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Double InfoGAN for Contrastive Analysis

Florence Carton!
ILTCI, Télécom Paris, IPParis, France

Abstract

Contrastive Analysis (CA) deals with the dis-
covery of what is common and what is dis-
tinctive of a target domain compared to a
background one. This is of great interest in
many applications, such as medical imaging.
Current state-of-the-art (SOTA) methods are
latent variable models based on VAE (CA-
VAEs). However, they all either ignore im-
portant constraints or they don’t enforce fun-
damental assumptions. This may lead to sub-
optimal solutions where distinctive factors are
mistaken for common ones (or viceversa). Fur-
thermore, the generated images have a rather
poor quality, typical of VAEs, decreasing their
interpretability and usefulness. Here, we pro-
pose Double InfoGAN, the first GAN based
method for CA that leverages the high-quality
synthesis of GAN and the separation power of
InfoGAN. Experimental results on four visual
datasets, from simple synthetic examples to
complex medical images, show that the pro-
posed method outperforms SOTA CA-VAEs
in terms of latent separation and image qual-
ity. Datasets and code are available online!.

1 Introduction

Learning disentangled generative factors in an unsuper-
vised way has gathered much attention lately since it is
of interest in many domains, such as medical imaging.
Most approaches look for factors that capture distinct,
noticeable and semantically meaningful variations in
one dataset (e.g., presence of hat or glasses in CelebA).
Authors usually propose well adapted regularizations,
which may promote, for instance, "uncorrelatedness”
(FactorVAE [Kim and Mnih, 2018]) or ”informative-
ness” (InfoGAN [Chen et al., 2016]).
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In this paper, we focus on a related but differ-
ent problem, that has been named Contrastive
Analysis (CA) [Zou et al., 2013, Abid et al., 2018,
Weinberger et al., 2022]. We wish to discover in an
unsupervised way what is added or modified on a
target dataset compared to a control (or background)
dataset, as well as what is common between the two
domains. For example, in medical imaging, one would
like to discover the salient variations characterizing
a pathology that are only present in a population of
patients and not in a population of healthy controls.
Both the target (patients) and the background
(healthy) datasets are supposed to share uninteresting
(healthy) variations. The goal is thus to identify
and separate the generative factors common to both
populations from the ones distinctive (i.e., specific)
only of the target dataset.

The most recent CA methods are based
on  the  Variational = AutoEncoders (VAE)
[Kingma and Welling, 2014] model and they are
called Contrastive VAE (CA-VAE). These methods
assume that samples from the target dataset are
generated using two sets of latent factors, common
z and salient s, whereas samples from the control
dataset are generated using only the common z
factors.  The salient factors s should therefore
model the specific patterns of variations of the
target dataset. All these methods share the same
general mathematical formulation, which derives
from the standard VAE. However, they all either
ignore a term of the proposed loss (e.g., KL loss in
[Abid and Zou, 2019, Ruiz et al., 2019]) or they don’t
enforce important assumptions (e.g., independence
between z and s in [Weinberger et al., 2022]), which
may lead to sub-optimal solutions where salient
factors are mistaken for common ones (or viceversa).
Furthermore, they all share a typical downside of
VAEs: a blurry and poor quality image generation.
For these reasons, we propose Double InfoGAN:
a novel Contrastive method which leverages the
high-quality synthesis of Generative Adversarial
Networks (GANs) [Goodfellow et al., 2014] and the
separation power of InfoGAN [Chen et al., 2016]. To
the best of our knowledge, this is the first GAN
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Two examples of datasets for Con-

Figure 1:
trastive Analysis. First figure: Brats dataset
[Menze et al., 2014]. Top: MRI images of healthy
brains (control dataset). Bottom: MRI images of brains
with tumor (target dataset). Second figure: CelebA
dataset. Top: control dataset with regular faces (no
smile, no glasses). Bottom: target dataset that con-
tains smiling faces with glasses.

based method proposed in the context of Contrastive
Analysis. The main contributions of this paper are:

e The first GAN based method for Contrastive Analysis
(CA) which allows high-quality synthesis.

e A new regularization term for CA, inspired by Info-
GAN.

e T'wo new losses for an accurate separation and esti-
mate of the common and salient generative factors.

e Extensive experimental results on four visual datasets,
from synthetic to complex ones, show that the proposed
method outperforms SOTA CA-VAE methods in terms
of latent separation and image quality. Datasets and
code are available online.!

2 Related Work

Separating common from distinctive latent rep-
resentations has become an active research area

in several fields, such as domain adaptation
(DA) [Ganin et al., 2017, Hoffman et al., 2018]
and image-to-image translation (IMTI)

[Zhu et al., 2017, Isola et al., 2017, Liu et al., 2017,
Lee et al., 2018, Huang et al., 2018].

DA seeks to transfer a classifier from a source domain,
with many labelled samples, to a different target
domain, which has few or no labelled data. As shown
n [Ganin et al., 2017], an effective classifier should
use shared features that cannot discriminate between
the two domains. The goal of IMI is instead to
estimate a transformation that maps images from
the source domain to the target one by disentangling
and controlling high-level visual attributes (style,
gender, objects) [Lee et al., 2018]. The main difference
between these methods and the proposed one is the

"https://github.com/Florence-C/Double_InfoGAN.
git

objective. Our goal is to statistically analyze two
domains (e.g., healthy and patients) looking for latent
representations that generate the background (e.g.,
healthy) and target (e.g., pathological) content. We
do not seek to transfer a classifier or to map an image
to a different distribution. We wish, for instance, to
generate new images and not only to translate them
to another domain. Another important difference
is that we do not want to encode only a particular
distinctive attribute (e.g., style [Ma et al., 2019],
gender) but all distinctive variations of the target
domain with respect to the background one. Fur-
thermore, we do not plan to use a weight sharing
constraint [Lee et al., 2018, Liu et al., 2017], or other
architectural constraints, which assume that the main
differences are, for instance, only in the low-level
features (color, texture, edges, etc.).

Our work is also close to unsupervised anomaly
detection  [Guillon et al., 2021, Baur et al., 2021,
PANG et al., 2022, Vétil et al., 2022], which is usually
composed of two steps. First, the distribution of
the background (control) domain is learned, using
deep generative models. Then, or at the same
time, a discriminator is optimized to detect the
target (anomalous) samples. By looking at the
reconstruction errors [Guillon et al., 2021], attention
scores [Venkataramanan et al., 2020], visual saliency
[Kimura et al., 2020] or other features, one can
understand which are the salient patterns of the target
(anomalous) domain. Even if this strategy can be
highly interpretable, the goal is to spot an anomalous
sample and not to model the latent factors that
generate the anomalous patterns.

Another class of methods, mainly used in the
fields of data integration and data fusion, are the
projection based latent variables approaches,

such as 2B-PLS, 02PLS, DISCO-SCA, GSVD,
JIVE [Feng et al., 2018, Rohlf and Corti, 2000,
Deun et al., 2012, Yu et al., 2017, Trygg, 2002,

Smilde et al., 2017]. Contrary to these methods, we
do not use only linear transformations, but we leverage
the capacity of deep learning to estimate non-linear
mappings.

In parallel, research on disentanglement has been
developed, making it possible to modify a single and
semantically meaningful pattern of the image (e.g.,
person’s smile, gender), by varying only one component
of the latent representation [Kim and Mnih, 2018].
As shown in [Locatello et al., 2019], the unsupervised
learning of disentangled representations is theoretically
impossible from i.i.d. samples without inductive biases
[Higgins et al., 2017, Chen et al., 2016], weak labels
[Shu et al., 2020, Locatello et al., 2020], or supervision
[Lample et al., 2017, Choi et al., 2018, He et al., 2019,
Shi et al., 2021, Joy et al., 2021]. These methods have
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all focused on the latent generative factors of a single
dataset, and their goal is thus different from ours.

With a different perspective, methods stem-
ming from the recent Contrastive Analysis
(CA) setting [Zou et al., 2013, Abid et al., 2018,

Tu et al., 2021, Ruiz et al., 2019, Zou et al., 2022,
Abid and Zou, 2019, Choudhuri et al., 2019,
Severson et al., 2019, Weinberger et al., 2022] mainly
use variational autoencoders (VAE) to model la-
tent variations only present among target samples
and not in the background dataset. Similarly, in
[Benaim et al., 2019], authors used standard autoen-
coders to estimate common latent patterns between
two domains as well as patterns unique to each
domain. Being based on auto-encoders, this method
cannot sample in the latent space (i.e., no new image
generation) and its goal is to map sample images from
one domain to the other, as in IMI. Another related
method is NestedVAE [Vowels et al., 2020], whose
goal is bias reduction by estimating common factors
between visual domains using paired data. Here, we
wish to use unpaired datasets.

Lastly, CA is different from style vs. content sepa-
ration and style transfer. In particular, in recent
works [Kazemi et al., 2019, von Kiigelgen et al., 2021],
content usually refers to the invariant generative
factors across samples and views (i.e., transforma-
tions/augmentations of a sample), while style refers to
the varying factors. Content and style thus depend
on the chosen semantic-invariant transformations, and
they are defined for a single dataset. In CA, we do
not necessarily need transformations or views, and we
jointly analyze two different datasets.

3 Background

InfoGAN In [Chen et al., 2016], differently from stan-
dard GAN [Goodfellow et al., 2014], authors propose
a new method, called InfoGAN, where they decompose
the input noise vector of GANs into two parts: 1) z,
which is considered as a nuisance and incompressible
noise and 2) ¢, which should model the salient semantic
features of the data distribution. The generator of this
new model, G(z,c), takes as input both z and c to
generate samples x. As shown in [Chen et al., 2016],
without regularisation, the generator G may ignore the
additional code ¢ or find a trivial (and useless) solu-
tion. To this end, authors propose to regularize the
estimate of G by maximizing the mutual information
I(c;x) between ¢ and x ~ G(z,c¢). Maximum I is
obtained when c and x are completely dependent and
one becomes completely redundant with the knowledge
of the other. This should increase the informativeness
of ¢, namely all salient semantic information should
be in ¢ and not in z, which should only account for

additional randomness (i.e., noise). Authors propose to
maximize a lower bound of I(c;x) by defining an aux-
iliary distribution Q(c|x), parameterized as a neural
network, to approximate P(c|x):

I(C; X) > IEsz(z),ch(c),wa(x\c,z) log(Q(c\x)) + H((C))
1

More mathematical details in the Supplementary.
Contrastive =~ VAE (CA-VAE) In this
section, we present the CA-VAE models
[Choudhuri et al., 2019, Severson et al., 2019,
Abid and Zou, 2019, Ruiz et al., 2019,
Zou et al., 2022, Weinberger et al., 2022]. Let
X = {x;} and Y = {y;} be the background (or
control) and target data-sets of images respectively.
Both {x;} and {y;} are assumed to be iid. from
two different and unknown distributions (P(x) and
P(y)) that depend on a pair of latent variables (z, s).
Here, s is assumed to capture the salient generative
factors proper only to Y whereas z should describe the
common generative factors between X and Y. The
generative models (i.e. same decoder with parameters
0) are: x; ~ Py(x|z;,8; = §') and y; ~ Py(y,lz;,s;),
where the salient factors s; of X are fixed to a
constant value s’ (e.g., s’ = 0), thus enforcing z
to fully encode alone X. The conditional posterior
distributions are approximated using another neural
network (i.e. encoder with parameters ¢) shared
between X and Y, Q4(z;,s;|x;) and Qg4(z;,8;y;),
which are usually assumed to be conditional inde-
pendent: Qu(z,8|) = Qu(z])Qs(s|-). The latent
generative factors (z, s) are also usually assumed to be
independent (i.e., P.(z,s) = P.(z)P.(s)). The common
factor z should follow the same prior distribution in X
and Y (e.g., Py(z) = Py(z) = N(2;0,Z)). The salient
factor s follows instead a different prior distribution
between X and Y, such as Py(s) = N(s;0,Z) and
P,(s) = d(s = '), the Dirac distribution centered at s'.
Based on this generative latent variable model, one can
derive a lower bound of the marginal log likelihood:

log P(X) ZEQ¢(Z\X)Q¢(S|X) log P9(X|z7 S)—

KL(Qq(2%)|lpx(2)) = KL(Qy(s]x)][px(s))
(2)

and similarly for log P(y). All existing CA-
VAE methods share this mathematical framework.
They mainly differ for optimization or architec-
tural choices and new added losses. However,
none of these methods explicitly enforces the inde-
pendence between common and salient latent fac-
tors? and most of them ignore the KL divergence

2[Abid and Zou, 2019] proposed to minimize
the total correlation (TC) between go, 0. (2, s|x)
and gy, (2]|7)gs, (s|]z) via the density-ratio trick
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Figure 2: Double InfoGAN. Our model takes two
inputs: z (common factors) and s (salient factors).
The generator G produces fake images that, together
with the real images, are passed to a discriminator and
encoder. The discriminator has two modules: D for
detecting real from fake images, and C for classyfing
images in the correct domain (i.e., X or Y). The
encoder ) has two modules, (), and @, to reconstruct
the latent factors (z,s). D, C' and @ share all layers
but the last one.

term about py(s) (except [Choudhuri et al., 2019] and
[Weinberger et al., 2022]), thus allowing a possible in-
formation leakage between salient and common factors,
as discussed in [Weinberger et al., 2022]. Furthermore,
the quality of the generated images is rather poor.

4 Proposed method - Double InfoGAN

Model In Double InfoGAN, we use a generative model
similar to the one proposed in CA-VAE but within
the framework of InfoGAN. We suppose that the back-
ground images {x;} S P(x) and the target images
{y;} Y P(y), where P(x) and P(y) are unknown and
depend on a pair of latent variables (z € RF, s € RM).
Differently from InfoGAN, and similarly to CA-VAE, z
should now capture the generative factors common to
both X and Y whereas s the salient factors proper only
to Y. As in GAN [Goodfellow et al., 2014], we intro-
duce a generator G and a discriminator. The generator
G should generate samples that are indistinguishable
from the true ones, whereas the discriminator is divided
into two modules. The first (and standard) one D is
trained to discriminate between fake and real samples.
The second module C' is trained to correctly classify
real samples (i.e., X or Y). As in InfoGAN, we also
use one encoder, divided into two modules, @), and
Qs, to reconstruct the latent factors z and s. The dis-
criminator, D and C, and the encoder, @, and @, are
parametrized as neural networks, that share all layers
but the output one.

[Kim and Mnih, 2018], but their implementation is
inaccurate since they don’t use an independent optimizer.

Let x = G(z,s = §’) and y = G(z,s) be the generated
samples. We suppose, and force it in practice, that the
latent variables z = {z1,...,2z1} and s = {s1,...,sm}
are independent and follow a factorized distribution:
P(z) = HiL:1 P(c,) and P(s) = H;vil P(s;), for X and
Y. The total cost function is:

G gz%gs mgx wAdvﬁAdv(G D) +wCla99£(‘l(G C)

wlnfo‘clnfo(G7 Q:, Qs) + wIml:Im(Ga Q:, Q?)
3)

In the following, we will describe each term.

Adversarial GAN Loss As in
[Goodfellow et al., 2014], G and D are trained
together in a min-maxr game using the original
nonsaturating GAN (NSGAN) formulation:

£Adv (Da G) = Whyg (_EXR~P(xR) [1Og(D(XR)] -
Eevr,(s) 1081 = (D(G(2,0))] ) + e (~Eypmpiyn)

[log(D(YR)] - I['Ez,sr\zpy(z,s) [log(l - (D(G(Z, S))))])
(4)

where D(I) indicates the probability that I is real
or fake and xg ~ P(xg) and yr ~ P(yr) are real
images. Furthermore, we choose the same factor-
ized prior distribution P(z) for both X and Y (i.e.,
P,(z) = Py(z) = P(z)), namely a Gaussian N (0, 1).
We also tested a uniform distribution ¢[_; ;) but the re-
sults were slightly worse. Instead, about P(s), it should
be different between X and Y. We use a Dirac delta
distribution centered at 0 for X (i.e., Py(s) = d(s = 0))
and we have tested several distributions for Py(s). De-
pending on the data and related assumptions, one
could use, for instance, a factorized uniform distribu-
tion, U 1], or a factorized Gaussian N'(0,1) (ignoring
the samples equal to 0). In our experiments, results
were slightly better when using A(0, 1).

Class Loss To make sure that generated images
belong to the correct class, we propose to add a second
discriminator module C. It is trained on real images
to predict the correct class: X or Y. At the same time,
G is trained to produce images correctly classified by
C. We (arbitrarily) assign 0 (resp. 1) for class X (resp.

Y) and use the binary cross entropy (53). The loss is:
['cl(c) =E xr~P(xRr) [B(C(XR) 0)]

+E RNP(YR)[ ( ( ) )] (5)
La(G) =Eynp, (z)B(C(G(2,0)),0)]
+E, ;s~Py(z, S)[B(C( ( ))71)]
Info Loss Similarly to InfoGAN, we propose two

regularization terms based on mutual information,
I((z,s);y) and I((z,s = s');x), to encourage infor-
mative latent codes. However, in our case, these two
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terms are not added to disentangle between informative
and nuisance generative factors, but to enforce the sep-
aration between common and salient factors. Indeed,
the maximization of these two regularity terms should
enforce z to fully encode X and at the same time to
be informative for the generation of Y. In parallel, s
should only encode distinctive semantic information of
Y. Please note that the inclusion of two other nuisance
factors, similarly to InfoGAN, describing the incom-
pressible noise of X and Y, would make the analysis
more complex (i.e., additional regularity terms) since
they should not model the common nor the salient
generative factors.

Since z and s are independent by construction, the
mutual information I((z,s);-) can be decomposed into
the sum of the two mutual information I(z;-) + I(s;-).
Thus, similarly to InfoGAN (see Eq. 1), we can re-
trieve four lower bounds. As in [Chen et al., 2016,
Lin et al., 2020b], to promote stability and efficiency,
we model the two auxiliary distributions, @, and Q,
as factorized distributions. Beside a factorized Gaus-
sian distribution with identity covariance, we have also
tested a factorized Laplace distribution L(u,b) with
b= 1. This brings to a [1 reconstruction loss instead
of a standard [2, and showed better performance in
practice.

Finally, to better train @), and since we know that s
should be equal to 0 for real images of domain X (i.e.,
xgr ~ P(xp)), we also add as regularization the lower
bound of the mutual information I(s;xr). As before,
we fix P,(s) = d(s = 0). The sum of these five lower
bounds defines the Lp,f, loss:

»CInfo(Gv QZ7 QS) = wbg]EzNPy(Z) [wfnfoKQZ(G(Z? 0)) - Z|

+ W 10| Qs(G(2,0)) — 0]
+ WiBg s Py (2.5) [Wingol (Q=(G(2,5)) — 2]
+ Winpol Qs (G2, 5)) — ]
+ wis B P [|(Qs(x7)) — 0[]
(6)

Image reconstruction loss Differently from usual
GAN models, we also propose to maximize the log-
likelihood log(P(y)) (and log(P(x))) of the generated
images based on the proposed model. Indeed, no likeli-
hood is generally available for optimizing the generator
G in a GAN model [Goodfellow et al., 2014]. However,
here, given a real image yr (or xg), we can use the
auxiliary encoder @ = (Qs, @) to estimate the latent
factors Z and § that should generate yg (or xg) and
then maximize (an approximation) of the log-likelihood
of the generated images y = G(Z2, 8) (or x = G(2,0)):

IOg P(Y) > ]EyRNP(yR),(z,s)NQ(z,s\yR) IOgP(y|Z7 S, yR)
—Eyinryn) KL(Q(2, 8]y R)|| P(2,5]yR))
(7)

We notice that the second term should tend towards 0
during training thanks to the previous Info Loss.? We
can thus approximate log P(y) by computing only the
left term and modeling P(y|z,s,yr) as a Laplace dis-
tribution L(p, b) with b = 1. We use a Laplace distribu-
tion, instead of a Gaussian one, since it has been shown,
for instance in [Isola et al., 2017], that a [1-loss encour-
ages sharper and better image reconstructions than a
[2-loss. Similar computations can be done for log P(x).
We define L1,,(G, Q.,Qs) = log P(x) + log P(y):

Lim(G,Q=,Qs) = WhgEx i P(xp),2=0. (xn) ||G(2,0) — xR|]

+ Wiy, Pyr)25=Q(yn) [|G(2,5) = Vrl]

(8)
5 Results

In this section, we present the results of our model on
four different visual datasets. Three of them (CelebA
with accessories [Weinberger et al., 2022], Cifar-10-
MNIST and dSprites-MNIST) have been conceived
for the CA setting, giving us the possibility to qualita-
tively and quantitatively evaluate the performance of
our model. We compare it with two SOTA Contrastive
VAE algorithms (cVAE [Abid and Zou, 2019] and MM-
cVAE [Weinberger et al., 2022]) that had the best re-
sults in [Weinberger et al., 2022].# The fourth dataset,
Brats [Menze et al., 2014], comprises T1-w MR brain
images of healthy subject and patient with brain tu-
mors, and is used for qualitative evaluation.

For quantitative evaluation, we use the fact that the in-
formation about attributes (e.g. glasses/hats in CelebA,
MNIST digits, Cifar objects) should be present either
in the common or in the salient space. Given a test set
of images, we first use ) to reconstruct Z and § and
then train a classifier on them to predict the attribute
presence. By evaluating the discriminative power of the
classifier, we can understand whether the information
about the attributes has been put in the common or
salient latent space by the method.

Qualitatively, the model can be evaluated by: 1) look-
ing at the image reconstruction, 2) generating new
images (sampling different salient features) and 3) swap-
ping salient features. Given two real images xp € X
and yp € Y, we can first estimate the latent factors
(#x,sx) and (%, sy), that should have generated xp
and yg, using Q. Then, we can swap the estimated
salient features sx and sy, and re-generate the images
G(zx, sy) and G(zy, sx).

Implementation details about the architectures and
hyper-parameters used in the different experiments can
be found in the Supplementary.

3Lower bounds become tight as Q resembles the true P.
“We use the code provided by the authors of MM-cVAE.
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Sy T 2y 1
Best | Average | Worst | Best | Average | Worst

cVAE*F 0.84 0.82 0.81 [ 0.78 0.80 0.81
MM-cVAE* 0.85 0.82 nan | 0.72 0.76 nan
double InfoGAN | 0.95 0.95 0.94 | 0.69 0.71 0.73

Table 1: 5-fold average accuracy on Target CelebA
(glasses vs hat). Std is always < 0.01, so we don’t

report it for clarity. Best results in bold.
*: Results are different from [Weinberger et al., 2022] where no ex-
ternal test set is used.

CelebA with accessories We use the dataset
based on CelebA [Liu et al., 2015b] presented in
[Weinberger et al., 2022], where background images X
are faces with neither hat of glasses, and target images
Y are faces with hat or glasses. We use 20,000 im-
ages for training, 10,000 background and 10,000 target,
equally divided between glasses and hat. To evaluate
the target class separation, we create a test set with im-
ages (5,000 with glasses and 5,000 with hat) never seen
during training and compute the accuracy of a logistic
regression (with 5-fold cross validation) on the recon-
structed latent factors §, = Q,(sly) and 2, = Q.(zly).
Results are available in Table 1. Please note that the
evaluation protocol in [Weinberger et al., 2022] was dif-
ferent since authors did not use an external test set.
For a fair comparison, we run all methods 5 times
(with different random seeds) for 500 epochs, and re-
ported the highest (best), average and lowest (worst)
scores. Extensive results are presented in the Sup-
plementary. It is interesting to underline that MM-
cVAE [Weinberger et al., 2022] does not converge at
every run. We have observed a divergence of the KL
loss in about 10% of the trainings, which led to a con-
vergence failure. We have used the original architecture
of the MM-cVAE paper [Weinberger et al., 2022] to re-
produce their results.

We provide qualitative results in Fig. 3 with image
reconstruction and salient feature swap. Please note
that this would not be possible with SOTA IMI meth-
ods, such as CycleGAN [Zhu et al., 2017] and MU-
NIT [Huang et al., 2018], not conceived for the CA set-
ting. First of all, we observe that our model produces
images of better quality than MM-cVAE, although
this could probably be improved using larger GAN
architectures, such as BigGAN [Brock et al., 2019] or
StyleGAN [Karras et al., 2019]. From a quantitative
point of view, our model obtains an average Inception
Score (IS) equal to 1.63 £ 0.03 for background images
and 2.66 £ 0.02 for target images, whereas MM-cVAE
obtains 1.43 4+ 0.03 and 1.44 + 0.01 for background
and target images respectively. Similar results were
obtained using the Fréchet inception distance (FID).
It is interesting to notice that our model, contrarily to
MM-cVAE, preserves the characteristics of the salient
elements, such as the opacity of the glasses. Both mod-

Original | Reconstruction Swap
M- double MM- douyble
cVAE InfoGAN cVAE InfoGAN
— S

Figure 3: Image reconstruction and swap with the
CelebA with accessories dataset.

els struggle to preserve the shape of the original hat,
although our method tends to generate a better hat
but based on the hairstyle of the person.

In Fig. 4, we present qualitative results where we gener-
ate images fixing a z in each row and using different s
(0 for X, # 0 for Y'). We can see that there is indeed a
change of domain, and that the model generates a wide
variety of images. When switching from background
X to target Y, the characteristics of the person are
well preserved, and a salient feature is added, here
glasses or hat. Furthermore, we can also notice that
our model, being more accurate, is also more sensitive
to dataset biases. For instance, we have noticed that
in our dataset people with thin, transparent glasses
are usually old men. This bias is clearly visible in the
second row of Fig.3 and Fig.4. Removing such bias, as
in [Barbano et al., 2023], is left as future work.

Cifar-10-MNIST dataset We create a new dataset
based on Cifar-10 [Krizhevsky, 2009] and MNIST
[LeCun, |. Background images X are Cifar-10 images,
and target images Y are also CIFAR-10 with a ran-
dom MNIST digit overlaid on it. We use 50k training
images, equally divided between X and Y, and 10k
test images, equally divided among the MNIST digits.
Our model should successfully capture the background
variability (i.e., CIFAR objects) only in the common
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Figure 4: Fake images generated by our model. In each
row, we use the same common feature z for all images,
s = 0 for X and different salient features s # 0 for Y.

latent space z,, and the MNIST variability (i.e., digits)
only in the salient space s,. A perfect classifier would
have 100% accuracy on MNIST when using s, and
10% (which corresponds to randomness) when using z,.
Conversely, it should have 100% accuracy on Cifar-10
when trained on z, and 10% when trained on s,.

We compare our model with MM-cVAE. Since we used
the same image size as for CelebA (64 x 64 x 3), we
kept the same network architecture. We tested several
hyper-parameters for both methods and used the best
configuration in our experiments. Results using two
different latent space size are shown in Table 2 (for
MM-cVAE, we use: A\; = 10%, Ay = 10%). As before,
we run both methods 5 times (with different random
seeds) for 500 epochs, and report the highest, average
and lowest scores. More results in the Suppl.

We can notice that our method either outperforms
MM-cVAE or obtains comparable results. Moreover,
during our numerous trainings, we noticed that the
results obtained with our method are very stable, while
those obtained with MM-cVAE, as before with CelebA,
are more variable and may diverge (i.e., nan). Visual
examples are presented in Fig. 5, with image reconstruc-
tion and salient feature swap (more in Supplementary).
Our model offers sharper images than MM-cVAE and
is able to better extract salient features.

Ablation study We present in Table 3 a detailed
ablation study on the proposed losses using the Cifar-

MNIST dataset and the architecture with a latent space
of size 128 (since it obtained the best results in Table
2). We can notice that the proposed combination of
losses obtains the best results.

Original | Reconstruction Swap
MM- double MM- double
cVAE InfoGAN cVAE InfoGAN

Figure 5: Image reconstruction and swap with Cifar-
10-MNIST.

Brats dataset In this section, we present qualita-
tive results on the Brats dataset [Menze et al., 2014].
Background data X contains T1-w MR brain images
of healthy subject whereas the target dataset Y has
images of patients with brain tumors. Since images
are bigger (128 x 128) than the other datatsets, we use
a different architecture. More details can be found in
the Supplementary. Please note that here there are
no sub-categories (as in previous datasets) that can be
exploited to compute quantitative metrics (subgroup
classification).

Fig. 6 shows fake images generated by our model
trained on Brats. On the left are healthy images (s = 0),
and on the right images with tumor (s # 0). Images
in the same row are generated using the same z. We
can see that the general anatomy of the brain is pre-
served when changing domain, and that tumors with
different size and position are generated. By changing
z (i.e. row), we can also notice that the model seems
to have correctly encoded in z the general anatomical
variability of the brain.

In Fig.7, we generate healthy counterparts of tar-
get images with tumor, setting s = 0. This is very
valuable in a clinical setting for multi-modal fusion
[Frangois et al., 2022, Maillard et al., 2022], where im-
ages from different modalities can exhibit a different
topology due to the tumor, and atlas construction
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Mnist (salient) Cifar (background)
sy T Zy | Sy 1 Zy T
Best | Avg. | Worst | Best | Avg. | Worst | Best | Avg. | Worst | Best | Avg. | Worst
MM-cVAE (size 128) 0.8110.76 | nan |0.43|0.48| nan |0.14|0.18 | nan | 0.36 | 0.35 | nan
MM-cVAE (size 200) 0.82]0.63| 0.13 [0.43]0.58 | 0.82 |0.12]0.17| 0.27 |0.37]0.36 | 0.34
double InfoGAN (size 128)| 0.87|0.87| 0.86 |0.25|0.26 | 0.28 | 0.17| 0.18 | 0.19 | 0.43 | 0.42 | 0.41
double InfoGAN (size 200)|0.88|0.87| 0.86 | 0.32|0.32 | 0.32 | 0.20|0.21 | 0.23 |0.44|0.44 | 0.43

Table 2: MNIST-Cifar10 classification. Digits information should only be encoded in s, and not in z,, whereas
the contrary should be true for Objects information. Std < 0.01. Best results in bold.

Mnist (salient) [ Cifar (bg)

sy Tyl sy d o2y T

-Lciass 0.48 0.83 0.23 0.37

- Lciags - Lim 054 0.72 |0.22 0.38

- Linfo - Lciass - Lim | 0.70 0.70 0.18 0.18
- Lingo 0.85 0.60 |0.30 0.36

- Linfo - Lim 0.59 0.59 0.20 0.20

- Lciass - Lingo 0.74 0.67 0.29 0.35
-Lim 0.86 0.25 0.20 0.42

Full 0.87 0.26 0.18 0.42

Table 3: Ablation study of the different losses on the
Cifar-MNIST dataset. For every configuration, 3 train-
ings were launched. We report average values.

X - healthy Y - tumor

Figure 6: Fake images generated by our model. In each
row, we use the same z for all images with s = 0 for X
and different s # 0 for each exemple of Y.

[Liu et al., 2015a, Roux et al., 2019], where tumor im-
ages have to be registered to healthy templates. Please
note that here we use 2D slices with a small archi-
tecture (DCGAN), and a small (and biased) dataset
(Brats). Indeed, we have noticed that most of the slices
containing a tumor are in the central part of the brain
(greater size) whereas slices from the higher or lower
part of the brain (smaller size) have less frequently a
tumor. This might thus entail structural changes dur-
ing the generation of the healthy counterpart (swap),
such as the one in size in the third row of Fig. 7. This
could be solved by directly working with 3D data, more
powerful networks and debiasing strategies.

Target image |Reconstruction| Swap (s =0

Figure 7: Reconstruction (middle) and generation of
an healthy counterpart (swap, on the right) of a target
image with brain tumor (on the left) by setting s =0
and keeping the same z.

dSprites-MNIST dataset A new toy dataset is
proposed for evaluating CA methods. The background
dataset X consists of 4 MNIST digits (1, 2, 3 and 4)
regularly placed in a square. In the target dataset Y,
dSprites element [Matthey et al., 2017] are added on
top of the same 4 MNIST digits. Image reconstruction
and salient feature swap are presented in Fig. 8. As
before, we can see that, compared to MM-cVAE,
image reconstructions are more accurate and sharp
and, when exchanging salient features, the dSprites
elements are better preserved.

Disentanglement As in [Higgins et al., 2017,
Lin et al., 2020b], we also use dSprites to evaluate the
disentanglement of our method in the salient space.
Indeed, dSprites elements only exhibit 5 possible varia-
tions, making it easy to evaluate the disentanglement.
Possible variations are: 1) shape (heart, elipse and
square), 2) size, 3) position in X, 4) position in Y and
5) orientation (i.e. rotation). As metric, we use the
FactorVAE (fvae) score [Kim and Mnih, 2018]. Initial
results using the proposed method showed a very poor
disentanglement. To further improve it, we adapted for
our model the Contrastive Regularizer (CR) module of
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InfoGAN-CR [Lin et al., 2020b] (more details in the
Supplementary), obtaining a maximum fvae score of
0.47. For comparison, InfoGAN-CR achieves a fvae
score of 0.88 on the dsprite dataset alone. This shows
that disentangling salient (or common) factors is much
more difficult in our case than when using a single
data-set. Exploring disentanglement regularizations
more suited for a CA setting is left as future work.

In Fig. 9, we show target images generated by our
model when varying only one dimension (from -1.5 to
1.5) of s, while keeping z,, fixed. We clearly see a high
entanglement among the dSprites factors of variation.
For completeness, we also checked whether the CR
module helped the separation between common and
salient information, and found similar quantitative
results (see Supplementary).

6 Conclusions and Perspectives

We propose the first GAN-based model for Contrastive
Analysis (CA) that estimates and separates in an un-
supervised way all common and distinctive generative
factors of a target dataset with respect to a back-
ground dataset. Compared to current SOTA CA-
VAE models, we demonstrate superior performance
on 4 visual datasets of increasing complexity and rang-
ing from simple toy examples to real medical data.
Our method manages to better separate common from
salient factors, shows a better image generation qual-
ity and a greater stability during training. Further-
more, it allows the generation of multiple counterparts
between domains by fixing the common factors and
adding/removing the salient ones. We believe that
the proposed method will benefit from more powerful
GAN models and future progress in disentanglement,
increasing its accuracy and interpretability. This will
widen its fields of application to, for instance, clinically
valuable and challenging tasks, such as computer aided-
diagnosis. A last interesting research avenue could
be the extension to the recent diffusion based models,
as [Song et al., 2021, Rombach et al., 2022].

Limitations Recent works have shown that genera-
tive models, such as VAE and GAN, are in general not
identifiable [Locatello et al., 2019]. To obtain identifi-
ability, two different solutions have been proposed: 1)
either regularizing [Kivva et al., 2022] / constraining
(e.g., making it linear) the encoder or 2) introducing
an auxiliary variable so that the latent factors are
conditionally independent given the auxiliary variable
[Hyvarinen et al., 2019, Khemakhem et al., 2020]. Un-
fortunately, in Contrastive Analysis, neither of these
solutions may be used®. While all losses proposed here,
and in the related works, are needed to effectively sep-
arate common from salient factors, they do not assure

5The dataset label could be considered as an auxiliary
variable but it does not make ¢ and s independent

Original Reconstruction Swap
MM- double MM- double
cVAE InfoGAN cVAE InfoGAN

Figure 8: Image reconstruction and swap of salient
features on the dSprites-MNIST dataset.

Figure 9: Each row represents the variation of only
one element of the salient factor s,, while keeping
z, fixed. We can see a certain entanglement, with
several parameters changing at the same time: shape
and position (line 1), position and orientation (line 2).
Only the last line shows a disentanglement, with only
the orientation of the ellipse changing.

that all true generative factors have been identified.
This is the main limitation of this work, and actually
of all concurrent CA-VAE models, and is left as future
work. Inspired by [Wyner, 1975], a possible research di-
rection would be adding an information-theoretic loss
that quantifies the common and salient information
content so that, under realistic assumptions, the model
could be identifiable.
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Supplementary Material
A Ethical Statement

This paper presents the Double InfoGAN method, which aims to improve the accuracy and interpretability of
Contrastive Analysis in various fields, including medical imaging. We acknowledge that the use of medical imaging
datasets raises ethical concerns that we discuss in the following.

Firstly, we ensured that all medical imaging datasets used in our experiments were publicly available, anonimized
and ethically sourced. Secondly, we aim at developing a method that improves the quality and interpretability
of medical images, potentially leading to better diagnosis and treatment. We recognize that the accuracy and
reliability of the generated medical images are crucial for clinical decision-making and that, as already mentioned
in the article, more powerful GAN architectures with specific anatomical regularizations will be explored in
future. Another ethical concern is the potential for biased outcomes, particularly when the datasets are not
representative of the entire population. Biases in the data can lead to inaccurate and unfair results, which could
exacerbate healthcare disparities or bring to wrong diagnosis and treatments. Therefore, it is important to ensure
that datasets are diverse, inclusive and not biased, representing different demographics, hospitals, conditions, etc.
In summary, while contrastive analysis can lead to significant improvements in healthcare and in other domains,
it is essential to address potential ethical concerns, such as privacy and bias, to ensure accurate and trustworthy
results.

B Architecture

We present here the architectures used to obtain the results of this paper. These are inspired by DCGAN
[Radford et al., 2016], with the addition of Gaussian Noise in the Discriminator. This prevents it from converging
too fast and improves our performances. For the Brats dataset, we also added the spectral norm in the discriminator
(instead of the batchnorm), and an attention block in the generator.

All computations are run on a server with one NVIDIA A100 GPU card and 64 AMD EPYC 7302 16-Core
Processors.

Discriminator D / C / Q Generator G

Input 64 x 64 x ¢ ; c=3 for RGB, c=1 for gray/binary Input z € R", s € R™

Gaussian noise, 4 x 4 conv 64, stride 2, IReLU concat and reshape (z +s,1,1)

Gaussian noise, 4 x 4 conv 128, stride 2, batchnorm, IReLLU 4 x 4 convtranspose 512, batchnorm, ReLU
Gaussian noise, 4 x 4 conv 256, stride 2, batchnorm, IReLU 4 x 4 convtranspose 256, stride 2, batchnorm, ReLLU
Gaussian noise, 4 x 4 conv 512, stride 2, batchnorm, 1ReLU (*) 4 x 4 convtranspose 128, stride 2, batchnorm, ReLLU

From *: Gaussian noise, 4 x 4 conv 1, sigmoid (output layer for D) | 4 x 4 convtranspose 64, stride 2, batchnorm, ReLU
From *: Gaussian noise, 4 x 4 conv 1, sigmoid (output layer for C) | 4 x 4 convtranspose ¢ , stride 2, Tanh

From *: Gaussian noise, 4 x 4 conv n (output layer for Q)
From *: Gaussian noise, 4 x 4 conv m (output layer for Q)

Table 4: Architecture for celeba, cifar/mnist and dsprite/mnist datasets. Gaussian Noise is added at every layer,
with standard deviation of 0.2. LeakyReLU has a negative slope of 0.2. Batch size of 128. When a CR module is
added, it has the same architecture as @,
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Discriminator D / C / Q Generator G

Input 128 x 128 x 1 Input z € R”,s € R™

Gaussian noise, 4 x 4 conv 64, stride 2, spectral norm, IReLU concat + FC 8192 +reshape (512,4,4)
Gaussian noise, 4 x 4 conv 128, stride 2, spectral norm, IReLU upsample, 3 x 3 conv 1024, batchnorm, ReLU
Gaussian noise, 4 x 4 conv 256, stride 2, spectral norm, IReLU upsample, 3 X 3 conv 512, batchnorm, ReLLU
Gaussian noise, 4 x 4 conv 512, stride 2, spectral norm, IReLU upsample, 3 x 3 conv 256, batchnorm, ReLU
Gaussian noise, 4 x 4 conv 512, stride 2, spectral norm, IReLU (*) | Self-Attention Block

From *: Gaussian noise, FC 1, sigmoid (output layer for D) upsample, 3 x 3 conv 256, batchnorm, ReLU
From *: Gaussian noise, FC 1, sigmoid (output layer for C) 3 x 3 conv 128, batchnorm, ReLLU

From *: Gaussian noise, FC 128 , spectral norm, IReLU upsample, 3 x 3 conv 64, batchnorm, ReLU
Gaussian noise, FC n , spectral norm, IReLU (output layer for @,) | 3 x 3 conv 1, tanh

From *: Gaussian noise , FC 128 , SN, IReLU

Gaussian noise, FC m , spectral norm, IReLU (output layer for @)

Table 5: Architecture for Brats. Gaussian noise is additive, with standard deviation of 0.2. LeakyReLU has a
negative slope of 0.2. Batch size of 32.

C Mathematical developments

C.1 InfoGAN and InfoGAN-CR

The regularization loss proposed in InfoGAN [Chen et al., 2016] is

I(c;x) = —H(c|x) + H(c) = Ex~p(x),c~P(c|x) log P(c|x) + H(c) =
= /P(x)/P(c|x) log(P(c|x))dxdc + H(c) =

= /P(x) / P(c'|x)log(P(c'|x))dzdd’ + H(c') = (change of variables between ¢ and ¢’)

_ / / / P(x, ¢, 2)dcdz / P(|x) log(P(c|x))dzde’ + H(c') =

- /P(Z)/P(C)/P(Xk’z)/P(C/\X) log(P(c'|x))dzdxzdd de + H(c') = 9)

/p /P /PX|CZ /P /[x) log(P(c|x) E :;)dzdxdcdc—i—H( = (identity trick)

- ]EZNP(Z),CNP(C) x~P(x|c, z)KL ( |X)||Q( |X)) +Ez~P(z),ch(c),x~P(x|c Z)EC/NP(C’\X) 10g Q( |X) + H(C/)

>0

> ]EZNP(Z),CNP(c),x~P(x|c,z)Ec/~P(c’\x) IOg(Q(C/|X)) + H(CI)

where we have introduced an auxiliary distribution Q(c|x), parameterized as a neural network, to approximate
the posterior P(c|x) (which is difficult to compute) and we have made the hypothesis that ¢ does not depend on
z (i.e., P(c|z) = P(c)). To further remove also the need to sample from P(c|x) (which would be impossible in
most cases), authors propose a simple, yet effective, modification of the previous variational lower bound. In their
algorithm, they actually compute and maximize: £(G, Q) = E,<p(z),c~P(c),z~P(x|c,2) 108(Q(c|x)) + H(c), which
is equivalent to the previous lower bound:
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L(G, Q) = Eyp(a),c~P(c) x~P(xlc,2) 108(Q(cx)) + H(c) =
= /P(z)/P(c)/P(x|c,z) log(Q(c|x))dzdedx + H(c) =

_ / / / x, ¢|z) log(Q(c|x))dzdeda + H(c) =

/P // (x,c'|z) log(Q(c'|x))dzdc’dx + H(c") = (change of variable between ¢ and c’)

_ / P(2) / / P(x|z)P(c|x, 2) log(Q(c|x))dzdc'dz + H(c) =

= /P(z) ///P(x,c\z)P(c'|x) log(Q(c'|x))dzdd'dxdc + H(c") = (¢’ does not depend on z and re-introduce c)

/P ///P P(x|c, z) P(c'[x)log(Q(c'|x))dzdc dxde + H(c') =

= IEZNP(Z),ch(c),wa(x\C,Z)EC/NP(C’\x) lOg(Q(C/l}()) + H(CI)
(10)

In [Chen et al., 2016], authors proposed to model the auxiliary conditional distribution Q(c|x) as a factorized
Gaussian with identity covariance Q(c|x) = [[,(ci|x) =[], N (pi(x),1). As shown in [Lin et al., 2020a], this is
fundamental for stability and efficiency. Furthermore, in [Lin et al., 2020a], authors also showed that informative-
ness alone does not necessarily encourage disentanglement. To this end, they propose a new regularizer, called
Contrastive Regularizer (CR), which enforces distinguishable visual changes in the images created using different
latent codes. More specifically, they propose to fix a latent code ¢;, draw the others {c;};2; uniformly at random,
and then sample two or more images z; from the resulting distribution (z;) ~ Q*. By repeating this process for
all k latent codes ¢;, one can obtain an estimate of all distributions Q. The goal, following the usual definition of
disentanglement, is then to maximize the difference between the distributions @Q?, so that each latent code c¢;
should encode a specific visual variation in the created images that should be noticeable and easy to distinguish
from the patterns encoded by the other latent codes {c;};»;. Authors propose to maximize the following loss:

Lo=ds(@Q' Q%) = kZKL QlIIZQ) (11)

They propose to approximate this regularization term using a discriminator H that performs multi-way hypothesis
testing. Given two or more images (z;), created by fixing only one latent code ¢;, the discriminator H needs to
identify the latent dimension 7 shared between the images. Authors claim, and experimentally demonstrate, that
by updating both discriminator H and generator G to maximize L. it ”should encourage each latent code ¢; to
make distinct and noticeable changes, hence promoting disentanglement”.

We adapted the CR module for our model, as explained in Fig.10.

1 10.06

G(z,s") N 0 [0.02]

z e RL \
s',s? €RY, / o los
G(Z,SQ) / . .

Figure 10: Contrastive regularizer. Two images are generated with the following constraints: the background
latent space z is the same, and all the salient latent code are different except one (named k here). From these
two images, the CR module is then trained to predict which one of the latent code was identical. The CR module
outputs a vector of probabilities of the same size as s.
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C.2 Double InfoGAN

Since z and s are supposed to be independent, the mutual information I((z,s);y) can be decomposed into the
sum of the two mutual information I(z;y) + I(s;y)

1(( —H((2.5)ly) + H(z.5) = —H((z,5)ly) + H(z) + H(s) =
/ / / 2,5,y) log( (P( ’)Y))dzdsdy+H(z)+H(s) _
= [ P) [ [ Py Plaly)loa(P(siy) Plaly)dzdsdy + H(z) + H(s) = (suppose Pls.zly) = P(sly)Plaly)
— [Po) [ [ Plsly)Plaly) (ox(Plsly)) + los(Plaiy))) dzdsdy + H(z) + H(s) =
= [P ([ Pty oa(Plsiy) + [ Plaly)toa(P(aiy) ) dedy + ) + () -

= ]EyNP(y),SNP(s|y) IOg(P(S|y) + Ey~P(y),z~P(z|y) IOg(P(Z|Y) + H(Z) + H(S) =
= —H(sly) — H(zly) + H(z) + H(s) = I(z;y) + I(s;y)

(12)
The log-likelihood log(P(y)) of the generated images based on the proposed model is:
log P(y log/// (y,2,8,yRr)dzdsdyr —log///P (y|z,s,yr)P(z,s|lyr)P(yr) E : ;dzdsdy
SIYr
P(z,s|yr) P(z,s|yr)
=logE P ———>FK log P — =
P8 Byr~Pyn).(25)~Q(zsly ) <y‘z7s’yR)Q(z,S|}’R) = TynePln). (o) Qlaslyn) 108 (Y|z’s7yR>Q(275|YR)
= EyrnP(yr),(25)~Qzslyr) 108 P(ylz,s,yr) — EYRNP(YR)KL(Q(Z7 s|lyr)||P(z,s|yr))
(13)

D Losses equations

In this section, we detail the different losses used in our paper as functions of the involved modules: discriminator,
generator, encoder. Notation are as follows : from an image I, D(I) will be the standard adversarial output of
the GAN discriminator (namely the probability that an image is real or fake), C'(I) will be the class predicted by
the discriminator from image I, and Q(I) will be the predicted Z and §. In practice, Q, C and D share most of
the layers (see detailed architecture).

Reminder of the global loss :

GTZ)”ITIL mgx WAdv * LAdv(G D)+wC’la9e £Clae€(G C)

+Wrnfo 'Llnfo(Ga Q) + Wrm 'Elm(GaQ) (14)
+wer - Lor(G, H)
D.1 Adversarial GAN Loss

Similarly to [Goodfellow et al., 2014], the adversarial loss used here is:
EAdU (D7 G) = Whg <_EXRNP(XR) [log(D(XR)] - IEszw(z) [lOg(l - (D(G(Z7 O))))])

Wy (_]EYRNP(YR) [1Og<D(yR)] - EZ,SNPy (z,s) [10g<1 - (D(G<Z7 S))))])

D.2 Info Loss
real

The weight wyn o is actually divided in three components : wj, r,, Wj, s, and wip%,

Lingo(G,Q) = wygEynp, (2) [Win ol (Q=(G(2,0)) = 2| + Wiy 1,|Qs(G(2,0)) — 0[]
+ thstPy(z,s) [wfnfo|(QZ(G(z7 5)) - Z| + wLIgnfo|QS(G(Z’ S)) - SH (16)
+ W B Py [[ (@ (X)) — O]
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i value for different datasets
parameters definition celeba | cifar-mnist | mnist-dsprite | brats
loop G number of G loop 1 1 2 1
loop D number of D loop 1 1 1 1
loop CR (when used) number of CR loop - 1 1 1
Ir G learning rate G 0.0002 0.0002 5-107° 0.0001
IrD learning rate D 0.0002 0.0002 5-107° 0.0001
Ir CR (when used) learning rate CR - 0.0002 5-107° 0.0001
Whg weight for background 0.5 0.5 0.5 0.5
wy weight for target losses 1.0 1.0 1.0 1.0
W Adw weight for adversarial loss 0.5 0.5 0.5 0.5
WClass weight for class classification 0.5 0.5 0.5 0.5
Wmage weight for image reconstruction 1.0 1.0 1.0 1.0
wfnfo weight for info loss z 1.0 1.0 1.0 1.0
Wi to weight for info loss s 1.0 1.0 1.0 1.0
w?fl‘}lo weight for info loss real image 1.0 1.0 1.0 1.0
wer (when used) weight for CR loss - 1.0 1.0 1.0

Table 6: Hyperparameters used for every dataset

D.3 Image reconstruction loss

We also use an image reconstruction loss, which depends on G and Q:

Lim(G,Q) = wogBx o P(xp) 220 (xn) [|G(2,0) = Xg|] + Wiy p(yn).25=0ym) [|G(2,8) — yr]] (17)
D.4 CR Loss

The Contrastive Regularization loss is computed to improve the disentanglement of s. The module H and the
generator G are trained using a Cross Entropy loss to find the salient feature k& in common between two images

generated with two salient factors that have only one factor in common (i.e., s; = si) and all other factors
different (i.e., 5]1 * s? with Vj # k):

‘CCR(Gv H) = EkeN,ZNPy(z),sl,s2~Py(s),si:si,s}#s?,Vj;ék [CE(H(G(Zv 51)7 G(Z, 32))a k)] (18)
D.5 Weights and ratio between the losses

Different weights are used to balance the different losses, as well as other hyper-parameters (learning rate, number
of epochs, etc.). Table 6 summarizes the hyper-parameters used in our experiments and their values for each
dataset employed.

E Extensive Results

Swap |Original

Figure 13: Swap using the cVAE method with the CelebA with accessories dataset. We can clearly see that
personal traits (which should be encoded in the common space) are lost during the swap and accessories (which
should be encoded in the salient space) are not always correctly added. This could explain the poor quantitative
performance of cVAE.
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original images Image reconstruction Image swap
MM-cVAE  double InfoGAN | MM-cVAE  double InfoGAN

573 TE 90

Figure 11: Image reconstruction and swap with CelebA. In every block, first row refers to X and second row
to Y. It’s interesting to notice that rare attributes, such as the glasses in the first two blocks, are correctly
reconstructed by our method and not by MM-cVAE. However, they are changed towards more ”common” glasses
after swapping.
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cVAE

epoch 100 | epoch 200 | epoch 300 | epoch 400 epoch 500

Training 1 | 0.81 0.80 | 0.82 0.80 | 0.83 0.80 | 0.82 0.79 | 0.83 0.80
Training 2 | 0.78 0.82 | 0.80 0.82 | 0.79 0.82 | 0.80 0.81 | 0.81 0.81
Training 3 | 0.79 0.82 | 0.79 0.82 | 0.80 0.81 | 0.81 0.81 | 0.81 0.81
Training 4 | 0.83 0.79 | 0.84 0.78 | 0.83 0.78 | 0.84 0.78 | 0.84 0.78
Training 5 | 0.79 0.82 | 0.80 0.81 | 0.82 0.81 | 0.81 0.80 | 0.82 0.80
MM-cVAE
epoch 100 | epoch 200 | epoch 300 | epoch 400 epoch 500

Training 1 | 0.84 0.75 | 0.84 0.75 | 0.85 0.73 | 0.85 0.73 | 0.85 0.72
Training 2 | 0.83 0.77 | 0.84 0.76 | 0.85 0.75 | 0.85 0.75 | 0.85 0.74
Training 3 | nan nan | nan nan | nan nan | nan nan | nan  nan
Training 4 | 0.79 0.82 | 0.80 0.83 | 0.73 0.83 | 0.74 0.83 | 0.74 0.83
Training 5 | 0.81 0.79 | 0.82 0.79 | 0.82 0.79 | 0.83 0.78 | 0.83 0.77
double InfoGAN
epoch 100 | epoch 200 | epoch 300 | epoch 400 epoch 500

Training 1 | 0.93 0.74 | 0.93 0.73 | 0.95 0.72 | 0.95 0.73 | 0.94 0.70
Training 2 | 0.92 0.70 | 0.94 0.73 | 0.95 0.73 | 0.95 0.74 | 0.95 0.73
Training 3 | 0.92 0.69 | 0.94 0.71 | 0.95 0.74 | 0.95 0.73 | 0.95 0.69
Training 4 | 0.93 0.72 | 0.94 0.70 | 0.95 0.72 | 0.95 0.71 | 0.95 0.72
Training 5 | 0.93 0.72 | 0.94 0.70 | 0.95 0.72 | 0.95 0.76 | 0.95 0.73

Table 7: Target Dataset separation on CelebA - glasses vs hat - for the 5 trainings of the three methods at
different epochs. For clarity, we don’t report the standard deviations, whose values are between 0.00 and 0.01.
We can notice that the trainings of MMc-VAE are less stable than the ones of our method.
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MM-cVAE with latent space size 128 (64 x 2)
epoch 100 epoch 300 epoch 500
Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg)
sy T 2yl syl zy T | sy T Zy syl zZy | sy T 2y syl 2y T
Training 1 | 0.68 0.57 0.16 0.36 | 0.68 0.51 0.15 0.36 | 0.70 0.49 0.16 0.36
Training 2 | 0.80 0.51 0.15 0.36 | 0.80 0.41 0.16 0.36 | 0.81 0.43 0.14 0.36
Training 3 | 0.81 0.56 0.27 0.33 | 0.81 0.52 0.27 0.33 | 0.81 0.52 0.27  0.33
Training 4 | 0.81 0.53 0.31 0.25 | nan nan nan nan | nan nan nan  nan
Training 5 | 0.71 0.57 0.16 0.35 | 0.73 0.51 0.15 0.36 | 0.74 0.47 0.16 0.36
MM-cVAE with latent space size 200 (100 x 2)
epoch 100 epoch 300 epoch 500
Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg)
sy T 2yl syd oz T | sy T 2y syl zZy T | sy T zy syl 2y T
Training 1 | 0.19 0.82 0.12 0.35 | 0.14 0.82 0.12 0.36 | 0.13 0.82 0.12 0.35
Training 2 | 0.80 0.55 0.17 0.36 | 0.80 0.44 0.16 0.37 | 0.80 0.43 0.16 0.37
Training 3 | 0.81 0.64 0.28 0.34 | 0.82 0.57 0.27 0.34 | 0.82 0.55 0.27 0.34
Training 4 | 0.66 0.67 0.18 0.36 | 0.64 0.63 0.16 0.36 | 0.61 0.60 0.15 0.36
Training 5 | 0.76 0.60 0.19 0.36 | 0.78 0.51 0.17 0.37 | 0.79 0.48 0.17 0.37
double InfoGAN with latent space size 200 (100 x 2)
epoch 100 epoch 300 epoch 500
Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg)
sy T 2yl syd oz T sy T 2y syl zZy 1| sy 2y syl 2y T
Training 1 | 0.89 0.28 0.19 042 | 0.89 0.30 0.20 0.44 | 0.88 0.32 0.20 0.44
Training 2 | 0.89 0.29 0.21 0.41 | 0.88 0.31 0.22 043 | 0.87 0.32 0.22 0.44
Training 3 | 0.90 0.28 0.19 0.42 | 0.88 0.32 0.21 0.44 | 0.88 0.32 0.21 0.44
Training 4 | 0.90 0.29 0.20 0.41 | 0.88 0.30 0.22 043 | 0.86 0.32 0.23 043
Training 5 | 0.89 0.28 0.19 041 | 0.88 0.30 0.21 0.44 | 0.86 0.32 0.22 043
double InfoGAN with latent space size 128 (64 x 2)
epoch 100 epoch 300 epoch 500
Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg)
sy T 2y d syd oz T | sy 2y syl ozt | sy zy 1 syl 2y T
Training 1 | 0.88 0.21 0.16 0.40 | 0.88 0.27 0.18 042 | 0.87 0.26 0.18 0.43
Training 2 | 0.87 0.24 0.16 0.39 | 0.88 0.27 0.16 0.43 | 0.87 0.26 0.17 0.43
Training 3 | 0.88 0.22 0.16 0.39 | 0.87 0.26 0.18 0.42 | 0.86 0.26 0.19 0.42
Training 4 | 0.87 0.25 0.17 0.40 | 0.88 0.25 0.19 042 | 0.87 0.28 0.19 041
Training 5 | 0.88 0.24 0.15 0.39 | 0.87 0.24 0.17 042 | 0.86 0.25 0.19 043
double InfoGAN with latent space size 128 (64 x 2) with CR module
epoch 100 epoch 300 epoch 500
Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg) | Mnist (salient) | Cifar (bg)
Sy T 2yl syd zy T | sy T 2y syl zZy | sy T zy syl 2y T
Training 1 | 0.88 0.25 0.18 042 | 0.87 0.28 0.18 043 | 0.87 0.26 0.18 0.43
Training 2 | 0.87 0.23 0.16 0.40 | 0.88 0.24 0.18 0.43 | 0.87 0.26 0.18 0.42
Training 3 | 0.88 0.21 0.18 0.40 | 0.88 0.26 0.19 043 | 0.87 0.28 0.20 0.43
Training 4 | 0.88 0.26 0.17 0.39 | 0.88 0.27 0.18 0.42 | 0.88 0.26 0.19 0.42
Training 5 | 0.89 0.26 0.17 0.40 | 0.88 0.25 0.18 042 | 0.87 0.26 0.18 0.43

Table 8: Target Dataset separation on Cifar-10-MNIST for MM-cVAE and our method, with and without CR
module, and for different latent space sizes. We report the results of the 5 trainings per method at different
epochs. For clarity, we don’t report the standard deviations, whose values are between 0.00 and 0.01. Even here,
the trainings of MMc-VAE are less stable than the ones of our method, regardless of the latent dimension.
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Figure 12: More examples of image reconstruction and swap with Cifar-10-MNIST dataset.
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With CR Loss

epoch 50 | epoch 100 | epoch 200 | epoch 300 | epoch 400 | epoch 500 | epoch 600 | epoch 700

Training 1 0.334 0.366 0.366 0.376 0.394 0.396 0.398 0.4

Training 2 0.414 0.37 0.338 0.328 0.314 0.314 0.282 0.294
Training 3 0.258 0.294 0.25 0.258 0.222 0.222 0.218 0.216
Training 4 0.35 0.346 0.346 0.402 0.43 0.454 0.49 0.494
Training 5 0.202 0.202 0.206 0.216 0.22 0.222 0.226 0.24

No CR Loss

Training 1 0.348 0.358 0.364 0.376 0.39 0.392 0.406 0.424
Training 2 0.348 0.354 0.372 0.37 0.378 0.396 0.398 0.398
Training 3 0.326 0.35 0.354 0.342 0.334 0.324 0.306 0.306
Training 4 0.292 0.292 0.288 0.306 0.316 0.358 0.348 0.386
Training 5 0.306 0.32 0.318 0.292 0.304 0.324 0.334 0.34

Table 9: Ablation study of CR Loss on Mnist-dsprite dataset. Score indicated is fvae score
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Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]

(¢) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(¢) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes]
(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [Yes]

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]

(b) The license information of the assets, if applicable. [Yes]

(c) New assets either in the supplemental material or as a URL, if applicable. [Yes]
(d) Information about consent from data providers/curators. [Not Applicable]
)

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. [Not Applicable]

(¢) The estimated hourly wage paid to participants and the total amount spent on participant compensation.
[Not Applicable]
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