

	5 Rule Mining with embedding techniques
	5.1 ILP Rule Mining
	5.2 Few-shot learning for label propagation
	5.3 Approximate algorithms

	6 Conclusion

