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Abstract: A new information theoretic condition is presented for reconstructing a discrete random
variable X based on the knowledge of a set of discrete functions of X. The reconstruction condition is
derived from Shannon’s 1953 lattice theory with two entropic metrics of Shannon and Rajski. Because
such a theoretical material is relatively unknown and appears quite dispersed in different references,
we first provide a synthetic description (with complete proofs) of its concepts, such as total, common,
and complementary information. The definitions and properties of the two entropic metrics are also
fully detailed and shown to be compatible with the lattice structure. A new geometric interpretation
of such a lattice structure is then investigated, which leads to a necessary (and sometimes sufficient)
condition for reconstructing the discrete random variable X given a set {X1, . . . , Xn} of elements in the
lattice generated by X. Intuitively, the components X1, . . . , Xn of the original source of information X
should not be globally “too far away” from X in the entropic distance in order that X is reconstructable.
In other words, these components should not overall have too low of a dependence on X; otherwise,
reconstruction is impossible. These geometric considerations constitute a starting point for a possible
novel “perfect reconstruction theory”, which needs to be further investigated and improved along
these lines. Finally, this condition is illustrated in five specific examples of perfect reconstruction
problems: the reconstruction of a symmetric random variable from the knowledge of its sign and
absolute value, the reconstruction of a word from a set of linear combinations, the reconstruction of
an integer from its prime signature (fundamental theorem of arithmetic) and from its remainders
modulo a set of coprime integers (Chinese remainder theorem), and the reconstruction of the sorting
permutation of a list from a minimal set of pairwise comparisons.

Keywords: information lattice; common information; complementary information; Rajski distance;
Shannon distance; dependency coefficient; relative redundancy; convex envelope; perfect reconstruction

A movement is accomplished in six stages
And the seventh brings return.

The seven is the number of the young light
It forms when darkness is increased by one.

Change returns success
Going and coming without error.

Action brings good fortune.
Sunset, sunrise.

Syd Barrett, Chapter 24 (Pink Floyd).

1. Introduction

We consider the problem of perfectly reconstructing a discrete random variable X,
based on the knowledge of a finite set X1, X2, . . . , Xn of deterministic processings or
transformations of X, denoted fi, such that Xi = fi(X). Intuitively, the components Xi are
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assumed to carry only a partial amount of the “information” present in X, and the perfect
reconstruction of X would only be possible if the combination of the “information” in X1, X2,
. . . , Xn is enough to contain all the original “information” in X. Such intuitive considerations
expressed in the language of information are very common in signal processing and in
many other scientific fields; but, they were never mathematically formalized as far as the
authors know. This article aims at formalizing precisely this trivial and vague intuition.
Such a task implies, in particular, an accurate definition of “information”.

The Shannon’s 1948 classical information theory [1] cannot really answer this question
as it is rather a theory of the measure of information rather than of the information itself.
Fortunately, a “true information” theory was also developed by Claude Shannon in a
relatively unknown 1953 article [2], which is not what is generally referred to as “Shannon’s
information theory”. Said briefly, the information is defined there as an equivalence class
of discrete random variables. A partial order on a set of classes allows one to build a lattice
structure called the information lattice, which is made metric by the introduction of two
related entropic distances.

“Claude [Shannon] did not like the term ‘information theory’” recalls Robert Fano, a
colleague of Shannon’s working at MIT, who died almost a century old just seven years
ago. In one of his last interviews [3], he said, “You see, the term ’information theory’
suggests that it’s a theory about information, but it’s not. It’s about the transmission of
information, not the information. Many people just didn’t understand that”. Fano is
of course referring to Shannon’s famous theory in his 1948 seminal paper [1], which he
entitled, “ a mathematical theory of communication ”—not information. But, very early on,
it was the term “information” that prevailed. The entropy H(X) of a discrete random
variable X is presented as the measure of “information contained in X”, and the notion of
the mutual information I(X; Y) between two variables X and Y, introduced precisely by the
same Robert Fano in his course at MIT [4], quickly became central to the teaching of the
theory. Moreover, the very first historical article on the theory, barely three years after its
birth,is entitled “A history of the theory of information” [5].

This sudden craze for “information” in the early 1950s eventually became somewhat
of a bore for Shannon, who in 1956, in his famous editorial, The Bandwagon [6] warned
against the excesses of such popularity: “It will be all too easy for our somewhat artificial
prosperity to collapse overnight when we realize that the use of a few exciting words like
information, entropy, redundancy, does not solve all our problems”.

Under these conditions, it is understandable that Shannon wanted to go further: If
several, unrelated, random variables can have the same quantity of information H, how
can information itself be defined? Shannon presented a very brief summary of his findings
(without proofs) at the International Congress of Mathematicians (ICM) in 1950 [7] and in a
small, relatively unknown article [2] published in 1953 in the very first issue of what was to
become the IEEE Transactions on Information Theory.

The remainder of this article is organized as follows. Section 2 presents in detail the
Shannon theory of the lattice of information with complete proofs, and Section 3 does the
same for the two entropic distances proposed, respectively, by Shannon and Rajski. The
corresponding geometric point of view is further developed in Section 4. Two conditions of
perfect reconstruction, a necessary one and a sufficient one, are then derived in Section 5.
Finally, the condition is applied to five specific examples in Section 6.

Sections 2, 3, and 4.1 are a deepening of the article [8] previously published (in French)
by four of the authors.

2. What Is Information? A Detailed Study of Shannon’s Information Lattice

For simplicity, we consider with Shannon discrete random variables X, which take a
finite number of values in some alphabet X . This amounts to considering all the random
variables X : Ω → X defined on a given probability space (Ω,P(Ω),P), where the
underlying universe Ω is finite and P(Ω) is the power set of Ω.
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2.1. Definition of the “True” Information

Quite arguably, the information contained in a discrete source or random variable X
should not be confused with the “measure of quantity of information” such as the entropy
H(X). Shannon’s idea [2] is that this information contained in X should in fact be defined as
X itself.Of course, any reversible encoding of X must be regarded as the same information,
since one moves from one representation to another without loss of information. This
amounts, in modern language, to the following definition:

Definition 1 (“True” information). The information (contained in) X is the equivalence class
of X for the equivalence relation:

X ≡ Y ⇐⇒ Y = f (X) and X = g(Y) a.s. (almost surely) (1)

for two deterministic functions f and g.

Proof. Relation ≡ is evidently reflexive (take f and g to be the identity function) and
symmetric (by permuting the roles of f and g in the definition). It is also transitive by
composition: if X ≡ Y and Y ≡ Z, there exists f , g, h, and k such that Y = f (X), X = g(Y),
and Y = h(Z), Z = k(Y) a.s.; then, X = g(h(Z)) = g ◦ h(Z) and Z = k ◦ f (X) a.s.

Proposition 1. X ≡ Y if and only if (iff) there exists a bijective function h such that Y = h(X) a.s.

Proof. If X ≡ Y, then there exist two deterministic functions f and g such that X = f (Y)
and Y = g(X) a.s. Thus, X = f (g(X)) a.s. Then, for every value X = x with non-zero
probability, f ◦ g(x) = x. Hence, f ◦ g coincides with the identity function a.s. Since the
problem is symmetric in X and Y, g ◦ f also coincides with the identity function a.s. Thus,
h = g is bijective from the set of values that X can take with non-zero probability to the set
of values that Y can take with non-zero probability, and we have Y = g(X) = h(X) a.s.

Conversely, if Y = h(X) a.s. with bijective h, then X = h−1(Y) a.s.; hence, X ≡ Y.

As suggested by Rajski [9], the equivalence between X and Y can be characterized by
way of their joint probability matrix:

Proposition 2 (Matrix characterization). If we restrain Ω to the elements of the non-zero
probability measure, X ≡ Y iff the matrix of joint probabilities P(X = x, Y = y) is a permutation
matrix.

Proof. By Proposition 1, X ≡ Y iff there exists a bijective function h such that Y = h(X) a.s.
Thus, to each outcome of X corresponds exactly one outcome of Y and vice versa, which is
equivalent to saying that the matrix of joint probabilities is a permutation matrix.

In the following, we shall denote (without possible confusion) X the equivalence class
of the variable X, and thus, X = Y, the equality between the two classes X and Y (rather
than X ≡ Y).

With this definition, it is clear that the equivalence relation is compatible with any
functional relation Y = f (X). If f is not bijective, it is tempting to say that there is less
information in Y than in X, hence the following partial order.

Definition 2 (Partial order).

X ≥ Y ⇐⇒ Y = f (X) a.s. (2)

for some deterministic function f .

We also write Y ≤ X. We are not necessarily considering real-valued variables, so the
order X ≥ Y has nothing to do with the order in R.
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Proposition 3. The relation ≥ is indeed a partial order on the set of equivalence classes of the
relation ≡ defined above.

Proof. We first show that the relation ≡ is compatible with the relation ≥. Let X1, X2, and
Y1, Y2 be such that X1 ≡ X2 and Y1 ≡ Y2. Then, if X1 ≥ Y1, there exists a deterministic
function f such that Y1 = f (X1) a.s. Since X1 ≡ X2, there exists a bijective h such that
X1 = h(X2) a.s.; hence, Y1 = f ◦ h(X2) a.s. and X2 ≥ Y1. Likewise, since Y1 ≡ Y2, there
exists a bijective g such that Y2 = g(Y1) a.s., so Y2 = g ◦ f ◦ h(X2) a.s.; hence, X2 ≥ Y2. This
shows that the relation ≥ is well defined on the set of equivalence classes of the relation ≡.

We now show that ≥ is indeed a partial order:

• Reflexivity: X = Id(X) so X ≥ X.
• Antisymmetry: If X ≥ Y and Y ≥ X, X = f (Y) a.s., and Y = g(X) a.s. for deterministic

functions f and g, so X ≡ Y.
• Transitivity: If X ≥ Y and Y ≥ Z, then there exist two deterministic functions f and g

such that: Z = g(Y) a.s. and Y = f (X) a.s. Then, Z = g( f (X)) a.s.; hence, X ≥ Z.

2.2. Structure of the Information Lattice: Joint Information; Common Information

Beyond the partial order, Shannon [2] established the natural mathematical structure
of information: it is a lattice, i.e., two variables X, Y always admit a maximum X ∨Y and a
minimum X ∧ Y. Let us recall that these quantities (necessarily unique if they exist) are
defined by the relations:

(X ≤ Z and Y ≤ Z) ⇐⇒ X ∨Y ≤ Z,

(X ≥ Z and Y ≥ Z) ⇐⇒ X ∧Y ≥ Z.
(3)

Shannon, in his paper [2], used Boolean notations instead, X + Y for X ∨ Y and X·Y for
X ∧Y.

Proposition 4 (Joint information). The joint information X ∨Y of X and Y is the random pair
X ∨Y = (X, Y).

Proof. If X and Y are functions of Z, then the pair (X, Y) is also a function of Z. Conversely,
since X and Y are functions of (X, Y), if (X, Y) is a function of Z, then so are X and Y.

The definition of X∧Y (common information) is more difficult and was not made explicit
by Shannon. Following Gács and Körner [10], let us adopt the following definition:

Definition 3. We say that x ∈ X and y ∈ Y communicate, denoted by x ∼ y, if there exists a
path xy1x1y2 · · · ynxny in which all transitions are of non-zero probability: P(X = x, Y = y1) > 0,
P(Y = y1, X = x1) > 0, . . . , P(X = xn, Y = y) > 0.

For convenience, we also write y ∼ x when x and y communicate. Strictly speaking,
the relation x ∼ y is not an equivalence relation because x and y do not belong to the same
set. However, it has similar properties:

Proposition 5. The relation ∼ on the set of pairs (x, y) for which P(X = x) > 0 and
P(Y = y) > 0 is transitive in the sense that x1 ∼ y1, y1 ∼ x2, and x2 ∼ y2 implies x1 ∼ y2.

Proof. If x1 ∼ y1, y1 ∼ x2, and x2 ∼ y2, then there exists a path from x1 to y1, another from
y1 to x2, and a leastone from x2 to y2, whose transitions are of non-zero probability. The
concatenated path from x1 to y2 has non-zero transition probabilities; hence, x1 ∼ y2.

Definition 4 (Communication class). If x ∼ y, we define the communication class C(x, y) as
the set of all (x′, y′) such that x′ ∼ y and x ∼ y′.
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Thus, by transitivity, C(x, y) = C(x′, y′) for all (x′, y′) in the communication class, so
that two classes are either equal or distinct. Therefore, the distinct communication classes
partition the set of all values (x, y) for which P(X = x) > 0 and P(Y = y) > 0. We may
identify any communication class C with its characteristic function 1(x,y)∈C so that C(X, Y)
is a binary random variable.

Proposition 6 (Common information). The common information X ∧Y of X and Y is X ∧Y =
C(X, Y).

Proof. If Z = f (X) = g(Y) a.s., then Z is constant for each pair (x, y) such that x ∼ y; in
other words, Z is a function of the class C(X, Y).

Remark 1. In order to compute the common information between X and Y in practice, one has
to fully determine the communication classes, which is only possible if there is a finite number of
classes, each of which contains a finite number of elements. In other words, X and Y should take a
finite number of values. This is the reason why we restrict ourselves to finitely valued variables in
this paper.

Remark 2. As in any lattice, X ≤ Y is equivalent to saying that X ∨Y = Y or that X ∧Y = X.

2.3. Computing Common Information

As shown in the previous section, the definition of common information is not a simple
one, but one can compute it efficiently using the following algorithm. Given two variables
X and Y, this algorithm turns the joint probability matrix of (X, Y) into a block-diagonal
matrix, where each block corresponds to each communication class.

Let X and Y be two random variables taking values in X and Y , respectively. Consider
the graph G = (V, E) whose vertices V are X ∪ Y and such that the vertices x and y of V
are connected by an edge if and only if P(X = x, Y = y) > 0. Hence, G is fully described by
the joint probability matrix PX,Y. Furthermore, this is a bipartite graph (no edge connects
two vertices x1 and x2 belonging to X or two vertices y1 and y2 belonging to Y).

Then, the communication classes C(X, Y) correspond to the connected components of G.
Indeed, a connected component C is a subset of V such that each of its elements is accessible
to all the others by a path in the subgraph (C, E). So, for any two vertices x, y in the
connected component C, there exists y1, x1, . . . , yk, xk such that all the edges (x, y1), (y1, x1),
. . . , (yk, xk), (xk, y) belong to E, that is all the transition probabilities between these vertices
are non-zero, which is equivalent to saying that they belong to the same communication
class. Now, it is known that the connected components of G can be determined by a
depth-first search.

We propose an algorithm, whose pseudo-code is given in Algorithm 1, that takes
as the input the joint probability matrix PX,Y and outputs a block-diagonal form of PX,Y
representing the common information X ∧ Y, an array storing the permutation of the
columns of PX,Y, and an array storing the permutation of the rows PX,Y. Since the matrix
PX,Y is sufficient to fully describe G, we adapt the depth-first search algorithm to browse
the rows and columns of the matrix PX,Y to find which of its rows and columns must
be swapped in order to write this matrix in a block-diagonal form. In this algorithm
(Algorithm 1), the ith row of PX,Y will be represented by the pair (r, i) and the jth column
by the pair (c, j).
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Algorithm 1 Algorithm to compute the common information.
1: input PX,Y: nR × nC matrix ▷ Joint probability matrix
2: σR ← array of integers of length nR ▷ Rows’ permutation vector
3: σC ← array of integers of length nC ▷ Columns’ permutation vector
4: S← empty stack ▷ Stack contains row indices (r, i) or column indices (c, j)
5: push (r, 0) into stack S ▷ First row put into stack
6: bottom← 1 ▷ Bottommost row index not yet assigned
7: up← nR − 1 ▷ Uppermost row index that may have non-zero entries
8: left← 0 ▷ Leftmost column index not yet assigned
9: right← nC − 1 ▷ Rightmost column index that may have non-zero entries

10: while There is an unmarked row or column do
11: while S is not empty do
12: (s, i)← S.pop() ▷ The pop() operation removes the top stack element and

returns it.
13: if (s, i) is not marked then
14: mark (s, i)
15: if s = r then ▷ Current index i is a row index
16: for left ≤ j ≤ right do ▷ Scan all columns
17: if PX,Y(i, j) > 0 then
18: push (c, j) into stack S
19: σC[j]← left; swap columns left and j in PX,Y
20: left← left + 1
21: end if
22: end for
23: if all entries on ith row are zeros then
24: σR[i]← up; swap rows i and up in PX,Y
25: up← up− 1
26: end if
27: else ▷ Current index i is a column index
28: for bottom ≤ j ≤ up do ▷ Scan all rows
29: if PX,Y(j, i) > 0 then
30: push (r, j) into stack S
31: σR[j]← bottom; swap rows bottom and j in PX,Y
32: bottom← bottom + 1
33: end if
34: end for
35: if all entries on ith column are zeros then
36: σC[i]← right; swap columns i and right in PX,Y
37: right← right− 1
38: end if
39: end if
40: end if
41: end while ▷ Empty Stack
42: if there is an unmarked ith row (r, i) then
43: push (r, i) into stack S
44: else if there is an unmarked jth column (c, j) then
45: push (c, j) into stack S
46: end if
47: end while ▷ All rows and columns marked
48: return PX,Y, σR, σC

The complexity of this algorithm can be determined as follows. Let n = Card(X ) +
Card(Y) be the sum of the alphabet sizes on which X and Y take their values, i.e., the sum
of the number of rows of PX,Y and the number of columns of PX,Y. The algorithm passes
through each row and column at most once. Indeed, for the index of a row or column to
enter the stack, it must be unmarked, but as soon as we put it on the stack, we mark it. Then,
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each time the index of a row or a column is unstacked, we look at each coefficient of the
corresponding row or column. Therefore, our algorithm looks at each coefficient of the
joint probability matrix PX,Y exactly once. Four elementary operations are performed each
time we cross a non-zero coefficient. Thus, the algorithm’s complexity is quadratic in n.

Notice that the output of our algorithm gives a visualization of the common infor-
mation: The stochastic matrix P(X = x, Y = y) is written, after the permutation of the
rows/columns, in the “block-diagonal” form

PX,Y =



C1
C2 0

. . .
0 Ck

0
. . .

0


(4)

where k, the number of blocks, is maximal. The k rectangular matrices then represent the k
different equivalence classes, the probability P(C(X, Y) = i) being the sum of all entries in
block Ci.

2.4. Boundedness and Complementedness: Null, Total, and Complementary Information

Proposition 7 (Null information; total information). The information lattice is bounded, i.e.,
it admits a minimum of 0 and a maximum of 1, such that, for any X, 0 ≤ X ≤ 1:

• The minimal element 0 (“null information”) is the equivalence class of all deterministic
variables. Thus, X = 0 means that X is a deterministic variable.

• The maximal element 1 (“total information”) of the lattice is the equivalence class of the identity
function Id on Ω.

Proof. If X is any random variable and Z = c a.s. is any deterministic variable, then it is
clear that Z = f (X), where f is the constant function c. Letting 0 be the equivalence class
of constant variables, one has 0 ≤ X for all X.

Also, for any random variable X, X = X ◦ Id; hence, X ≤ Id. Letting 1 be the
equivalence class of the identity function on Ω, one has X ≤ 1 for all X.

Proposition 8 (Complementary information). The information lattice is complemented, i.e.,
any X ≤ Y admits a complement Z (“complementary information”) such that X ∨ Z = Y and
X ∧ Z = 0.

This Z is the information missing from X to obtain Y: It allows Y to be reconstructed
from X without requiring more information than necessary. Shannon in [2] did not say
how to determine it. The following proof gives an explicit construction:

Proof. Since X ≤ Y, we simply have X = X ∧ Y = C(X, Y). Thus, a given class
C(X, Y) = x has only one value X = x per class, corresponding in general to several
values of Y, say yx

1 , yx
2 , . . . , yx

kx
. Now, let Z ∈ {1, . . . , kX} be the unique index such that

Y = YX
Z .

By construction, Z ≤ X ∨ Y = Y, and since X ≤ Y, one also has X ∨ Z ≤ Y. But, the
formula Y = YX

Z shows that Y ≤ X ∨ Z; hence, the equality X ∨ Z = Y holds.
Finally, the value Z = 1 connects each pair (x, z), so there is only one class according

to (X, Z), i.e., X ∧ Z = 0.

This construction can be visualized on the stochastic tensor of (X, Y, Z) described in
Figure 1.
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Remark 3. The complementary information Z is not uniquely determined by X and Y. In the
above construction, it depends on how the values of Y are indexed by the class X = x.

Z

Z

Y

X

Y

000
0 0***

0 0

0 0
0 0 0

Figure 1. Construction of the complementary information Z allowing passing from X to Y. The
stochastic tensor of (X, Y, Z) representing PX,Y,Z has non-zero entries marked in red. The distribution
PZ of Z is obtained by marginalizing the tensor on the Z-axis.

2.5. Computing the Complementary Information

Given X ≤ Y, Algorithm 2 determines a random variable Z corresponding to the
complementary information from X to Y. This algorithm takes as the input the joint
probability matrix PX,Y in its block-diagonal form and outputs the tensor of the joint
probability PX,Y,Z, where X ∨ Z = Y and X ∧ Z = 0. The tensor is built by spreading the
non-zero coefficients of the joint probability matrix PX,Y on the Z-axis as shown in Figure 1.

Algorithm 2 Algorithm for computing the complementary information.
1: input PX,Y: nR × nC matrix ▷ Joint probability matrix
2: k← 0 ▷ Z index
3: for 0 ≤ i < nR do
4: for 0 ≤ j < nC do
5: if PX,Y(i, j) > 0 then
6: PX,Y,Z(i, j, k)← PX,Y(i, j)
7: k← k + 1
8: end if
9: end for

10: k← 0
11: end for
12: return PX,Y,Z

The algorithm looks at each coefficient of the joint probability matrix PX,Y exactly once
and performs at most two elementary operations for each coefficient it processes. Therefore,
it is quadratic in n = Card(X ) + Card(Y) (since the number of coefficients in the matrix
PX,Y is quadratic in n).

2.6. Relationship Between Complementary Information and Functional Representation

There is a striking resemblance between Proposition 8 and the “functional representa-
tion lemma”, which has been used in recent years in various applications of information
theory for network coding (see Appendix B, pp. 626–627, of [11]).

For the convenience of the notations, we write X ⊥ Y if X ∧ Y = 0 (null common
information) and write X ⊥⊥ Y iff X and Y are independent. It is easily seen (see Remark 4
below) that X ⊥⊥ Y =⇒ X ⊥ Y. Now, Proposition 8 and the “functional representation
lemma” can be rewritten as follows.

Lemma 1 (Complementary information lemma (Proposition 8)).

∀ X ≤ Y, ∃Z ⊥ X s.t. Y = X ∨ Z. (5)
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Lemma 2 (Functional representation lemma ([11])).

∀ X, Y, ∃Z ⊥⊥ X s.t. Y ≤ X ∨ Z. (6)

Thus, compared to the “complementary information lemma”, the “functional repre-
sentation lemma” (i) has a general assumption of X and Y (X need not be a function of Y),
but (ii) requires a stronger condition on Z (Z ⊥⊥ X instead of Z ⊥ X) and (iii) has a weaker
conclusion (Y is only a function of X and Z). It would be interesting to further investigate
the relationship between these two lemmas since it is apparent that one lemma cannot be
deduced from the other.

2.7. Is the Information Lattice a Boolean Algebra?

Interestingly, it was Shannon who, as early as 1938 in his master’s thesis, used the
Boolean algebra to study relay-based circuits—“the most important master’s thesis of the
century” for which Shannon received the Alfred Noble prize (not to be confused with the
Alfred Nobel Prize) in 1940. But, alas, as Shannon noted, his information lattice is not a
Boolean algebra. It would have been one if it were distributive (∧ distributive with respect
to ∨ or vice versa), since a Boolean algebra is, by definition, a distributive complemented
bounded lattice. However:

Proposition 9. The information lattice is not distributive.

Indirect proof. In any Boolean algebra, the complement is unique. As seen above, this is
not the case for the information lattice.

Direct proof. As a direct second proof, we provide an explicit counterexample to distribu-
tivity. Consider the probability space (Ω,P(Ω),P), where Ω = {0, 1, 2, 3} and P is the
uniform probability measure, and define X(ω) = 0 if ω is even, X(ω) = 1 otherwise. Now,
let Z1, Z2 be given as in Table 1 below. As we read in the table, (X ∧ Z1) ∨ (X ∧ Z2) = 0 is
constant, while X ∧ (Z1 ∨ Z2) is not. Therefore, (X ∧ Z1) ∨ (X ∧ Z2) ̸= X ∧ (Z1 ∨ Z2), and
the information lattice is not distributive.

Table 1. Computation of X ∧ (Z1 ∨ Z2) and of (X ∧ Z1) ∨ (X ∧ Z2).

ω 0 1 2 3

X 0 1 0 1

Z1 1 1 2 2

Z2 2 1 1 2

Z1 ∨ Z2 (1, 2) (1, 1) (2, 1) (2, 2)

X ∧ (Z1 ∨ Z2) 0 1 0 1

X ∧ Z1 0 0 0 0

X ∧ Z2 0 0 0 0

(X ∧ Z1) ∨ (X ∧ Z2) (0, 0) (0, 0) (0, 0) (0, 0)

3. Metric Properties of the Information Lattice
3.1. Information and Information Measures

First of all, it is immediate to check the compatibility of the information lattice with
respect to the entropy or the mutual information as logarithmic measures of information.

We use the following standard notations. The entropy of X is denoted H(X). If X
takes values in X of size N, then the entropy of X satisfies H(X) ≤ log N with equality
iff X is uniformly distributed. Here, “log” refers to the logarithm taken to any base. The
conditional entropy of X given Y is denoted H(X|Y), and the mutual information between
X and Y is denoted I(X; Y).
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Proposition 10. Entropy, conditional entropy, and mutual information are compatible with the
definition of information as an equivalence class:

Proof.

• Entropy: If X ≡ Y, there exist functions f and g such that Y = f (X) a.s. (hence,
H(Y) ≤ H(X)) and X = g(Y) a.s. (hence, H(X) ≤ H(Y)). Thus, H(X) = H(Y).

• Conditional entropy: Let X1 ≡ X2 with f and g be two functions such that X1 = f (X2)
and X2 = g(X1) a.s. Then, H(X1|Y) = H( f (X2)|Y) ≤ H(X2|Y). Similarly, H(X2|Y) =
H(g(X1)|Y) ≤ H(X1|Y). Therefore, H(X1|Y) = H(X2|Y). Finally, if Y1 ≡ Y2 with
two functions h and k such that Y1 = h(Y2) and Y2 = k(Y1) a.s., then H(X|Y1) =
H(X|h(Y2)) ≥ H(X|Y2, h(Y2)) = H(X|Y2) and likewise H(X|Y2) = H(X|k(Y1)) ≥
H(X|Y1, k(Y1)) = H(X|Y1). Therefore, H(X|Y1) = H(X|Y2).

• Mutual information: Since I(X; Y) = H(X)− H(X|Y), compatibility follows from the
two previous cases.

We then have some obvious connections:

Proposition 11 (Partial order and conditional entropy).

X ≤ Y ⇐⇒ H(X|Y) = 0 (7)

In particular, H is “order-preserving” (greater information implies higher entropy):

X ≤ Y =⇒ H(X) ≤ H(Y). (8)

Also, X ≤ Y with H(X) = H(Y) implies X = Y.
Finally, H(X) ≥ 0 for all X, with equality H(X) = 0 iff X = 0.

Proof. H(X|Y) = 0 means that H(X|Y = y) = 0 for all y ∈ Y , which amounts to saying
that X is deterministic equal to f (y) given Y = y. In other words, X = f (Y) a.s. We then
have H(X) = H(X)− H(X|Y) = I(X; Y) = H(Y)− H(Y|X) ≤ H(Y).

Next, suppose that X ≤ Y and H(X) = H(Y). By the chain rule, H(X, Y) = H(X) +
H(Y|X) = H(Y) + H(X|Y). Therefore, it follows from the equality H(X) = H(Y) that
H(Y|X) = H(X|Y). But, since X ≤ Y, H(X|Y) = 0; hence, H(Y|X) = 0 also, that is Y ≤ X.
This shows equivalence Y = X.

Finally, since X ≥ 0 for all X, H(X) ≥ H(0) = 0, and it is well known that the entropy
H(X) is zero if and only if the variable X is deterministic, that is X = 0.

An example of an information lattice with associated entropies is given in Figure 2.
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Figure 2. Hasse diagram of the information lattice defined on a universe Ω of size 4 with uniform
probability. There are 15 different random variables corresponding to the 15 different ways to partition
Ω. The corresponding entropies are, in descending order: 2; 1.5 ; 1; ≈0.81, and 0 bits.

3.2. Common Information vs. Mutual Information

Proposition 12. The entropy of the joint information is the joint entropy, i.e., H(X ∨ Y) =
H(X, Y).

Proof. Obvious, since X ∨Y = (X, Y).

One may wonder by analogy with the usual Venn diagram in information theory
(Figure 3) if the entropy of joint information is equal to the mutual information: Is it true
that H(X ∧Y) = I(X; Y)? The answer is no, as shown next. Proposition 13 is implicit in [10]
and made explicit by Wyner in [12], who credits a private communication from Kaplan.

H(X) H(Y)

H(X, Y)

I(X; Y)H(X|Y) H(Y|X)

Figure 3. Usual Venn diagram in information theory.

Proposition 13. H(X ∧ Y) ≤ I(X; Y) always, with equality H(X ∧ Y) = I(X; Y) iff one can
write X = (U, W) and Y = (V, W), where U and V are conditionally independent given W.

Proof. Let W = X ∧ Y. Since W ≤ X and W ≤ Y, by complementarity, we can write
X = W ∨U = (U, W) and Y = W ∨V = (V, W). By the chain rule for mutual information,
I(X; Y) = I(U, W; V, W) = I(W; V, W) + I(U; V, W|W) = H(W) + I(U; V|W) ≥ H(W)
with equality iff U and V are conditionally independent given W.

Remark 4. In particular, if X and Y are independent, they have null common information
X ∧Y = 0. However, common information H(X ∧ Y) can be far less [10] than mutual infor-
mation I(X; Y).

Remark 5. Notice that the case of equality corresponds to the case where the matrix blocks Ci in (4)
are stochastic matrices of two independent variables X, Y knowing W = i, i.e., matrices of rank one.

Figure 2. Hasse diagram of the information lattice defined on a universe Ω of size 4 with uniform
probability. There are 15 different random variables corresponding to the 15 different ways to partition
Ω. The corresponding entropies are, in descending order: 2; 1.5; 1; ≈0.81, and 0 bits.
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3.2. Common Information vs. Mutual Information

Proposition 12. The entropy of the joint information is the joint entropy, i.e., H(X ∨ Y) =
H(X, Y).

Proof. Obvious, since X ∨Y = (X, Y).

One may wonder by analogy with the usual Venn diagram in information theory
(Figure 3) if the entropy of joint information is equal to the mutual information: Is it true
that H(X ∧Y) = I(X; Y)? The answer is no, as shown next. Proposition 13 is implicit in [10]
and made explicit by Wyner in [12], who credits a private communication from Kaplan.

H(X) H(Y)

H(X, Y)

I(X; Y)H(X|Y) H(Y|X)

Figure 3. Usual Venn diagram in information theory.

Proposition 13. H(X ∧ Y) ≤ I(X; Y) always, with equality H(X ∧ Y) = I(X; Y) iff one can
write X = (U, W) and Y = (V, W), where U and V are conditionally independent given W.

Proof. Let W = X ∧ Y. Since W ≤ X and W ≤ Y, by complementarity, we can write
X = W ∨U = (U, W) and Y = W ∨V = (V, W). By the chain rule for mutual information,
I(X; Y) = I(U, W; V, W) = I(W; V, W) + I(U; V, W|W) = H(W) + I(U; V|W) ≥ H(W)
with equality iff U and V are conditionally independent given W.

Remark 4. In particular, if X and Y are independent, they have null common information
X ∧Y = 0. However, common information H(X ∧ Y) can be far less [10] than mutual infor-
mation I(X; Y).

Remark 5. Notice that the case of equality corresponds to the case where the matrix blocks Ci in (4)
are stochastic matrices of two independent variables X, Y knowing W = i, i.e., matrices of rank one.

Remark 6. Shannon’s notion of common information should not be confused with the well-known
Wyner’s accepting of “common information”, which is defined as the maximum of I(X, Y; W) when
X and Y are conditionally independent knowing W. This quantity is not less, but greater than the
mutual information I(X; Y) [12].

3.3. Submodularity of Entropy on the Information Lattice

From the results in [13], we can show that entropy is submodular on the information
lattice:

Proposition 14 (Submodularity of entropy). H(X ∨Y) + H(X ∧Y) ≤ H(X) + H(Y).

Proof. Since X ∧ Y ≤ Y, H(Y) = H(Y, X ∧ Y) = H(X ∧ Y) + H(Y|X ∧ Y). But, since
X ∧ Y ≤ X, H(Y|X ∧ Y) ≥ H(Y|X ∧ Y, X) = H(Y|X) = H(X ∨ Y)− H(X). Combining
gives the announced inequality.



Entropy 2024, 26, 86 12 of 29

Remark 7. Submodularity is in fact equivalent to the inequality H(X ∧ Y) ≤ I(X; Y) of
Proposition 13, since H(X) + H(Y)− H(X ∨Y) = H(X) + H(Y)− H(X, Y) = I(X; Y).

Remark 8. The submodularity property of entropy that is generally studied in the information
theory literature is with respect to the set lattice (or algebra), where the entropy is that of a collection of
random variables indexed by some index set (thus considered as a set function). Such considerations
have been greatly developed in recent years; see, e.g., [14]. By contrast, it is the information
lattice that is considered here. It can be easily shown using Proposition 13 that the two notions of
submodularity coincide for collections of independent random variables.

3.4. Two Entropic Metrics: Shannon Distance; Rajski Distance

Since X = Y ⇐⇒ (X ≤ Y and X ≥ Y), according to Proposition 11, it suffices that
H(X|Y) + H(Y|X) = 0 in order for X and Y to be equivalent: X = Y. Shannon [2] noted
that this defines a distance, which makes the information lattice a metric space:

Proposition 15 (Shannon’s entropic distance). D(X, Y) = H(X|Y) + H(Y|X) is a distance
over the information lattice:

Proof.

• Positivity: As just noted above, D(X, Y) ≥ 0 vanishes only when X = Y.
• Symmetry: D(X, Y) = D(Y, X) is obvious by the commutativity of addition.
• Triangular inequality: First note that H(X|Z) ≤ H(X, Y|Z) = H(X|Y, Z) + H(Y|Z) ≤

H(X|Y) + H(Y|Z). By permuting X and Z, we also obtain that H(Z|X) ≤ H(Z|Y) +
H(Y|X). Summing up the two inequalities, we obtain the triangular inequality
D(X, Z) = H(X|Z) + H(Z|X) ≤ H(X|Y) + H(Y|X) + H(Y|Z) + H(Z|Y) = D(X, Y)
+D(Y, Z).

It is interesting to note that this is not the only distance (nor the only topology). By
normalizing D(X, Y) by the joint entropy H(X, Y), we obtain another distance metric:

Proposition 16 (Rajski’s entropic distance [9]). d(X, Y) =
D(X, Y)
H(X, Y)

(with the convention

d(0, 0) = 0) is a distance taking values in [0, 1].

Notice that normalization by H(X, Y) is valid when X and Y are non-deterministic
since X ̸= 0 and Y ̸= 0 implies H(X, Y) > 0.

Proof. First of all, symmetry d(X, Y) = d(Y, X) is obvious, and positivity follows from that
of D. We follow Horibe [15] to prove the triangular inequality. One may always assume
non-deterministic random variables. Observe that:

H(X|Y)
H(X, Y)

=
H(X|Y)

H(X|Y) + H(Y)
≥ H(X|Y)

H(X|Y) + H(Y, Z)
=

H(X|Y)
H(X|Y) + H(Y|Z) + H(Z)

(9)

and
H(Y|Z)
H(Y, Z)

=
H(Y|Z)

H(Y|Z) + H(Z)
≥ H(Y|Z)

H(X|Y) + H(Y|Z) + H(Z)
. (10)

Summing (9) and (10) yields

H(X|Y)
H(X, Y)

+
H(Y|Z)
H(Y, Z)

≥ H(X|Y) + H(Y|Z)
H(X|Y) + H(Y|Z) + H(Z)

. (11)

Now, from the above proof of the triangular inequality of D, one has H(X|Y) + H(Y|Z) ≥
H(X|Z). Noting that a ≥ b > 0 and c ≥ 0 imply a

a+c ≥ b
b+c , we obtain

H(X|Y) + H(Y|Z)
H(X|Y) + H(Y|Z) + H(Z)

≥ H(X|Z)
H(X|Z) + H(Z)

=
H(X|Z)
H(X, Z)

. (12)
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Therefore,
H(X|Y)
H(X, Y)

+
H(Y|Z)
H(Y, Z)

≥ H(X|Z)
H(X, Z)

. (13)

Permuting the roles of X and Z gives

H(Y|X)

H(X, Y)
+

H(Z|Y)
H(Y, Z)

≥ H(Z|X)

H(X, Z)
. (14)

Summing (13) and (14), we conclude that d(X, Y) + d(Y, Z) ≥ d(X, Z).

Remark 9. Rajski’s distance between two variables X and Y can be visualized as the Jaccard
distance between the region corresponding to X and the region corresponding to Y in the Venn
diagram of Figure 3. The Jaccard (or Jaccard–Tanimoto) distance [16] between two sets A and
B is defined by dJ(A, B) = |A∆B|

|A∪B| , where ∆ is the symmetric difference between A and B. Thus,
if A and B are, respectively, the regions corresponding to X and to Y in the Venn diagram, we
have: H(X, Y) = |A ∪ B|, H(X|Y) = |A\B| and H(Y|X) = |B\A|. Thus, H(X|Y)+H(Y|X)

H(X,Y) =
|(A\B)∪(B\A)|

A∪B = |A∆B|
|A∪B| .

3.5. Dependency Coefficient

From the Rajski distance, we can define a quantity that measures the dependence
between two non-deterministic (i.e., non-zero) random variables X and Y.

Definition 5 (Dependency coefficient). For all non-zero elements X and Y of the information
lattice, their dependency coefficient is ρ(X, Y) = 1− d(X, Y) ∈ [0, 1].

Proposition 17. The dependency coefficient can be seen as normalized mutual information:

ρ(X, Y) =
I(X; Y)
H(X, Y)

.

Proof. One has 1− d(X, Y) = 1− H(X|Y) + H(Y|X)

H(X, Y)
=

H(X, Y)− H(X|Y)− H(Y|X)

H(X, Y)
,

where the numerator = H(X) + H(Y|X)− H(X|Y)− H(Y|X) = I(X; Y).

Proposition 18. For non-deterministic X and Y, one has 0 ≤ ρ(X, Y) ≤ 1, where ρ(X, Y) = 0
vanishes (equivalently, d(X, Y) = 1) iff X and Y are independent and ρ(X, Y) = 1 (equivalently,
d(X, Y) = 0) iff X = Y are equivalent.

Proof. If X and Y are independent, then I(X; Y) = 0; hence, ρ(X, Y) = 0. If X and Y are
equivalent, then d(X, Y) = 0 and ρ(X, Y) = 1− d(X, Y) = 1. Since 0 ≤ I(X; Y) ≤ H(X) ≤
H(X, Y), 0 ≤ ρ(X, Y) = I(X;Y)

H(X,Y) ≤ 1.

Remark 10. The property of ρ in Proposition 18 is similar to the usual property of the linear
correlation coefficient. However, while two independent random variables have zero correlation (but
not conversely), the corresponding converse property holds for the dependence coefficient since two
random variables are independent if and only if ρ(X, Y) = 0.

3.6. Discontinuity and Continuity Properties

Perhaps the biggest flaw in Shannon’s lattice information theory [2] is that the different
constructions of elements in the lattice (e.g., common and complementary information)
do not actually depend on the values of the probabilities involved, but only on whether
they are equal to or different from zero. Thus, a small perturbation on the probabilities can
greatly influence the results. As an illustration, we have the following.
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Proposition 19 (Discontinuity of common information). The application (X, Y) 7→ X ∧Y is
discontinuous in the metric lattice with distance D (or d).

Proof. Let (Xε, Yε) be defined by the stochastic matrix:

PX,Y =


1−ε
N

ε
N 0 · · · 0

0 1−ε
N

ε
N · · · 0

...
...

...
. . . . . .

ε
N 0 · · · 0 1−ε

N

. (15)

Since there is a single class of communication, common information Xε ∧ Yε = 0 is zero
for every ε > 0. By contrast, when ε = 0, Xε ∧ Yε is uniformly distributed among N
communication classes. Consequently, D(Xε ∧ Yε, 0) = 0 for any ε > 0, whereas D(X0 ∧
Y0, 0) = H(X0 ∧Y0) = log N is arbitrarily large for ε = 0.

However, it should be noted that the joint information ∨ is continuous with respect to
Shannon’s distance. In fact, we have the following.

Proposition 20. For any X, X′, Y, and Y′,

D(X ∨Y, X′ ∨Y′) ≤ D(X, X′) + D(Y, Y′). (16)

Proof. One has

H(X ∨Y|X′ ∨Y′) = H(X, Y|X′, Y′)
(a)
= H(X|X′, Y′) + H(Y|X′, Y′, X)

(b)
≤ H(X|X′) + H(Y|Y′).

(17)

where (a) is the consequence of the chain rule and (b) is due to the fact that conditioning
reduces entropy. Since X, X′ and Y, Y′ play a symmetrical role in (b), we can permute the
roles of X, X′ and Y, Y′, which gives H(X′ ∨Y′|X ∨Y) ≤ H(X′|X) + H(Y′|Y). Summing
both inequalities yields the result.

Remark 11. In particular, for X = X′, for any X, Y, Z,

D(X ∨Y, X ∨ Z) ≤ D(Y, Z). (18)

In other words, joining the same X can only reduce the Shannon distance: in this respect, the joining
operator Y 7→ X ∨Y is a contraction operator.

Furthermore, the entropy, the conditional entropy, and the mutual information are
continuous with respect to the entropic distance of Shannon. Indeed, we have the following
inequalities (see Problem 3.5 in [17]):

Proposition 21. For all X, Y, X′, and Y′:

(i) |H(X)− H(Y)| ≤ D(X, Y).
(ii) |H(X, Y)− H(X′, Y′)| ≤ D(X, X′) + D(Y, Y′).
(iii) |H(X|Y)− H(X′|Y′)| ≤ D(X, X′) + 2D(Y, Y′).
(iv) |I(X; Y)− I(X′; Y′)| ≤ 2(D(X, X′) + D(Y, Y′)).

Proof.

(i) By the chain rule: H(X) + H(Y|X) = H(X, Y) = H(Y) + H(X|Y), hence |H(X)−
H(Y)| = |H(X|Y)− H(Y|X)| ≤ H(X|Y) + H(Y|X) = D(X, Y).
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(ii) Applying the inequality (i) to the variables (X, Y) and (X′, Y′), we obtain |H(X, Y)−
H(X′, Y′)| ≤ D((X, Y), (X′, Y′)). From the continuity of joint information
(Proposition 20), one can further bound D((X, Y), (X′, Y′)) ≤ D(X, X′) + D(Y, Y′).

(iii) By the chain rule, |H(X|Y)−H(X′|Y′)| = |H(X, Y)−H(Y)− (H(X′, Y′)−H(Y′))| ≤
|H(X, Y)−H(X′, Y′)|+ |H(Y′)−H(Y)|. The conclusion now follows from (i) and (ii).

(iv) By the chain rule, |I(X; Y)− I(X′; Y′)| = |H(X)−H(X′)+ H(Y)−H(Y′)+ H(X′, Y′)
−H(X, Y)| ≤ |H(X)− H(X′)|+ |H(Y)− H(Y′)|+ |H(X′, Y′)− H(X, Y)|. The con-
clusion follows from bounding each of the three terms in the sum using (i) and (ii).

In the remainder of this paper, we only consider quantities that are continuous with
respect to the entropic metrics (Shannon and Rajski distance). As a result, the discontinuity
of the ∧ operator will not hinder our derivations in the sequel.

4. Geometric Properties of the Information Lattice
4.1. Alignments of Random Variables

Definition 6 (Alignment). Let δ be any distance on the information lattice. The random variables
X, Y, and Z are said to be aligned with respect to δ if the triangular inequality is met with equality:

δ(X, Y) + δ(Y, Z) = δ(X, Z). (19)

Proposition 22 (Alignment with respect to the Shannon distance D). The random variables X,
Y, and Z are aligned with respect to D if and only if X−Y− Z is a Markov chain and Y ≤ X ∨ Z.

This alignment condition is illustrated in Figure 4.

YX Z

Figure 4. Venn diagram illustrating the alignment condition for the Shannon distance.

Proof. From the proof of the triangular inequality for D (Proposition 15), the equality holds
iff equality holds in both inequalities H(X|Z) ≤ H(X, Y|Z) = H(X|Y, Z) + H(Y|Z) ≤
H(X|Y) + H(Y|Z) and those inequalities obtained by permuting the roles of X and Z.
Since H(X, Y|Z) − H(X|Z) = H(Y|X, Z) and H(X|Y) − H(X|Y, Z) = I(X; Z|Y), the
equality holds iff H(Y|X, Z) = 0 and I(X; Z|Y) = 0, both conditions being symmetric
in (X, Z). Now, H(Y|X, Z) = 0 means that Y is a function of (X, Z), i.e., Y ≤ X ∨ Z.
Also, I(X; Z|Y) = 0 means that X and Z are conditionally independent given Y, which
characterizes the fact that X−Y− Z forms a Markov chain.

Proposition 23 (Alignment with respect to Rajski’s distance d). The random variables X, Y,
and Z are aligned with respect to d if and only if either X = Y, Y = Z, or Y = X ∨ Z.

This alignment condition Y = X ∨ Z is illustrated in Figure 5.



Entropy 2024, 26, 86 16 of 29

X Z

Y

Figure 5. Venn diagram illustrating the alignment condition for the Rajski distance.

Proof. Alignment trivially holds when X = Y or Y = Z. More generally, from the proof of
the triangular inequality for d (Proposition 16), alignment holds iff the equality holds in all
inequalities (9), (10), and (12) and those inequalities obtained by permuting the roles of X
and Z.

Now, a close inspection of (9) shows that it achieves equality iff H(X|Y) = 0 or
H(Z|Y) = 0, that is X ≤ Y or Z ≤ Y. This condition is written as X ∨ Z ≤ Y and is already
symmetric in X, Z.

Similarly, (10) achieves equality iff H(Y|Z) = 0 or H(X|Y) = 0, that is Y ≤ Z or
X ≤ Y. Permuting the roles of X, Z, we also have the condition Y ≥ Z or X ≥ Y. Thus,
leaving aside the trivial solutions X = Y or Y = Z, one necessarily has either X ≤ Y or
Z ≤ Y, which is the same as the equality condition in (9), or the opposite inequalities,
X ≥ Y and Z ≥ Y. In this latter case, combining with the equality condition in (9), we
again end up with the trivial solutions X = Y or Y = Z.

Thus, leaving aside the trivial solutions X = Y or Y = Z, both conditions are written
as X ∨ Z ≤ Y, which is symmetric in (X, Z). Finally, (12) achieves equality iff H(X|Y) +
H(Y|Z) = H(X|Z) and the corresponding equality obtained by permuting the roles of X
and Z. This means that X, Y, and Z are aligned with respect to D, that is X − Y − Z is a
Markov chain and Y ≤ X ∨ Z. Overall, Y = X ∨ Z, which already implies that X and Z are
conditionally independent given Y = (X, Z), i.e., X−Y− Z is a Markov chain.

Remark 12. Note that if X, Y, and Z are aligned in the sense of Rajski’s distance, then they are
also aligned in the sense of Shannon’s entropic distance since Y = (X, Z) implies that X−Y− Z
is a Markov chain. Thus, the alignment condition is stronger in the case of the Rajski distance.

Remark 13. The alignment condition with respect to the Rajski distance is simpler and expressed
by using only the operators of the information lattice, whereas that with respect to the Shannon
distance requires the additional notion of the Markov chain. Therefore, in the sequel, we develop
some geometrical aspects of the information lattice based essentially on the Rajski distance.

4.2. Convex Sets of Random Variables in the Information Lattice

Definition 7 (Convexity). Given two random variables X and Y, we define the segment [X, Y]
of endpoints X and Y as the set of all random variables Z such that X, Z, and Y are aligned with
respect to the Rajski distance, i.e., such that d(X, Z) + d(Z, Y) = d(X, Y).

We say that a set C of points (random variables) in the information lattice is convex if, for
all points X, Y ∈ C, the segment [X, Y] ⊆ C. If S is any set of points of the information lattice, its
convex envelope is the smallest convex set containing S .

By its very definition, the convex envelope of the two-element set {X, Y} is the segment
[X, Y]. We have the following simple characterization.
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Proposition 24 (Segment characterization). For any two elements X and Y of the information
lattice, the segment [X, Y] is the three-element set [X, Y] =

{
X, (X, Y), Y

}
, with the respective

distances to the endpoints given by d
(
X, (X, Y)

)
= H(Y|X)

H(X,Y) and d
(
Y, (X, Y)

)
= H(X|Y)

H(X,Y) .

Proof. X and Y do belong to the segment [X, Y] since d(X, X) + d(X, Y) = d(X, Y) and
d(X, Y) + d(Y, Y) = d(X, Y). Moreover, if Z ∈ [X, Y], then X, Z, and Y are aligned with
respect to the Rajski distance so that, necessarily, Z = (X, Y). One calculates d

(
X, (X, Y)

)
=

H(X|X,Y)+H(X,Y|X)
H(X,Y) = H(Y|X)

H(X,Y) and similarly for d
(
Y, (X, Y)

)
by permuting the roles of X

and Y.

Remark 14. By the above Proposition, segments in the information lattice are intrinsically discrete
objects. In the case where X ≤ Y or Y ≤ X, then the segment [X, Y] contains only two distinct
points, X and Y. Obviously, if X = Y, then [X, Y] is a singleton. This gives three possible cases as
illustrated in Figure 6.

•
X

•X ∨Y
•Y

H(Y|X)
H(X,Y)

H(X|Y)
H(X,Y)

(a) Arbitrary X and Y

•
X

•Y = X ∨Y

H(Y|X)
H(Y)

(b) X ≤ Y

•X = Y = X ∨Y

(c) X = Y
Figure 6. Visualization of the segment [X, Y] for three possible cases.

Remark 15. As a result of this characterization, four or more distinct points cannot be aligned with
respect to the Rajski distance, because a segment cannot contain more than three distinct points.

Proposition 25. C is convex iff it is closed under the ∨ operator.

Proof. C is convex iff, for all X, Y ∈ C, [X, Y] ⊆ C, that is X, Y, and (X, Y) = X ∨Y ∈ C.

Beyond the case of a two-element set, we now characterize the convex envelope of
any n-element set in the information lattice, that is the convex envelope of n random
variables X1, X2, . . . , Xn. We adopt the following usual convention. For any n-tuple of
indices I = (i1, i2, . . . , in), the random vector (Xi1 , Xi2 , . . . , Xin) = Xi1 ∨ Xi2 ∨ · · · ∨ Xin is
denoted by XI . Again, by convention, for the empty set, X∅ = 0, so that one always has
XI∪J = XI ∨ XJ for any two finite sets of indices I and J.

Proposition 26. Let I be a finite index set and (Xi)i∈I be random variables. The convex envelope of
(Xi)i∈I is {∨j∈J Xj | ∅ ̸= J ⊆ I} = {XJ | ∅ ̸= J ⊆ I}, that is the set of all sub-tuples of the Xi.

Proof. With every Xi (i ∈ I), the convex envelope in question should be closed by the ∨
operator, hence contain any tuple ∨j∈J Xj for any nonempty J ⊆ I. Now, C = {∨j∈J Xj =
XJ | ∅ ̸= J ⊆ I} contains all Xi for i ∈ I and is already convex. Indeed, for all XJ ∈ C and
XK ∈ C, XJ ∨ XK = XJ∪K ∈ C.

Remark 16. Given a finite set I of an index of cardinality |I| = n, the convex envelope of (Xi)i∈I
contains at most 2n − 1 distinct elements, since there are 2n − 1 nonempty subsets of I. The number
2n − 1 is only an upper bound since it might happen that two different subsets J and K of I are such
that XJ = XK.
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An example of the convex envelope of a family of three random variables is shown in
Figure 7.

•X1

•
X0

•X2•
X1 ∨ X2

•
X0 ∨ X1 •

X0 ∨ X2

•
X0 ∨ X1 ∨ X2

Figure 7. Seven-element convex envelope of three random variables X0, X1, and X2. These three
random variables are represented as vertices of an (equilateral) triangle. The other points in the
convex envelope are obtained as intersections of medians and edges, and the common information
X0 ∨ X1 ∨ X2 is the center of gravity (intersection of the three medians). Similarly, the 15-element
convex envelope of four distinct points can be visualized as a tetrahedron, etc.

It is also interesting to note that any sublattice of the information lattice does have
some convexity properties:

Proposition 27. Any sublattice of the information lattice (including the information lattice itself)
is convex in the sense of Definition 7. If a sublattice contains a subset of points (Xi)i, it also
contains every point in the convex envelope of (Xi)i∈I .

Proof. With every two points X, Y, the sublattice should contain their maximum X ∨ Y,
hence the whole segment [X, Y]. It is, therefore, convex. Now, every convex set contains
the convex envelope of any of its subsets.

4.3. The Lattice Generated by a Random Variable

In the sequel, we are interested in all possible deterministic functions of a given
random variable X. In fact, their set constitutes a sublattice of the information lattice:

Proposition 28 (Sublattice generated by a random variable). Let X be any random variable in
the information lattice. The set of all random variables ≤ X is a sublattice, which we call lattice
generated by X, denoted ⟨X⟩. It is a bounded lattice with maximum (total information) X and
minimum 0.

Proof. Let Y ≤ X and Z ≤ X. There exists deterministic functions f and g such that
Y = f (X) a.s. and Z = g(X) a.s. Clearly, Y ∧ Z ≤ Y ≤ X and Y ∨ Z = (Y, Z) =
( f (X), g(X)) ≤ X. Therefore, the set of random variables ≤ X forms a sublattice. Clearly,
X is maximum, and 0 (deterministic random variable seen as a constant function of X) is
minimum.

Remark 17. One may also define the sublattice ⟨X1, X2, . . . , Xn⟩ generated by several random
variables X1, X2, . . . , Xn simply as the sublattice generated by the variable X1 ∨ X2 ∨ · · · ∨ Xn.
Therefore, it is enough to restrict ourselves to one random variable X as the lattice generator.

Proposition 29. ⟨X⟩ is a complemented lattice.

Proof. Let Y ≤ Z ≤ X, so that both Y, Z ∈ ⟨X⟩. By Proposition 8, Y admits at least one
complement information Y with respect to Z in the information lattice, such that Y ∧Y = 0
and Y ∨Y = Z. Now, Y ≤ Z ≤ X; hence, the complement Y ∈ ⟨X⟩ belongs to the sublattice
generated by X.
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4.4. Properties of Rajski and Shannon Distances in the Lattice Generated by a Random Variable

We now investigate the metric properties of the sublattice ⟨X⟩ generated by a random
variable X. To avoid the trivial case ⟨0⟩ = {0}, we assume that X is nondeterministic. First
of all, we observe that the entropy of an element of the sublattice increases as it is closer to
X (in terms of either Shannon’s or Rajski’s distance):

Proposition 30. For any Y ∈ ⟨X⟩, one has D(X, Y) = H(X|Y) = H(X) − H(Y) and

d(X, Y) =
H(X|Y)

H(X)
= 1− H(Y)

H(X)
. In particular, the maximum distance d(X, Y) = 1 is achieved

iff Y = 0.

Proof. One has

d(X, Y) =
D(X, Y)
H(X, Y)

=
H(X|Y) + H(Y|X)

H(X)

(a)
=

H(X|Y)
H(X)

(b)
=

H(X)− H(Y)
H(X)

= 1− H(Y)
H(X)

.
(20)

where (a) is because Y ≤ X and (b) is a consequence of the chain rule: H(X) = H(X, Y) =
H(Y) + H(X|Y).

Remark 18. In the language of data compression, d(X, Y) =
H(X)− H(Y)

H(X)
= 1− H(Y)

H(X)
can

be seen as the relative entropic redundancy of X when it is represented (“encoded”) by Y.

Remark 19. The maximum distance case in the proposition can be stated as follows: The only
random variables Y that can be obtained as functions of X (Y ∈ ⟨X⟩) while being also independent
of X (d(X, Y) = 1) are the constant (deterministic) random variables.

4.5. Triangle Properties of the Shannon Distance

At least one attempt has been made previously by Donderi [18,19] to relate the entropic
distance D to Euclidean geometry. Referring to Shannon’s lattice of information, Donderi
defined the distance between X and Y to be

√
D(X, Y) =

√
H(X|Y) + H(Y|X), rather than

D(X, Y), and postulated that such a distance satisfies the usual properties of a Euclidean
distance, such as the trigonometric law of cosines for a triangle (see Figure 1 in [18] and
Figure 2 in [19]). This, in fact, is not the case, and the geometry of the triangle has to be
re-thought in a non-Euclidean way as follows.

In Euclidean geometry, Apollonius’s theorem allows one to calculate the length of the
median of a triangle XYZ given the length of its other three sides. In the information
lattice context, Y ∨ Z denotes the median of the segment [Y, Z] (the only possible point in
the segment that is not an endpoint). Thus, Apollonius’s theorem gives a formula for the
distance D(X, Y∨Z) in terms of D(X, Y), D(X, Z), and D(Y, Z). The following Proposition
is the analogue of Apollonius’s theorem for the Shannon distance in the information lattice
generated by X:

Lemma 3 (Apollonius’s theorem in ⟨X⟩). For any Y, Z ∈ ⟨X⟩,

D(X, Y ∨ Z) =
D(X, Y) + D(X, Z)− D(Y, Z)

2
. (21)

This can also be written as

D(X, Y) + D(X, Z) = D(Y, Z) + 2D(X, Y ∨ Z) (22)

This is illustrated in Figure 8. Note that, when X = Y ∨ Z, one recovers that Y, X, Z
(in this order) are aligned.
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X

Y

Z

Y ∨ Z

•

•

•

•

D(X, Z)

D(Y, Z)

D(X, Y)

D(X, Y ∨ Z)

Figure 8. Graphical representation of Apollonius’s theorem (Lemma 3).

Proof. From Proposition 30, D(X, Y) = H(X) − H(Y) for any Y ∈ ⟨X⟩, in particular
D(X, Z) = H(X)− H(Z) and D(X, Y ∨ Z) = H(X)− H(Y, Z) also. Therefore, D(X, Y) +
D(X, Z)− 2D(X, Y∨Z) = 2H(Y, Z)−H(Y)−H(Z) = H(Z|Y)+ H(Y|Z) = D(Y, Z).

From Lemma 3, we derive the following,

Lemma 4. For any Y, Z ∈ ⟨X⟩,

d(X, Y) + d(X, Z) ≤ d(X, Y ∨ Z) + 1 (23)

with equality if and only if Y and Z are independent.

Proof. Observe that D(Y, Z) + D(X, Y∨Z) = H(Y|Z) + H(Z|Y) + H(X|Y∨Z) ≤ H(Y) +
H(Z|Y) + H(X|Y, Z) = H(Y, Z) + H(X|Y, Z) = H(X, Y, Z) = H(X) since Y, Z ∈ ⟨X⟩,
with equality iff Y and Z are independent. Now, by Lemma 3, D(X, Y) + D(X, Z) =
D(Y, Z) + 2D(X, Y ∨ Z) ≤ D(X, Y ∨ Z)+H(X). Dividing by H(X) = H(X, Y) = H(X, Z)
= H(X, Y, Z) yields the announced inequality.

In the other direction, we have the following.

Lemma 5. For any Y, Z ∈ ⟨X⟩,

d(X, Y ∨ Z) ≤ d(X, Y) + d(X, Z) (24)

with equality if and only if X = Y = Z.

Proof. By the triangular inequality, d(X, Y ∨ Z) ≤ d(X, Y) + d(Y, Y ∨ Z) with equality
iff Y = X ∨ Y ∨ Z = X by the alignment condition. Similarly, d(X, Y ∨ Z) ≤ d(X, Z) +
d(Z, Y ∨ Z) with equality iff Z = X ∨Y ∨ Z = X. Summing the two inequalities, 2d(X, Y ∨
Z) ≤ d(X, Y) + d(X, Z) + d(Y, Y ∨ Z) + d(Z, Y ∨ Z), where d(Y, Y ∨ Z) + d(Z, Y ∨ Z) =
d(Y, Z) ≤ d(X, Y) + d(X, Z) with equality iff X = Y ∨ Z. Combining yields the announced
inequality.

Remark 20. In the course of the proof, we proved the following stronger inequality: for any
Y, Z ∈ ⟨X⟩,

d(X, Y ∨ Z) ≤ d(X, Y) + d(Y, Z) + d(Z, X)

2
(25)

with the same equality condition X = Y = Z.

Remark 21. By Lemmas 4 and 5, we see that, in terms of the Rajski distances to the generator
X, d(X, Y ∨ Z) lies between d(X, Y) + d(X, Z)− 1 and d(X, Y) + d(X, Z), where the lower and
upper bounds differ by one and the minimum value is achieved in the case of independence. These
two Lemmas are instrumental in the derivations of the next section.
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5. The Perfect Reconstruction Problem
5.1. Problem Statement

Suppose one is faced with the following reconstruction problem. We are given a
(discrete) source of information X (e.g., a digital signal, some text document, or any type of
data), which is processed using deterministic functions into several “components”:

X1 = f1(X), X2 = f2(X), . . . , Xn = fn(X) (26)

(e.g., different filtered versions of the signal at various frequencies, translated parts of
the document, or some nonlinear transformations of the data). The natural question is:
Did one loose information when processing X into its n components X1, X2, . . . , Xn, or else,
can we perfectly reconstruct the original X from its n components using some (unknown)
deterministic function X = f (X1, . . . , Xn)?

We emphasize that all involved functions must be deterministic (no noise is involved),
otherwise perfect reconstruction (without error) would not be possible. Yet, we do not
require any precise form for the reconstruction function f , only that such a reconstruction
exists. To our knowledge, the first occurrence of such a problem (for n = 2) is Exercise 6 of
the textbook [20].

Stated in the information lattice language, the perfect reconstruction problem is as
follows. Suppose we are given X1, X2, . . . , Xn in ⟨X⟩, the sublattice generated by X. Is it true
that X ≤ X1 ∨ X2 ∨ · · · ∨ Xn? Since the sublattice is convex (Proposition 27), i.e., stable by
the ∨ operator (Proposition 25), one always has, by assumption, that X1 ∨ X2 ∨ · · · ∨ Xn ∈
⟨X⟩, i.e., X1 ∨ X2 ∨ · · · ∨ Xn ≤ X. Therefore, in the reconstruction problem, it is equivalent
to determining whether X = X1 ∨ X2 ∨ · · · ∨ Xn or X ̸= X1 ∨ X2 ∨ · · · ∨ Xn.

Remark 22. Geometrically, by Proposition 26, determining whether X ≤ X1 ∨ X2 ∨ · · · ∨ Xn or
not is equivalent to determining whether X is in the convex envelope of (Xi)i=1,...,n.

Thus, when n = 2, perfect reconstruction is possible iff X lies in the segment [X1, X2]. When
n = 3, perfect reconstruction is possible iff, for every distinct index i, j, k ∈ {1, 2, 3}, Xi, X, and
Xj,k are aligned with respect to the Rajski distance, as illustrated in Figure 9.

X2

X1

X3X2,3

X1,2 X1,3
X

Figure 9. Geometric illustration of the three-component reconstruction problem.

Intuitively, the processed components Xi should not (on the whole) be too “far away”
from the original source X in order that perfect reconstruction be possible. In other words,
at least some of the distances d(X, Xi) should not be too high. Such distances can be,
in principle, evaluated when processing the source X into each of its components. In
the following subsection, we give a simple necessary condition on the sum d(X, X1) +
d(X, X2) + · · ·+ d(X, Xn) to allow for perfect reconstruction.

5.2. A Necessary Condition for Perfect Reconstruction

The main result of this paper is the following.

Theorem 1 (Necessary condition for perfect reconstruction). Let X be a random variable, and
let X1, X2, . . . , Xn ∈ ⟨X⟩. If perfect reconstruction is possible: X = X1 ∨ X2 ∨ · · · ∨ Xn, then

n

∑
i=1

d(X, Xi) ≤ n− 1 (27)
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with equality iff X1, X2, . . . , Xn are independent.

Proof. By repeated use of Lemma 4, each joining operation of two components in the
sum—e.g., passing from d(X, Xi) + d(X, Xj) to d(X, Xi ∨ Xj)—decreases this sum by at
most one. Thus,

n

∑
i=1

d(X, Xi) ≤
n−2

∑
i=1

d(X, Xi) + d(X, Xn−1 ∨ Xn) + 1

≤
n−3

∑
i=1

d(X, Xi) + d(X, Xn−2 ∨ Xn−1 ∨ Xn) + 2

...

≤ d(X, X1 ∨ X2 ∨ · · · ∨ Xn) + n− 1 = n− 1.

(28)

The equality holds iff all the above n− 1 inequalities are equalities. By the equality condition
of Lemma 4, this means by induction that X1 is independent of X2 ∨ · · · ∨ Xn, where X2 is
independent of X3 ∨ · · · ∨ Xn, and so on, until Xn−1 is independent of Xn. Overall, this is
equivalent to saying that all components X1, X2, . . . , Xn are mutually independent.

Remark 23. To illustrate Theorem 1, consider a uniformly distributed two-bit random variable X
(i.e., the result of two independent coin flips), and let X1 be the result of the first coin toss and X2 be
that of the second coin toss. Clearly, reconstruction is possible since X = (X1, X2). Now, a simple
calculation gives d(X, X1) =

H(X|X1)
H(X)

=
log 2
log 4 = 1

2 , and similarly, d(X, X2) =
1
2 , which shows

that (27) is achieved with equality: d(X, X1) + d(X, X2) = 2− 1 = 1. This is not surprising since
X1 and X2 are independent, as can be checked directly.

Now, consider X3 = 0 or 1 depending on whether X1 = X2 or not. Clearly, X can be
also reconstructed from X1, X2, X3 since it can already be reconstructed from X1, X2. Again,
one computes d(X, X3) =

log 2
log 4 = 1

2 , so in this case, the sum of the distances to X is now

d(X, X1) + d(X, X2) + d(X, X3) =
3
2 < 3− 1 = 2. This shows that (27) is still satisfied, but not

with equality. In fact, it can easily be proven that, even though X1, X2, X3 are pairwise independent,
they are not mutually independent.

Remark 24. In practice, Theorem 1 gives an impossibility condition for the perfect reconstruction
of the random variable X from components X1, X2, . . . , Xn. Indeed, if the latter are such that

n

∑
i=1

d(X, Xi) > n− 1 (29)

then perfect reconstruction is impossible, however complex the reconstruction function f could
have been. In other words, X < X1 ∨ X2 ∨ · · · ∨ Xn, and information was lost by processing.

That perfect reconstruction is impossible does not mean that it would never be possible to
deduce one particular value of X from some particular values of X1, X2, . . . , Xn. This means that
such a deduction is not possible in general, for every possible value taken by X1, X2, . . . , Xn. In
other words, there is at least one set of values X1 = x1, X2 = x2, . . . , Xn = xn for which X cannot
be reconstructed unambiguously.

Remark 25. Another look at Theorem 1 can be made using the dependency coefficient ρ = 1− d in
place of the Rajski distance. Then, the impossibility condition (29) is simply written as

n

∑
i=1

ρ(X, Xi) < 1. (30)

In other words, perfect reconstruction can only occur if the components are (as a whole) sufficiently
dependent on the original X. Otherwise, (30) precludes perfect reconstruction.
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Remark 26. Since the Rajski distance is always upper bounded by one, if the impossibility con-
dition (29) is met, then the actual value of the sum ∑n

i=1 d(X, Xi) necessarily lies in the interval
(n− 1, n].

In the worst situation ∑n
i=1 d(X, Xi) = n, all terms should equal one: d(X, Xi) = 1. This

means that all components are independent of X. By Proposition 30, the components Xi = 0 are all
constants: in this case, all information is lost.

Remark 27. By Theorem 1, for perfect reconstruction to be possible, the components Xi should be
(at least slightly) tightened around X in the sense that (27) is satisfied. The example of Remark 23
shows that, under this condition (even when the inequality is strict), it may be actually possible to
reconstruct X. However, proximity may not be enough: the necessary condition of Theorem 1 is not
sufficient in general.

To see this, consider X uniformly distributed in the integer interval {0, 1, . . . , 11}, and define
X1 = k if X = 2k or 2k + 1 and X2 = ℓ if X = 3ℓ, 3ℓ+ 1, or 3ℓ+ 2. In other words X1 is the
integer division of X by 2, and X2 is the integer division of X by 3. One easily computes

d(X, X1) + d(X, X2) =
H(X|X1) + H(X|X2)

H(X)
=

log 2 + log 3
log 12

=
log 6
log 12

< 1. (31)

While the necessary condition (27) of Theorem 1 is met, the value of X cannot be unambiguously
determined from those of X1 and X2. For example, X1 = X2 = 0 leaves two possibilities: X = 0
or 1. Therefore, perfect reconstruction is not possible.

Another way to see this is to observe that perfect reconstruction is equivalent to saying that
X1, X, X2 are aligned, which in terms of the Shannon distance would be written as D(X1, X2) =
D(X, X1) + D(X, X2). But, while D(X, X1) + D(X, X2) = log 6, one has

D(X1, X2) = H(X1|X2) + H(X2|X1) =
(1

3
log 3 +

2
3

log
3
2
)
+

2
6

log 2 = log 3− log 2
3

(32)

which is clearly less than log 6. Therefore, perfect reconstruction is impossible in our example,
because X1 and X2 are too close together, i.e., there is too much redundant information between
them.

A slight modification of the above example where X takes values in {0, 1, . . . , 12m− 1} for
arbitrarily large m shows that the sum d(X, X1) + d(X, X2) =

log 6
log(12m)

can actually be as small as
desired, while perfect reconstruction is still impossible. Therefore, there can be no condition of the
form ∑n

i=1 d(X, Xi) < c (or any condition based only on the value of this sum) to ensure perfect
reconstruction. Such a sufficient condition cannot be established without assuming some other
property of the components Xi, as seen in the next subsection.

5.3. A Sufficient Condition for Perfect Reconstruction

For independent components X1, X2, . . . , Xn (with no redundant information between
them), the necessary condition of Theorem 1 becomes also a sufficient condition:

Theorem 2 (Sufficient condition for perfect reconstruction). Let X be a random variable, and
let X1, X2, . . . , Xn ∈ ⟨X⟩ be independent. If the inequality (27) holds, then it necessarily holds
with equality:

n

∑
i=1

d(X, Xi) = n− 1 (33)

and perfect reconstruction is possible: X = X1 ∨ X2 ∨ · · · ∨ Xn.

Proof. A closer look at the proof of Theorem 1 shows that we have established (without
the perfect reconstruction assumption) the general inequality:

n

∑
i=1

d(X, Xi) ≤ d(X, X1 ∨ X2 ∨ · · · ∨ Xn) + n− 1 (34)
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which holds with equality iff X1, X2, . . . , Xn are independent. Therefore, by the indepen-
dence assumption, (27) is written as ∑n

i=1 d(X, Xi) = d(X, X1 ∨ X2 ∨ · · · ∨ Xn) + n− 1 ≤
n− 1. Since the distance is nonnegative, this necessarily implies that the inequality holds
with equality and that d(X, X1 ∨ X2 ∨ · · · ∨ Xn) = 0, that is X = X1 ∨ X2 ∨ · · · ∨ Xn.

Remark 28. Following Remark 26, we see that, for independent X1, X2, . . . , Xn, the sum of the
distances to X: ∑n

i=1 d(X, Xi) can only take values in the interval [n− 1, n], with two possibilities:

• Either ∑n
i=1 d(X, Xi) = n− 1, and perfect reconstruction is possible;

• Or ∑n
i=1 d(X, Xi) > n− 1, and perfect reconstruction is impossible.

In other words, independent components cannot be arbitrarily tightly packed around X.
Following Remark 25, in terms of dependency coefficients, for independent X1, X2, . . . , Xn:

• Either ∑n
i=1 ρ(X, Xi) = 1, and perfect reconstruction is possible;

• Or ∑n
i=1 ρ(X, Xi) < 1, and perfect reconstruction is impossible.

Remark 29. Following Remark 22 and Figure 9 in the case of three independent components
X1, X2, X3, one should have d(X, X1) + d(X, X2) + d(X, X3) = 2 for perfect reconstruction to
hold. Incidentally, the graphical Euclidean illustration of Figure 9 is faithful in this case, since, for
an equilateral triangle X1X2X3 with sides of length one, the sum of the Euclidean distances equals
d(X, X1) + d(X, X2) + d(X, X3) =

2
3 + 2

3 + 2
3 = 2.

Remark 30. By Proposition 30, d(X, Xi) = 1− H(Xi)
H(X)

, so that Theorems 1 and 2 can be rewritten
using the standard assertions that H(X) ≤ ∑ H(Xi) with equality when Xi are mutually indepen-
dent. This, of course, does not require all the machinery developed earlier. We feel, however, that
our geometric vision is still valuable because of its conceptual and pedagogical interest and also as
a starting point for a “perfect reconstruction theory”, which, of course, needs to be improved and
further investigated along these lines.

5.4. Approximate Reconstruction

Suppose we encode the information source X by n components X1, X2, . . . , Xn, but do
not particularly insist that perfect reconstruction is possible. Rather, we assume that the
encoding removes a fraction of redundancy in X equal to

d(X, X1 ∨ X2 ∨ · · · ∨ Xn) = δ (35)

(see Remark 18). Since the case δ = 0 corresponds to the previous case of perfect reconstruc-
tion (X = X1 ∨ X2 ∨ · · · ∨ Xn), we assume that δ > 0 in the sequel. Thus, in what follows,
the reconstruction of X can only be approximate (up to a certain distance tolerance δ). We
then have the following.

Theorem 3 (Approximate reconstruction). Let X be a random variable, and let X1, X2, . . . , Xn ∈
⟨X⟩ such that (35) holds with redundancy = δ > 0. Then,

δ <
n

∑
i=1

d(X, Xi) ≤ n− 1 + δ. (36)

with equality in the second inequality iff the components X1, X2, . . . , Xn are independent.

Proof. The rightmost inequality in (36) is just (34) (with the announced case of equal-
ity), which was established by repeated application of Lemma 4. Similarly, the repeated
application of Lemma 5 gives

d(X, X1 ∨ X2 ∨ · · · ∨ Xn) ≤
n

∑
i=1

d(X, Xi) (37)
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with equality iff all Xi = X (i = 1, . . . , n). But, such an equality condition would yield
δ = d(X, X) = 0, contrary to the assumption δ > 0. This shows that the leftmost inequality
in (36) is strict.

Remark 31. Similarly, as in the above two subsections, one can deduce from Theorem 3 that,
for independent components X1, X2, . . . , Xn, one necessarily has ∑n

i=1 d(X, Xi) = n− 1 + δ and
that, in general, approximate reconstruction within distance tolerance ≤ δ will be impossible if
∑n

i=1 d(X, Xi) > n− 1 + δ.

6. Examples and Applications

In this section, we develop five examples of the applications of the theorems of
Section 5.

6.1. Reconstruction from Sign and Absolute Value

Consider a real-valued random variable X, and assume that it is symmetric (X is
identically distributed as −X) and that P(X = 0) = 0. Now, define X1 = |X| (absolute
value) and X2 = sgn(X) ∈ {−1, 1} (sign of X). Clearly, if X follows probability distribution
p, then X1 has probability distribution 2p(x) for x > 0. Also, X2 is Rademacher distributed
(equiprobable ±1).

One easily computes H(X1) = ∑x>0 2p(x) log 1
2p(x) = H(X) − log 2 and H(X2) =

log 2 (equiprobable ±1); hence, d(X, X1) = 1− H(X1)
H(X)

=
log 2
H(X)

and d(X, X2) = 1− H(X2)
H(X)

=

1− log 2
H(X)

. Therefore, d(X, X1) + d(X, X2) = 1: Inequality (27) is satisfied with equality.
Of course, in this trivial example, perfect reconstruction is possible since

X = |X|sgn(X) = X1X2. Then, by Theorem 1, we deduce that X1 and X2 are inde-
pendent. This is easily checked directly since, by the symmetry assumption, P(X1 = x1 |
X2 = ±1) = P(X1 = x1). Notice that, from this independence, by Theorem 2, we find
anew that perfect reconstruction of X is possible from X1 and X2.

This example can be easily generalized to the case of a “symmetric” complex-valued
random variable X with modulus X1 = |X| and argument X2 = arg(X), where X1 is
independent of X2 and X2 is uniformly distributed over M possible values. Then, H(X2) =
log M, H(X1) = H(X)− log M by symmetry, and similar conclusions hold.

Of course, perfect reconstruction X = X1X2 is always possible even in the case where
X is not symmetric, in which case X1 and X2 are not independent, and therefore, by the
alignment condition, d(X, X1) + d(X, X2) = d(X1, X2) < 1.

6.2. Linear Transformation over a Finite Field

Consider X uniformly distributed over Fk
q, where Fq is the field with q elements.

Suppose X is linearly transformed using some matrix G to obtain

(X1, X2, . . . , Xn) = X ·G (38)

in row vector notation, where G ∈ Fk×n
q has k rows and n columns. For example, X

may represent information symbols to be transmitted over a channel, and (X1, X2, . . . , Xn)
would be the associated codeword using an (n, k) linear code over Fq with generator
matrix G.

If the ith column of G is not the all-zero vector, then it is easily checked that, since X is
uniformly distributed over Fk

q, Xi is likewise uniformly distributed over Fq. Therefore,

d(X, Xi) = 1− H(Xi)

H(X)
= 1− log q

log qk = 1− 1
k

. (39)
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When the ith column of G is all zero, however, d(X, Xi) = d(X, 0) = 1. Summing up,

n

∑
i=1

d(X, Xi) = n− n′

k
(40)

where n′ ≤ n is the number of non-zero columns in G.
By Theorem 1, if n− n′

k > n− 1, that is n′ < k, then perfect reconstruction is impossible.
This is quite natural since, in this case, (X1, . . . , Xn) entails less q-ary symbols than the
vector X, so that it is impossible to reconstruct X from the n′ actual symbols in (X1, . . . , Xn).

In general, if G has rank r ≤ min(k, n′), then, since X is uniformly distributed over Fk
q,

the vector (X1, . . . , Xn) is also uniformly distributed over a subspace of Fn
q of dimension r.

Now, as we have just seen, if the ith column of G is not the all-zero vector, then Xi is uni-
formly distributed over Fq. Since uniformly distributed components of a discrete random
vector are independent iff the vector is itself uniformly distributed, the only possibility
for the components X1, . . . , Xn to be independent as in Theorem 2 is that (X1, . . . , Xn) is
uniformly distributed over Fn′

q , that is r = n′ = k. In this case ∑n
i=1 d(X, Xi) = n− 1, and

by Theorem 2, perfect reconstruction is possible. Of course, from linear algebra, we know
that X can be reconstructed from (X1, . . . , Xn) as soon as G has rank r = k ≤ n′.

Due to the power of linear algebra, this example may appear quite trivial. It would be
interesting to generalize it, however, to the case where the vector (X1, . . . , Xn) is obtained
by a nonlinear transformation, i.e., each Xi are Boolean functions over Fq of the components
of vector X, e.g., described in algebraic normal form.

6.3. Integer Prime Factorization

Consider an integer-valued random variable X, uniformly distributed over {1, 2, . . . , m},
and let n = π(m) be the number of primes not exceeding m. For every such prime p, let Xp

be the p-adic valuation of X, that is the largest exponent of p such that pXp divides X. We
know by the fundamental theorem of arithmetic that the prime factorization of X always
exists and is unique: X = ∏p pXp ; hence, X can be reconstructed from the Xps.

There are ⌊ m
pk ⌋ values of X divisible by pk and, therefore, ⌊ m

pk ⌋−⌊ m
pk+1 ⌋ values of X

such that Xp = k. Thus, H(X|Xp = k) = log
(
⌊ m

pk ⌋−⌊ m
pk+1 ⌋

)
≤ log m

pk = log m − k log p,

H(X|Xp) ≤ log m−E(Xp) log p, and

∑
p prime ≤m

d(X, Xp) = ∑
p prime ≤m

H(X|Xp)

H(X)
≤ ∑

p prime ≤m

log m−E(Xp) log p
log m

= n− log m!
m log m

. (41)

In the latter equality, we used the exact value ∑p E(Xp) log p =
log m!

m . This can be easily
checked from the reconstruction formula itself, since

∑
p prime ≤m

E(Xp) log p = E log ∏
p prime ≤m

pXp = E log X =
log m!

m
. (42)

Since log m! ≤ m log m, the above upper bound is not tight enough to prove Inequal-
ity (27) of Theorem 1. It is only satisfied asymptotically as m→ +∞ since, then, log m!

m log m → 1.
Likewise, the independence assumption of Theorem 2 is only true asymptotically: in fact,
since, for distinct primes p1, . . . , pℓ,

P
(
Xp1 ≥ k1, . . . , Xpℓ ≥ kℓ

)
=

1
m

⌈
m

pk1
1 · · · p

kℓ
ℓ

⌉
→ 1

pk1
1 · · · p

kℓ
ℓ

(43)

it follows that the Xps converge in distribution toward independent geometric variables with
the respective parameters 1− 1

p .
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6.4. Chinese Remainder Theorem

Consider an integer-valued random variable X, uniformly distributed over {0, 1, . . . ,
k− 1}, where k = ∏n

i=1 ki is the product of n pairwise coprime factors > 1, and define the
following remainders modulo these factors:

X1 ≡ X mod k1

X2 ≡ X mod k2
...

Xn ≡ X mod kn.

(44)

By the well-known Chinese remainder theorem, this system of equations has a unique solution
in {0, 1, . . . , k− 1}, i.e., perfect reconstruction of X is possible.

Clearly, since X is uniformly distributed, Xi is likewise uniformly distributed over
{0, 1, . . . ki − 1} so that H(Xi) = log ki, d(X, Xi) = 1− H(Xi)

H(X)
= 1− log ki

log k and

n

∑
i=1

d(X, Xi) =
n

∑
i=1

(
1− log ki

log k
)
= n− log ∏n

i=1 ki

log k
= n− 1. (45)

Thus, Inequality (27) of Theorem 1 is achieved with equality, which proves that X1, X2, . . . ,
Xn are independent. Had we proven directly this independence, Theorem 2 would have
shown that perfect reconstruction is possible. Thus, a information theoretic proof of the
Chinese remainder theorem using this method amounts to proving such an independence.
But, this can be performed quite similarly as the Chinese remainder theorem is classi-
cally proven.

With our present method, however, it can be easily seen that perfect reconstruction
would not be possible if we do not use all components X1, X2, . . . , Xn. Indeed, suppose
without loss of generality that one tries to reconstruct X only from X1, X2, . . . , Xn−1. Then,
by the above calculation,

n−1

∑
i=1

d(X, Xi) =
n−1

∑
i=1

(
1− log ki

log k
)
= n− 1− log ∏n−1

i=1 ki

log k
= n− 2 +

log kn

log k
> n− 2 (46)

which shows by Theorem 1 that perfect reconstruction of X from less than n remainders
is impossible.

6.5. Optimal Sort

In this subsection, we provide a new information theoretic proof of the following.

Theorem 4. Any pairwise-comparison-based sorting algorithm has worst-case computational
complexity ≥ log2 k! = Ω(k log2 k), where k is the cardinality of the list to be sorted.

Recall that log refers to the logarithm taken to any base, while here, more specifically,
log2 is the logarithm to base two.

Proof. Consider a finite, totally ordered list of k elements. It can be seen as a permutation
of the uniquely sorted elements, and sorting this list amounts to finding this permutation.
Let X = (X1, X2, . . . , Xk) be a (uniformly chosen) random permutation on {1, 2, . . . , k}.

For i, j ∈ {1, . . . , k} with i ̸= j, let Xi,j be the binary random variable taking the value 1
if Xi < Xj and 0 otherwise. Clearly, Xi,j ≤ X for any i, j.

Since there are as many permutations such that Xi < Xj such that Xi > Xj, every Xi,j
is a Bernoulli (1/2) variable (equiprobable bit). Therefore,

d(X, Xi,j) = 1− log 2
log k!

= 1− 1
log2 k!

. (47)
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Assuming n pairwise comparisons are made to sort the complete list, this gives

∑
i,j (n terms)

d(X, Xi,j) = n− n
log2 k!

. (48)

By Theorem 1, it is necessary that this value does not exceed n− 1, i.e., n ≥ log2 k! for
perfect reconstruction to hold. In other words, the wort-case complexity to achieve the
complete sort for any possible realization of the initial unsorted list requires at least ⌈log2 k!⌉
pairwise comparisons.

Remark 32. This example illustrates a method to find a lower bound on the worst-case complexity
of a problem. The first step is to express the instance of the problem as a random variable X. Second,
one determines which pieces of information one is allowed to extract from X and models them as
“observed” random variables Xi ≤ X. Third, for each i, we compute the Rajski distance d(X, Xi).
Finally, we use Theorem 1 to find a lower bound on the number of “observed” variables Xi that are
required to reconstruct X. We feel that such a method is interesting because it is often harder to find
a lower bound on the complexity of a problem than to find an upper bound on it.

7. Conclusions and Perspectives

It is an understatement to say that the “true” information theory of 1953 was not as
popular as the classical theory of 1948. John Pierce, a colleague of Shannon, wrote that,
“apparently the structure was not good enough to lead to anything of great value” [21].
We find two possible reasons for this pessimism: the fact that the lattice is not Boolean,
which does not facilitate the calculations, and the discontinuous nature of the common
information with respect to the entropy metric.

However, as we have shown in this paper, this lattice structure is quite helpful to
understand reconstruction problems. As shown in Section 6, the implications of the
resolution of perfect reconstruction problems go beyond signal processing, since the concept
of information is pervasive in all fields of mathematics and of science. Thus, we believe it
is important to deepen this theory, defining information per se, and to further generalize
the reconstruction problems. It would indeed be of great interest to find a simple sufficient
condition to reconstruct a variable X from the (not necessarily independent) components
X1, X2, . . . , Xn.

One may legitimately argue that most examples (except in Section 6.1) assume uniform
distributions, where the entropy is just a logarithmic measure of the alphabet size, and
since all considered processings are deterministic, the essence of the present reconstruction
problem appears more combinatorial than probabilistic. Indeed, a desirable perspective is
to go beyond perfect reconstruction of discrete quantities by considering the possibility of
the noisy reconstruction of discrete and/or continuous sources of information.

In a perspective closer to computer science, we used our theorems to find a lower
bound on the complexity of the comparison-based sorting problem. It would be interesting
to find other problems for which a lower bound on complexity can be found using our
technique, especially for decision problems that are not known to be in P.

Finally, as another practical perspective for security problems, one may assume that X
models all the possible values that can take a secret key in a given cryptographic device and
that an attacker can observe k random values that are deterministically obtained from X.
Such important problems have been studied, e.g., in [22] to evaluate information leakage in
the execution of deterministic programs. One may use the theorems of Section 5 to find a
lower bound on k for the attacker to be able to reconstruct the secret.

Author Contributions: Conceptualization, O.R., I.D., J.B. and A.S.; Formal analysis, I.D. and O.R.;
Writing—original draft, I.D. and O.R.; Writing—review & editing, O.R., I.D., J.B., V.R. and A.S.;
Supervision, O.R., V.R. and A.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.



Entropy 2024, 26, 86 29 of 29

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. 623–656. [CrossRef]
2. Shannon, C.E. The lattice theory of information. Trans. Ire Prof. Group Inf. Theory 1953, 1, 105–107. [CrossRef]
3. Fano, R.M. Interview by Aftab, Cheung, Kim, Thkkar, Yeddanapudi, 6.933 Project History, Massachusetts Institute of Technology.

November 2001.
4. Fano, R.M. Class Notes for Course 6.574: Transmission of Information; MIT: Cambridge, MA, USA, 1952.
5. Cherry, E.C. A history of the theory of information. Proc. Inst. Electr. Eng. 1951, 98, 383–393.
6. Shannon, C.E. The bandwagon (editorial). In IRE Transactions on Information Theory; Institute for Radio Engineers, Inc.: New York,

NY, USA, 1956; Volume 2, p. 3.
7. Shannon, C.E. Some Topics on Information Theory. In Proceedings of the International Congress of Mathematicians, Cambridge,

MA, USA, 30 August–6 September 1950; Volume II, pp. 262–263.
8. Rioul, O.; Béguinot, J.; Rabiet, V.; Souloumiac, A. La véritable (et méconnue) théorie de l’information de Shannon. In Proceedings

of the 28e Colloque GRETSI 2022, Nancy, France, 6–9 September 2022.
9. Rajski, C. A metric space of discrete probability distributions. Inf. Control 1961, 4, 371–377. [CrossRef]
10. Gács, P.; Körner, J. Common information is far less than mutual information. Probl. Control Inf. Theory 1973, 2, 149–162.
11. Gamal, A.E.; Kim, Y.-H. Network Information Theory; Cambridge University Press: Cambridge, UK, 2011.
12. Wyner, A.D. The common information of two dependent random variables. IEEE Trans. Inf. Theory 1975, 21, 163–179. [CrossRef]
13. Nakamura, Y. Entropy and semivaluations on semilattices. Kodai Math. Semin. Rep. 1970, 22, 443–468. [CrossRef]
14. Yeung, R.W. Information Theory and Network Coding; Springer: Berlin/Heidelberg, Germany, 2008.
15. Horibe, Y. A note on entropy metrics. Inf. Control 1973, 22, 403–403. [CrossRef]
16. Jaccard, P. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull. Société Vaudoise Des

Sci. Nat. 1901, 37, 241–272.
17. Csiszár, I.; Körner, J. Information Theory. Coding Theorems for DiscreteMemoryless Systems, 2nd ed.; Cambridge University Press:

Cambridge, UK, 2011.
18. Donderi, D.C. Information measurement of distinctiveness and similarity. Percept. Psychophys. 1988, 44, 576–584. [CrossRef]

[PubMed]
19. Donderi, D.C. An information theory analysis of visual complexity and dissimilarity Perception 2006, 35, 823–835. [CrossRef]

[PubMed]
20. Rioul, O. Théorie de l’information et du Codage; Hermes Science—Lavoisier: London, UK, 2007.
21. Pierce, J.R. The early days of information theory. IEEE Trans. Inf. Theory 1973, 19, 3–8. [CrossRef]
22. Malacaria, P. Algebraic foundations for quantitative information flow. Math. Struct. Comput. Sci. 2015, 25, 404–428. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1109/TIT.1953.1188572
http://dx.doi.org/10.1016/S0019-9958(61)80055-7
http://dx.doi.org/10.1109/TIT.1975.1055346
http://dx.doi.org/10.2996/kmj/1138846220
http://dx.doi.org/10.1016/S0019-9958(73)90554-8
http://dx.doi.org/10.3758/BF03207491
http://www.ncbi.nlm.nih.gov/pubmed/3200675
http://dx.doi.org/10.1068/p5249
http://www.ncbi.nlm.nih.gov/pubmed/16836047
http://dx.doi.org/10.1109/TIT.1973.1054955
http://dx.doi.org/10.1017/S0960129513000649

	Introduction
	What Is Information? A Detailed Study of Shannon's Information Lattice 
	Definition of the ``True'' Information
	Structure of the Information Lattice: Joint Information; Common Information
	Computing Common Information
	Boundedness and Complementedness: Null, Total, and Complementary Information
	Computing the Complementary Information
	Relationship Between Complementary Information and Functional Representation
	Is the Information Lattice a Boolean Algebra?

	Metric Properties of the Information Lattice
	Information and Information Measures
	Common Information vs. Mutual Information
	Submodularity of Entropy on the Information Lattice
	Two Entropic Metrics: Shannon Distance; Rajski Distance
	Dependency Coefficient
	Discontinuity and Continuity Properties

	Geometric Properties of the Information Lattice
	Alignments of Random Variables
	Convex Sets of Random Variables in the Information Lattice
	The Lattice Generated by a Random Variable
	Properties of Rajski and Shannon Distances in the Lattice Generated by a Random Variable
	Triangle Properties of the Shannon Distance

	The Perfect Reconstruction Problem
	Problem Statement
	A Necessary Condition for Perfect Reconstruction
	A Sufficient Condition for Perfect Reconstruction
	Approximate Reconstruction

	Examples and Applications
	Reconstruction from Sign and Absolute Value
	Linear Transformation over a Finite Field
	Integer Prime Factorization
	Chinese Remainder Theorem
	Optimal Sort

	Conclusions and Perspectives
	References

