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General-purpose knowledge bases (KBs) are a cornerstone of knowledge-centric AI. Many of them are
constructed pragmatically from web sources, and are thus far from complete. This poses challenges for the
consumption as well as the curation of their content. While several surveys target the problem of completing
incomplete KBs, the first problem is arguably to know whether and where the KB is incomplete in the first
place, and to which degree.

In this survey, we discuss how knowledge about completeness, recall, and negation in KBs can be expressed,
extracted, and inferred. We cover (i) the logical foundations of knowledge representation and querying under
partial closed-world semantics; (ii) the estimation of this information via statistical patterns; (iii) the extraction
of information about recall from KBs and text; (iv) the identification of interesting negative statements; and
(v) relaxed notions of relative recall.

This survey is targeted at two types of audiences: (1) practitioners who are interested in tracking KB quality,
focusing extraction efforts, and building quality-aware downstream applications; and (2) data management,
knowledge base and semantic web researchers who wish to understand the state of the art of knowledge bases
beyond the open-world assumption. Consequently, our survey presents both fundamental methodologies and
the results that they have produced, and gives practice-oriented recommendations on how to choose between
different approaches for a problem at hand.

CCS Concepts: • General and reference → Surveys and overviews; • Computing methodologies →
Knowledge representation and reasoning; Artificial intelligence.
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1 INTRODUCTION

Motivation. Web-scale knowledge bases (KBs) like Wikidata [125], DBpedia [13], NELL [21], or
YAGO [118] are a cornerstone of the Semantic Web. Pragmatically constructed from web resources,
they focus on representing positive knowledge, i.e., statements that are true. However, they typically
contain only a small subset of all true statements, without qualifyingwhat that subset is. For example,
a KB may contain winners of the Nobel Prize in Physics, but it does not necessarily contain all
winners. It will not even specify whether it contains all winners or not. For example, a KB may lack
the information that a specific renowned physicist won the Nobel Prize, but this does not mean that
this person did not win the award – the data may just be lacking. Vice versa, if it is known that a
specific physicist did definitively not win the Nobel Prize, there is no way to express this in most
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current KBs. A KB may also not contain a specific scientist at all – without any indication that she
or he is missing.1
Such uncertainty about the extent of knowledge poses major challenges for the curation and

application of KBs:

(1) Human KB curators need to know where the KB is incomplete, so that they can prioritize
their completion efforts. For example, when working on a KB like Wikidata, with over 100M
items, systematic knowledge on gaps and quality is essential in order to know where to focus
limited human resources.

(2) Automated KB construction pipelines need this knowledge, too, in order to know how
to adjust acceptance thresholds. For example, if we already have 218 Physics Nobel prize
winners in the KB, and if we know that this is the expected count, further candidates should
all be rejected. In contrast, if no publications of a scientist are recorded in the KB, we should
accept automated extractions. This is significant in particular for KB projects such as NELL,
which aim to auto-complete themselves.

(3) QAApplications are built on top of KBs. They need to knowwhere the data is incomplete, so
as to alert end users of quality issues. For example, a query for “the astronomer who discovered
most planets” may return the wrong answer if Geoffrey Marcy happens to be absent from the
KB. Similarly, a KB that is used for question-answering should have awareness of when a
question surpasses its knowledge [93]. This holds in particular for Boolean questions such as
“Does Harvard have a physics department?” (where a “no” could come simply from missing
information), and analytical aggregate questions such as “How many US universities have
physics departments?” (where receiving some answer gives little clue about its correctness).

(4) Structured entity summaries need awareness not only of positive properties, but also of
salient negatives. For example, one of the most notable properties of Switzerland is that it is
not a EU member (despite heavy economic ties and being surrounded by EU countries). For
Stephen Hawking, a salient summary of his accolades should include that he did not win the
#1 award in his field, the Nobel Prize in Physics.

(5) Machine learning on knowledge bases and text, in particular, for the tasks of KB link
prediction and textual information extraction, needs negative training examples to build
accurate models. Obtaining quality negative examples is a major hurdle when working on
these tasks, and much research has focused on heuristics, for example, based on obfuscation
of positive statements. Explicit negations, or negations derived from completeness metadata,
could significantly impact these tasks.

This survey presents the methods that the recent literature has developed to address these problems.
For example, several formalisms have been developed to specify the extent of the knowledge in a
KB, including the possibility to make negative statements, or to specify metadata on completeness.
Knowledge engineers can record that they entered all winners of the Nobel Prize in Physics into
Wikidata, or mark prominent Physicists who did not win it. If such a manual marking is not possible,
there are also methods to infer the completeness of a KB automatically. For example, it is possible
to spot phrases such as “the Nobel Prize in Physics was awarded to 218 individuals”, and to compare
this count with the number of entities in the KB. It is also possible to draw conclusions about the
completeness of a KB from the growth or near-stagnation of a set of entities in the KB, from the
overlap between sets of Nobel Prize winners from different random samples, or from different KBs.
One can also observe that most winners hold academic degrees, and so flag entities without an alma

1We refrain from giving an example of an incomplete entity in a real-world KB, because whenever we did that in previous
publications, helpful readers specifically completed these entities in the KB, thereby rendering our example outdated.
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mater as likely incomplete. The knowledge engineer thus has a growing repository of methods at
hand to tackle the problem of incompleteness, and this is what the present survey covers.
Focus of this survey. Several comprehensive surveys discuss KBs at large, in particular their
construction, storage, querying, and applications [50, 55, 127]. Focused works on KB quality
discuss how recall can be increased, and how quality can be measured by assessing accuracy and
provenance [17, 35, 85, 130]. Recent years have also seen new formalisms for describing recall
and negative knowledge [10, 26, 71], as well as the rise of statistical and text-based methods for
estimating recall [15, 36, 52, 58, 61, 67, 97, 114] and deriving negative statements [8, 12, 58, 108],
with some of them collected in a systematic literature review [53]. The goal of this survey is to
systematize, present and analyze this topic. The survey is intended both for theoreticians and
practitioners. It intends to inform the readers about the latest advances in completeness assessment
and negation, and equip them with a repertoire of methodologies to better represent and assess
the recall of specific datasets. The survey builds on content that has been presented at tutorials
at VLDB’21, ISWC’21, KR’21 and WWW’22. The tutorial slides are available at https://www.mpi-
inf.mpg.de/knowledge-base-recall/tutorials.
Outline. This survey is structured as follows: In Section 2, we start with the foundations of the
logical framework in which KBs operate, the open world assumption (OWA), incompleteness, the
implications for query answering [102], as well as the formal semantics of completeness and cardi-
nality assertions [26]. In Section 3, we discuss how recall can be estimated automatically. We
present supervised machine learning methods [36], unsupervised techniques such as species sam-
pling [67, 123], density-based estimators [61], statistical invariants about number distributions [114],
and linguistic theories about completeness in human conversations [97]. In Section 4, we focus on
determining the cardinality of a predicate (i.e., its number of objects for a given subject) from
KBs and from text. We show how cardinality information from a KBs can be identified and used to
assess recall [42], how this information can be extracted from natural language documents [71],
and how this differs from mining functional cardinalities that remain invariant given any subject
(for instance, all humans have one birthplace) [43]. In Section 5, we focus on identifying salient
negations. We show why explicit negations about KB entities are needed in open-world settings.
We present methods to identify negations using inferences from the KB itself [8, 11, 12, 107, 108]
and methods to extract negations from various textual sources [8, 58], in particular query logs.
We also outline open issues such as the precision/salience trade-off and ontology modelling and
maintenance. In Section 6, we discuss relative recall, i.e., more relaxed notions of recall that stop
short of aiming to capture all knowledge from the real world. We show how recall can be measured
by extrinsic use cases like question answering and entity summarization [52, 96], by comparison
with open information extraction or external reference resources [39, 73], and by comparison with
other comparable entities inside the KB [15, 70]. In Section 7, we conclude with recent topics, rec-
ommendations towards making KBs recall-aware, and open research challenges. In particular,
large language models (LLMs) have recently shaken up knowledge-centric computing. Although
completeness and recall research has yet to capitalize on these advances, we highlight several ways
by which LLMs are likely to impact this area.

2 FOUNDATIONS
2.1 Knowledge Bases
We first introduce foundational concepts, in particular, knowledge bases, their semantics, and
the notions of completeness, recall and cardinality metadata. Knowledge bases are built on three
pairwise disjoint infinite sets 𝐸 (entities), 𝑃 (predicates), and 𝐿 (literals). Entities refer to uniquely
identifiable objects such as Marie Curie, the Nobel Prize in Physics, or the city of Paris. Literals are
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Marie Curie

birthPlace Warsaw
birthYear 1867
citizenOf Poland
advised Marguerite Perey

Óscar Moreno
... (6 more names) ...

discovered Polonium
wonAward Nobel Prize in Physics

Franklin Medal
Table 1. Running example KB.

strings or numerical values, such as dates, weights, and names. Predicates (also known as relations,
properties, or attributes) link an entity to another entity or to a literal. Examples are birthPlace or
hasAtomicNumber. A tuple ⟨𝑠, 𝑝, 𝑜⟩ ∈ 𝐸 ×𝑃 × (𝐸 ∪𝐿) is called a positive statement (also known as
triple, assertion, or fact), where 𝑠 is the subject, 𝑝 the predicate and 𝑜 the object [119]. A statement
says that the subject stands in the given predicate with the object, as in ⟨Marie Curie, wonAward,
Nobel Prize in Physics⟩. For our purposes, we will consider also negative statements, which say
that the subject does not stand in the given relationship with the object, as in ¬⟨Stephen Hawking,
wonAward, Nobel Prize in Physics⟩. Entities can be organized into classes such as Physicists, Cities,
or Awards. An entity can be an instance of a class, and this can be expressed by a triple with the
predicate type, as in ⟨Marie Curie, type, Physicist⟩. Classes can be arranged in a subclass hierarchy.
For example, physicists are scientists, and scientists are people. This, too, can be expressed by
triples, using the special predicate subClassOf : ⟨Physicist, subClassOf, Scientist⟩. Some KBs allow
specifying constraints, such as domain and range constraints on predicates, functionality constraints,
or disjointness constraints between classes, usually in a formalism called Description Logic [14].
In our case, we are concerned mainly with the statements and with class membership, and not so
much with constraints (i.e., in the terminology of Description Logic, we focus on the assertional
part of knowledge of the A-box, and less on the terminological knowledge of the T-box).

Definition 1 (Knowledge Base). A knowledge base (or knowledge graph)𝐾 is a finite set of positive
statements [60].

Example: As a running example, consider a KB with biographical data about scientists. An
excerpt of this KB is shown in Table 1, in a Wikidata-style layout, where the subject of all
statements is shown at the top (Marie Curie), and predicates and objects are shown in tabular
form below. This KB contains a diverse set of statements, linking entities with other entities, as
well as with literals, and containing multiple objects for some predicates but not for all.

The term “Knowledge Graph” (KG) is also often used as an alternative to “Knowledge Base” – ever
since Google popularized the term in 2012 [110]. Although KGs are sometimes defined as special
cases of KBs, by and large, the two terms have been used synonymously. For the purpose of this
survey, we follow suit, and use them interchangeably. KBs (or KGs) haven received a considerable
uptake in recent years [50, 127]. From humble beginnings in dedicated communities like YAGO [118],
DBpedia [13], Freebase [20], or Wikidata [125], KBs are now standard technology at most major
tech companies [80], and widely in use beyond. Nonetheless, understanding their quality remains
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an enduring challenge. With this survey, we contribute a detailed overview concerning the aspects
of completeness, recall and negation.
In this survey, we focus on knowledge that can be found in text, and that can reasonably be

expressed in structured format in knowledge bases. Intangible knowledge, e.g., around concepts
such as motion, scent, rhythm, or touch, is out of scope for this paper.

2.2 Incompleteness
Open-world knowledge bases are inherently incomplete, i.e., they store only a subset of all true
statements from the domain of interest [100]. Our example KB in Table 1, for instance, misses
2 other citizenships that Marie Curie held (Russia, France), and it does not even contain her
receiving the Nobel Prize in Chemistry.2 Moreover, it lacks the statement that, contrary to a common
misconception, she did not find the first discovered radio-active element, Uranium.

Such incompleteness happens for several reasons:
(1) Source incompleteness: KBs are usually built from another source, either by automated

methods [127], or by human curators, who read websites, textbooks, news articles, etc., or
other authoritative websites. These sources may themselves be incomplete.

(2) Access limitations: In some cases, only a subset of the relevant documents are readily acces-
sible to automated methods or to human curators. For example, major troves of knowledge
are locked away in the Deep Web (web pages without inlinks) [19], and there are printed
documents that are not available in digital form.

(3) Extraction imperfection: Even statements that are available in digital form and accessible
can be missed, because extractors are imperfect. This holds especially for automated text
extraction methods [127]: the best models achieve only 75% in recall on the popular TACRED
benchmark [126].

(4) Resource limitations: Human efforts are naturally bounded by available work time, and
this applies to a lesser degree also to automated extractors. This is especially relevant in the
long tail of knowledge, where social media content emerges continuously, at fast pace.

(5) Intractability of materializing all true negations: For negative assertions, another diffi-
culty joins in: The set of true negative statements is quasi-infinite3, and thus it is infeasible
to materialize negative statements beyond a few salient ones per subject.

We formalize the (in-)completeness of a KB by help of a hypothetical ideal KB 𝐾𝑖 . This ideal KB
contains all true statements about the domain of interest in the real world. Such an ideal KB is not
an easy concept. In the most naive conceptualization, 𝐾𝑖 simply contains all statements that are
true in reality, and that are expressible with a given set of predicates. This makes sense for relations
that are sufficiently well-defined such as “sibling” or “place of birth”. However, for other relations
(such as “hobby”) this conceptualization may be ill-defined [100]: while one of Albert Einstein’s
hobbies was playing the violin, he might have had an unclear number of other “hobbies” (such as
going for a walk, or eating chocolate). Thus, it is not clear what an ideal KB should contain for this
relation. The same goes for entities: is anybody with a doctoral degree a scientist? Or do we count
only people employed as scientists? What if a freelancing scientist makes an important discovery?
This shows that we can posit the notion of the ideal KB only for well-defined sets of relations and
entities: hobbies that are pursued in a registered association, scientists who are employed at a
research institution, etc. While this comes at the expense of what can be targeted, many relations
and sets of entities are sufficiently well-defined to establish completeness: all countries that are

2Making her one of the two people who ever received two Nobel Prizes.
3Infinite if one considers an infinite domain, finite but intractable if one considers a finite domain, e.g., the active domain of
a KB.
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members of the United Nations; all mountains higher than 1000m in a given country; all universities
of a given country that can deliver a doctoral degree; etc. In what follows, we shall focus on such
domains where the ideal KB 𝐾𝑖 can be reasonably established.
We say that a statement 𝑠𝑡 from the domain of interest is true in the real world, if 𝑠𝑡 ∈ 𝐾𝑖 , and

a negative statement ¬𝑠𝑡 from the domain of interest is true in the real world (“truly false”), if
𝑠𝑡 ∉ 𝐾𝑖 . We say that another KB 𝐾 is correct, if 𝐾 ⊆ 𝐾𝑖 . Correctness is usually a core focus in KB
construction [85] (also referred to as precision, truthfulness or accuracy). Nevertheless, KBs are of
course not all correct at scale. However, since we focus on incompleteness in this survey, we will
make the simplifying assumption that the KB at hand is correct.

A selection condition 𝜎 is a statement ⟨𝑠, 𝑝, 𝑜⟩, where each component can either be instantiated,
or a wildcard (“∗”). For example, ⟨∗, birthPlace,Warsaw⟩ is a selection condition. The result of a
selection condition 𝜎 on a KB 𝐾 (written 𝜎 (𝐾)) is the set of all statements in 𝐾 that match 𝜎 at
its non-wildcard positions. For example, ⟨∗, birthPlace,Warsaw⟩ selects all people born in Warsaw,
and ⟨Marie Curie,wonAward, ∗⟩ selects all awards won by Marie Curie.
We can now proceed to define major concepts for our survey.

Definition 2 (KB Completeness). Given a KB 𝐾 and a selection condition 𝜎 , we say that 𝐾 is
complete for 𝜎 if

𝜎 (𝐾) = 𝜎 (𝐾𝑖 ).

Definition 3 (KB Recall). Given a KB 𝐾 and a selection condition 𝜎 , the recall of 𝐾 for 𝜎 is defined
as:

Recall =
|𝜎 (𝐾) |
|𝜎 (𝐾𝑖 ) | .

It follows that KB recall is a real-valued concept, while KB completeness is a binary concept,
satisfied exactly when recall equals 1.
Terminology. The existing literature does not use terminology consistently. It often uses the
terms completeness and recall interchangeably, and utilizes others, such as coverage. For this
survey, we strictly use completeness for the Boolean concept of whether the result of a selection
condition on the available KB equals the result of the same selection on the ideal one, and recall for
its generalization to the quantitative ratio of the two. Formally, a separate notion of completeness
is thus superfluous, yet we find the Boolean case frequent enough to indicate it separately.

2.3 World Semantics
In data management, there are traditionally two major paradigms on how to interpret positive
KBs: The closed-world Assumption (CWA) states that statements that are not in the KB are false in
the real world, i.e., ⟨s, p, o⟩ ∉ 𝐾 ⇒ ⟨s, p, o⟩ ∉ 𝐾𝑖 . This contrasts with the Open-world Assumption
(OWA), which states that the truth of these statements is unknown, i.e., a statement that is not
in the KB might or might not be in 𝐾𝑖 . The CWA is reasonable in many limited domains, e.g., a
corporate database where all employees, orders, etc. are known, education management, where
becoming a student requires completing a formal sign-up process, or professional sports where
membership in major leagues is well-established. In many other settings, however, where it is
impossible, unrealistic, or not desired to have all statements and entities of a given domain, the
OWA is more appropriate. For example, it is unrealistic, and even undesired, for a KB such as YAGO
to contain all people of American nationality. Therefore, most web-scale KBs operate under the
OWA.
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Example: Consider again Marie Curie. Consider the query “Was Marie Curie a Polish citizen?”.
Under both the OWA and the CWA, the answer would be “Yes”, because the statement ⟨Marie
Curie, citizenship, Polish⟩ is in the KB. Now consider the query “Was Mary Curie an Australian
citizen?” Under the CWA, given that no such statement is in the KB, the answer would be “no”. Yet
under the OWA, the statement could still be true in reality, so the answer would be “Unknown”.
Finally, consider the query for “Nobel Peace Prize winners who are not US citizens”. Under the
CWA, that query would return Marie Curie and many others. Under the OWA, this query would
have to return the empty set, because for any winner, the KB could just be missing US citizenship.

The OWA and the CWA represent extreme stances, and both have severe shortcomings. The OWA
makes it impossible to answer “No” to any query, while the CWA produces the answer “No” also
in cases where the KB should refrain from taking a stance. Intermediate settings are thus needed,
referred to as Partial-closed World Assumptions (PCWA) [28, 74], where some parts of the KB are
treated under closed-world semantics, others under open-world semantics. One instantiation of the
PCWA is the partial completeness assumption (PCA) [33, 38]. The PCA asserts that if a subject has
at least one object for a given predicate, then there are no other objects in the real world beyond
those that are in the KB. For example, if the KB knows only one award for Marie Curie, then we
assume that she won no others. However, if no pet is given, we assume nothing about her number
of pets: she still might have had pets or not. Empirically, the PCA has been found to be frequently
satisfied in KBs (see Section 3.2 - paragraph “Weak Signals”). Still, the PCA is a generic assumption,
and does not allow the specification of individual regions of completeness/incompleteness.

2.4 Completeness and Cardinality Metadata
We next introduce two kinds of metadata assertions that can be used to specify areas of the KB
that are complete [74, 99].

Definition 4 (Completeness Assertion). Given an available KB 𝐾 , and an ideal KB 𝐾𝑖 , a complete-
ness assertion [74] is a selection condition 𝜎 for tuples that are completely recorded. Formally, such
an assertion is satisfied, if 𝜎 (𝐾𝑖 ) = 𝜎 (𝐾).

Example: The completeness assertion ⟨Marie Curie, advised, ∗⟩ specifies that all advisee relations
for Marie Curie are in the KB. Given the running example from Table 1, this would mean that
Curie advised no one else than Marguerite Perey, Óscar Moreno, and the other 6 listed individuals.

Completeness assertions can be naturally extended to select-project-join queries [74]. For example,
one would use a join to specify that the KB knows all the advisees of Physics Nobel Prize winners
from the UK. Projections are also possible, e.g., to assert completeness of all subjects that have
a VIAF ID, but without recording the ID itself. Both joins and projections come with subtleties,
particularly whether subqueries are evaluated on the available KB, or on the conceptual ideal
resource 𝐾𝑖 . Similarly, projections allow to collapse multiplicities of join queries, and completeness
assertions on resulting sets or bags carry different semantics (Does the KB allow to reconstruct all
Nobel Prize winners, or does it also allow to reconstruct how often each won the award?). We refer the
reader to [99] for further detail.

Various human-curated resources allow specifying completeness assertions in the spirit defined
above, as shown in Figure 1 (top). On the top left, one can see an assertion about the completeness
of Argentinian Nobel laureates. This is an example of a typical join filter: the predicate wonAward

4Image sources: https://wiki.openstreetmap.org/w/index.php?title=Abingdon&oldid=471369, https://www.imdb.com/title/
tt0083987/fullcredits?ref_=tt_ov_st_sm, https://en.wikipedia.org/wiki/List_of_Argentine_Nobel_laureates and https://en.
wikipedia.org/wiki/Henrik_Wenzel
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Fig. 1. Examples of completeness and cardinality assertions on the web. Top left and bottom right: Wikipedia.
Top right: IMDb. Bottom left: Openstreetmap.4

needs to be joined with the predicate citizenOf. On the top right, we see a simpler assertion about
cast members of a Movie. This corresponds to a selection like ⟨Gandhi, starsIn, ∗⟩.
Knowledge bases often give classes special importance (identified via the “type” predicate),

and although both can be modelled with the same completeness assertions, one can thus divide
completeness further into entity completeness (as in “Do we have all physicists?”) and statement
completeness (as in “Do we have all awards for each physicist?”). This distinction has advantages,
because the methods to tackle these types of incompleteness are different, as we shall see in
Section 3. However, the separation is often not clear-cut, as entities are frequently identified by
statements. For example, French cities are identified by the selection ⟨*, locatedIn, France⟩. Therefore,
our definition above makes no formal distinction, although works discussed in the following
sections may pragmatically focus on one of the two categories of completeness.

Cardinality assertions are inspired by number restrictions from Description Logics [51]. They
take the following form:

Definition 5 (Cardinality Assertion). A cardinality assertion is an assertion of the form |𝜎 (𝐾𝑖 ) | = 𝑛,
where 𝜎 is a selection condition, and 𝑛 is a natural number. It specifies the number of tuples in 𝐾𝑖
that satisfy a certain property.

Example: Continuing with the selection condition 𝜎 = ⟨Marie Curie,wonAward, ∗⟩, the cardi-
nality assertion |𝜎 (𝐾𝑖 ) | = 37 expresses that in reality, Marie Curie has received a total of 37
awards.

Cardinality assertions can be used to infer recall for a given selection condition by computing the
division from Definition 3, |𝜎 (𝐾 ) |

𝑛
. Moreover, in the special case where |𝜎 (𝐾) | = 𝑛, they can be used

to infer completeness.
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Example: Assume that we know that in realityMarie Curie has received a total of 37 awards, i.e.,
|𝜎 (𝐾𝑖 ) | = 37. In the running example from Table 1, for the selection condition of Marie Curie’s
awards, |𝜎 (𝐾) | = 2. Based on Definition 3, this would mean that on her awards, the KB has a
recall of 2

37 ≈ 5.4%.

Cardinality assertions are also found in web resources, as shown in Figure 1 (bottom right), where
a Wikipedia article mentions the number of PhD students advised by a certain researcher. The
snippet at the bottom left contains no explicit numerals, but carries a similar spirit of recording to
which degree information on districts of a city is recorded in Openstreetmap.

Completeness and cardinality assertions are closely related: cardinality assertions allow to
evaluate completeness, while completeness assertions establish cardinalities. If we know that Marie
Curie advised 8 PhD students, we can infer that the KB in Fig. 1 is complete. If we know that she
held 3 different citizenships, we can infer the KB is incomplete. If we know that the KB is complete,
we can infer that the true cardinality of PhD students she advised is 7. Completeness, in turn,
enables establishing negation. If we know that the list of Marie Curie’s advisees is complete, we
can infer that she did not advise Jean Becquerel, Louis de Broglie, etc.
Reasoning with completeness metadata. Given complex KB queries and metadata about
completeness, a natural question is to deduce whether and which parts of the query answer are
implied to be complete (or in the case of negation operations, correct). This problem has received
extensive attention in database research [28, 62, 64, 74, 98, 99, 109], as well as knowledge base
research [26, 27]. Approaches either take a deductive route (a query result is complete, if certain
conditions are met) [26, 64, 99], or inductively propagate metadata through query operators [62,
74, 98], with computational complexity mirroring or exceeding the complexity of query answering.

Completeness assertions may also be inferrable via constraints. Most notably, if a predicate is
asserted to be functional, then, per subject, presence of one object indicates completeness. For
example, if one birth place for Marie Curie is present, then birth places of Marie Curie are complete.
Cardinality constraints, like every person has two parents, naturally extend this idea, and are in turn
further extended by the cardinality assertions, which make this subject-specific.

3 PREDICTIVE RECALL ASSESSMENT
In this section, we deal with approaches that can automatically determine the recall of a KB, i.e.,
the proportion of the domain of interest of the real world that the KB covers. We consider the recall
of entities (Section 3.1) and the recall of statements (Section 3.2).

3.1 Recall of Entities
To estimate to what degree a KB is “complete”, we would first need to know how many entities
from the domain of interest are missing. We can formalize this problem as follows:

Definition 6. Missing Entities Problem
Input: A class 𝐶 with some instances
Task: Determine how many instances of 𝐶 are missing compared to 𝐾𝑖 .

This definition is much less clear-cut than one would hope [84, 100]: is anyone with a doctoral
degree a scientist? what is the total number of cathedrals in a country if some have been destroyed
or rebuilt? what is the total number of islands of a country (do we also count islets and rocks)? what
is the total number of inhabitants of a country (do we also count deceased people, do we count only
famous people)? Hence, in what follows, we will restrict ourselves to crisp and well-defined classes
such as the countries recognized by the UN as of 2022, mountains in a certain country that are
taller than 1000m, etc. Let us now look at various methods to address the Missing Entities Problem.
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Second capture

First capture

Fig. 2. Mark and Recapture: 40% of fish in the second capture are marked⇒ we marked 40% of fish in the
first capture ⇒ the total number of fish is roughly 7/40% ≈ 17.

Mark and recapture is a technique for estimating the total estimation of animals in a certain
terrain [104]. For example, assume that a biologist wants to know the number 𝑁 of fish that live in
a given pond. For illustration purposes (Figure 2), we assume a small number of fish, with 𝑁 = 18.
The biologist captures a number 𝑀 = 7 of fish, and marks them (e.g., with a color mark). Then
she releases the fish back into the water (if possible quickly, to avoid that the number of live fish
drops to 𝑁 −𝑀 = 11). The next day, she recaptures a number of fish, and checks how many of
them have marks. Let’s say that only 40% of the captured fish is marked. Under the assumption that
the ratio 𝑟 = 40% of marks in the recaptured population is the same as the ratio of marks in the
entire population, the biologist can then estimate the total number of fish by the Petersen estimate
as �̂� = 𝑀/𝑟 (which is 17 in our example). This estimator has since been refined by a number of
approaches [104]. The question is now how this basic technique can be applied to KBs. It may be
tempting to “capture and release” entities from the KB, but the technique works only if the entities
are captured from the real world, not from the sample that has already been “captured” by the KB.
Estimators for collaborative KBs [67] extend the notion of mark-and-recapture to collaborative
KBs such as Wikidata. The main idea is that, by performing an edit on Wikidata, a contributor
samples an entity from the real world. Thus, any statement ⟨s, p, o⟩ that a user contributes counts
as a sample of 𝑠 and 𝑜 from the real world. We can then consider all entities that have been edited
during a given time period, and that belong to the target class, as one sample. If 𝐷 is the current
number of instances of the target class in the KB, 𝑛 is the number of entities observed in the
sample, and 𝑓1 is the number of entities that have been observed exactly once in the sample, the
Good-Turing estimator estimates the total number of instances of the target class in the real world
as �̂� = 𝐷 × (1 − 𝑓1/𝑛)−1. The intuition behind this estimator is as follows: if 𝑓1 = 𝑛, then every
entity in the sample has been seen exactly once. This suggests that, as we keep sampling, we
will always see new entities. This means that the size of the real-world population is infinite. If,
conversely, 𝑓1 = 0, we have seen all entities at least twice during the sampling, which suggests
that the class is not bigger than what we currently have (�̂� = 𝐷). Other possible estimators are
the Jackknife estimator, an estimator with Singleton Outlier Reduction, and an Abundance-based
Coverage Estimator [67].
Experiments on the Wikidata KB show that these estimators converge to the ground truth

number of missing entities on 5 of the 8 classes that were tested. Interestingly, some of these classes
are composite classes, i.e., classes defined by a query such as “Paintings by Van Gogh”.
Estimators for crowd-sourced KBs [1, 123] target settings where workers are paid to contribute
instances to classes or query answers. While every worker has to contribute distinct instances,
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different workers may contribute the same instances. Workers may also come and go at anymoment,
and have different work styles. If one worker (a “streaker”) adds many entities in one go, classical
recall estimators may overestimate the total population size (mainly because of a high value of 𝑓1,
see above). One solution to this problem is to cap the number of new entities per contributor to
two standard deviations above the average number of entities per contributor.

Experiments with the CrowdDB platform5 show that the modified estimator is more conservative
in its estimation of the total number of entities. Two experiments with a known ground truth were
conducted: For “UN-recognized countries”, the new estimator converges faster to the true number.
For “U.S. states”, the effect is less visible, most likely because they are easy to enumerate and are
thus filled in one go.
Static estimators target KBs where entities are not added dynamically. In such KBs, there is no
sampling process from the real world. One way to obtain a lower bound for the true population size
is to use Benford’s Law [18]. Benford’s Law says that in many real-world sets of numerical data, the
leading digit tends to be small. More precisely, the digit “1” appears in roughly 30% of the cases, the
digit “2” in 18% of the cases, and the digit 𝑑 in 100× 𝑙𝑜𝑔10 (1 +𝑑−1) percent of the cases. This applies
in particular to quantities that grow exponentially (such as the population of a city), because a
quantity to which a multiplicative factor is applied repeatedly will run through the leading digit “1”
more often than through the other digits. To apply this technique to KBs [114], the target class has
to have a numerical predicate, e.g., the population size for cities, the length for rivers, the price for
products, etc. This predicate has to obey certain statistical properties for Benford’s Law to work.
We can then collect the first digits of all numbers, and check whether the distribution conforms to
Benford’s Law. In the work of [114], this is done primarily to quantify to what degree the sample
of entities in the KB is representative of the real world distribution. However, the data can also be
used to compute the minimum number of entities that we would have to add to the KB in order for
the distribution to conform to Benford’s Law. Under the assumption that the real-world distribution
follows Benford’s Law, this number constitutes a lower bound for the number of missing entities.
Experiments show that a parameterized version of Benford’s Law applies to a number of very

diverse predicates, including the population of places, the elevation and area of places, the length
and discharge of water streams, the number of deaths and injured people for catastrophes, and the
out-degree of Wikipedia pages.

3.2 Recall of Statements
After having discussed the recall of entities, let us now turn to the completeness of statements.
More precisely:

Definition 7. Missing Object Problem
Input: A knowledge base 𝐾 , a subject 𝑠 , and a predicate 𝑝
Task: Determine if there is 𝑜 with ⟨𝑠, 𝑝, 𝑜⟩∈ 𝐾𝑖 and ⟨𝑠, 𝑝, 𝑜⟩∉ 𝐾 .

As an example, consider Marie Curie and the predicate wonAward. We are interested in finding
whether she won more awards than those given in the KB. It is not always easy to define what we
consider missing objects [100]: does an award from her high-school count? is a public recognition
tantamount to an award? is a rejected award still an award she won? etc. In what follows, we
assume that we can determine whether a relationship holds, e.g., by a vote from crowd-workers.

A first hint on missing objects comes from obligatory attributes. An obligatory attribute of a
given class is a predicate that all instances of the class must have in the real world at the current
point in time. For example, birthDate is an obligatory attribute for humans, while hasSpouse is

5http://www.crowddb.org/, down as of September 9, 2022.
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Royal consorts

Actresses

Women (of whom married)

Fig. 3. To determine whether being married is an obligatory attribute of the class Woman, we check whether
its distribution in the KB changes when we walk into subclasses.

not. If we knew the obligatory attributes, we could use them to solve parts of the Missing Object
Problem: if an instance of a class has no object for an obligatory attribute, then it is necessarily
incomplete on that attribute. It turns out that the obligatory attributes of a class can be determined
automatically from the incomplete KB [61]. For this purpose, we look at the ratio of instances of
the class that have the predicate in the KB. For example, we can look at the ratio of women who
are married (Fig. 3). We then check if this ratio changes when we go into subclasses of the target
class, or into intersections of the target class with other classes. In our example, we can go into
the subclass of Actresses, or into the intersecting class of Royal Consorts. If the ratio changes, then
a theorem tells us (under a number of assumptions) that the predicate cannot be obligatory. In
our example, the ratio of married women changes when we go into the subclass of Royal Consorts.
Hence, married cannot be an obligatory attribute. If we assume that the other predicates are all
obligatory, we can then spot places in the KB where objects must be missing.

Experiments on YAGO and Wikidata show that the approach can achieve a precision of 80% at a
recall of 40% over all predicates. The approach can also determine that, for people born before a
certain time point, a deathDate becomes an “obligatory” attribute.
Weak signals can be combined to estimate whether a given subject and a given predicate are
complete in a given KB [36]. The simplest of these signals is the Partial Completeness Assumption
(PCA), which says that if the subject has some objects with the predicate, then no other objects are
missing. Other signals can come from the dynamics of the KB: the No-Change Assumption says that
if the number of objects has not changed over recent editions of the KB, then it has “converged”
to the true number, and no more objects are missing. The Popularity Assumption says that if the
subject is popular (i.e., has a Wikipedia page that is longer than a given threshold), then no objects
are missing. A more complex signal is the Class Pattern Oracle. It assumes that if the subject is an
instance of a certain class 𝑐 , then there are no missing objects. For example, if the subject is an
instance of the class LivingPeople, then no death date is missing. The Star Pattern Oracle does the
same for predicates: If, e.g., a person has a death place then the person should have a death date.
These signals can be combined as follows: We first add the simple signals as statements to the

KB. For example, if Elvis Presley is known to be popular, we add ⟨ElvisPresley, is, popular⟩ to the KB.
If Elvis has won several awards, we add ⟨ElvisPresley, moreThan𝑘 , wonAward⟩ for small 𝑘 . Then,
we add the ground truth for some of the subjects. For example, if we know that Elvis Presley has
won no more awards than those in the KB, we add ⟨ElvisPresley, complete, wonAward⟩ to the KB.
Finally, we can use a rule-mining system (such as AMIE [38]) to mine rules that predict this ground
truth. Such a system can find, e.g., that popular people are usually complete on their awards, as in
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Approach Target Assumptions

Mark & Recapture [104] Entities Sampling from the real world.
Collaborative KB Estimator [67] Entities of a given class Each fact is a random draw from the real world
Crowd-sourced KB Estimator [123] Entities of a given class Crowd-workers contribute entities independently
Static Estimator [18] Entities of a given class Distribution follows Benford’s Law
Obligatory Attribute Estimator [61] Relations that are obligatory in the real world Facts are sampled i.i.d. from the real world
Weak Signal Estimator [36] Missing objects for a given subject and relation Sufficient number and quality of weak signals
Extraction from Text [97] Number of objects for a given subject and relation Explicit mentions of objects or numbers in text

Table 2. Overview of predictive recall assessment approaches.

⟨s, is, popular⟩ ⇒ ⟨s, complete, award⟩. These rules can then be used to predict completeness for
other subjects, i.e., to predict whether Marie Curie has won more awards than those mentioned in
the KB.

Experiments with a crowd-sourced ground truth on YAGO and Wikidata show that some predi-
cates are trivial to predict. These are obligatory attributes with only one or few objects per subject:
bornIn, hasNationality, gender, etc. Here, the CWA and PCA work great. For the other relationships,
the Popularity Assumption has a high precision, but low recall, i.e., misses that many more subjects
than predicted are complete. The Star- and Class-Oracles also do well. The combined approach
can achieve F1-values of 90%-100% for all 10 predicates that were tested, with the exception of
hasSpouse: it remains hard to predict whether someone has more spouses than are in the KB.
Textual information can also be used to spot incomplete areas of the KB. For example, assume
that we encounter the sentence “Marie Curie brought her daughters Irène and Eve to school”.
Then we can conclude that Curie had at least two daughters. In common discourse, we would
even assume that she had no other daughters, and in fact no other children at all (if she had other
children, we would expect the speaker to convey that, e.g., by saying “brought only her daughters to
school”). This conclusion is an implicature, i.e., an information that is conveyed by an utterance (or
text) even though it is not literally expressed [45]. In what follows, let us consider a given sentence
about a given subject and a given predicate, and let us assume a KB that is complete for that subject
and predicate (e.g., Wikidata for popular subjects). If we use a simple open information extraction
approach, we can extract the objects that the sentence mentions for the predicate, and compare
them to the objects that the complete KB contains [97]. If the sentence mentions all objects, we
consider it complete. In this way, we can build a training set of complete and incomplete sentences
for a given predicate, and we can train a classifier on this set. This classifier can then be used to
determine if some other sentence is complete, and if it is, we can determine if the subject of that
sentence is complete in the KB.
Experiments across 5 predicates show that the approach works better on paragraphs than

on sentences, because in many cases, the objects are enumerated across several sentences. The
F1-values are 45%-75%.

3.3 Summary
The recall of a KB can be estimated for entities and for statements. Different approaches have been
developed for both cases (Table 2), with promising results. However, the approaches for entities
suffer from a small ground truth: in only few cases the total number of instances of a class is known.
This makes the experiments difficult to judge.

4 CARDINALITIES FROM KBS AND TEXT
We move from counting entities and objects to identifying cardinality assertions. As defined in
Section 2, cardinality assertions specify the number of records in the ideal KB 𝐾𝑖 that satisfy
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KB

Marie Curie

numberOfChildren 2

wonAward Nobel Prize in Physics

birthPlace Warsaw

Franklin Medal

Trevor Noah Johannesburg

birthPlaceJohn Lennon Liverpool

birthPlace

…

…

…

a. |σ(Ki)| for hasChild

|⟨s, birthPlace, ∗⟩| ≤ 1
         ⟨s, type, Person⟩      c. |σ(Ki)| for birthPlace

—-----------------------
—----------------- —------------------- —-------------------

Curie won 37 awards 
in her lifetime.
—---------- —--------------------

Text

b. |σ(Ki)| for wonAward

Fig. 4. Illustrating three ways of obtaining cardinality assertions (a) from KB predicates (for the number
of children), (b) from text (for the number of awards), and, (c) from inference over KB statements (for the
number of birthplaces).

a certain property. But 𝐾𝑖 is a hypothetically ideal KB, making the computation of cardinality
assertions through selection conditions non-trivial.
Cardinality assertions are expressed explicitly through statements in KB, ⟨Marie Curie, num-

berOfChildren, 2⟩, and in text, “Curie won 37 awards in her lifetime”. Correctly identified, such
statements allow for a direct numeric evaluation of KB recall. Alternatively, if we know that a
certain predicate is complete for a certain subject, we can use that knowledge to deduce the cardi-
nality assertion. In this section, we tackle the problem of identifying cardinality assertions from
the KB and text, illustrated in Figure 4. We look into methods that identify predicates that store
cardinality assertions explicitly, for instance, ⟨s, numberOfChildren, n⟩, and statements that ground
the cardinality into objects, such as, ⟨s, hasChild, 𝑜𝑖⟩, 𝑖 ∈ [0, 𝑛]. From now on, we call the predicates
that store cardinality explicitly counting predicates, 𝑝𝑐 , and the predicates that store cardinality
grounding objects enumerating predicates, 𝑝𝑒 .

4.1 Cardinality Information in KBs
The most obvious way to obtain cardinality assertions from KBs would be to use aggregate queries.
For example, to determine the number of children Marie Curie had, we can count the number of
statements satisfying the selection condition, ⟨Marie Curie,wonAward, ∗⟩, but, as we have seen in
the previous section, KBs suffer from the Missing Objects Problem. Fortunately, some KBs express
cardinality assertions explicitly through counting predicates. For example, we find the predicates
numberOfGoals (for the goals scored by football players) and totalHurricanes (for the number of
hurricanes in a cyclone) in DBpedia and numberOfEpisodes (for a film/TV/radio series) in Wikidata
as well as in YAGO. Unfortunately, the predicates of these cardinality assertions usually do not
follow any naming scheme: some predicates have the prefix numberOf..., but others are specific to
the class at hand, including staffSize, population, or member count. Furthermore, KBs are normally
unaware of the semantic relation between the enumerating predicate hasChild and the counting
predicate numberOfChildren, and they do not coexist for all entities.
Usually, a counting predicate (such as numberOfChildren) links a subject to the number of

objects of the corresponding enumerating predicate (hasChild in this case). However, a counting
predicate may also concern the number of subjects of some enumerating predicate. For example,
the enumerating predicate worksAt links a person to their workplace, but the counting predicate
numberOfEmployees links the workplace to the number of people who work there. To deal with
such cases, we assume that the KB contains, for each predicate 𝑝 , also its inverse 𝑝−1, with all
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triples. In our example, we assume that the KB contains also the predicate worksAt−1 (which we call
hasEmployee). Then numberOfEmployees is the counting predicate of the enumerating predicate
hasEmployee.

Our first task here is to identify these two classes of predicates. Our second task is then to identify
a mapping between the two sets of predicates.

Definition 8. Cardinality Detection Problem
Input: A knowledge base 𝐾
Task: Determine the counting predicates 𝑝𝑐 and the enumerating predicates 𝑝𝑒 . Also determine
which 𝑝𝑒 corresponds to which 𝑝𝑐 .

Cardinality bounding. A first step for cardinality detection can be to bound the cardinality of
the predicates. For example, if we know that there are 200 countries in our knowledge base, we
know that a person cannot have more than 200 citizenships. This knowledge can then help us
find counting predicates. In some cases, cardinality bounds come from the KB itself. For instance,
Wikidata uses the single-value constraint6 for predicates with exactly one object7. However, such
cases are rare.

If the KB can also contain incorrect entries (more realistic than the naive correctness assumption
that was brought forward in Chapter 2), one approach to automatically bound cardinalities is by
mining significant maximum cardinalities of a predicate for a given class [43]. For a given predicate,
parent, if we see that a significant portion of the entities in the class Person have two parent objects,
then we can say that the predicate has a maximum cardinality of 2. This cascades to the subclasses
of Person, for instance to scientists, physicists and so on unless any of the subclass has a tighter
bound for significant number of its members. This is closely related to outlier detection, but with a
focus on mining generic constraints, with using them for outlier detection being only one of several
possible applications. For example, with the above constraint in mind, entities of type person with 6
parents (which are relatively few) could be ignored. Using Hoeffding’s inequality constraint [48], a
significant maximum cardinality of a class can be reliably mined for a given confidence level and a
minimum likelihood threshold. The approach works top down, starting from the class going deeper
into its subclasses and pruning very specific constraints for which Hoeffding’s inequality would
no longer hold true. This approach works well for finding maximum cardinalities for functional
predicates, for instance all humans have one birth year or all football matches have two teams,
since these are more stable across entities of a class: majority of persons have one or two parents
and very few have more than two. We will see how to tackle entity-variant cardinalities such as
books by an author, or destinations of an airline, which can vary between entities, even those
belonging to the same class in the next approach.
Cardinality predicate detection aims at identifying existing cardinality assertions and the
corresponding enumerating predicates in the KB. A naive approach would be to identify all pred-
icates with positive integers objects as counting predicates, and all predicates with one or more
KB entities as enumerating predicates. This naive approach fails due to a number of reasons. First,
a positive integer value is a necessary but not sufficient condition for counting predicates. For
instance, KB predicates that store identifiers (episode number, VIAF ID in Wikidata), measurement
quantities (riverLength) or counts of non-entities (floorCount) are not counting predicates. Second,
functional predicates such as birthPlace, atomicNumber, etc. do not commonly occur with counts.
While these predicates do enumerate fixed objects, they do not have any meaningful counting

6Single-valued constraint definition in Wikidata: https://www.wikidata.org/wiki/Help:Property_constraints_portal/Single_
value.
7An element can have only one atomic number https://www.wikidata.org/wiki/Property:P1086.
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predicate: the fact that the number of birth places of Marie Curie is one is not informative. Third,
many quasi-functional predicates are predominantly functional but also take multiple values, for
instance, citizenship is primarily single-valued with many famous exceptions8.

Signals such as the predicate domain, the predicate range, and textual information can be utilized
to identify the cardinality predicates [42]. Predicate names provide some clues as to whether it
might be an enumerating predicate. For instance, the word award in its plural form occurs almost as
frequently, if not more than the word in its singular form, but this is not true for birth place (birth
places). Objects of enumerating predicates are also entities and encoding the type information of
the subjects and the objects of a predicate can also provide clues: a type Person (Curie) usually
co-occurs with multiple instances of the type Award (Nobel Prize in Physics, Franklin Medal). Range
statistics such as the mean and the percentile values are also important clues: in DBpedia the
number of statements per subject for the predicate wonAward is 2.8 on average, and the mean and
the 10th percentile values of the predicate doctoral students is 28.3 and 5.5, respectively.
Predicate alignment aims to align enumerating predicates with corresponding counting pred-
icates. This would allow us to match cardinality assertions with the statements grounding the
cardinality. Aligned predicates can be used to estimate the KB recall, since counting predicates
define expected (or ideal) counts for enumerating predicates. If we know that award aligns with
numberOfAwards, then for all entities with numberOfAwards, we can compute the recall of their
award statements. In reality, exact matches such as the one above exist only for very few enti-
ties and predicates. More often than not the enumerations are incomplete and overlapping. For
instance, an institute may use numberOfStaff or numberOfEmployees to mean the same thing and
the corresponding enumerations could come from workInstitution−1 and employedBy−1. Heuristics
such as exact and approximate co-occurrence metrics, and linguistic similarity of the predicate
labels can be used to suitably aligned pairs [42]. The number of alignments in a KB thus obtained
is much lower than the number of counting and enumerating predicates. For instance, there is
no counting predicate that aligns with the enumerating predicate wonAward. These alignments
are directional as well. For instance, if the score of (workInstitution−1, academicStaff ) is greater
than that of (academicStaff, workInstitution−1), then an entity with the enumerating predicate
workInstitution−1 is more likely to have the counting predicate academicStaff than the other way
around.

4.2 Cardinality Information from Text
So far we have looked into KBs for cardinality detection, but the KBs are usually sparse. Even if
we have identified that numberOfDoctoralStudents is a counting predicate, we cannot predict its
value for an entity that has the enumerating predicate doctoralStudent but no counting predicate
numberOfDoctoralStudents. In such cases, we can turn to textual data, i.e., we can tap into textual
sources for retrieving cardinality information. For example, if a text says “Marie Curie advised 7
students”, we want to extract the number 7 for the predicate advised. More formally:

Definition 9. Counting Quantifier Extraction Problem
Input: A subject 𝑠 , a text about 𝑠 and a predicate 𝑝
Task: Determine the number of objects with which 𝑠 stands in predicate 𝑝 from the text.

The first challenge we face is the variability of text: the same number can be expressed either as a
numeral (“3”), as a word (“three”), or as an expression (“trilogy of books”). The second challenge is
compositionality: quantities may have to be added up, as in " ... authored three books and 20 articles",
which indicates that the predicate numberOfPublications has to have the value 3+20=23. Finally, we

8Scientists with more than one citizenship during their whole life https://w.wiki/5UR3

, Vol. 0, No. 0, Article 0. Publication date: January 2023.

https://w.wiki/5UR3


Completeness, Recall and Negation 0:17

have to determine the target predicate: The sentences “advised 7 students” and “supervised 7 students”
both map to the target enumerating predicate advised. Several approaches can be used to overcome
these challenges.
Open IEmethods [25, 69] aim to extract relational statements from text, and these can also include
cardinality information. For example, from the sentenceMarie Curie has two children, these methods
can extract ⟨Marie Curie, has, two children⟩. However, this information is not linked to the KB
predicate hasChild, and it is also not trivial to recover the number 2. Roy et al. [106] take this forward
by proposing an IE system that targets quantities. It extracts standardized quantity statements
of the form ⟨value, units, change⟩. This approach works well, and can in principle be applied to
cardinality assertions. The never-ending learning paradigm (NELL) [21] has seed predicates that
capture predicate cardinality, such as the numberOfInjuredCasualties, but since these are tied to
specific cardinality values, it does not learn them for future extractions.
Current state-of-the-art NLP pipelines have made cardinality detection in texts much easier9.

Even though Open IE extractions contain cardinality assertions, extracting the correct count value
and mapping to KB predicates is an open challenge. Next we discuss several approaches that target
specifically the extraction of cardinalities.
Manually designed patterns can be used to extract cardinality assertions from text [72]. The
idea is to capture compositionality and variability of cardinal information in text, which is outside
the capability of current Open IE methods. [72] proposes 30 manually-curated regular expression
patterns for the hasChild predicate in Wikidata. The extractions achieve more than 90% precision
when compared with a small set of manually-labelled gold dataset and a larger KB-available silver
dataset. Cardinality assertions were extracted for 86.2k humans in Wikidata, of which only 2.65%
had complete hasChild statements.
Automatic extraction of cardinalities can be modelled as a sequence labelling task where each
predicate has its own model. The work of [71] explores one feature-based and one neural-based
conditional random field model. The cardinal information in the input sentence is replaced with
placeholders, namely cardinal, ordinal and numeric term so that the model does not learn specific
tokens but the concept. The models then input the features such as n-grams and lemmas in the
context-window of the placeholder to the feature-based CRF model and in case of a bi-directional
LSTM model the input comprises the words, placeholders and character embeddings of the tokens.
The model outputs the labels COUNT for cardinals, COMP for composition tokens and O for
other tokens, with a confidence score. A sentence can have multiple cardinal labels or multiple
sentences can have cardinal information for a given 𝑠 and 𝑝 . Hence, a consolidation step aggregates
cardinals around compositional cues. A cardinality assertion can occur multiple times in a text in
which case a heuristic ordering is applied such that cardinal > numeric term > ordinal > article,
breaking ties with confidence scores. This follows the intuition that if a text has a sentence “Curie
published 15 articles.” and another sentence “Curie published her first article in 1890.”, then 15 would
be the predicted cardinality for Curie’s publications. Existing cardinal predicates in the KB can be
selectively used as ground truth to evaluate the precision of the automatically extracted cardinalities.
For example, one can restrict the KB to popular entities, and one can exclude cardinalities above
the 90th percentile value, as these are most likely outliers. One must be selective, since incomplete
KB information can negatively impact overall training and evaluation.

Given that LLMs have transformed a range of tasks, an obvious question is whether they can be
useful for the extraction of cardinality assertions. This broad question comes in two variants: (i)
Can LLMs help to extract cardinality assertions from a given text? (ii) Based on the text they have
seen during pre-training, can LLMs directly output cardinality assertions?
9https://spacy.io/usage/linguistic-features
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Source Work Focus Strengths Limitations
KBs Giacometti et al. [43] Extract maximum cardinalities for

class and predicate pairs.
Provides significance guarantees.
Scalable for large KBs.
Efficient pruning to reduce search space.

Majority predicates identified have maxi-
mum cardinality of 1.
Scope for discovering non-functional asser-
tions is limited.

Ghosh et al. [42] Extract counting and enumerating
predicates.

Provides important features for identifying
cardinality predicates.
Maps counting predicates to matching enu-
merating predicates.

Statistical cues provide weak signals.
Textual cues have limited informativeness.

Open IE Mausam et al. [69]
Corro et al. [25]

Extract all ⟨s, p, o⟩ statements. Captures cardinality information present
as counts.

Canonicalization required to incorporate
statements in to KBs.

Carlson et al. [21] Extract new statements and rules. Never-ending learning paradigm (NELL).
Infers new predicates.

Cannot learn cardinality assertions from
seed predicates.

Roy et al. [106] Extract quantity statements. In principle can extract cardinality asser-
tions.

Has only been used for quantity state-
ments.

Text Mirza et al. [72] Compute cardinality assertions. Manual patterns are effective in cardinality
extractions.

Scaling predicate-specific patterns.

Mirza et al. [71] Sequence modelling for automatic extrac-
tion of cardinality information.
Consolidation across compositions and
multiple mentions.

Prior knowledge of cardinality predicates.
Zero counts extraction is limited to ad-hoc
preprocessing.

Table 3. Comparison of related works on cardinality information.

The answer to (i) appears a confident yes, as several studies have shown that LLMs can be used
as powerful components in textual information extraction [5, 24, 57]. Yet such a usage still requires
comprehensive efforts around data selection and preparation, information retrieval, and output
consolidation, and thus, does not fundamentally transform the task.
A fundamental transformation could be achieved in the second paradigm. As LLMs have seen

huge amounts of text during pre-training, one can try to extract relations directly from these
models, without further textual input at the extraction stage. Although early works have found
mixed results [65], current LLMs like GPT-4 can quite reliably assert counts in the commonsense
domain, e.g., counts of body parts (feet, wings, ...) of different animals. For extracting counts of
named entities, similar observations hold: As long as the counts are frequently asserted in text,
LLMs can return them. However, once the LLMs would need to aggregate themselves, they fall back
to common numbers in the relation of interest [113]. Although LLMs are becoming incrementally
more powerful on benchmarks, it appears that Transformer-based architectures exhibit principled
limitations, that make correctly solving count tasks over text difficult [46].

4.3 Summary
In this section we have defined the task of identifying cardinalities for predicates. We have seen
how to extract cardinalities from KBs and from textual data. Cardinality information has many
applications and yet unsolved challenges. We have compiled the related works covered in this
section, their focus, strengths and limitations in Table 3.
Applications. The CounQER system [41] demonstrates the usefulness of aligned predicates in a
simple QA setting where given a subject 𝑠 and (an enumerating) a counting predicate 𝑝 the system
returns the objects that satisfy ⟨s, p, *⟩ and statements from top-5 aligned (counting) enumerating
predicates if available. For instance, in DBpedia, if we look for the Royal Swedish Academy of
Sciences, the enumerating predicate workplaces−1 returns eight entities who work there, but we also
learn that the aligned counting predicates academicStaff and administrativeStaff are unpopulated.
Again in DBpedia, we learn that the enumerating predicate doctoralStudent has no corresponding
counting predicate: For the subjectMarie Curie and the predicate doctoralStudent, the system returns
7 entities who were her doctoral students but no aligned cardinality assertions.
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Tanon et al. [86] use cardinality information to improve rule-mining. Rule mining is the task
of finding interesting associations between entities in a KB, such as: if ⟨?x, hasSpouse, ?y⟩ and ⟨?y,
livesIn, ?z⟩ then ⟨?x, livesIn, ?z⟩. Such rules can then be used to predict the place of residence of
someone. Cardinality information can avoid that we predict too many such places of residence per
person, by downgrading the scores of predictions that violate (soft) cardinality constraints. The
authors evaluate the recall-aware scores against standard scoring metrics and find that recall-aware
scores highly correlate with rule quality scores in the setting of increasingly complete KBs. Another
line of work uses cardinality information as priors in neural link prediction [75]. Similar to the
work by Tanon et al. [86], they regularize the number of high probability predictions by penalizing
the model when the number of predictions violate the cardinality bounds of a given relation type.

Open challenges. LLMs could in principle be used to infer commonsense cardinality information
such has the number of parents a person has or specific cardinality assertions, such as Marie Curie
advised 7 doctoral students. Experiments in probing older LLMs for numerical commonsense [65]
show that fine-tuning improves the model performance, though the models could not surpass
humans. The 2023 edition of the LM-KBC challenge [111], whose main focus is on constructing KB
from an LLM, contains cardinality prediction for two relations, numberOfChildren of a person and
numberOfEpisodes of a TV series. Even the best-performing system, that relied on GPT-4, achieved
only 69% F1-score on both relations. It appears that more work is needed here before LLM outputs
could reliably feed a knowledge base. A common challenge to both tasks of extracting cardinality
assertions and aligning counting with enumerating predicates is generating high-quality training
and ground truth data. There is no single authoritative source on groundtruths: We have IMDB for
movies10, cast and crew, and the GeoNames dataset for geographical locations11. These are great
examples of high recall datasets, but the situation is not as rosy when we move to other topics,
like scientists or monuments. Crowd-sourcing is an option, but it poses several challenges, most
importantly data quality and scalability. The other option commonly used is to employ heuristics.
As we saw for cardinality extraction from text [71], distant supervision can be used to extract
ground truth statements, with certain restrictions, such as relying on popular entities and KB
statistics, such as the 90th percentile predicate value to filter out possible outliers.

5 IDENTIFYING SALIENT NEGATIONS
Knowledge bases store by and large positive knowledge, and very little to no negative statements.
This happens for principled reasons, as the set of possible negations is vast and possibly infinite
(depending on whether one assumes a finite or infinite set of constants). Adding complete sets of
negative statements is therefore hardly a goal. Many standard AI applications, such as question
answering and dialogue systems, would often benefit from statements about popular entities, i.e.,
explicit negations for salient cases. For instance, a cooking chatbot should be aware that certain
ethnic food are not meant to be heated, e.g., Hummus and Gazpacho, and a general-purpose search
engine must be confident about common factual mistakes, such as famous people not winning
certain awards in their domains, e.g. Stephen Hawking and The Nobel Prize in Physics. Completeness
statements enable the inference of negations, yet are themselves hard to come by. Furthermore, even
though negative statements are in principle much more numerous than positive statements, only
few of them are interesting. In this section, we approach the problem of negation materialization
therefore not with the goal of completeness, but with the goal of a high recall among salient
negations.

10IMDB: https://www.imdb.com/
11GeoNameshttps://www.geonames.org/
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The concept of salience has a long history in psychology [121] as well as in sociolinguistics [91],
and there are also recent attempts to capture it in knowledge bases [59]. Approaches to modelling
salience typically revolve around the concepts of frequency, unexpectedness, or self-interest (for
acting agents), yet universal agreement is lacking. Furthermore, none of the models is easy to
operationalize. The works that we present next therefore usually utilize human (crowd worker)
judgements as yardstick for salience.
We first review existing negative knowledge in open-world knowledge bases. We then show

how salient negative statements can be automatically collected from within incomplete KBs, and
via text extraction.

5.1 Negation in existing KBs
Web-scale KBs operate under the Open-world Assumption (OWA). This means that an absent
statement is not false, but only unknown. The only ways to specify negative information is to
either explicitly materialize negative statements in the KB, or to assert constraints that implicitly
entail negative statements. In this section, we focus of the former case. Even though most KB
construction projects do not actively collect negative statements, a few of them allow implicit or
explicit negative information:

• Negated predicates: a few KBs contain predicates that express negative meaning, i.e., contain
negation keywords. For example, DBpedia [13] has predicates such as carrierNeverAvailable
for phones, and neverExceedAltitude for airplanes. The medical KB Knowlife [34] contains
predicates such as isNotCausedBy and isNotHealedBy. Wikidata allows a few type-agnostic
negated predicates, namely differentFrom (827000 statements), doesNotHavePart (535 state-
ments), doesNotHaveQuality (422 statements), doesNotHaveEffect (36 statements), and does-
NotHaveCause (13 statements). A more systematic example for negated predicates can be
found in ConceptNet [116], where the 6 main predicates have negated counterparts, namely
NotIsA, NotCapableOf, NotDesires, NotHasA, NotHasProperty, and NotMadeOf. Yet the portion
of negative knowledge is less than 2%. Furthermore, many of the negative statements are
uninformative, as in ⟨tree, NotCapableOf, walk⟩.

• Count predicates: a subtle way to express negative information is by matching count with
enumeration predicates (see Section 4.1). For example, if a KB asserts ⟨Marie Curie, num-
berOfChildren, 2⟩, accompanied by two hasChild-statements, this indicates that for this
subject-predicate pair, the list of objects is complete. Therefore, no other entity is a child of
Curie.

• Statements with negative polarity: In the Quasimodo KB [105], every statement is extended
by a polarity value to express whether it is a positive or a negative statement, e.g., ⟨scientist,
has, academic degree⟩ with polarity=positive. Quasimodo contains a total of 351K negative
statements.

• No-value objects: Wikidata [125] allows the expression of universally negative statements,
where a subject-predicate pair has an empty object. For example, ⟨Angela Merkel, hasChild,
no-value⟩12. The total number of such statements with a no-value object in Wikidata is 20.6K

• Deprecated rank: KBs like Wikidata encourage flagging certain statements as incorrect as
opposed to removing them. These are usually outdated statements or statements that are
known to be false13, with a total of 20.4k statements.

While these notions give us a way to express negative statements, one still has to find a way to
identify salient ones, such as a well-known physicist not winning the Nobel Prize, namely ¬⟨Stephen
12https://www.wikidata.org/wiki/Q567
13https://www.wikidata.org/wiki/Help:Deprecation
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Fig. 5. The main challenge is to identify the subset of useful negative statements that can be added to an
existing positive-only open-world KB.

Hawking, wonAward, Nobel Prize in Physics⟩. A key challenge is that the number of false facts
or statements is much larger than the one of positive facts, e.g., Stephen Hawking studied at 4
educational institution, versus thousands that he did not study at. An illustration of the research
problem is shown in Table 5. Among the large set of negative knowledge, the key is to identify the
subset of useful negatives, and add them to the existing positive-only KB.

As discussed above, we take a model-free approach here and leave the choice of what is salient to
human annotators. We hypothesize only that frequency and unexpectedness are likely ingredients
[91, 121] of their decision. Where human judgments cannot be obtained, one could resort to model-
based metrics of unexpectedness that can be computed automatically, like proposed in [59], though
at the risk of optimizing for what can be conveniently computed, instead of what is truly salient.

Definition 10. Salient Negations Problem
Input: A subject 𝑠 in a web-scale incomplete KB
Task: Identify accurate and salient negative statements about 𝑠 .

We divide approaches into three main categories: methods that use well-canonicalized KBs, methods
that use loosely-structured KBs, and methods that use text corpora as the main source of negative
statements.

5.2 Salient Negations in Well-structured KBs
Famous KBs such as Wikidata, YAGO, and DBpedia consist of well-canonicalized statements (with
minimal ambiguity), i.e., the A-box, and are accompanied with manually crafted schemas (aka
the T-box). The following approaches discover interesting negations about entities by relying on
positive statements from well-structured KBs.
Peer-based inferences [8] is one of the earliest approaches to solve this problem. It proposes
deriving candidate salient negations about a KB entity from highly related entities, i.e., peers, then
ranks them using relative statistical frequency. For example, Stephen Hawking, the famous physicist,
has never won a Nobel Prize in Physics, nor has he received an Academy Award. However, highly
related entities (other physicists who are Nobel Prize winners) suggest that not winning the Nobel
Prize is more noteworthy for Hawking than not winning the Academy Award. The first step must
thus be to identify the relevant peers for the input entity. The method of [8] offers three similarity
functions to collect peer entities for a given input entity: (i) class-based similarity [15]: This takes
advantage of the type-system of the KB by considering two entities as peers if they share at least
one type; (ii) graph-based similarity: This relies on the number of predicate-object pairs that two
entities have in common; and (iii) embedding-based similarity: This captures latent similarity
between entities by measuring the cosine similarity of their embeddings [129].
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Example: Using (i), Stephen Hawking is a physicist like Max Planck and Albert Einstein, hence,
information about Planck and Einstein can help in creating candidate negations for Hawking.
Using (ii), Stephen Hawking and Boris Johnson share 9 predicate-object pairs, including (gender,
male), (citizenship, U.K.), and (native language, English). Using (iii), one of the closest entities to
Hawking using this measure is his daughter Lucy Hawking.

Negations at this point are only candidates. Due the KB’s incompleteness, each candidate could
be true in the real world, and just be missing from the KB. The peer-based method requires the
candidates statements to satisfy the partial completeness assumption (the subject has at least one
other object for that property [37, 38]) in order to be considered for the final set. In particular, if
some awards are listed for the subject Stephen Hawking then the list of awards is assumed to be
complete, and any missing award is absent due to its falseness.
Example: We know that Hawking has won other awards such as the Oskar Klein Medal and
has children including Lucy Hawking, but we know nothing about his hobbies. Therefore, the
candidate statement ¬⟨Stephen Hawking, hasHobby, reading⟩ is discarded.

In an evaluation over correctness of inferred negations [8], this simple yet powerful rule increases
the accuracy of results by 27%. Remaining candidate negations are finally scored by relative peer
frequency. For instance, 2 out of 2 peers of Hawking have won the Nobel Prize in Physics but only 1
out of 2 is the parent of Eduard Einstein.

Order-oriented peer-based inferences [10] is an extension of the previous method where KB
qualifiers such as temporal statements are leveraged to obtain better peer entities and provide
negations with explanations. In this order-oriented method, one input entity can receive multiple
peer groups. For instance, 3 separate peer groups for Max Planck are winners of the Nobel Prize
in Physics, winners of Copley Medal, and alumni of Ludwig Maximilian University of Munich. In
addition to peer frequency, the ranking also accounts for the proximity between the input and the
peer entities.
Example: The negative statement ¬⟨Max Planck, educatedAt, The University of Cambridge⟩ with
provenance “unlike the previous 3 out of 3 winners of the Nobel Prize in Physics” is favored over
¬⟨Max Planck, citizenOf, France⟩ with provenance “unlike 3 out of the previous 18 winners of the
Nobel Prize in Physics”.

In this example, temporal recency is rewarded. In other words, the same peer frequency that is far
behind in the ordered peers will receive a lower score. Moreover this work introduces the notion of
conditional negation, as opposed to the previous simple ones. While a simple negation is expressed
using 1 negative statement, ¬⟨Albert Einstein, educatedAt, Harvard⟩, a conditional negation goes
beyond 1 to express negative information that is true only under certain condition(s).
Example: ¬∃𝑜 ⟨Albert Einstein, educatedAt, 𝑜⟩⟨𝑜 , locatedIn, U.S.⟩ (meaning Einstein has never
studied at a university in the U.S.).

In a crowdsourcing task to evaluate the quality of result negations in [10] the peer-based method
achieves a 81% in precision and 44% in salience, while the order-oriented inference improves both
the precision and salience, to 91% and 54% respectively.

5.3 Salient negations in Loosely-structured KBs
While encyclopedic KBs like Wikidata, YAGO, and DBpedia are well-canonicalized, commonsense
KBs like ConceptNet [116] and Ascent [78, 79] express information using uncanonicalized short
phrases. For instance, Ascent contains the actions lay eggs, deposit eggs, and lie their eggs. Therefore,
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themethods designed for well-structured KBswill result inmany incorrect inferences, e.g., ⟨butterfly,
capableOf, lie their eggs⟩ but ¬⟨butterfly, capableOf, lay eggs⟩ and ¬⟨butterfly, capableOf, deposit
eggs⟩. Moreover, the use of the PCA rule (only infer an absent object to be negative in the presence
of at least one other object for the same predicate) to improve accuracy of inferred negations would
not be sufficient, as most commonsense KBs rely on ConceptNet’s well-defined, but few and generic
predicates, e.g., hasProperty. As opposed to Wikidata’s citizenOf predicate where only a few objects
are expected, ConceptNet’s hasProperty can have hundreds of accepted object phrases. Hence, it is
not a very good idea to assume that since an entity has at least one general property present the
list of objects is complete.
NegatER [107, 108] is a recent method for identifying salient negations in commonsense KBs.

Given a subject 𝑠 (an everyday concept in this case) and an input KB, a pre-trained language model
(LM) is fine-tuned using the training and testing sets of KB statements. The positive statements are
simply queried from the KB, while negative samples are randomly generated under the closed-world
assumption, i.e., the KB is complete and the negations are generated by corrupting parts of positive
statements with any other random concept or phrase. The LM is then trained to learn a decision
threshold per predicate, and hence, the fine-tuned LM serves as a true/false classifier for unseen
statements. In order to create the set of informative or thematic negations for 𝑠 , 𝑠 is replaced by a
neighboring entity phrase from the KB.
Example: ⟨horse, isA, pet⟩ is replaced by the neighbor subject horse rider, resulting in the
candidate negation ¬⟨elephant, isA, pet⟩.

The classifier (LM) then decides on the falseness of such candidate. Once the set of candidates
is constructed, they are finally ranked using the fine-tuned LM by descending order of negative
likelihood. Even though NegatER compiles lists of thematically-relevant negatives, one major
limitation is that it generates many type inconsistent statements, due to the absence of a taxonomy,
e.g., ¬⟨horse rider, isA, pet⟩.
Uncommonsense [12] identifies salient negations about target concepts (e.g., gorilla) in a KB
by computing comparable concepts (e.g., zebra, lion) using external structured taxonomies (e.g.,
WebIsALOD [47]) and latent similarity (e.g., Wikipedia embeddings [129]). Similar to the peer-based
negation inference method [8], the PCWA is used to infer candidate negations (e.g, has no tail, is
not territorial). A crucial difference is the technique used for checking the accuracy of candidate
negations. As previously mentioned, the PCA would not be sufficient in loosely-structured KBs.
Therefore, this work introduces different scrutiny steps to improve the accuracy of candidates. It
performs semantic similarity checks (using [101]) against the KB itself, and external source checks
(using pretrained LMs). Semantic similarity also contributes in grouping negative phrases with the
same meaning in order to boost their order in the final ranked list, i.e., the relaxed sibling frequency.
The finally generated top-ranked negations are extended with provenances showing why certain
negations are interesting. For example, gorilla has no tail, unlike other land mammals such as lions
and zebras. On 200 randomly sampled concepts with their top-2 negations [12], in a crowdsourcing
task where workers are asked about the accuracy and interestingness of given negative statements,
UnCommonSense achieves a precision of 75% and a salience of 50%, while NegatER achieves a
similar precision of 74% but lower salience of 29%.

5.4 Salient Negations in Text
Large textual corpora can be good external sources for implicit and explicit negations. Moreover,
due to the incompleteness of existing KBs, text-based methods can be complementary to inference-
based methods.
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Mining negations from query logs [8] is an unsupervised pattern-based methodology that
extracts salient negations from query logs. The intuition is that users often ask why something
does not hold, as in “Why didn’t Stephen Hawking win the Nobel Prize in Physics?”. Such a query
can then be used to deduce that Hawking did indeed not win the Nobel Prize. The work defines 9
negated why-questions, such as Why didn’t <s>?.
Example: Given the pattern Why didn’t Stephen Hawking.., the auto-completion API of a search
engine, e.g., Google’s, produces won the Nobel Prize in Physics, accept the knighthood, ....

Mining negations from text is also a possibility, and although there exist encouraging propos-

als [115], they have not lead to led to significant resources so far [6]. The reason appears to be that
long texts (such as newspapers, blogs, and encyclopedias) rarely mention salient negations, as an
analysis on the STICS [49] corpus has shown. Sentences with a negative meaning in newspapers
and blogs are mostly about things that people did not do or did not say – as in “Brad Pitt did not
threaten Angelina Jolie with cash fine”, or “Angela Merkel never made much of an effort to ensure
that eastern Germans felt a sense of belonging”. Encyclopedias, on the other hand, mostly contain
only positive statements. The few sentences that do contain negation usually contain either double
negation, temporary negatives (as in “Hawking was not initially successful academically”), or nega-
tions of specification (as in “His family could not afford the school fees without the financial aid of a
scholarship”). Overall, none of these sources contain short trivia sentences with negative keywords.

Mining negations from edit logs [58] is a work that exploits the edit history of collaborative
encyclopedias such as Wikipedia as a rich source of implicit negations. Editors make thousands of
changes everyday for various reasons, including fixing spelling mistakes, rephrasing sentences,
updating information on controversial topics, and fixing factual mistakes. The work focuses on
mining data from the last category. In particular, it looks at sentence edits in Wikipedia where only
1 entity or 1 number is changed.
Example: “The discovery of uranium is credited to Marie Curie” is updated to “The discovery of
uranium is credited to Martin Heinrich Klaproth” where the entity Marie Curie is replaced with
Martin Heinrich Klaproth. The former is then considered a common mistake, i.e., an interesting
negative statement.

To decide whether an update must be labeled as common factual mistake or one of the other
categories, a number of heuristics are applied. These include (i) checking how often is sentence
is being updated (to exclude controversial topics where different editors have different opinions);
(ii) computing the edit distance between the entities (to exclude spelling corrections). and (iii)
checking for synonyms (to exclude simple rephrasing of the same statement). It remains to be
checked whether the edit removes or introduces a false statement. This is done by counting the
number of supporting statements on the web.

5.5 Summary
In this section we defined the task of identifying salient negations about KB subjects and presented
different approaches to tackle this problem. A summary of these approaches with their focus,
strengths, and limitations is shown in Table 4.

Applications. Wikinegata [9, 11] is a tool for browsing more than 600m negations about 0.5m
Wikidata entities. It gives insights into the peer-based method [8] where users can inspect different
peers used to infer certain negations (see Figure 6). In commonsense KBs, the Uncommonsense
system [12] provide a similar experience about everyday concepts.
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Fig. 6. User interface of the WikiNegata (https://d5demos.mpi-inf.mpg.de/negation) platform. It shows
automatically computed salient negative statements for Stephen Hawking, such as that he did not win the
Nobel Prize in Physics, unlike his colleague and friend Kip Thorne.

Open challenges. For text-based methods, the main issue seems to be the subject recall. Often,
negations are only expressed when they are highly exceptional and about prominent entities. For
KB-based methods, the main problem is the precision-salience trade-off. It is quite simple to get a
near perfect precision when assuming the CWA, as the majority of inferred negations would be
correct but nonsensical, e.g., Stephen Hawking’s capital is not Paris. According to [12], this baseline
receives a 93% in precision but less than 7% in salience. As shown in this section, it becomes
challenging to increase salience while maintaining a high level of precision, as plausible candidates
tend to be harder to scrutinize, especially in commonsense KBs, e.g., Is Basketball hard to learn?.
Moreover, negation generators have to deal with real-world changes. This is especially true for
the encyclopedic KBs where new information is added frequently. For example, prior to 2016 it
was interesting that Leonardo DiCaprio never received an Oscar (the negation is no longer correct).
A second challenge is the class hierarchy for both entity peer measures and negation generation.
For example, noisy taxonomies would result in irrelevant peers. There are also modeling issues
and inconsistencies that most web-scale KBs suffer from, especially the collaborative ones. For
instance, to express that a person is vegan, should the editors use ⟨person, lifestyle, veganism⟩ or
⟨person, isA, vegan⟩. While one can be asserted, the other could be mistakenly negated by one of
the discussed methods. Finally, the methods presented in this section are meant to compile a list of
simple negative statements about commmonsense and encyclopedic entities. Complex negatives,
on the other hand, need further investigation and are more challenging. In scientific knowledge, for
instance, two contradictory facts might be true under different contexts, e.g. water cannot extinguish
every type of fire, such as petrol fires, but that does not mean that water cannot extinguish fire. Also,
in socio-cultural knowledge, the same statement can be both true and false under different cultural
factors, e.g., drinking wine at weddings (in Europe v. the Middle East).
LLMs for Negation Generation. Very recent studies examined the ability of large language

models (LLMs), such as chatGPT [82], to generate salient negative statements [7, 22]. Findings
in [22] are that contradictions exist in the LLM’s belief, when comparing results of different tasks
targeting the same piece of knowledge. For instance, LLMs generate the sentence “Lions live in
the ocean”, but answer “No” when asked “Do lions live in the ocean?”. Lessons from [7] include the
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Source Work Focus Strengths Limitations
KB Arnaout et al. [8, 9,

11]
Interesting negations about encyclo-
pedic entities using peer-based sta-
tistical inferences.

Subject recall.

Salience due to peer frequency mea-
sures.

Precision due to KB incompleteness &
modelling issues.

Beyond simple negations (conditional
negations).

Query
logs

Arnaout et al. [8] Interesting negations about encyclo-
pedic entities using pattern-based
query extraction.

Precision due to high-quality search engine
query logs.

Subject recall due to APIs access limit.

Edit
logs

Karagiannis et
al. [58]

Common factual mistakes using
mined textual change logs.

Precision due to heuristics including web
hits computation.

Focus on precision over salience

Mined negations require canonical-
ization.

KB Arnaout et al. [12] Informative negations about every-
day concepts using fine-tuned LMs.

Salience due to comparable concepts

Interpretable results through prove-
nance generation.

Can handle non-canonicalized KBs.

Recall depends on presence of subject in
the external taxonomy.

KB and
LM

Safavi et al. [107, 108] Informative negations about every-
day concepts using comparable tax-
onomic siblings.

Recall through corruptions using phrase
embeddings.

Plausibility due to taxonomy not being con-
sidered.

Table 4. Comparison of different works on salient negation in KBs.

importance of prompt engineering in this task. Prompts with expressions “negative statements”,
“negated statements”, and “negation statements” return very different types of responses. Moreover,
LLMs struggle with the true negativity of the statements returned, often generating statements
with negative keywords but a positive meaning, e.g., “a coffee table is not only used indoors”.

6 RELATIVE RECALL
So far, the yardstick for recall/completeness has been the real world: How many of the entities (or
predicates or statements) of the domain of interest have been captured? While this generally is a
meaningful target, in some cases, the notion is not well-defined, or not informative. In the following,
we look at alternative formulations, by relaxing the absolute yardstick into a relative one: Relative
to other entities/resources/use cases, how much is the KB’s recall? We look at this problem in three
variants: (i) recall within the same KB, relative to other entities, (ii) recall relative to other resources
like KBs or texts, and (iii) recall relative to the extrinsic use case of question answering (see Figure
7).

6.1 Entity Recall Relative to other Entities
We define the problem of relative entity recall as follows:

Definition 11. Relative Entity Recall Problem
Input: An entity 𝑒 , and a KB 𝐾
Task: Determine the recall of 𝐾 for statements about 𝑒 , relative to related entities in 𝐾 .

For example, one may ask how complete Wikidata’s information on Albert Einstein is, relative to
similar entities. The instantiation of this problem has two major components:
(1) How are related entities defined?
(2) How is recall quantified and compared?

Entity relatedness is topic with much history in data mining, and a wide range of text-based,
graph-based, and embedding-based similarity measures exists (see Section 5 and e.g., [88, 128]).
Similarly, recall can be quantified in a variety of ways, for instance, via the number of statements,
predicates, inlinks, outlinks, etc. We shall now see different approaches to both problems.
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Absolute recall Relative recall
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Fig. 7. Difference between absolute recall (left) that was discussed in previous sections, and various notions
of relative recall (right).

Relative recall indicators. One of the first approaches to the problem of relative entity recall
is Recoin (Relative completeness indicator) [2, 15]. It extends the entity page of Wikidata with a
traffic-light-style recall indicator, indicating how comprehensive the information is compared to
related entities. Its definition of relatedness is class-driven: Paris would be compared with other
capital cities, Radium with other chemical elements, Albert Einstein with other Physicists (treating
Wikidata’s occupations as pseudo-classes). Its quantification of recall follows a simple frequency
aggregation: In each class, the top most frequent properties are computed. For instance, for capitals,
the most frequent predicates are country (99%), coordinate location (97%), and population (82%). Then,
the frequencies of the top-5 absent properties are added up for the given entity, and the sum is
compared with 5 global discrete thresholds, to arrive at a final traffic light color.

A second approach to the problem of relative recall is provided by Wikimedia’s ORES machine
learning platform [70]. The Wikidata item quality module specifically assigns probabilities to
entities belonging to one of 5 quality levels (A to E), subsuming, besides recall, several other quality
dimensions such as completeness, references, sitelinks, media quality. The scores are also relative
in the sense that good item quality has no inherent definition, but can only be understood in
comparison with other good/bad items. ORES apparently employs supervised machine learning,
based on a combination of content embeddings and latent features, yet its concrete working is
only partially documented. We show example outputs of Recoin and ORES for Marie Curie, as of
September 2023, in Figure 8.

Property ranking. Underlying both Recoin and ORES is the question of how to decide whether,
for a given entity, a certain predicate is expected to be populated. This is referred to as the problem
of property ranking. Given an entity like Marie Curie, is it more relevant that her doctoral advisor is
recorded, or the sports team she played for?
Property ranking relates to the problem of statement ranking [16, 63], though the absence of

an object value makes the problem harder. The frequency-based ranking, like the one used in
Recoin [15], provides a reasonable baseline, yet frequencies are only a proxy for relevance. For
example, the most frequent properties typically concern generic biographic statements like place
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Fig. 8. Illustration of Recoin (left) and ORES (right) outputs for Marie Curie on Wikidata. Recoin outputs
show class frequencies of absent properties, while ORES quality classes A-E are computed using a supervised
regression model.

of birth, date of birth, while interesting aspects like scientific discoveries, awards, or political
affiliations are expressed less frequently.
Property ranking for relative recall assessment has thus been advanced in several ways: In

[95], text-based predictive models are proposed, which are trained on Wikipedia descriptions of
entities, and that describe how likely a textual description is accompanied by a certain structured
property in Wikidata. In an evaluation of pairwise property relevance predictions, this approach
achieves up to 67% agreement with human annotators. Gleim et al. introduce SchemaTree [44],
a trie-based method for capturing property frequencies in the existing data, taking into account
not just individual frequencies, but also frequencies of combinations, and fallbacks to base cases
for rare combinations. Issa et al. rely on association rule mining [54]. Luggen et al. [66] propose
a method based on multimodal Wikipedia embeddings, taking into account multilingual article
descriptions as well as pictures. They train a multi-label neural classifier on these embeddings,
for the task of predicting currently present properties in Wikidata, and find that this significantly
outperforms previous approaches.
Analysis. The discussed approaches mostly treat entities as sets of properties - distinguishing just
whether a property is present or not, but not taking into account how many values are present.
For example, even though one award for Einstein is listed in a KB, the KB could be missing many
others. Disregarding this aspect is pragmatically motivated by the partial completeness assumption
(see Section 2): the presence of one value per property likely implies presence of all values. At the
same time, extensions towards explicit regard for multi-valued properties would be desirable. A
second limitation is inherent to all relative measures: Relative measures may appear good even
for bad items, if the comparison is even worse, and vice versa. There is no firm link to the notion
of recall from the previous sections, as, even if an entity is well-covered compared with related
entities, no strong deductions about its recall, relative to the real world, are possible.

6.2 KB Recall Relative to other Resources
There are several other categories of resources that can be used for KB recall assessment. A relatively
straightforward comparison are other KBs, while texts and elicited human associations provide
different foci, on recall w.r.t. information typically conveyed in texts, and w.r.t. information that
humans spontaneously associate with concepts.
KBs to KBs. One way to compare KB recall is by comparing their size. Virtually every KB project
compares itself with other resources in terms of size, typically counting the number of entities,
classes, and statements (for one example, see Table 1 in the Knowledge Vault paper [32]). A more
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fine-grained analysis was performed in [103]. For 25 important classes, considerable variance was
found, even on KBs derived from the same source, like DBpedia and YAGO. Variances were in part
explained by different modelling approaches (e.g., Wikidata’s low number of politicians explained
by modelling a class via properties). However, size comparisons do not capture whether or to which
degree content from one KB is contained in the other – it may well be that resources have different
foci, and that the larger ones still have limited recall w.r.t. smaller ones.

To avoid such issues, we can look at the fraction of entities from one contained in the other. The
work in [103] analyzed that as well, matching entities via simple String distance functions. Merging
KBs generally provided potential for increasing recall even for the already bigger resources, because
of differences in focus.

KB vs. text. Texts are a prime mode of knowledge storage and sharing, and it is natural to ask how
well KBs recall information from texts. Notably, KBs were born in part out of the shortcomings of
texts in terms of structuring information, so it is very interesting to investigate to which degree the
higher structure of KBs comes at a loss of recall. Moreover, a principled methodology to compare
KB recall w.r.t. texts enables a comparison on a much wider set of domains and subdomains than
the structured comparison in the KB-to-KB setting, as texts are available in much bigger abundance
than structured resources. Various approaches to estimating KB recall w.r.t. texts exist.

In the Aristo TupleKB project [73], recall of an automatically constructed science KB is compared
with information contained in scientific texts. For this recall assessment, Mishra et al. assemble a
corpus of 1.2M sentences from elementary science textbooks, Wikipedia, and dictionaries, from
which they automatically extract relational statements. They can then quantify the “science recall”
of a KB by measuring which fraction of these statements is contained in a KB. This is done for 5
KBs (WebChild, NELL, ConceptNet, ReVerb-15M, TupleKB). Since predicate names in the KBs vary,
this analysis is restricted to 20 general predicates, which are manually mapped to a wider set of
surface names. Also, for subject and object match, only headwords are considered. Under these
relaxed conditions, the science recall of these KBs is found to be between 0.1% and 23.2%.

A related analysis is provided in the context of the OPIEC project [40], a corpus of open statements
extracted from running an open information extraction system on the entire English Wikipedia. In
[39], the authors analyze the relation of OPIEC with DBpedia, in particular, to which degree OPIEC
statements are expressible in DBpedia, and to which degree they are actually expressed. Since open
information extraction provides a plausible approximation of relational statements contained in
text, this evaluation can be seen as a relative recall evaluation of DBpedia w.r.t. Wikipedia. They
provide several important insights: (i) 29% of open statements can be fully expressed in DBpedia,
29% partially (e.g., with a more specific or more generic predicate), 42% of open statements are
not KB-expressible.14 (ii) Adding more complex constructs, like conjunctions or even existential
quantification into the KB increases its recall potential. (iii) When it comes to measuring the actual
recall, they find that 18% of open statements are fully present in DBpedia, 23% partially present,
59% not at all.
In the temporal dimension, KB vs. text recall has been studied using the distant supervision

assumption: Assuming that hyperlinked entities onWikipedia pages are relevant to the page subject,
how does their recall in Wikidata change over time? Wikidata’s revision history allows to study
this longitudinal, allowing to observe a generally steady increase in recall since from 2012 to 2020
[96].

14This aspect can also be considered another dimension of recall, called schema recall. This aspect is as also studied in [76],
where the authors find that popular KB schemata contain between 13-126 predicates of a sample of 163 predicates found in
a few Wikipedia articles.
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KB vs. human associations. Besides other KBs and texts, an interesting resource for relative recall
assessments are humans directly. How well do KBs recall statements that humans spontaneously
associate with concepts? This framing of recall has been prominent in recent commonsense
knowledge base construction (KBC) projects [77, 78, 105]. While the former project directly queried
human crowdworkers (“What comes to your mind when you think of lions?”), the latter two
projects relied on the CSLB property norm corpus [29], a large dataset of concept associations
collected in the context of a psychology project. Evaluations following this scheme typically use
embedding-based heuristic matching techniques to judge whether a test KB contains a reference
statement subject to possible minor wording differences. Recall is typically found to be in the
order of 5%-13%, showing that there is still a substantial gap in how well current commonsense KB
projects cover human knowledge.

Analysis. We have discussed three ways of estimating KB recall relative to other resources.
Common among them is the challenge of how to compare pieces of knowledge: Statements in
the reference resource may be differently worded or ambiguous, making finding a statement
of equivalent semantics nontrivial. Moreover, semantic equivalence is necessarily an imprecise
concept, requiring somewhat arbitrary decisions about the maximally accepted dissimilarity, as
well as difficult technical decisions on how to actually measure semantic relatedness. A common
technical solution currently is to represent the two statements to be compared in latent embedding
space (e.g., [77] uses S-BERT [101]), then use similarity metrics like cosine distance to decide
whether two candidates are considered equivalent. Note that this problem even occurs in the most
structured setting, KB-vs.-KB recall, since even if subjects and objects are disambiguated, predicate
names are typically textual strings, like worksAt, employer, affiliatedWith.

Each of the mentioned comparisons serves a different purpose: Evaluating KB recall relative to
other KBs should definitely be attempted whenever similar-domain KBs are available, since data
integration from structured sources is a comparatively simple task, with considerable potential for
improving recall. Evaluating KB recall relative to text can serve two purposes: Towards improving
KB recall, for text-extracted KBs, recall evaluation relative to text can serve as a guidance on how
much information is lost in the text extraction process. This can serve as a guidance on where to
improve the process. On the other hand, such an evaluation can also help to understand a KB’s
potential and limitation for downstream use cases (e.g., Wikidata is generally suited for computing
statistics about age/gender/profession statistics about US senators, but bad for judging the quality
of their governance). This is especially relevant when KBs are one of several options to power a
downstream use case, as is, for example, often the case for question answering (see also Section 6.3).
KB recall relative to human associations is the most intrinsic dimension.

6.3 KB Recall Relative toQuestion Answering Needs
Another relative way to evaluate KB recall is by considering a use case, and quantifying to which
degree KBs satisfy its data needs. Natural-language question answering is arguably a supreme task
in knowledge management and NLP, and as such especially suited to illustrate this point.

Static analyses. Several papers investigate to which extent KBs allow answering questions from
common QA datasets. Most prominently, this happens in scenarios where text-based QA systems
and KB-based QA systems are compared. Two especially illustrative comparisons can be found
in [81] and [89]. The first work analyzes the performance of a state-of-the-art QA system on
4 popular benchmarks of general-world questions (NaturalQuestions, WebQuestions, TriviaQA,
CuratedTREC). It finds that KB-based systems can correctly answer between 26% and 43% of these
queries. It also provides a comparison of KB recall to text recall (see Section 6.2), by comparing the
previous numbers with the performance of text-based QA systems (finding 45-62% recall). In other
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words, texts generally provide higher recall than KBs, although this needs to be weighed against
other advantages of structured resources. The work of [89] analyzes complex queries in 6 QA
benchmark datasets (LCQuad 1.0 and 2.0, WikiAnswers, Google Trends, QuALD, ComQA), finding
that a state-of-the-art system can answer 10-19% of these queries by using only KBs, and 18-36%
by only using text. Further variants of this kind of analysis exist, for example for conversational
question answering [23].

The common insight from these studies is that KBs provide encouraging recall for utilizing them
in QA systems, but are far from saturating the query sets, thus often motivating hybrid QA systems
that combine KBs and text. At the same time, the reported scores typically conflate the recall of the
KB and the ability of the system to pull out the correct answers from the KB. Since query answering
is a heuristic, imperfect process, the intrinsic KB recall for these QA datasets is likely higher.

Predicting recall requirements for the QA use-case. An interesting twist to recall analysis is
provided by Hopkinson et al. [52]: Instead of assuming a fixed KB andmeasuring recall, they define a
desired query recall (95% of queries should be answered by the KB), and ask which content needs to
go into the KB to achieve this. This is not an obvious question, because information needs may vary
highly depending on the type of entity, and questions do not uniformly target entities and properties.
The work originates in an industrial lab (Amazon Alexa), where such a business requirement is
plausible. The QA service provider here has the potential to design automated extraction efforts
accordingly, or to task paid KB curators to complete specific areas of the KB. Moreover, commercial
service providers have access to user query logs, which underlie this technique. On a technical basis,
the work represents entities via their class membership, extracts usage frequencies of properties
per entity from the query log, and predicts predicate usage patterns on new entities using either
a regression or a neural network model. Results indicate that this method can predict required
properties with good accuracy. Furthermore, demand-weighted requirements can be lifted to the
level of the whole KB, based on usage data about which entities are queried how often. For a
non-representative set of entities in the Alexa KB, the authors find that 58% of the predicates
needed to arrive at the 95% query-answerability goal are currently in the KB.

Longitudinal development. [96] analyzes how KB utility has changed over time. The authors
select questions from three search engine logs (AOL, Google, Bing queries), then use human
annotation to find out the earliest time at which a KB (Wikidata and DBpedia) could answer these
questions. For example, the question “Where is Italian Job filmed?” can be answered by Wikidata
since October 15, 2015, when the property filming location on the entity Italian Job was added.
Plotting the number of answerable queries over time turns out to show a steady increase for the
time period from 2003 to 2020, with only minor slowing in recent years.

6.4 Summary
Recall estimation in absolute terms is generally a difficult task. This section has provided a pragmatic
alternative, showing how to measure KB entity and statement recall relative to other KBs, other
resources, and QA use cases.
We summarize the insights from this section in Table 5. Each of these approaches comes with

advantages and disadvantages, mostly stemming from challenges in how to measure relative recall,
and the potential of systematic omissions in the reference.
Relative entity recall is arguably the easiest to analyze, and the quantification is comparatively

easy, as matching predicates within a KB is simple. Thought is still required in the definition
of the reference entities, e.g., comparing Einstein with other Physicists may give very different
results, than comparing him with other violin players. Furthermore, relative entity recall is prone
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Focus of relative re-
call

Aspect Works Strength Limitations

Entity vs. other entities Relative entity recall [15, 70] Enables ranking/priorization with-
out knowledge about reality

Struggles if many properties are
optional/if only parts of values
are present

Determining most
relevant predicates
per entity

[44, 66, 95] Produces interpretable suggestions
on where to complete KB

Struggles with optional predi-
cates

KB to other resources
KB to KB [32, 103] Can give quick suggestions on

when to integrate data
Similar-topic KBs often not
available

KB to text [39, 40, 73,
96]

Can help identifying issues in text
extraction, or help in choices be-
tween KB or text-based down-
stream applications

Threshold of when textual state-
ment is covered in KB not obvi-
ous

KB to human associa-
tions

[77, 78, 105] Highest aspiration of all evaluations Practical implications not clear

KB to QA use cases
Counting #queries
answered by KB-QA
system

[23, 81, 89] Gives tangible insights into how
well KB feeds a use case

Difficult to disentangle KB recall
and QA system performance

Predictive QA recall [52] Allows to predict content needed in
KB for meeting a use case require-
ment

Requires substantial query logs

Longitudinal devel-
opment

[96] Shows that KBs have steadily im-
proved for QA

Relies on heuristic matches

Table 5. Summary of relative recall assessment.

to systematic gaps in the KB, e.g., if the predicate known for is entirely absent from the KB, then
there is no way to suggest it for Einstein either.
Relative recall to other resources provides a more external view of a KB, and especially when

choosing text as reference, provides potential for many interesting analyses (e.g., recall of Einstein’s
KB entry can be computed w.r.t. Wikipedia, w.r.t. Simple Wikipedia, w.r.t. a biographical book, etc.).
At the same time, quantifying recall w.r.t. external resources is more challenging, as it requires
dealing with schema matching (KB-KB setting), or imprecise and ambiguous predicate and entity
surface forms (KB-text setting).

Relative recall w.r.t. use cases provides clear metrics of how a KB is faring downstream, and this
is advantageous if a KB is built with a primary use case in mind. This strength is however often
also a challenge, since often, KB construction is a longitudinal, cross-functional endevaour [127],
where use cases are moving targets.

7 DISCUSSION AND CONCLUSION
We conclude this survey with a discussion of the temporal dimension of recall (Section 7.1), the
impact of large language models (Section 7.2), recommendations on how to perform KB recall
assessment (Section 7.3), a set of take-home lessons (Section 7.4), and list of challenges for future
research (Section 7.5).

7.1 The Temporal Dimension of Completeness and Recall
Reality continuously changes: people who were once presidents lose that role, people marry or
divorce, and people who once did not have a death date may obtain one. Knowledge bases follow
this course, and are usually updated. In this section, we discuss the impact that these changes have
on the tasks of completeness and recall estimation.
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Many KBs grow steadily. Wikidata, for instance, contained 20M statements in 2015, but 1.2B
statements in 2023, hinting at a substantial increase of its recall. Reality, on the other hand, evolves
as well, which may mean that areas formerly complete might become incomplete later on. In this
section, we discuss formalisms for temporal annotations, methods for extraction and extrapolation,
and observational studies concerning recall trends.
Formalisms for Temporal Annotations. Completeness and cardinality statements can be
extended with information on their temporal validity. Darari et al. [27], for instance, introduced the
notion of time-stamped completeness statements. These add a “latest validity” date to a completeness
statement (which is typically, but not necessarily, the date of their creation). Examples are statements
like “Nobel Prize winners are complete until 2023”, or “XYZ’s publications are complete until 2018”.
Similarly, Arnaout et al. [10] extended negative statements inference with a notion of temporal
prefix, allowing to conclude, for instance, that unlike her 7 predecessors, the German chancellor
Angela Merkel was not male.

In many KBs, temporal annotations are also used for positive statements. A typical statement, in
Wikidata, for instance, qualifies that Albert Einstein’s German citizenship ended in 1933, or that he
received the Nobel Prize in Physics in 1921.15 Annotating completeness and recall statements with
temporal qualifications appears therefore quite natural.
Extracting and extrapolating time information. For completeness and recall information
that is text-extracted, a reasonable baseline is to consider the extraction time as the latest validity
time. Finer-grained annotations are possible, for instance, by considering document creation time
metadata, or temporal expressions in the actual text, for estimating the latest (certain) validity time
[117].

Given time-annotated completeness or recall metadata, an orthogonal question is how to interpret
it after its latest validity time. For instance, if publications by Albert Einstein were complete in
2018, it is reasonable to assume that the same is the case in 2023. Yet no such conclusion should
be drawn for books about Albert Einstein. Drawing this distinction means entering the realm of
predicting the temporal stability of knowledge, a problem that comes with a dependence on domain
knowledge, and which appears under-explored for both structured knowledge [31, 94] and text [4].
Recall trends. KBs like Wikidata, YAGO, and DBpedia are under active development, and one
may wonder how their recall evolves. In Section 6.3, we discussed work that analyzed recall relative
to QA needs, and Wikipedia content, for DBpedia and Wikidata [96]. Remarkably, relative to fixed
information needs (QA logs from the 2000s, a snapshot of Wikipedia pages), recall had constantly
increased from 2003-2020, with only a minor slowdown in recent years. However, reality and
information needs also evolve over time, and hence it remains an open question of whether KBs
are faster in capturing reality, or reality develops faster than KBs can represent it.

7.2 The Impact of Large Language Models
Recently, large language models (LLMs) such as Bert [30], (chat-)GPT [92], and LLaMA [122]
have significantly impacted natural language processing. This impact has extended to knowledge-
intensive tasks, and specifically also to knowledge bases [83, 120]. Although completeness and
recall research has yet to capitalize on these advances, there are several ways by which LLMs are
likely to impact this area.
Indirect impact: KBs with higher recall. LLMs support many steps in the KB construction
pipeline, thereby enabling the construction of bigger KBs, that consequently have higher recall

15https://www.wikidata.org/wiki/Q937
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[3, 124]. In particular, LLMs can be used both for direct knowledge prediction, or in conjunction
with retrieved text, where they improve over existing textual relation extraction methods [68].

Direct impact: Easier linking of text and structured modalities. Linking textual statements
with structured statements is a problem that affects several of the discussed methodologies, most
notably peer-based inferences (see Section 5, where existing statements need to be matched with
statements on peers, and with textual evidence), and the KB-to-text relative recall assessment
(Section 6.2). Due to their significant capabilities in latently representing and matching assertions
in different formulations and representations, we may expect advances on these parts soon.

Direct impact: Conversational maximes. LLMs are especially strong in generalizable linguistic
tasks that do not require instance-specific knowledge. In the context of recall assessment, one such
task concerns the estimation of whether a textual extraction context implies completeness, or not
(see Section 3.2). For example, chatGPT can give convincing answers to the following examples
that come with very subtle linguistic nuances:

User: Text entailment: Please estimate how likely the first sentence entails the second.
Premise: John brought his daughter Mary to school.
Hypothesis: John has only one child.

chatGPT: [..] high likelihood.

User: Text entailment: Please estimate how likely the first sentence entails the second.
Premise: John also brought his daughter Mary to school.
Hypothesis: John has only one child.

chatGPT: [..] does not entail.

Direct impact: Generating metadata. Mirroring approaches that directly prompt LMs for
statements [3, 124], LLMs can in principle also be prompted for completeness or recall metadata.
An example is shown next.

User: According to Wikidata, Barack Obama has two children, Malia and Sasha. Are these truly all?

chatGPT: Yes, according to publicly available information, Barack Obama has two daughters [..].

User:According toWikidata, Albert Einstein has published 75 scholarly articles. Are these truly all?

chatGPT: No, the number of scholarly articles published by Albert Einstein is estimated to be
around 300. [..]

In the example above, chatGPT gives correct answers to both questions, confirming completeness
for Barack Obama’s children, and rejecting completeness for Einstein’s publications, while also
giving recall information (75/300). However, metadata obtained in this way itself comes with huge
credibility issues. LLMs are known to confabulate, especially for long-tail topics, so without a
proper sourcing of answers, such derivations are likely difficult to utilize downstream. Sourcing
LLM generations in texts is difficult for principled reasons, and an open research challenge [131].
One exception to this general issue may be negative commonsense knowledge (cf. Section 5.3).
Here, correctness depends anyway much on context, and requirements in correctness are balanced
by requirements for saliency. In this case, LLMs can reasonably generate interesting negation
candidates [7].
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7.3 Recommendations for KB Recall Assessment
We have aimed for a balanced coverage of approaches so far, which may leave practically-minded
readers wondering how they could best approach a specific KB recall assessment problem. In the
following, we give more concrete suggestions on how we think a sensible order of approaches to
specific problems could be. We distinguish three settings: (i) open-ended ab-initio KB construction,
where recall-awareness can be intertwined with construction efforts, (ii) use-case driven construc-
tion, where efforts can be directly matched with use case metrics, and (iii) KB curation, where an
existing KB shall be evaluated.
Setting 1: Open-ended ab-initio KB construction. For open-ended ab-initio KB construction,
i.e., the novel construction of a KB intended for broad use, our suggestion is to intertwine the
data acquisition process with metadata acquisition. Concretely, if the KB content is text-extracted,
we suggest to use the text recall estimation techniques from Section 3.2, to annotate extractions
with confidence values concerning their completeness. If the data is created by human authors, we
suggest to augment the data authoring tools with fields for metadata collection, e.g., checkboxes
that allow authors to note when they finished recording a topic, similar as in Cool-WD [90].
Setting 2: Use-case-driven ab-initio KB construction. For KB construction driven by a specific
use case, our suggestion is to organize the recall assessment via metrics derived from the use, as
discussed in Section 6.3. Initially, one should derive a profile of queries to be answered by the KB,
e.g., by sampling from the use case. Where the sample’s breadth is limited, interpolation should be
used to derive a broader profile [52]. Efforts towards KB population can then be evaluated against
this query profile, i.e., for each specific population technique or domain, one could compare cost
and benefit, and prioritize accordingly.
Setting 3: KB curation. In settings where existing KBs shall be evaluated, we suggest to first
check for the existence of KB-internal cardinality information, as discussed in Section 4.1. Next, if
high-quality texts like Wikipedia are available, we suggest to exploit textual cardinality assertions,
preferably with simple template-based extraction, as in Section 4.2. Relative recall, in particular by
comparing entities inside the KB (see Sec. 6.1), will also help in spotting gaps. Statistical properties
such as the ones we have discussed in Section 3 should only be used once all other options have
been exhausted, because they are least reliable.

7.4 Take-home Lessons
The key takeaways from this survey are:

(1) KBs are incomplete: Despite the long history of the fields of KB construction, Semantic
Web, and Information Extraction, the construction of a general-world knowledge base is an
inherently fuzzy and evolving task. Therefore, such KBs will always be incomplete, and one
has to be able to deal with this incompleteness, rather than hoping that it will disappear
(Section 2).

(2) KBs do hardly contain negative information (but should): Negative information is
very useful for downstream tasks, but regrettably underrepresented in current KBs. Selective
materialization of interesting negations can significantly enhance the utility of KBs (Sections
2 and 5).

(3) Predictive techniques work for a surprising set of paradigms: Besides classical super-
vised prediction, there are statistical properties like number distributions, sample overlap,
and density invariants that enable recall prediction even without typical training (Section 3).

(4) Count information is a prime way to gain insights into recall: Count information
provides the most direct way to recall assessment, and it can be found both in existing KBs,
and in text (Section 4).
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(5) Salient negations can be heuristically materialized: Although negative knowledge
is quasi-infinite, heuristics for materializing relevant parts can significantly complement
positive-only KBs (Section 5).

(6) Relative recall is a tangible alternative to absolute notions: Comparing KB entities with
other KB entities, external resources, or use case requirements provides a valuable second
view on KB recall (Section 6).

7.5 Challenges and Opportunities
In this final section, we sketch some of the open challenges that remain to be addressed towards
fully understanding KB recall, pointing out opportunities for original and potentially impactful
research.

(1) Developing high-accuracy recall estimators. Most of the estimators presented in this
survey are proofs-of-concept, tested only in limited domains, or under very specific assump-
tions. Building practically usable high-accuracy estimators, possibly by combining several
complementary estimation techniques, remains a major open challenge.

(2) Exploiting recall estimates for value-driven KB completion. Despite their obvious
connection, research on recall estimation and KB completion has so far evolved largely inde-
pendently. Quantifying the value of knowledge (as in Section 6.3), and defining prioritization
strategies for recall improvement that maximize the value of the available knowledge [52, 94],
are great opportunities for practically impactful research.

(3) Estimating the recall of pre-trained language models. Knowledge extraction from pre-
trained language models has recently received much attention [87], yet it remains unclear to
which degree this approach can yield knowledge for multi-valued, optional, and long-tail
predicates [56, 112]. Systematically measuring the recall of language models, and comparing
it with structured KBs, is an open challenge.

Knowledge bases have received substantial attention in recent years, and while precision is usually
in the focus of construction, understanding their recall remains a major challenge. In this survey we
have systematized major avenues towards KB recall assessment, and outlined practical approaches
and open challenges. We hope this survey will inspire readers to reflect on KB quality from a new
angle, and lead to more KB projects that systematically record and reflect on their recall.
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