
HAL Id: hal-04363076
https://telecom-paris.hal.science/hal-04363076v1

Submitted on 23 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Survey of Simple Geometric Primitives Detection
Methods for Captured 3D Data

Adrien Kaiser, Jose Alonso Ybanez Zepeda, Tamy Boubekeur

To cite this version:
Adrien Kaiser, Jose Alonso Ybanez Zepeda, Tamy Boubekeur. A Survey of Simple Geometric Primi-
tives Detection Methods for Captured 3D Data. Computer Graphics Forum, 2018, 38 (1), pp.167-196.
�10.1111/cgf.13451�. �hal-04363076�

https://telecom-paris.hal.science/hal-04363076v1
https://hal.archives-ouvertes.fr

A Survey of Simple Geometric Primitives Detection Methods for
Captured 3D Data

Adrien Kaiser+,∗ Jose Alonso Ybanez Zepeda∗ Tamy Boubekeur+

+: LTCI, Telecom ParisTech, Paris-Saclay University ∗: Ayotle

Abstract
The amount of captured 3D data is continuously increasing, with the democratization of consumer depth cameras, the
development of modern multi-view stereo capture setups and the rise of single-view 3D capture based on machine learning. The
analysis and representation of this ever growing volume of 3D data, often corrupted with acquisition noise and reconstruction
artifacts, is a serious challenge at the frontier between computer graphics and computer vision. To that end, segmentation and
optimization are crucial analysis components of the shape abstraction process, which can themselves be greatly simplified
when performed on lightened geometric formats. In this survey, we review the algorithms which extract simple geometric
primitives from raw dense 3D data. After giving an introduction to these techniques, from the acquisition modality to the
underlying theoretical concepts, we propose an application-oriented characterization, designed to help select an appropriate
method based on one’s application needs, and compare recent approaches. We conclude by giving hints for how to evaluate
these methods and a set of research challenges to be explored.

Keywords: 3D data, geometric primitives, shape analysis, shape abstraction, computational geometry, data fitting

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computing Methodologies / Computer Graphics]:
Computational Geometry and Object Modeling—Curve, surface, solid, and object representations

1 Introduction

1.1 Objectives

This survey aims at providing an overview, a classification and
a comparison of the methods developed over the years to detect
simple geometric primitives in 3D data, captured from different
possible sources. As described by Woodford et al. [WPM∗12],
these methods are "model fitting algorithms that, given a set of
features (here, points), find the most likely model instance (here,
primitives) that generated those features". The concept of simple
geometric primitives is further developed in Section 2.2.

The process of approximating and abstracting 3D shapes by
a simple parameterization allows extreme simplification of the
geometry while keeping an accurate representation of the input
data. Therefore, explaining 3D data using simple geometric
primitives is a way of representing it in a compact manner and
makes easier any subsequent analysis that would be performed,
with consequences on both performances and the ability to perform
high level tasks. Figure 1 shows the goals of the detection process
with the different types of input, detailed in Section 2.1, and the
expected output primitives with different layers of abstraction,
detailed in Section 4.2.1.

In order to exploit raw captured 3D data in practical applications,
one often has to reconstruct a high-level representation, of a single
object or an entire scene, providing a visual summary which is
similar to the understanding acquired by a human brain. This
often amounts to the description of complex objects using only a
couple of simple geometric primitives, such as spheres, cylinders,
planes or boxes. Such visual abstractions not only simplify the
geometry and topology of the input data, but also help clarify
the spatial relationships between shape components, can act as
economic substitutes for visibility queries, rendering effects and
physics simulation, or be used as super-structures to quickly
distribute filters, edits or enriched semantics over the data, on a
per-component basis. These compact primitive lists that summarize
dense sampling sets are later used for processing, reasoning or
interaction, with applications ranging from path finding in robotics
to object placement in augmented reality, through domain meshing
in CAD, control structures for freeform design and level-of-detail
selection in game engines.

1.2 Historical Background

The first apparition of 3D capture happened during the 1960s with
tedious techniques using lights, cameras and projectors [Ebr15].

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

2 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

AbstractionPrimitive Detection

1

3

Depth

Point
Cloud

Mesh

Figure 1: Objectives of the detection procedure. Using one of the input data types discussed in Section 2.1 (left), the detection
process outputs primitives with different levels of abstraction, detailed in Section 4.2.1. Images courtesy of [LPRM02] (original bunny
mesh), [WPM∗12] (columns), [TJRF13] (reconstructed office), [CSAD04] (patched face), [WK05] (patched bunny), [SWK07] (oil pump),
[LWC∗11] (mechanical object), [ASF∗13] (house) and [GMLB12] (cuboids and cylinders)

However at this time, most 3D scanning devices made use of
physical contact probes. In 1972, Shirai et al. [Shi72] use a basic
range finder to fit polyhedrons to acquired 3D data and mark the
beginning of the fitting of simple geometric primitives to 3D data.
While a first attempt to model curved objects is made the next
year [AB73], it is only three years after the original work of Shirai
et al, that Popplestone et al. [PBAC75] successfully extend it to
the modeling of cylindrical objects. In the mid-1970s, increasing
interest for 3D geometric representations [Req80] fostered research
in automatic modeling of captured data. In 1982, Hebert et
al. [HP82] use parameter spaces to segment 3D scenes represented
by depth maps into planes, cylinders and cones. The year 1983 sees
the first application of simple 3D geometric primitive shapes to
the registration of different views of a laser range finder [FH83].
Efficient optical methods for 3D scanning were developed in the
mid-1980s and allowed faster and more accurate 3D modeling of
real objects. This led to more algorithms detecting these simple
shapes and multiple applications as the sensors became more
available to researchers.

Although research has been intensively conducted in the area since
1972, the first studied method in this survey is from the year 1998
[LMM98], as we consider modern methods and applications of
simple geometric primitive detection.

1.3 Applications

In the following, we link the application spectrum of primitive
detection to selected scenarios. Indeed, substituting a dense (e.g.,
point) sampling by a small set of geometric primitives has
numerous applications in computer graphics, computer vision,
augmented and virtual reality.

Robotics. Visual SLAM (Simultaneous Localization And
Mapping) is an ongoing research area in robotics whose goal

is to localize an agent within a 3D map of the environment,
constructed at the same time. This area grew from feature-based to
dense, to using depth data, which now allows a detailed geometric
analysis of the environment around the sensor. The tracking of the
currently viewed scene is the main component of SLAM systems
and is improved with the use of primitive shapes detected in the
environment, in terms of both accuracy and speed. Recent SLAM
systems mainly use large planes present in the scene to improve
localization. The development of autonomous mobile robots,
with embedded localization capabilities, can also benefit from a
lightweight representation of their environment for faster decision
making during both indoor and outdoor navigation. Explaining 3D
objects with simple geometric primitives also makes it easier for
household robots to grasp anything that could be of use to them.

Modeling. Building accurate and lightweight models of existing
scenes is possible through scene reconstruction with geometric
primitive detection as a basis. In the context of a house for instance,
such a model can be used to measure the dimensions of rooms or
estimate the available free space. It can also be exploited to easily
move furniture or other objects around the house to try different
setups.

Shape Processing. Bounding 3D shapes by simple geometry
or more accurate primitives eases resampling, segmentation
and deformation of the underlying data. Abstracted shapes are
intuitively lighter and easier to manipulate. To this end, the
Sphere Mesh representation [TGB13] has been used to apply
deformations to meshes at different scales, for instance.

Rendering. Rendering techniques benefit greatly from proxies
made of simple geometric primitives. For instance, 3D
levels-of-details [DDSD03] can be generated by fitting a collection
of primitives to complex shapes, and project the high resolution

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 3

geometric and materials attributes onto maps, parameterized
over the primitives and used for distant shading. Approximate
occlusion culling can also be performed by substituting high
resolution geometry with a compact set of primitives, used for
occlusion queries. Similarly, such primitives can be used for fast
soft shadowing in real time [RWS∗06].

Interaction. When computing the navigation spaces in a 3D
scene, simple primitives help quickly cull away entire regions of
the 3D space, to restrict the authorized navigation to areas that are
free from object occlusion. Laying out simple primitives over dense
meshes also helps locate interactors meant for the user to interact
with the scene.

Animation. The design of skinning weights and the construction
of control rigs can exploit structured sets of simple primitives, to
reconstruct skinned animated sequences from performance capture
data [TGBE16], better track hands in real-time [TPT16] or quickly
determine collision detections in physical simulation.

Architecture. The modeling of a full building requires
reconstruction from 3D data, and the use of geometric primitives
simplifies the consistency of the model to the constraints brought
by architectural rules of regularity. For instance, Furukawa et
al. [FCSS09b] present a fully automatic system to generate floor
plans, that can be used as a basis for extending the building.

1.4 Related Surveys

This survey aims at discussing algorithms that make use of shape
analysis, segmentation and reconstruction methods. It provides
tools which are complementary to the following previous surveys,
since none of them presents a clear classification of primitive
detection methods:

• 1998: "A Survey of Shape Analysis Techniques" [Lon98]
• 2009: "A Benchmark for 3D Mesh Segmentation" [CGF09]
• 2014: "State of the Art in Surface Reconstruction from Point

Clouds" [BTS∗14]

1.5 Contributions and Organization

In this paper, we provide:

• a summary of existing methods for simple primitive detection;
• a discussion on the links between different algorithms and
• a classification of the methods.

In Section 2, we recall basic concepts involved in the primitive
detection procedures. Section 3 defines the different theoretical
paradigms used in the presented methods, giving a first
classification. Section 4 lists specific context criteria and properties
that allow comparing methods. Section 5 analyzes and compares
the actual methods. Section 6 provides insight into the way to
evaluate primitive detection, lists available implementations and
potentially useful test datasets. Section 7 concludes the survey and
describes the future challenges in this area.

In the text, mathematical notations are as follows:

mesh
point cloud

depth images

reconstruction

structure
from motion

registration

depth
capture

color
capture

real world

color images

Figure 2: 3D acquisition pipeline for the statue in the Arenes
de Lutece, Paris, France. The green captions indicate potential
bootstrap stages for primitive detection.

• bold letters denote vectors, i.e. triplets of real values representing
coordinates, either a position or direction.

• non-bold letters denote real and integer values or matrices when
specified.

2 Background

2.1 Input Data

Three dimensional data can be modeled with different
representations, each of which favoring different families of
processing methods. The specific forms of input data used for
simple geometric primitive detection are further presented below,
and the full acquisition pipeline is shown in Figure 2. As presented
in this figure, the data suitable as input for primitive detection
can be formatted as depth images, point clouds, or polygonal
meshes. Although most methods are developed for one particular
type of data, some implementations handle any form of input by
performing a conversion to their specific input format.

Images. The raw format of acquired 3D data is the depth map
directly extracted from depth sensors and represented by a grey
level image. Depth sensors are often coupled with a regular RGB
camera to provide additional color information. The natural 2D grid
structure of these RGB-D images allows fast processing of 3D data.

Image Sequence. When scanning an object or a room, users can
move a handheld sensor around them. The goal is to acquire as
many views as possible and build the most accurate reconstruction.
This generates a high number of 2D images that can be used as
they are or post-processed. Typically, a sequence of RGB-D images
gives a sequence of 2.5D colored point clouds representing the
same items, which are then consolidated into a single 3D point
cloud. On the other hand, a sequence of RGB images must first
be processed via stereo vision algorithms to produce a 3D point
cloud ready for primitive detection.

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

4 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

Point Cloud. A point cloud is the most common representation
of acquired 3D data, as it is simply a point sampling of the real
world. It takes the form of a list of 3D positions, possibly with
additional attributes, such as per-sample normals and color values.
If computed from an image or an image sequence, the point cloud
may be organized in multiple 2D grid structures, which allow
fast browsing and pointwise neighborhood query using the sensor
topology.

Meshes. In computer graphics, numerous advanced processes
exploit polygonal representations of surfaces, such as triangle or
quad meshes. Their explicit topology makes easier operators such
as filtering, resampling and rendering, either based on projection
or intersection search. They are typically generated from acquired
point clouds using surface reconstruction algorithms. These may
use an inside/outside volumetric indicator function, e.g., moving
least squares [ABCO∗03], implicit multiple radial basis functions
[OBA∗03] or gradient-based Poisson solution [KBH06]. Other
algorithms are based on a Delaunay-based triangulation, e.g., use
tangent planes [HDD∗92], Voronoi filtering [AB99] or Power crust
[ACK01]. See the work of Berger et al. [BTS∗14] for a complete
recent survey.

2.2 Simple Geometric Primitives

A simple 3D geometric primitive is defined as a 3D geometric
shape with the following characteristics:

• fixed and limited number of global intrinsic parameters i.e., that
only define the global size, orientation and position of the shape;
• convex (except for the torus);
• symmetric;
• basic shape which can be assembled with others to construct

more complex shapes.

This definition matches the use of primitives in Constructive
Solid Geometry [Fol96], where complex shapes are built using
Boolean compositions of these simple objects. We classify the
geometric primitives used for detection in 3D data into four
categories described in detail below, from the most simple with few
parameters to the most complicated ones:

• planes;
• cuboids and boxes;
• spheres, cylinders and cones;
• other shapes: ellipsoids, tori, non-rectangular parallelepipeds.

Figure 3 shows different simple primitives of varying complexity,
sorted by category.

Our interest lies in the fitting of primitive shapes to surfaces in
order to approximate the boundary of objects and not their volume.
We consider all simple primitive shapes as surface patches rather
than as volumes of solid shapes. To be more specific, most of the
methods that detect primitives in 3D data output trimmed shape
surfaces, whose extent corresponds to that of the modeled object.
Details on primitive trimming are given in the paragraph below.

Moreover, this survey does not consider the following primitives:

• conservative bounding primitives, i.e. bounding envelopes that

Figure 3: Common geometric primitives.

strictly contain the input data, as our focus is on fitting primitives
to surfaces rather than building envelopes to model volumes.
This includes axis-aligned bounding boxes (AABB), oriented
bounding boxes (OBB) or their generalization, the Discrete
Oriented Polytopes (k-DOP). In contrast to methods that seek
a single, extremely simplified shape as envelope of a complex
object, we rather look into sets of simple primitives which model
the boundaries of the objects as closely as possible;

• specific Computer Aided Design primitives such as rolling ball
blends and other parametric patches [FS96];

• non-natural quadric surfaces; natural quadrics are spheres and
right circular cylinders and cones [HHNM80].

Planes and Planar Surfaces. A plane is the most basic isotropic
three-dimensional shape and the most commonly seen primitive in
human-made environments. It can simply be defined by a normal
vector n and its distance d ∈ IR to the origin point of the reference
frame. Methods using planar patches instead of infinite planes
usually compute the convex hull or bounding rectangle of the set of
plane inliers, or determine the limits of patches by clipping planes
to each other.

Boxes and Cuboids. Boxes and cuboids are sets of assembled
orthogonal planes and are defined by their center C, orientation
vector n and the three lengths of their sides. They can also be
represented by their eight vertices or by the parameters of the
planes forming them.

Spheres, Cylinders, Cones. A sphere is an isotropic shape and
can be defined by its center C and a scalar r ∈ IR+ representing its
radius.

A cylinder can be parameterized with a point C belonging to its
axis, a radius r ∈ IR+ and an additional vector n representing its
orientation.

A cone is parameterized by its center C, called apex, an orientation
vector n and an angle α between its axis and surface.

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 5

Ellipsoids, Tori, Parallelepipeds. Ellipsoids, tori and
non-rectangular parallelepipeds are geometric shapes of higher
complexity.

An ellipsoid is defined by its center C, axis n and three radii a,b,c∈
IR+, also called semi axes.

A torus is defined by its center C, axis n, minor and major radii m
and M.

A general parallelepiped is defined by its center C, orientation
vector n, the three lengths of its sides and three interaxial angles.

Primitive Shape Trimming. In the context of this survey, simple
primitive shapes are considered as surface patches whose goal is
to approximate the bounded surface of objects. When parts of
the data has been identified as belonging to a primitive shape,
some methods stop the processing while the shape has an infinite
(planes, cylinders, cones) or full extent (spheres, cuboids, boxes,
parallelepipeds, ellipsoids, tori). However, multiple algorithms go
further in the analysis and estimate the extent of the fitted shape that
models the actual object. In particular, Schnabel et al. [SWK07]
define a regular grid on the surface of detected shapes in order
to identify connected components. Such a grid can also be used
to compute the convex hull of inliers in the space of the shape
[And79]. Another solution is to fit smaller shape patches to the
surface and merge them in the final model [BV11]. This extent
appears naturally in region growing algorithms such as the method
proposed by Feng et al. [FTK14]. However, in the spirit of shape
approximation, it should be carefully taken into consideration that
the boundary curve should also be designed in a compact way using
simple 2D shapes such as rectangles, circles or regular convex
polygons. The definition of more complex trimming curves such
as convex hulls or the use of a 2D grid on the surface might
indeed compromise the simplicity and light weight of the primitive
decomposition.

3 Theoretical Foundations

This section presents the different theoretical concepts used as a
basis for simple geometric primitive detection in existing methods.
Families of such methods include:

• stochastic: RANSAC, local statistics;
• parameter spaces: Hough-like voting methods, parameter space

clustering;
• other clustering techniques: primitive-driven region

growing, Lloyd-like automatic clustering, primitive-oblivious
segmentation followed by fitting.

Note that a number of methods are based on more than a single
theoretical paradigm.

Table 1 and Figure 4 give strengths and weaknesses for these
different theoretical frameworks. In Table 1, the reference
algorithm is the most representative of each framework and usually
has the most features and the best quality output.

3.1 Stochastic

Framework Strengths Weaknesses Reference
algorithm

RANSAC

- Simple
- General
- Accurate
- Robust to outliers

- Many parameters to
tune
- Dependent on a
minimum set
- No spatial
consistency

Fast RANSAC
[SWK07]

Local
statistics - Application-specific - Model-dependent

Monocular
Occupancy
Maps [CSM12]

Hough
transform

- Handles missing
data
- Supports many
model instances
- Relatively robust to
noise

- Unbounded space
size
- Dependent on
parameter space
quantization

Primitive-based
registration
[RDvdHV07]

Clustering
parameter
space

- Robust to outliers
- Restricted to low
dimensions

Cluster
Normal Space
[HHRB11]

Primitive
growing

- Meaningful
segmentation
- Spatial consistency

- Slow
- Local
- Sensitive to initial
conditions (seeds)
- Sensitive to noise
- Sensitive to outliers

Hierarchical
Modeling
[AP10]

Automatic
clustering

- No prior on location
- Few parameters

- Dependent on seeds
- Sensitive to outliers
- Can require
numerous clusters
(K-means)

Quadric
Surface Fitting
[YWLY12]

Segmentation
then fitting

- Vast literature for
segmentation

- Can merge different
primitives
- Sensitive to noise
- Sensitive to outliers

Hybrid City
Representation
[LM12]

Table 1: Strengths and weaknesses of the main theoretical
frameworks

Speed

Repeatability

Simplicity

Generality

Robustness to outliers

Robustness to noise

Robustness to incomplete data

Meaningful

Data fidelity

Scalability

RANSAC
Local statistics

Hough transform
Clustering parameter

Primitive growing
Automatic clustering
Segmentation then fitting

segmentation

space

Figure 4: Qualitative comparison of theoretical methods.

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

6 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

RANSAC-based. RANdom SAmple Consensus (RANSAC) is a
popular stochastic method used to estimate model parameters
iteratively given a data set. It is known to be particularly robust to
outliers. First introduced by Fischler et al. [FB81], RANSAC has
been used in a variety of applications, especially in computer vision
and image processing.

The basic principle of the algorithm is to try many possible
randomized models that could fit the data and evaluate how good
this model is in order to find a consensus, i.e. an agreement
of most of the data samples. Here, the term "most" is to be
defined depending on the application. Specifically, the algorithm
is composed of two main steps. The first one is a randomized
sampling over the data to find a minimum set of samples allowing
to compute parameters for the model. The second step consists in
counting how much of the dataset is represented by this model and
keep the model that fits most of the data.

Variants of RANSAC usually keep the random sampling part but
use a more elaborate method to compute the score and choose
the best model, instead of the simple inlier count. The score to
maximize or minimize can be the median of squared errors to
the model [Rou84], a squared error function where outliers are
given a fixed penalty in MSAC [TZ00] or the maximum likelihood
in MLESAC [TZ00]. Randomized RANSAC [MC04] introduces a
speed-up to the original RANSAC algorithm by running a pre-test
on a few data points before score computation, called Td,d test,
which allows detecting and discarding wrong models very early.
PROSAC [CM05] makes a change to the random sampling strategy
by selecting samples within a small subset of data, ordered by
confidence values, and increasing its size until a suitable model has
been found.

Algorithm 1 provides the algorithm in detail, in the context of
geometric primitive detection in an oriented point cloud. In that
specific case, the randomized sampling occurs on line 4 where three
oriented vertices are randomly selected. The consensus search then
happens on line 8, where we keep only the model with the most
votes, i.e., the geometric primitive that has the most inliers.

Algorithm 1 RANSAC
1: Input: List of vertices and associated normals
2: while there are too many unassigned vertices do
3: for N times do
4: Randomly select three vertices
5: Compute the parameters of a primitive that sweeps them
6: Compute the number of inliers for this primitive that are

close enough to it
7: end for
8: Keep the parameters with the most inliers assigned to it and

remove them from the pointcloud
9: end while

10: Output: List of primitive parameters and the corresponding
inliers.

Examples of RANSAC Shape Detectors. The efficient iterative
primitive detection method presented by Schnabel et al. [SWK07]
makes use of the RANSAC paradigm to detect planes, spheres,
cylinders, cones and tori given an unorganized oriented point cloud

as input. At each iteration, primitives of differents types are fitted
to a minimal set chosen with several heuristics. They claim that
three 3D points and associated normals are sufficient to estimate
the parameters for all these shapes (Section 4.1 of their paper).
Furthermore, methods have been developed in order to efficiently
compute shape parameters from minimal sets [DMPT01, BGZ16].
Then, the best fit is kept and the corresponding inliers are removed
from the point cloud for the algorithm to carry on with the next
iteration. This method and its implementation have since been used
in many follow ups, as it is designed to be efficient by giving
a stochastic answer to the problem of RANSAC iteration count.
Its direct application [SWWK08] uses the primitives to build a
topology graph and match shapes in 3D point clouds. Another
application by Li et al. [LWC∗11] adds a regularization step for
mechanical objects. Assuming regular relations of coplanarity,
coaxiality and orthogonality between object parts, the high-level
modeling made of geometric primitives is optimized to form a
cleaner and more regular model. Following the same paradigm,
the multiBaySAC algorithm [KL15] uses Bayes rule to randomly
generate multiple primitive hypothesis that fill up a parameter space
in which the best candidates are identified.

Some formulations of RANSAC shape detectors add constraints
to the input data, such as connectedness [SWK07], specific
orientation of the shapes [SHFH11] or adjacency [ASF∗13].
However, the stochastic nature of RANSAC can be controlled to
alter the speed, quality and completeness of the shape detection.
This control is possible using the probabilistic distribution sampled
to find minimal sets, or by applying filters to the output of the
random selection. It is often given to the user through parameters
such as the maximum distance from inlier to its shape or the
minimum number of inliers for a shape [SWK07, LA13]. More
details on the control and tuning of algorithms are given in Section
4.2.2.0.4 and metrics are discussed in Section 6.

Local Statistics. The definition of occupancy probabilities at
space locations allows inferring local primitive parameters from
these distributions. Mostly, such methods aim at bounding detected
objects with boxes or cylinders. The probabilities can be defined
at all or some locations in space using e.g., a simple Gaussian,
Gaussian Mixture Models or Bayesian inference [BFF15]. The
analysis of this probabilistic field enables the detection of the
objects positions.

Examples of Shape Detectors using Local Statistics. For
example, Carr et al. [CSM12] create occupancy maps from
registered RGB views, where each ground location is associated
with an occupancy probability for vehicles or pedestrians.
By deconvolving these maps with primitive specific kernels
corresponding to the projection of boxes and cylinders, the
algorithm is able to highlight object locations. A mean shift
procedure then allows recovering the position and orientation of
cuboids and cylinders that bound vehicles and pedestrians in the
scene.

Bagautdinov et al. [BFF15] identify objects, especially persons,
standing on the floor of indoor rooms acquired through depth
sensors. The algorithm builds a Bayesian generative model of
probabilistic occupancies at each location. Its optimization using

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 7

Image space

Parameter space : local maxima

Figure 5: 2D Hough transform for line detection. Each pixel
in image space (top) corresponds to a curve in the Hough space
defined by polar coordinates (bottom). Aggregating these per-pixel
curves reveals local maxima in Hough space, that model lines in
image space.

current depth observations makes it converge towards a discrete
number of positions on the ground. Boxes are then fitted to the
detected objects to form a clear boundary in image space.

3.2 Parameter Space

Hough Transform The Hough transform defines an accumulation
space built upon a parameter space in which similar geometric
elements coincide. After quantizing this space into regular bins,
all samples of the data cast votes for all geometric elements of
which they are inliers. The most voted parameter set identifies
the object that best explains the input data. Figure 5 shows an
example of 2D Hough transform for line detection. Named after
Paul Hough’s 1962 patent [Hou62], and originally used to detect
lines in images [DH72], it has since been generalized [Bal81] to
detect 2D and 3D common geometric objects, such as circles. In
particular, it can be used to detect 3D shapes [WPM∗14]. In spite
of its generic nature, one of the most important drawbacks of this
method is the lack of boundary of the parameter space. Given its
potential dimension, it can become an issue in terms of memory
consumption and processing time.

Research has been conducted in order to improve the performance
and usability of the Hough transform. The Fast Hough Transform
[LLLM86] uses the slope-intercept form for line equations which
transforms any Euclidean point into a line. It recursively divides
the Hough space into hierarchical squares which are only filled
when a given line produces an intersection, computed efficiently.
This structure allows fast counting of votes and identification
of the model. With the same parameterization, the Randomized
Hough Transform [XOK90] detects curves of arbitrary dimensions.
Random sets of image points of the same size as the dimension of
the sought curve are picked, each set leading to exactly one point
in the Hough space. This point activates a cell in parameter space
and iterations of random pick and cell update are run, while the list
of activated cells is kept with their corresponding scores. A simple

threshold on the score allows recovering curves. The Probabilistic
Hough Transform [KEB91] also gives a stochastic answer to the
complexity of the Hough Transform but keeps its one-to-many
mapping from image to parameter space, thus only solves the speed
issue. They show that only a random subset of points in the image
is enough to correctly recover the models, although the size of
the subset is not automatically defined. In contrast to the usual
algorithmical definition of the Hough Transform, Stephens [Ste91]
derives an analytic formulation based on the maximum likelihood
method which leads to continuous values in Hough space and
allows the use of known mathematical tools for locating maxima.
Introduced in 2008, the Kernel-based Hough Transform [FO08]
forms approximately collinear image edge pixels clusters in which
the best fitting line and its error kernel are computed. All kernels
are then merged into the Hough space and a peak detection allows
identifying the correct candidates within a simplified parameter
space.

Algorithm 2 Hough Transform
1: Input: List of vertices and associated normals
2: Quantize parameter space of dimension d into regular bins
3: for all vertices do
4: for all combinations of parameters from 1 to d−1 do
5: Compute value of parameter d
6: Increment corresponding bin
7: Store vertex as inlier of this bin
8: end for
9: end for

10: Detect local maxima of the quantized parameter space
11: Store all detected maxima as primitives
12: Output: List of primitive parameters and the corresponding

inliers.

Algorithm 2 details the Hough Transform, in the context of
geometric primitive detection in an oriented point cloud.

Examples of Hough-based Shape Detectors. Planes can be
detected using their spherical parameterization. Each 3D point and
its associated normal extracted from depth maps contributes to
only one voxel in the discrete Hough space. By smoothing this
space, local maxima and candidate planes are identified. Through
time, correct candidates form peaks in a time-global Hough space
and get activated [HSSM14]. The detected planes can then be
refined using Singular Value Decomposition over the inlier sets
[WO02]. Figure 6 shows a three-dimensional Hough space where
each 3D Euclidean location builds a surface. The intersection of
these surfaces yields the plane passing through all three points.

These planes are used for robot automation [HSSM14] or scene
reconstruction [WO02, LO15]. Their main drawback – the size
and memory footprint of the parameter space – can be overcome
using hierarchical voxel grids depending on the number of point
contributions in each cell [HSSM14]. In order to solve processing
time issues, Limberger et al. [LO15] apply the Kernel-based Hough
Transform [FO08] to 3D plane detection using an efficient spherical
accumulator.

In order to simplify a given mesh model, Billboard
Clouds [DDSD03] can also be created using a voxelized 3D

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

8 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

ρ

θ
φ

Figure 6: 3D Hough space for plane detection. Each 3D
Euclidean location (left) builds a surface defined by spherical
coordinates (right). The 3D Hough points at the intersections of
these surfaces give the planes passing through many points.

Figure 7: Hough transform to find the orientation of a cylinder.
Normals of all points along the cylinder (left) are represented as
a unique arc on the Gauss sphere (middle). Each point along this
arc translates on the Hough Gauss sphere to an arc corresponding
to all possible cylinders associated with this point (right). Hence,
the intersection of all arcs on the Hough Gauss sphere gives the
orientation of the cylinder. Image courtesy of [RVDH05].

Hough space. The local maxima of this space give the planes
that approximate the shape, called billboards (textured planar
polygons) that can be used to render the shape using very few
primitives. The resolution of the voxel grid gives control over the
approximation of the mesh. A coarse voxel grid tends to merge
many triangles into a single billboard, and a finer grid will produce
more billboards for a better approximation.

Rabbani et al. [RVDH05] use a Hough-based method to detect
cylinders in point clouds. First, the orientation of the cylinder
is detected using a 3D Hough parameter space lying upon the
Gauss sphere (see Figure 7). Once the orientation of the cylinders
have been found, the corresponding inliers are projected on the
orthogonal plane and the Hough transform for circle fitting in 2D
allows recovering the radius and position of the cylinder.

Clustering Parameter Space. Some methods directly exploit and
analyze parameter spaces to detect simple geometric primitives.
These methods mainly detect plane clusters in point clouds, as the
parameter space for planes can be divided into two simple disjoint
spaces. These are the parameter space for normal vectors i.e., Gauss
map modeling the plane orientation as a point on the unit sphere
– and the Euclidean distance to the origin. Algorithm 3 provides
details on the clustering of the plane parameter space applied to

Normal Distribution Normal ClusteringInput Surface Surface Clustering

Figure 8: Normal space clustering. Clusters are generated from
the point density map of the surface normal vectors on the Gauss
map.

an oriented point cloud. Step 1 (line 2) represents the clustering
of all data points based on their normal orientation, which leads to
a list of local maxima of the normal space (line 8). At this stage,
the output does not represent primitive shapes, but rather groups
of points of similar orientation. Step 2 (line 9) takes as input the
output of Step 1, hence the list of normal space maxima (line 11),
and clusters the points within each maximum (line 13) based on
their distance to the origin (line 17). Eventually, the list of points
clustered with their normal and distance represents the detected
primitive shapes (line 18).

Examples of Shape Detectors using Parameter Spaces. By
clustering the space of normal orientations over a hemisphere using
voxels [HHRB11] or a mean shift procedure [CC08], as shown
in Figure 8, dominant orientations can be found. The individual
plane clusters can be extracted using a threshold on the distance
in Euclidean space [HHRB11] or point density peaks along the
detected directions [FCSS09a]. Parameters can then be estimated
using Principal Component Analysis within the clusters [CC08].

Algorithm 3 Clustering Plane Parameter Space
1: Input: List of vertices and associated normals
2: Step 1: Cluster normal space
3: Quantize normal space into regular bins
4: for all vertices do
5: Increment bin corresponding to the normal of the vertex
6: Store vertex as inlier of this normal bin
7: end for
8: Detect local maxima of the quantized normal space
9: Step 2: Cluster distance to origin space

10: Quantize distance space into regular bins
11: for all local maxima of the normal space do
12: Empty all bins of the distance space
13: for all inlier vertices of this maximum do
14: Increment bin corresponding to distance of the vertex
15: Store vertex as inlier of this distance bin
16: end for
17: Detect local maxima of the quantized distance space
18: Store all detected maxima as primitives
19: end for
20: Output: List of primitive parameters and the corresponding

inliers.

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 9

3.3 Clustering

Several methods use known segmentation and clustering
techniques to discover primitives in 3D data. As described
by Lukacs et al. [LMM98], "segmentation is most commonly
treated as a local-to-global aggregation problem with similarity
constraints employed to control the process". In the context of 3D
geometric primitive detection, these similarity constraints drive
the detection towards different paradigms. Specifically, three main
types of clustering are used in the literature:

• primitive-driven region growing;
• automatic clustering and Lloyd-based algorithms;
• primitive-oblivious segmentation followed by primitive fitting to

the regions.

Primitive-driven Region Growing. The region growing
algorithm is used to extract connected components in a depth
map or a point cloud with neighborhood information (e.g.,
k-nearest neighbors). A label is assigned to a seed sample and
its neighbors are iteratively analyzed and assigned the seed’s
label if their characteristics are similar enough to the seed’s.
These characteristics, such as color, depth or normal orientation
are considered similar given a threshold which is usually
application-dependent. Algorithm 4 provides the region growing
procedure in the context of primitive detection, called "Primitive
Growing".

Algorithm 4 Primitive Growing
1: Input: List of vertices and associated normals
2: while there are unprocessed vertices do
3: Initialize a new region with a vertex
4: Add the vertex to the list of vertices to process
5: for all vertices to process do
6: mark the vertex as processed
7: for all neighbors of the current vertex do
8: if the neighbor is similar to the vertex then
9: add the neighbor to the region

10: add the neighbor to the list of vertices to process
11: end if
12: end for
13: end for
14: if the current region is large enough then
15: keep the region as new primitive
16: end if
17: empty the current region
18: end while
19: Output: List of primitive parameters and the corresponding

inliers.

Examples of Primitive Growing Methods. The processing is
started by assigning seeds to random [OLA16, LMM98] or regular
[ZYH∗15] positions in the data. The growing of points into
regions can be performed through a neighbor search using efficient
data structures such as a neighbor graph [FTK14, AEH15]. A
shape-based flood filling can also be used [LLL∗12, ZXTZ15].
Some methods over-segment the data into patches, super-points or
super-regions [LGZ∗13] that can be joined together to form the

final segmentation. Algorithms used to merge these patches include
rectangle fitting [MPM∗14, OLA16], candidate generation and
selection [MMBM15], linear interpolation [TGB13] or automatic
merge of neighboring shapes [LMM98, AFS06, ZYH∗15]. Making
use of the efficient structure of images, a few methods offer a
speed-up over point cloud based methods [TGRC13, KHB∗15,
AEH15]. A refinement step is usually applied to estimate plane
parameters. It can be based on least squares fitting [TGRC13,
BSG∗11], principal component analysis [SMGKD14], RANSAC
[LLL∗12, SXZ∗12, AEH15] or shape-driven pixel-wise region
growing [FTK14].

Points are aggregated into regions using similarities with their
neighbors in terms of different heuristics related to the primitive
shapes to detect. For plane detection, planar heuristics include
Euclidean distance [SMGKD14, SXZ∗12, LGZ∗13], normal
orientation [MMBM15, OLA16, TGRC13] and surface curvature
[ZXTZ15,MPM∗14,BSG∗11]. More general methods often use the
primitive fitting error, computed as the mean square error resulting
of a potential aggregation [AP10,XZZ∗11,LMM98]. Other metrics
include the spherical quadric error [TGB13], cylindricity measure
[ZYH∗15] and tensors capturing the local dimensionality of the
data [Sch04]. Gelfand et al. [GG04] compare point clusters in terms
of slippable motions, defined as rigid transformations that, applied
to a simple geometric shape, will not form any gaps between the
original and transformed shapes.

A special kind of primitive growing algorithms use a tree
representation of the data [AP10, TGB13]. Points are initialized as
separate clusters and ordered according to the cost of aggregating
them with nearby clusters into a single primitive, based on
previously discussed metrics. Iterative aggregations are then
performed, starting from the least costly, in order to build a
hierarchical partition of the data. The hierarchical model allows
navigating through different levels of approximation, that can be
used as an intermediate control structure to deform the input
model.

Automatic Clustering. Automatic clustering methods in machine
learning are often based on Lloyd’s clustering algorithm [Llo82],
developed privately in 1957 to create a partition of point sets in
Euclidean spaces. This algorithm proceeds iteratively in order to
cluster all points into regularly distributed regions. The two main
Lloyd-based algorithms are the K-Means and Mean Shift clustering
methods, described below.

The K-Means procedure, first defined by MacQueen [Mac67], takes
as input a spatial data set and a fixed number k of clusters to detect
within this set. After selecting k random data points called means,
the remaining points are assigned to the closest mean according
to a chosen distance metric. Using the so-initialized clusters,
new means are created at their respective centroids. The cluster
assignment and means update steps are repeated until convergence.
These two steps can also be seen as iterations of expectation and
maximization (EM) steps, making the k-means algorithm a variant
of the EM method. Figure 9 shows the process in a simple 2D
example. Algorithm 5 explains the procedure in detail, in a general
N-dimensional vectors context.

In contrast to the k-means algorithm, the Mean Shift algorithm

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

10 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

Random Seed Initialization Resulting ClusteringInput Data Points

Figure 9: K-means clustering. Starting from raw data points (left),
3 initial seeds are randomly generated (middle). The location of
each seed is then iteratively refined to the barycenter of the data
points that are closer to it than to the other seeds, until obtaining a
final stable clustering (right).

Algorithm 5 K-Means Clustering
1: Input: list of nD points
2: initialize means as K random positions
3: while means are updated do
4: assign each point to its closest mean (expectation step)
5: update all means as centroid of their inliers (maximization

step)
6: end while
7: output: list of K mean positions and their corresponding point

assignments that form clusters.

does not require a prior number of clusters to be found. Originally
presented by Fukunaga and Hostetler [FH75], and first applied
to computer vision by Comaniciu and Meer [CM02], it creates
partitions of a feature space. The data is considered as samples
of a probability distribution made of kernel instances and points
are assigned to the corresponding kernels. In other words, this
algorithm is seeking the modes of a distribution modeled by
kernels, among which the two commonly used ones are the flat
and Gaussian kernels. These kernels are recovered by iteratively
shifting each point towards a kernel center using weighted
contributions of the original points in the dataset. The kernels then
appear naturally to form the data clusters. Algorithm 6 explains the
Mean Shift procedure in detail, in a general N-dimensional vectors
context.

Algorithm 6 Mean-Shift Clustering
1: Input: list of N nD points, fixed bandwidth σ

2: for each data point x do
3: initialize the current mean m at x
4: while m is shifted do
5: compute the center of gravity C of all points using the

chosen kernel density function p() with a fixed bandwidth
σ centered at current mean m (Expectation step):
C = ∑

N
i=1 p(xi,m,σ)xi

6: shift m to C (Maximization step)
7: end while
8: record the mean m for x
9: end for

10: Output: list of means positions and their corresponding point
assignments that form clusters.

Examples of Shape Detectors using Automatic Clustering.
Several methods were inspired by these automatic clustering
algorithms to fit geometric primitives to 3D data. They were
pioneered by variational shape approximation (VSA) [CSAD04],
which aims to find a fixed number of planar proxies to simplify
a meshed object with the best possible approximation. Randomly
picked data samples are used as initial shapes to bootstrap the
process. Then, the optimization starts with an iteration of geometry
partitioning and shape fitting that is repeated until convergence of
the partitions. The partitioning is done using region growing started
from the centers of the current shapes and using their parameters.
Regions are grown based on distortion error between adjacent
samples and the surface of the shapes. The fitting step computes
the shapes that minimize the error to their associated samples
and the partitioning starts again with the newly computed shapes.
Yan et al. [YWLY12] developed a similar method to estimate
quadric surfaces from a given mesh model. In the specific case
of the method proposed by Woodford et al. [WPM∗12], points
are assigned by expanding or contracting neighboring primitives,
leading to an unspecified number of primitive shapes.

Primitive-oblivious Segmentation. Several methods apply a
segmentation step to the data prior to fitting, in order to reduce
the number of outliers, thus getting a more accurate model.
The segmentation of three-dimensional data, in the form of a
point cloud or depth map, is carried out through algorithms
such as region growing, watershed by flooding, classification or
other clustering methods presented below. In this context, the
segmentation methods do not take into account primitive search:
they are completely oblivious to the primitive detection. Instead,
they use heuristics such as location, color, distance or other
application-specific features.

Examples of Segmentation-based Shape Detectors. Region
growing and the search for connected components are the
most commonly used techniques to segment images and 3D
data. This method, presented earlier in this manuscript with
the use of primitive-specific neighbor comparison, can also
be applied to the raw data with a comparison based on
heuristics such as depth discontinuities or color. For example,
Martinovic et al. [MKRVG15] first label a point cloud for
different architectural elements, independently of primitive shape
considerations. Connected components are then extracted for each
element of the facade using architecturally-based features.

Supervised classification methods use previously labeled data to
characterize points into a number of classes. Depending on the
application, these semantic classes are defined using features that
discriminate them well from one another. In scene analysis, they
are typically used to segment buildings from vegetation [LM12],
walls from desks, or object parts [KLM∗13]. For example, Lalonde
et al. [LVHH06] use local geometry features in natural outdoor
scenes to label flat areas as trails, linear areas as trees and scattered
areas as leaves. Other geometric attributes include elevation or
horizontality [VLA15]. See more details about learning methods
in Section 4.2.2.0.3.

The watershed algorithm is a segmentation method that uses the
gradient magnitude image computed from the input image and

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 11

considers it as a heightmap inside which water would be dropped.
Starting from a number of markers in the image, the watershed
by flooding technique [BL79] makes the water level rise up from
these locations to find local maxima of the height map. These
local maxima represent the watershed of the image gradient and
thus are the limits of the segments in the image. Such flood filling
algorithms are most suitable for depth maps as input images, in the
context of 3D data segmentation [WGC99].

Using 3D data as input, applying geometry rules to detect different
parts in the data is easy. These rules can be based on the height
or size of clusters in the data. For example, different tables of
an indoor scene can be clustered using horizontality and distance.
Then, objects are projected on the tables planes and clustered in 2D
to form object segments [RBMB09, GMLB12].

In some of the primitive detection methods, interactive techniques
are used to drive the segmentation prior to fitting. The user can be
asked to assign labels to regions [OVWK14, WGC99] or drive the
segmentation using strokes [CZS∗13, SXZ∗12, SAG∗13].

Finally, many segmentation methods have been developed when
using meshes [Sha08], usually by adapting known image
processing algorithms to 3D data. In particular, data-driven
methods [XKH∗16] that perform segmentation based on databases
of labeled meshes are more and more used thanks to the availability
of this segmented data. Using powerful descriptors, shapes can be
segmented very efficiently and robustly using the diversity of the
many segmented meshes.

Fitting Primitives to Segments. In order to compute the
parameters of geometric primitives, a fitting method is finally
applied to the individual detected clusters.

To do so, one common method is to use Principal Component
Analysis to extract these parameters [WGC99, KLM∗13]. By
computing the covariance matrix of all points in the segment,
an eigenanalysis allows recovering the primitive information. For
instance, the normal of an optimal plane fitting the data is the
eigenvector of the covariance matrix with the lowest corresponding
eigenvalue. The covariance matrix for a set of N 3D points Xi =
(xi,yi,zi)i=1...N with their centroid X̄ = 1

N ∑i=1...N Xi is given by

1
N ∑

i=1...N
(Xi− X̄)(Xi− X̄)T . (1)

One can also apply the RANSAC algorithm (see Section 3.1) to the
segments, which allows getting a faster and more accurate model
as the segmented objects or parts often correspond to one primitive
shape [RBMB09, GMLB12].

Finally, the primitive fitting problem can often be modeled as
an unconstrained optimization problem. Thus, it can be solved
using least-squares fitting by minimizing an energy representing the
distance from the model to the data. Different energies can be used
and are detailed in section 6.2. For instance Lukacs et al. [LMM98]
provide per-primitive energies in the context of least-squares fitting,
based on the efficient parameterization of primitive shapes brought
by Marshall et al. [MLM01]. Depending on the complexity of the
energy, the minimizing parameters can be estimated using standard
linear system solvers such as Cholesky and QR matrix factorization

or Singular Value Decomposition [GVL96]. Complex energies
are minimized with iterative optimization methods like Newton’s
method or a Gradient descent [Avr76].

3.4 Assembling Primitives

After detecting primitive shapes with one or more of the techniques
presented above, some methods apply different refining operations
and assemble shapes together in order to generate more meaningful
results.

Examples of Primitive Assembling Methods. Methods aiming
at bounding objects, rooms or buildings by boxes or cuboids
sometimes assemble detected planes using their boundaries [JX13,
KHB∗15, SHFH11]. In order to correctly group together the
right planes, a generate-and-test strategy is often used. Candidate
cuboids are generated from detected planes and activated based on
the fitting error or penalty functions [SHFH11]. Such a strategy
applied at different levels of detail leads to a hierarchical modeling
of the data, which can be particularly useful in the context of urban
modeling [LGZ∗13, CLL11].

A few algorithms exploit geometric relations between detected
shapes in order to obtain a more regular model. Global relations
between parts are identified for mechanical objects [LWC∗11]
or buildings [ASF∗13, MMBM15] under specific regularity
assumptions.

4 Characterization

In this section, we enumerate the key characteristics that we use
to describe and compare the methods. We propose a classification
inspired by practical needs. It is based on characteristics that are
important to applications and relate to the theoretical basis used
by the individual methods. Table 4 is certainly one of the most
important tools provided by this survey. It has been structured to
help the user decide on the proper primitive recovery method to
choose depending on their needs. This table lists the characteristics
described in the following for all presented methods; Section 5.5
details this table.

4.1 Context

Detected Primitives. The first characteristic that distinguishes
the presented methods is the type of primitives they aim to
detect. Section 2.2 lists the most common primitives detected in
three-dimensional environments. Figure 10 shows a classification
of the presented methods in relation to the detected primitives.

Application Context. The context in which the input data is
provided is directly linked to the application. It plays an important
role in the choice of the inherent algorithm, parameters, priors and
type of output information needed. The main input contexts are:

• indoor scenes: single room, building interiors, household scene;
• outdoor scenes: urban environment made of buildings,

residential scene, natural scene;
• individual objects: regular, free form or organic shapes.

Figure 10 shows a classification of the presented methods in
relation to their input context.

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

12 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

Specific Application Contexts. In man-made scenes for
example, the primitive detection method shall make use of
architectural rules and try to identify regular relationships
[LWC∗11, MMBM15], orthogonality or object support [SHKF12].
Although in natural scenes, the complexity of the vegetation
requires very specific modeling primitives [LVHH06].

In the specific case of natural and organic shapes, the simplified
model made of geometric primitives is an approximation of the
original shape [CSAD04, WK05, TGB13]. The resulting set of
primitives usually represent an over-segmentation of the object
and given the method and heuristics used, the computed segments
may or may not have semantic meaning. A simplification of better
accuracy can be obtained with slightly more parameters using
Generalized Cylinders [ZYH∗15].

While the methods to segment indoor and outdoor scenes do not
fundamentally differ, it is important to note that the design of
algorithms is significantly impacted by the application context. As
an example, indoor scenes are usually closed volumes [OVWK16]
while urban and natural environments are open, hence are often
partial datasets [XAZ12]. In addition, the type of input data usually
differs given the context due to 3D capture devices e.g., RGB-D
cameras that work well inside buildings, will not provide many
data samples outside, where one might prefer using multi-view
stereo datasets. Last, indoor scenes mostly contain relations of
regularity between planar surfaces e.g., floor, walls and ceiling
[MMBM15], while outdoor scenes are rarely regular, especially in
natural environments [LVHH06].

Data. Both the type of input data and the core data structure are
considered as characteristics. The input data type is obviously
important in the application, while the core data structure helps
determine the best algorithm to use. Section 2.1 presents the
different types of three-dimensional data structures.

Detection Category. The category of the detection procedure used
by a specific method corresponds to the theoretical foundation upon
which the algorithm is built. This category is usually defined from
the input data type and the application.

4.2 Properties

The following list of properties characterizes the methods and
represents a tool to evaluate and compare them. It stems from
the practical case where they are used and relates to accuracy,
practicality, information and robustness. We also account for the
amount of control that the user has to tune the output of the method.

4.2.1 Accuracy

Data Fidelity. The data fidelity value associated with a given
method measures the accuracy of the modeling and represents
the fidelity of the output model to the input data. This property
allows distinguishing methods aiming at bounding objects and parts
using primitive shapes (fidelity value 1) from methods aiming at
simplifying them more faithfully (higher fidelity values). Table
2 explains in detail the three possible data fidelity values in the
context of geometric primitive detection. Figure 11 shows a plot of
the presented methods in relation to their data fidelity value.

Value Characteristics
1 Approximating planes or bounding boxes
2 Planes fitting planar data only
3 Planes and primitives fitting all data

Table 2: Data fidelity scale. A value of 1 corresponds to a set of
planes or planar patches approximating the data. Typically, the
approximation term here is related to an average error between
the model and captured objects that represents more than about
5% of the bounding box of objects, depending on the application
(see Section 6 about error metrics). Bounding boxes and bounding
cylinders are also associated with this value of 1. A value of 2
corresponds to a set of planes fitting planar data, while non-planar
data is not modeled. Starting from a data fidelity of 2, the average
error between the model and the captured objects should be below
5% of their bounding box. A value of 3 corresponds to a set of
primitives of all sorts modeling all parts of the data.

Abstraction Level. The level of abstraction represents the
simplicity of the output produced by a method. Here, we propose
a measure of complexity which is based on the number of
elements of the model and their relations. A model with many
elements will be more complex, thus less abstract, than a model
with a few related elements. This property allows distinguishing
methods aiming at partitioning surfaces (abstraction level 1) from
methods that segment objects into meaningful parts (abstraction
level 3). This distinction is particularly important as the former
requires stitching the detected primitive shapes together in order
to acquire a complete decomposition [LWC∗11, ASF∗13]. Note
that the stitching of primitives together appears naturally in some
algorithms [CSAD04]. In the right part of Figure 1, the top row
corresponds to abstraction level 1, the middle row is abstraction
level 2 and the bottom row is the highest level of abstraction, level
3. Table 3 explains in detail the four possible abstraction levels in
the context of geometric primitive detection. Figure 11 shows a plot
of the presented methods in relation to their abstraction level.

Level Characteristics
0 Raw point cloud
1 Primitive patches
2 Full primitives
3 Assembled primitives

Table 3: Abstraction scale. Level 0 is given for information
and more clarity. Level 1 corresponds to an unorganized set of
small primitives covering parts of objects. Level 2 corresponds
to a set of primitives covering all of the object and representing
meaningful parts of it. Level 3 corresponds to an organized set
of primitives corresponding to full objects or object parts with
semantic meaning. In addition, spatial relations between primitives
may also be present at level 3.

4.2.2 Practicality

Timing. In the scope of this survey, the evaluation of the timing
performance of a primitive detection method is based on the type of

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 13

data processed. Indeed, methods that will be considered real-time
require a few milliseconds to one second to process their input data,
for a dataset of average size in relation to all datasets targeted by
the method. The decision of considering a method as real-time or
not is based on the results advertised by the methods themselves,
hence depending on the hardware available when the method
was developed, which makes difficult a comparison based on the
real-time property.

Examples of Timings. Methods that process multiple RGB-D
frames per second [AEH15,ZXTZ15,HSSM14,TGRC13,CSM12,
HHRB11] are considered real-time compared to methods that
require several seconds to process a single frame [BFF15,
CLW∗14, JX13, SXZ∗12]. When processing point clouds, some
non real-time methods require several seconds to process 5000
points [MMBM15, MPM∗14, LGZ∗13, LWC∗11, SHFH11] when
others can process tens of thousands of points in less than a
second [SWK07]. Several methods [OVWK16,CLL11,CC08] need
only a few seconds to process hundreds of thousands of points,
which means that they could process 5000 points datasets in less
than a second. Although, they are not real-time considering the
type of input data that they target, which are aligned point clouds
representing a full scene. Reconstructed meshes are usually heavy
datasets and most methods processing them are not real-time. For
instance, methods that require several seconds or even minutes to
process a single shape are not real-time [ZYH∗15, YWLY12]. On
the other hand, Thiery et al [TGB13] process 6000 vertex meshes
in 300 milliseconds, which is considered real-time in this survey.

Scalability. The scalability of a method reflects its behavior when
the amount of data increases, with bigger data sets or when a
camera moves around an environment for example. In particular, in
the scope of this survey, the focus is set on the good performance
in terms of accuracy, speed and memory consumption.

Examples of Scaliblity. Methods based on Region Growing
techniques are not very scalable in terms of timing, due to the
inherent costly iterative behavior over the whole data set. On
a different point, parameter spaces need to be quantized, which
often limits their accuracy and scalability in terms of memory
consumption. In contrast, stochastic methods perform well when
increasing input data size, as they tend to localize interesting areas
of the data and focus on those, instead of the full data set.

User Assistance. In some cases, the user’s assistance can be
requested. It can be optional to either oversee a decision of the
system [ZXTZ15] or improve the reconstruction after the detection
stage has been performed [ASF∗13, KLM∗13, WO02]. The user
may also be required to perform tasks in order to guide the
detection, such as assigning labels to regions [OVWK14,WGC99],
labeling the data as a prior for a learning phase [LGZ∗13], or
even driving interactively the segmentation [CZS∗13, SXZ∗12,
SAG∗13]. In all cases, a graphical user interface is required in order
for the user to perform their task properly. Note that in robotics
applications, holding and moving the camera around the scene is
not considered as an assistance, as the user is not involved in the
actual scene reconstruction.

Examples of User Assistance. Shao et al. [SXZ∗12] ask the
user to perform strokes on color images when the automatic
segmentation is not satisfactory. Similarly, 3-Sweep [CZS∗13]
needs the user to draw initial coarse strokes on object boundaries
and draw additional strokes following the object, for the algorithm
to understand where to fit the model. Prior to the reconstruction
algorithm of Ochmann et al. [OVWK14], a manual intervention
is required in order to assign RGB-D scans to the different
rooms. The algorithm of Lin et al. [LGZ∗13] requires a manual
labeling step prior to applying learning techniques for automatic
classification. Through a user interface, Whitaker et al. [WGC99]
ask the user to manually label matching planes in two 3D views. In
the context of indoor scene reconstruction, Zhang et al. [ZXTZ15]
use their graphical interface to allow the user to validate or
invalidate object segmentation hypotheses. Several other systems
[ASF∗13,KLM∗13,WO02] propose interfaces to provide high level
information about the scene, allowing the user to limit the spatial
extent of primitives and specify spatial relations between them.

Learning Phase. Several methods require an offline learning
phase prior to the detection, in order to acquire the parameters
of the different classes of objects that will be recognized in the
scene. Usually, the learning process is applied to a set of previously
labeled data, often manually, which requires the user to directly
assist in the detection process.

Examples of Learning Phases. Two types of input data are
used for training: manually annotated images [KHB∗15] or
point clouds [MKRVG15, LVHH06, LGZ∗13] and automatically
generated images [SXZ∗12] and point clouds [CLW∗14]. From
this training data, descriptors are computed based on geometric
properties such as position, orientation, size, planarity and saliency
features, spin images [JH99] or appearance properties such as color
or smoothness and consistency terms. Using these descriptors,
different models can be learned such as Random Forests
[SXZ∗12, MKRVG15], Adaboost models [LGZ∗13], Conditional
Random Fields (CRF) with Support Vector Machines [KHB∗15]
or Gaussian Mixture Model with Expectation-Maximization
[LVHH06]. These models are used to classify data as semantic
objects such as houses, street lights, cars, trees, windows, walls,
balconies, doors [MKRVG15, LGZ∗13, LVHH06] or match known
object meshes and find their orientation in the data [CLW∗14,
SXZ∗12]. Khan et al. [KHB∗15] learn the CRF model parameters
that later allow image labeling and validation of primitive
hypotheses.

Intuitive Tuning. In data fitting, the user may need to tune the
processing depending on the input data or the needs in the output.
For example, to model an indoor scene, the user might prefer a few
meaningful shapes, even though the fidelity to the data is lower.
On the other hand, to model a complex object, a larger number of
shapes, offering a better accuracy, might be preferred. Therefore,
one of the properties of a detection method is the ability to control
the output in an intuitive manner. This is characterized by few
parameters that the user can easily identify and for which impact
can easily be perceived in the output. As for every algorithm,
the goal is to find a suitable compromise between speed of the
processing and quantity and quality of the output. In the context

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

14 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

of this survey, this is modeled by data fidelity and abstraction level
values. In order to set these parameters for their input data and
application, users are sometimes referred to the default values given
in the paper [LM12] or software. To tune the parameters and better
suit their needs, a good method is to estimate a value and then refine
it with empirical trial-and-error iterations.

Examples of Control Parameters. We divide control parameters
into two main categories. The first set of parameters are related to
the output of the algorithm and are usually the more intuitive ones.
Among them, control over the quality of the output is given by
thresholds on distance [DDSD03,VLA15,MMBM15,LA13], angle
deviation [OLA16,VLA15] between inliers and primitive shapes or
confidence values [CLW∗14]. To control the quantity of the output,
the number of primitives to detect [TGB13, WK05, CSAD04] or
the minimum surface area [VLA15] are sometimes required. On a
higher level, the constrained spatial relations between shapes may
also be provided [MMBM15]. Sometimes, these parameters can be
set automatically given the extent of the data in space [SWK07].
A second family of parameters influence directly the algorithm and
are more abstract. Spatial parameters such as the resolution of a
voxel grid [FCSS09b] or parameter space [LO15] or the radius
of a neighborhood [VLA15, LM12] are usually quite intuitive.
On the other hand, algorithm-specific values such as the number
of iterations [GMLB12], optimization weights [ASF∗13, JX13,
SXZ∗12, WPM∗12] or primitive initialization method [CLL11] do
not make much sense to the user. Such parameters often have
noticeable influence over the output given by the algorithm, as they
allow controlling the compromise between accuracy and simplicity.
Thus, they are quite easy to tune empirically in spite of their
unintuitive nature.

Temporal Consistency. The consistency of the model through
time is important when modeling the surroundings. This is a key
property when capturing dynamic environments where objects or
people move around, or when the camera itself is moving. Ideally,
the methods that best handle time model the changes in the different
observations as part of the representation that is built. This model
should be updated to follow the changes in the observed scene
and is therefore evolving and dynamic itself. For a static scene,
the model should be stable, thus should not differ when generated
from acquisitions done at different times. This property is very
relevant for acquisition of scenes or objects using sequences of
RGB-D images, but implies complex temporal cross-mappings for
full meshes or point clouds.

4.2.3 Information

Semantics. Some techniques offer semantic information in
addition to geometric primitives. Most of these methods rely on a
prior classification model, which might be precomputed or given
as output of a learning phase. Some approaches however infer
semantic information from local geometry, such as local saliency
features [LVHH06], but this information is usually limited.

Examples of Semantics. While some methods deduce semantic
information by differentiating object parts [KLM∗13] or full
object meshes [SXZ∗12], other differentiate indoor [OVWK14,

OVWK16] or outdoor [LGZ∗13] parts of houses, such as walls,
doors and floors. In the context of city modeling, methods tend to
model different parts of cities such as building facades, balconies,
chimneys, trees or cars [VLA15, MKRVG15, LM12].

Needs Extra Information. Several methods require additional
information for the detection to succeed. This can take the form
of local attributes for all samples of the dataset or meta data
that are global to the whole set. Extra attributes to the 3D
data can be needed to assist the processing and make it faster
or more robust. The most instrumental ones are color, which
provides structural information, and local geometry attributes such
as normals, curvature or neighboring sample distribution. The
organization of 3D data as a 2D image (sensor topology), available
when using depth maps, also provides useful information to speed
up the processing.

Examples of Extra Information. Some methods make use
of meta data to specialize the processing for a given context,
which usually take the form of additional input parameters. For
instance, Monszpart et al. [MMBM15] need prior information on
the possible type of relations between objects, given by the angles
between the primitives. In addition, most urban modeling methods
assume regular arrangements between buildings and between the
elements that form them. Methods that aim to model indoors
sometimes try to match CAD models to detected objects. These
CAD meshes are usually given to the system or defined by an
online repository address. Some other methods make assumptions
regarding the semantic scope of the application, given by the type
of environment being observed, from household rooms to offices.
In the context of robotics and scene reconstruction, some methods
require as input the individual positions and orientations of cameras
corresponding to the input set of acquired depth images. There can
also be a requirement for the size and number of geometric objects
to be detected. For the segmentation of objects, Cohen-Steiner et
al. [CSAD04] as well as Wu et al. [WK05] take as input a fixed
number of segments to be identified in the input data.

Provides Meta Data. In addition to the explanation of 3D data in
terms of geometry, some methods output extra meta information
to provide insight into other aspects of the whole dataset. For
instance, house modeling methods sometimes output a graph of
relative positions and orientations of detected primitives. This
allows for spatial reasoning over the objects present in the scene
(more details in Section 7.2). In the special case of urban building
modeling, this usually takes the form of architectural rules between
facade elements. When detecting objects, some methods output
polygonal meshes for these objects, and they can also give
matching information about similar objects. Sometimes, semantic
information is also provided after the processing, to get insight into
the type of objects being discovered and the type of environment
being observed.

4.2.4 Robustness

Robustness to Noise. The quality of acquired 3D data depends on
the performance of the acquisition device. Unfortunately, given the
quality of the device used, the data often contains a certain amount

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 15

of noise. As this is a common issue, several methods try to handle
the analysis while taking into account these artifacts. However,
some fail to do so, for example with the use of local image features
[CZS∗13]. In these cases, robustness to noise quickly becomes a
crucial factor in the development of a shape analysis technique. In
particular, the robustness of a system will be estimated given the
stability of its detection accuracy when the input data is disturbed
with noise.

Examples of Robustness to Noise. Methods that best handle
noisy data are based on robust theoretical paradigms such as
the Hough transform [WO02] or RANSAC [SWK07]. The latter
explicitly shows its robustness by corrupting input data with up to
20% of Gaussian noise and correctly reconstructing the primitive.
While some methods apply a smoothing step as preprocessing
on the data in order to reduce the amount of noise [KHB∗15,
CLW∗14], other methods make use of structural priors to regularize
the data [MPM∗14, MMBM15, OVWK14]. Finally, Zhang et
al. [ZXTZ15] create a global model which is therefore less sensitive
to noise.

Robustness to Incomplete Data. When capturing 3D data, the
completeness of the output depends on the acquisition procedure
and the resulting information may contain holes and missing parts.
This issue occurs often when trying to recover and abstract a shape.
Although, the use of parametric models such as simple geometric
primitives may allow reconstructing parts of objects that were
not captured by the camera. The robustness of a method against
incomplete data is measured by the completeness of shapes even
when only parts of it were captured. A simple example is the
recovery of a full table when it is poorly sampled and might not
be fully captured. This occurs often in practice because of the
orientation of a sensor which is mostly parallel to the horizontal
surface of the table. Missing parts of objects in data captured using
cameras can also be due to occlusions by closer objects, or surfaces
that do not reflect light as expected by the sensor.

Examples of Robustness to Incomplete Data. While some
methods fail to handle missing data [OVWK16, CZS∗13], robust
ones have been developed, whose theoretical background allows
reconstructing missing parts [BFF15, VLA15]. Region growing
based methods do not perform well when data is missing, as
they only exploit existing data without trying to create a global
model [TGRC13, SXZ∗12, XZZ∗11, LMM98]. This kind of global
model, usually made of planes, actually helps recover unseen areas
[MMBM15, ZXTZ15, OVWK14, JX13]. The use of priors on the
scene also helps guess missing parts [MPM∗14]. Other methods
that handle missing data well include multiscale methods [AP10]
and multiple view reconstruction [FCSS09b].

Robustness to Outliers. When detecting primitives in 3D data, the
discrimination between points belonging to the model and points
not belonging to any primitive is essential, and is taken into account
in our classification. Another aspect of outliers is the artifacts
created during the acquisition. These data points should not belong
to any primitives as they do not represent samples of the observed
objects and should be discarded as outliers.

Examples of Robustness to Outliers. In practice, some
methods address outliers by filtering the input data [OVWK16,
KLM∗13, SXZ∗12, LVHH06] or specifically modeling them
[KHB∗15, ZXTZ15]. Others are built upon theoretical paradigms
known to be robust to outliers, such as RANSAC-based
methods [SWK07, JX13, WPM∗12, RBM∗07], Least Median of
Squares (LMS [RL05]) used by [ASF∗13] or robust descriptors
[MKRVG15,VLA15,MPM∗14,LGZ∗13]. In their study, Schnabel
et al. [SWK07] show that their RANSAC-based method can handle
up to 95% outliers.

5 Methods and Applications

We now analyze specific algorithms and applications. They are
sorted by detected primitives (Section 2.2), then by application
scope (Section 4.1). The main detection categories (Section 3)
used for each context are discussed. A visual compendium of
the presented methods is shown in Table 7 at the end of this
document, to help the reader to quickly identify the methods. Table
4 summarizes all presented methods and their characteristics and is
detailed in Section 5.5.

5.1 Planes

Indoor Scenes. Methods discussed below aim at detecting planes
in the context of indoor scenes, either represented by unorganized
point clouds or organized point clouds under the form of depth
images.

The most used technique to detect planes in indoor scenes
is to grow regions from given seed positions and stop
the propagation using heuristics linked to plane detection.
Starting from unorganized 3D point clouds, a first group of
algorithms segments the data by growing regions using planar
heuristics [OLA16, XZZ∗11, MPM∗14, MMBM15]. This initial
primitive-based segmentation is then used for plane matching and
registration of different views [XAZ12], matching object parts and
joint segmentation of similar objects [MPM∗14] or creation of a
global regular model based on user defined priors [MMBM15,
OLA16]. Although slower than stochastic methods, these region
growing based algorithms output high quality and consistent
models of the input point clouds. Making use of the image
structure of depth data (sensor topology), which simplifies the
search for neighbors, a second group of algorithms applies
connected components techniques to depth maps [SMGKD14,
FTK14,TGRC13, LLL∗12, ZXTZ15,AEH15]. In addition, Shao et
al. [SXZ∗12] allow the user to draw strokes on the current image
to assist the segmentation process. Applications include plane
matching for view registration [LLL∗12, ZXTZ15, SMGKD14] or
CAD model matching for realistic scene reconstruction [SXZ∗12].
The use of region growing methods when working with depth
maps is motivated by the speed-up allowed by the image structure
of the data, without which they would be too slow to be usable.
Region growing based methods lead to models with higher quality
and consistency, although they are subject to noise which is less
important in indoor scenes than e.g. in outdoor environments.

Following a different paradigm, some methods exploit the
stochastic nature of RANSAC to detect planes in three dimensional

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

16 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

data. In the robotics community, Simultaneous Localization And
Mapping (SLAM) systems detect and match RANSAC detected
planes to build a map of the observed scene [WS06, TRIC12,
TJRF13, Kae15, ERAB15]. By designing a RANSAC-based plane
detector as detailed in Section 3.1, some algorithms create a
segmentation of the observed scene. Inferring spatial relations
between objects using spatial information [RBM∗07], hierarchical
segmentation [SHKF12] or object graphs [OVWK14], leads to a
consistent and human understandable model of the room. Other
methods aim at simplifying the representation of the environment
to automatically build floor plans of buildings [BV12, OVWK16]
or create a high level representation of indoor scenes, made of
CAD models [CLW∗14]. The use of RANSAC-based methods
allows faster processing which is critical especially in robotics
applications. The refinement of the model through time improves
the lesser quality and consistent results brought by a stochastic
paradigm.

The Hough transform has been extended to three dimensions and
plane detection in indoor environments [HSSM14, WO02, LO15].
Hough-based methods work well in indoor environments mainly
made of planar surfaces, as only a few peaks will appear in the
parameter space, and give stable results leading to a consistent
reconstruction. A simpler clustering of the parameter space can
also be performed (see Section 3.2.0.0.1). Similarly to the Hough
transform, clustering the parameter space works well in indoor
scenes, as shown in the results of [HHRB11]. Although, these
simpler methods might be less robust than elaborate Hough-based
systems.

Classical image segmentation techniques are also used to build
models of indoor scenes, such as Whitaker et al. [WGC99] who
apply a watershed algorithm on captured range data. The user
is then asked to match planes between different views, and the
corresponding images can be registered in the same space by
minimizing the distance of 3D points to the equations of two
corresponding planes. Although the segmentation is not based on
planar heuristics, the context of indoor scenes made of large planar
surfaces allows this method to perform well, using a solid, well
known image processing technique.

Outdoor Scenes. Several methods have been developed to fit
planes to outdoor elements such as building facades or walls and
ceilings of houses.

In unorganized point clouds, planes are mostly detected with region
growing techniques [Sch04, LGZ∗13]. In order to build high-level
models of houses in residential areas, Lin et al. [LGZ∗13] add a
semantic labeling step allowing the detection of house parts where
RANSAC-detected planes can be hierarchically assembled. This
allows the system to be robust to missing data, as the adjacency
of planes and discovery of their intersections helps recover the full
house structure. These local-to-global approaches are well suited
to outdoor scene segmentation, as objects to detect are usually far
apart from each other in the scene, e.g. the distinction between
different houses.

In the context of urban scene reconstruction, normal-based
clustering algorithms are also used and work well as buildings tend

to have a regular structure made of many planar surfaces [FCSS09a,
CC08].

Lafarge et al. [LA13] exploit the intersections between RANSAC
planes to build a model of urban buildings containing both planar
elements and 3D points. Arikan et al. [ASF∗13] also use the
intersections between planes, but add an interactive step where the
user can refine poorly modeled regions. For this specific application
context, the use of stochastic methods such as RANSAC might
prevent all actual planes to be detected, resulting in incomplete
models.

In order to automatically build 3D models of buildings, Vosselman
et al. [VD01] use ground plans to pre-segment aerial images
and apply a Hough-based plane detector coupled with a region
growing step. The pre-segmentation step using available ground
plans reduces the sensitivity of the Hough Transform to outliers
and allows using a limited parameter space.

Individual Objects. Objects are usually made of more complex
shapes than planes, hence only few methods have been developed
in that direction, with the goal of simplifying meshes.

Billboard clouds [DDSD03] use a 3D Hough space to detect
billboards and render the original shape in a similar visual quality
but using very few primitives. The control given by the resolution
of the Hough space allows its use in a variety of applications.
Variational shape approximation [CSAD04] propose an automatic
clustering method inspired by Lloyd’s algorithm [Llo82] that
requires as input a fixed number of planar patches to detect.
Although this method leads to faithful and consistent results,
the need for the specification of the number of patches, while
giving control over the output, decreases its usability in automatic
segmentation applications.

5.2 Bounding Boxes and Cuboids

Indoor Scenes. Bounding boxes and cuboids can be useful in
the context of indoor scenes to build an occupancy model of the
environment applied to e.g., autonomous robot navigation or object
tracking.

Based on a stochastic framework, Bagautdinov et al. [BFF15]
identify objects, especially persons, standing on the floor of indoor
rooms. The use of local statistics is particularly robust in the
presence of occlusions and can detect people even if only parts of
them are seen by the camera.

Methods that detect planes at object boundaries and assemble
them [JX13, KHB∗15], associated with a robust candidate
generation and activation method, are an efficient way to model
objects by cuboids because not all planar faces of objects have to
be seen.

Outdoor Scenes. In outdoor environments, bounding boxes can
be useful to detect and track persons and cars for autonomous
navigation or modeling parts of buildings made of cuboids.

In the context of autonomous navigation based on color images,
Carr et al. [CSM12] create occupancy maps to bound vehicles and
pedestrians in the scene by cuboids. The method runs in real-time

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 17

and from multiple views to track vehicles or people. Although, the
real-time performance is made possible by the need for a prior
registration step between the different views and is quite sensitive
to the type of data that needs to be detected, thus lacks genericity.

In order to create high-level models of buildings from 3D scans,
Martinovic et al. [MKRVG15] fit boxes to connected components
of the building. Shen et al. [SHFH11] assemble RANSAC detected
planes following horizontal splitting of the facades. Both of these
methods acquire a meaningful representation of building exteriors
based on architectural priors and are well fitted to the modeling of
regular facades particularly present in old buildings.

Individual Objects. Kim et al. [KLM∗13] build templates for 3D
shapes. The deformation of an initial set of parts representing an
object leads to multiple templates modeling the different types
of the same object class. Object parts are bound by cuboids
detected through object-wise region growing, which leads to a
consistent segmentation across object instances and eases the
matching between datasets.

5.3 Spheres, Cylinders, Cones

This section describes methods developed to detect spheres,
cylinders and cones. However, most methods detect planes as well.

RANSAC-based algorithms have also been developed to detect
simple surfaces of revolution such as spheres, cylinders
and cones. Methods such as Efficient RANSAC [SWK07] or
multiBaySAC [KL15], described in details in section 3.1, give
stochastic answers to the weaknesses of the RANSAC paradigm.
In particular, they offer an important speed-up over the original
RANSAC implementation. Hence, they are suitable to many
applications that require modeling by planes or simple revolution
surfaces.

Indoor Scenes. Modeling objects in indoor environments using
spheres, cylinders or cones can be used either for reverse
engineering or automation of household robots.

Inspired by the Hough based plane detection, Rabbani et
al. [RVDH05] detect cylinders in 3D point clouds to mainly
model indoor industrial setups. One of the main advantages of the
Hough transform is its robustness to outliers and missing parts of
objects. Later, the cylinders detected using this Hough transform
have been matched between different views and their parameters
integrated into a formulation to estimate the motion between the
views [RDvdHV07].

In the development of automatic household robots, detecting and
reconstructing objects has been carried out using segmentation
methods followed by primitive fitting. This leads to a simple model
of the observed scene [RBMB09, GMLB12], mostly composed of
tables and the objects upon them. The final object model is hybrid,
made of both simple geometric primitives and meshes modeling
non-simple parts of the objects such as pan handles. This gives a
simple and light representation of objects while keeping a faithful
model. For this specific application and context, these methods
efficiently segment observed objects by projecting them on planar
tables, thus reducing the dimensionality of the problem.

Outdoor Scenes Spheres, cylinders and cones are well suited
models for outdoor elements such as trees or cables and urban
elements such as building columns or domes. It also allows
reconstructing modern urban elements such as spherical buildings.

Usually, cities and outdoor environments are easier to segment
than indoor scenes, as building and natural elements have
more distinctive features than objects. Therefore, applying a
segmentation step prior to fitting leads to better results. The
resulting primitives can be used for semantic interpretation and lead
to automated robot navigation in natural environment [LVHH06] or
creation of a global lightweight model of a city [LM12].

Chen et al. [CLL11] exploit the RANSAC primitive detection of
Schnabel et al. [SWK07] to decompose an input point cloud and
refine it to build a high-level textured model of buildings. The
assembly of primitives is performed hierarchically which allows for
easy decomposition of the buildings in parts. The use of a general
primitive detection algorithm such as RANSAC allows recovering
all kinds of regularly-shaped buildings such as e.g. half-spheres for
domes, spheres for spherical buildings or cylinders for towers, in
addition to traditional box-like buildings.

In order to ease the segmentation and fitting process, Wang
et al. [WT04] developed a semi-automated technique to model
buildings from color aerial images. The user is asked to select a
primitive type and approximately fit it to the observed building
part, further refined automatically. Although this method has a
strong requirement for user interaction, it achieves a faithful
reconstruction of buildings from solely aerial views.

Individual Objects. The most frequent use of revolution surfaces
such as spheres, cylinders and cones are for the modeling of
individual objects. They can be mechanical and made exclusively
of this type of shapes, or organic shapes that can be approximated.

Primitive-based region growing methods are favored to model
parts of these objects as those are usually made of one connected
component [LMM98, ZYH∗15, TGB13, AFS06, AP10, BSG∗11,
GG04]. Both simple mechanical parts [LMM98] and more complex
or organic objects [TGB13,ZYH∗15] can be divided into parts that
are easily differentiable by geometric primitive heuristics, hence
the meaningful segmentation performed by these methods.

Lloyd based methods also perform well with individual objects
because clusters will naturally tend to segment object parts.
These methods, usually developed for triangle meshes, perform
iterations of triangle assignment and primitive fitting to the
clusters [WK05,YWLY12]. These extensions of Variational Shape
Approximation [CSAD04] give more accurate results with fewer
but more complex primitives.

The regularization of RANSAC-detected shapes [SWK07] by Li
et al. [LWC∗11] makes RANSAC-based modeling of mechanical
parts very efficient and accurate, especially in the context of reverse
engineering of CAD models. Although, the use of such stochastic
methods may lead to non-connected parts and require further
processing in the space of the shape.

In order to build a 3D model of objects viewed in a single RGB
image, Chen et al. [CZS∗13] require the assistance of the user
who draws strokes over the different parts of the objects. These

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

18 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

strokes, coupled with image processing information such as edges,
allow defining object boundaries modeled by warped cylinders and
cuboids. It is then possible to interactively modify the 3D properties
of the objects such as position, rotation and orientation, and recover
a nearly photorealistic image thanks to inpainting techniques. In
addition to fitting generalized primitives to strokes of a drawing,
Shtof et al. [SAG∗13] use semantic classification of the strokes
to automatically snap the primitives and regularize their spatial
relations. The result is a globally regular primitive modeling of the
input drawing. Obviously, these interactive methods are not suitable
for automatic batch processing of datasets, which limits them to the
modeling of specific images given the need of the user.

5.4 Ellipsoids, Tori, Parallelepipeds

Outdoor Scenes. Complex shapes such as ellipsoids and
parallelepipeds allow modeling organic objects in urban [VLA15]
and natural [LVHH06] environments such as vegetation or rocks.
The analysis of their parameters allows semantic interpretation and
classification of the observed elements. As these natural elements
rarely have a clear boundary, the methods often tend to bound the
observations instead of modeling their exact surface.

Individual Objects. Organically-shaped meshes are best modeled
by complex shapes such as ellipsoids [SS05]. Even though the
results are quite different from the original model, this method
allows very light modeling of complex meshes.

Tori are simple shapes but are mostly seen and used in industrial
environments. Full tori can be detected in mechanical parts
[SWK07], while partial ones model blends in regular objects
[AP10] or elbows in pipes [RDvdHV07].

5.5 Summary Table

Table 4 summarizes all of the described methods to detect simple
geometric primitives in 3D data and lists the characteristics
presented in section 4 for all of them. Methods are ordered by
inverse publication year and first author’s last name. For the
methods having an available implementation, the reader is referred
to Section 6.4.

An interactive web app, allowing one to reorder methods according
to a given characteristic, is provided as supplemental material.

The detection categories correspond to the underlying theoretical
method used for the detection of primitives, described in detail in
Section 3. The theoretical foundation listed in the table corresponds
to the method directly applied to the raw data in order to find
primitives, whether or not it allows computation of the primitive
parameters. Some methods may be based on several theoretical
paradigms, and for those only the first applied method is listed.
For example, RANSAC refinement steps applied after primitive
growing are not listed in the table, although they are described with
the full method in all the above sections.

In summary, the listed detection categories are as follows:

• Stochastic: RANSAC, local statistics;
• Parameter space;

• Clustering: primitive growing, automatic clustering,
segmentation + fitting;

• Other methods: user-assisted.

6 Metrics and Evaluation

This section aims at giving insights into ways to evaluate simple
geometric detection methods, as well as metrics used to model the
error in these methods. It also lists available implementations and
datasets from some of the aforementioned articles.

6.1 Evaluation Methodology

In order to evaluate the quality of a modeling instance made
of simple geometric primitives, different metrics can be used
depending on the application and the performance objective,
including:

• fitting error, detailed in section 6.2;
• processing time measured in milliseconds or number of

processed frames per second;
• simplicity of the model and overdetection: number of primitives.

Some metrics, such as segmentation correctness, need ground truth
information to be computed. This usually requires prior manual and
user-assisted work on the data, which includes:

• segmentation and spatial consistency: objects are correctly
separated by primitives and modeled by one instance each;

• camera poses (in the context of scene analysis).

6.2 Evaluation Metrics

In order to evaluate the quality of an output model made of simple
geometric primitives compared to the input data, different metrics
have been used to estimate the error made with the detected set of
primitives by measuring the distance to the model, or fitting error:

• the simplest metric is the sum of squared distances from points
to the their corresponding primitives. For primitives Si, i ∈ [0,N]
gathering inliers Pi

j, j ∈ [0,M], the fitting error is

ε = ∑
N
i=0 ∑

M
j=0

∥∥∥Pi
j− pro j(Pi

j,Si)
∥∥∥2

with pro j(Pi
j,Si) modeling the projection, i.e. the closest point,

of point Pi
j on its corresponding primitive shape Si;

• the Hausdorff distance [CRS98] defined for two sets of points
a ∈ A and b ∈ B is the highest distance among all points a to the
corresponding closest point of B, considering d() as a given real
distance function:

HAB = maxa∈A{minb∈B d(a,b)} .

6.3 Processing Metrics

The following metrics are used to drive algorithms, although their
values do not make much sense to evaluate of the quality of the
output.

• the quadric error metric, introduced by Garland et al. [GH97] in
order to simplify meshes. By summing squared point-to-plane

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 19

Table 4: Comparison of presented algorithms, details in Section 5.5. Methods are ordered by inverse publication year and first author’s last
name. — Not applicable / Information not available in paper. Moderate / Optional. Good / Required. RGB image. Depth image.

RGB-D image. Point Cloud. 4 Mesh. � Voxel. ∗ Sequence or Set of images.

Method Primitives Context Input Data Detection Category Accuracy Practicality Information Robustness

Pl
an

es

B
ox

es

C
ub

oi
ds

Sp
he

re
s

C
yl

in
de

rs

C
on

es

O
th

er

D
at

a
Fi

de
lit

y

A
bs

tr
ac

tio
n

R
ea

l-t
im

e

Sc
al

ab
ili

ty

N
ee

ds
U

se
r

L
ea

rn
in

g

Tu
ni

ng

Te
m

p.
C

on
si

st
.

Se
m

an
tic

s

N
ee

ds
In

fo

Pr
ov

id
es

M
et

a

N
oi

se

M
is

si
ng

D
at

a

O
ut

lie
rs

C
od

e

Walls Layout [OVWK16] 3 building interiors RANSAC 2 3 —
Regular Planar Modeling [OLA16] 3 building interiors primitive growing 3 3 —
Parallel RANSAC [AEH15] 3 indoor scene primitive growing 2 2
Occupancy Maps [BFF15] 3 indoor scene local statistics 1 3 — —
Planar RGB-D SLAM [ERAB15] 3 indoor scene ∗ RANSAC 2 2
Quaternion Representation [Kae15] 3 indoor scene ∗ RANSAC 2 2
Bayes SAmple Consensus [KL15] 3 3 3 any RANSAC 3 2 —
Boxes around Objects [KHB∗15] 3 indoor scene primitive growing 1 3 — —
3D Kernel Hough Transform [LO15] 3 indoor scene parameter space 3 3 —
3D All The Way [MKRVG15] 3 urban buildings ∗ segmentation + fitting 2 3
RAPter [MMBM15] 3 building interiors primitive growing 2 3 —
Level of Detail [VLA15] 3 3 3 urban buildings 4 4 segmentation + fitting 3 3 —
Labeled KinectFusion [ZXTZ15] 3 indoor scene ∗ � primitive growing 3 2
Generalized Cylinder [ZYH∗15] 3 individual objects 4 4 primitive growing 3 2 — —
Semantic Modeling [CLW∗14] 3 indoor scene ∗ RANSAC 3 2 — —
Agglomerative Clustering [FTK14] 3 indoor scene primitive growing 3 2
Planar Hough Transform [HSSM14] 3 indoor scene ∗ parameter space 2 3
Cluttered Indoor Scans [MPM∗14] 3 building interiors primitive growing 3 2 —
Hierarchical Building Descriptions [OVWK14] 3 3 building interiors RANSAC 3 2 —
Dense Planar SLAM [SMGKD14] 3 indoor scene ∗ primitive growing 2 2
O-Snap [ASF∗13] 3 urban buildings RANSAC 3 3 —
3-Sweep [CZS∗13] 3 3 individual objects user-assisted 3 2 —
Fitting Cuboids [JX13] 3 indoor scene primitive growing 1 2 — —
Learning Object Templates [KLM∗13] 3 individual objects 4 ∗ segmentation + fitting 1 2 — —
Point Set Structuring [LA13] 3 urban buildings RANSAC 2 2 —
Semantic Learning [LGZ∗13] 3 3 3 residential scene primitive growing 3 3 —
Geosemantic Snapping [SAG∗13] 3 3 3 3 individual objects user-assisted 3 3 —
Point-plane SLAM [TJRF13] 3 indoor scene ∗ RANSAC 2 1
Sphere Meshes [TGB13] 3 3 individual objects 4 4 primitive growing 2 3 —
2D-structured Point Cloud [TGRC13] 3 indoor scene primitive growing 2 2
Indoor Robot Navigation [BV12] 3 building interiors ∗ RANSAC 1 1
Monocular Occupancy Maps [CSM12] 3 3 any local statistics 1 3
Objects On Table [GMLB12] 3 3 household scene segmentation + fitting 3 3 — —
Hybrid City Representation [LM12] 3 3 3 3 urban buildings segmentation + fitting 3 2 —
Indoor Plane Mapping [LLL∗12] 3 indoor scene ∗ primitive growing 1 1
Interactive Semantic Modeling [SXZ∗12] 3 indoor scene ∗ primitive growing 2 2
Object Support [SHKF12] 3 indoor scene RANSAC 1 1 —
Planar Surface SLAM [TRIC12] 3 indoor scene ∗ RANSAC 2 2 —
Contracting Segments [WPM∗12] 3 3 3 any primitive growing 2 1 —
Outdoor Planar SLAM [XAZ12] 3 urban buildings ∗ primitive growing 2 1 —
Quadric Surface Fitting [YWLY12] 3 3 3 3 individual objects 4 4 automatic clustering 3 1 —
CAD Model Recovery [BSG∗11] 3 3 3 3 individual objects 4 4 primitive growing 3 2 —
Plane Filtering [BV11] 3 indoor scene ∗ RANSAC 1 2
Algebraic Templates [CLL11] 3 3 3 urban buildings RANSAC 3 3 —
Cluster Normal Space [HHRB11] 3 indoor scene parameter space 1 2 —
GlobFit [LWC∗11] 3 3 3 3 individual objects RANSAC 3 3 —
Facade Partitioning [SHFH11] 3 urban buildings RANSAC 2 3 —
Plane Detection for SLAM [XZZ∗11] 3 indoor scene ∗ primitive growing 2 2 —
Hierarchical Modeling [AP10] 3 3 3 3 3 individual objects primitive growing 3 2 —
Manhattan World Stereo [FCSS09a] 3 urban buildings ∗ parameter space 2 2
Volumetric Integration [FCSS09b] 3 indoor scene ∗ � parameter space 2 1
Hybrid Object Model [RBMB09] 3 3 3 3 household scene segmentation + fitting 3 2 — —
Architectural Modeling [CC08] 3 urban buildings parameter space 2 3 —
Primitive-based registration [RDvdHV07] 3 3 3 3 indoor scene parameter space 2 2 —
3D Object Maps [RBM∗07] 3 indoor scene ∗ RANSAC 2 1 —
Fast RANSAC [SWK07] 3 3 3 3 3 individual objects RANSAC 3 2 —
Hierarchical Segmentation [AFS06] 3 3 3 individual objects 4 4 primitive growing 2 2 —
Outdoor Robot Navigation [LVHH06] 3 3 3 natural scene segmentation + fitting 2 3
Patch RANSAC [WS06] 3 indoor scene ∗ 4 RANSAC 1 1
Cylindric Hough Transform [RVDH05] 3 indoor scene parameter space 3 2 — —
Ellipsoidal Modeling [SS05] 3 organic shapes 4 4 automatic clustering 2 2 — —
Hybrid VSA [WK05] 3 3 3 individual objects 4 4 automatic clustering 2 2 —
VSA [CSAD04] 3 individual objects 4 4 automatic clustering 2 1 —
Local Slippage Analysis [GG04] 3 3 3 3 individual objects primitive growing 2 2 — — —
Tensor Voting [Sch04] 3 urban buildings primitive growing 1 2 — —
Assisted Model-Image Fitting [WT04] 3 3 3 3 urban buildings user-assisted 1 2
Billboard Clouds [DDSD03] 3 individual objects 4 4 parameter space 2 1 —
Hough-based Reconstruction [WO02] 3 indoor scene ∗ parameter space 1 2 —
Grow and Merge [MLM01] 3 3 3 individual objects primitive growing 2 3 — —
Hough-based House Modeling [VD01] 3 residential scene parameter space 2 2 —
Plane-based Registration [WGC99] 3 indoor scene ∗ segmentation + fitting 1 2
Least-Squares Fitting [LMM98] 3 3 3 3 individual objects primitive growing 2 2 — —

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

20 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

Method Language Link
3D Kernel Hough Transform [LO15] C++ link
RAPter [MMBM15] C++ link
Generalized Cylinder [ZYH∗15] C++ link
Agglomerative Clustering [FTK14] C++ link
Cluttered Indoor Scans [MPM∗14] C++ link
Fitting Cuboids [JX13] Matlab link
Learning Object Templates [KLM∗13] C++ link
Geosemantic Snapping [SAG∗13] C# link
Sphere Meshes [TGB13] C++ link
Indoor Robot Navigation [BV12] C++ link
Object Support [SHKF12] Matlab link
Plane Filtering [BV11] C++ link
GlobFit [LWC∗11] C++ link
Plane Detection for SLAM [XZZ∗11] C++ link
Fast RANSAC (CGAL) [SWK07] C++ link
Fast RANSAC (original) [SWK07] C++ link
Hierarchical Segmentation [AFS06] C++ link
Billboard Clouds [DDSD03] C++ link
Variants of RANSAC (PCL) C++ link

Table 5: Available source code (links accessed February 09, 2018)

distances, a quadratic form appears and allows efficient
evaluation of the error at any point in space. For a vertex v and
N planes Pi, i ∈ [1,N] with normals pi, i ∈ [1,N]:

ε = ∑
N
i=1 dist(v,pi)

2 = ∑
N
i=1(p

T
i v)2

= ∑
N
i=1 vT pip

T
i v = vT (∑N

i=1 pip
T
i)v = vT Qv .

In the scope of the original work [GH97], summing the Q
matrices associated with the two vertices of an edge allows
evaluating the error produced by the collapse of this edge. This
provides a global ordering of edges to collapse for progressive
mesh simplification. In the field of geometric primitive detection,
Yan et al. [YWLY12] perform Lloyd-like iterations based on the
quadric fitting error on an input triangle mesh;

• an extension of the quadric error metric, called the spherical
quadric error metric (SQEM) [TGB13] allows to iteratively
collapse edges to spheres, with potential null radii, progressively
moving from a surface to a volume representation as the model is
simplified. The SQEM represents the distance from a sphere to
an oriented plane and is minimized to identify the best sphere
approximation for a set of triangles, with the resulting mesh
of spheres connected by edges and triangles being called a
Sphere-Mesh. This is instrumental for extreme approximation,
shape editing and, through its later extensions, animated mesh
analysis [TGBE16] and hand recognition [TPT16].

6.4 Available Implementations

Implementation for some of the presented methods are available
online. They are listed in Table 5. Links are only usable in the web
version of this survey.

6.5 Datasets

Some authors provide the data used in their work in order to
reproduce the results or test it against other methods. Articles have

Name or Reference Type of Data Link

[LO15] 3D point clouds link
RAPter [MMBM15] Point cloud + Detected Primitives link
[ZYH∗15] 3D models (OBJ) + Parameters + Detected

Primitives
link

[CLW∗14] RGB-D images + Generated Model link
[MPM∗14] Point cloud + Normals link
[KLM∗13] 3D models + Ground truth link
SUN3D [XOT13] Sequence of RGB-D images + Camera poses

+ Segmentation
link

[SXZ∗12] RGB-D images + Matched 3D models link
NYU Depth Dataset
V2 [SHKF12]

Sequence of RGB-D images + Segmentation link

GlobFit [LWC∗11] Point cloud from individual objects +
Detected primitives

link

[SWK07] Point cloud from individual objects +
Detected primitives

link

Table 6: Available datasets (links accessed February 09, 2018)

also been published to present a benchmark on 3D data and gather
a certain amount of data along with ground truth information.
Available datasets are listed in Table 6. Again, links are only usable
in the web version of this survey.

7 Discussion

7.1 Concluding Remarks

Common geometric shapes, such as planes, cuboids, spheres,
cylinders, cones, tori, ellipsoids and parallelepipeds are the
building blocks of most of the objects present in man-made
environments and of some natural elements as well. Their
simplicity makes them a perfect tool for the analysis of heavy and
complex 3D data acquired from noisy 3D scanners, as they allow
both reduction of the size of the data and complexity of the model
for a computer.

For scene modeling in the context of robotics, a simple geometric
primitive-based representation allows faster and more accurate
processing for real-time applications and autonomous navigation.
For the automatic reconstruction of objects or buildings, geometric
primitives can help recover the regularity of the scanned items. In
the area of computer graphics, shape processing can also make
use of geometric primitives to simplify objects and apply simple
algorithms for deformation or animation.

In this survey, we have described the principles and proposed a set
of characteristics together with a classification for the most recent
methods aiming at detecting such simple geometric primitives
in captured 3D data. We categorized the detection of simple
geometric primitives in 3D data such as depth images, point clouds
or polygonal meshes using several well established theoretical
foundations that make use of stochastic paradigms, parameter
spaces or clustering and segmentation techniques.

In addition to discussing and comparing recent detection methods
along several criteria, this survey provides a classification of the
methods based on their applications. Characteristics such as the

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

http://www.inf.ufrgs.br/~oliveira/pubs_files/HT3D/HT3D_page.html
http://geometry.cs.ucl.ac.uk/projects/2015/regular-arrangements-of-planes/
http://vcc.szu.edu.cn/research/2015/GCD/
http://www.merl.com/research/license
http://www.ifi.uzh.ch/vmml/publications/ObjDetandClas.html
http://hao-jiang.net/
http://www.vovakim.com/projects/CorrsTmplt/doc_code.php
https://bitbucket.org/alexshtf/sketchmodeller
http://perso.telecom-paristech.fr/~boubek/papers/SphereMeshes/
http://www.cs.cmu.edu/~coral/projects/localization/source.html
http://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html
https://github.com/robocomp/robocomp-robolab/tree/master/experimental/FSPF
https://github.com/dirkholz/GlobFit
https://github.com/Itseez/opencv_contrib/blob/master/modules/rgbd/src/plane.cpp
http://doc.cgal.org/latest/Point_set_shape_detection_3/index.html#Chapter_Point_Set_Shape_Detection
http://cg.cs.uni-bonn.de/aigaion2root/attachments/Software%20v1.1.zip
http://efpisoft.sourceforge.net/
https://svn.code.sf.net/p/ogreaddons/code/trunk/billboardclouds/
http://docs.pointclouds.org/trunk/group__sample__consensus.html
http://www.inf.ufrgs.br/~oliveira/pubs_files/HT3D/HT3D_page.html
http://geometry.cs.ucl.ac.uk/projects/2015/regular-arrangements-of-planes/
http://vcc.szu.edu.cn/research/2015/GCD/
http://cg.cs.tsinghua.edu.cn/people/~kang/semanticmodeling.htm
http://www.ifi.uzh.ch/vmml/publications/ObjDetandClas.html
http://www.vovakim.com/projects/CorrsTmplt/doc_data.php
http://sun3d.cs.princeton.edu/
http://tianjiashao.com/ProjectPages/2012/indoor.htm
http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2
https://code.google.com/archive/p/globfit/downloads
http://cg.cs.uni-bonn.de/en/publications/paper-details/schnabel-2009-completion/

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 21

type of input and output data, the context in which methods are
presented and the performance of algorithms on several criteria
allow easy identification of the ones that best suit an application’s
needs. In consequence, the different tables presented in the last part
of the manuscript aim at being very instrumental and shall be seen
as the main tools to exploit for further research.

We also list available implementations and datasets for some of
the presented methods, for fast integration and testing within an
existing framework.

7.2 Towards Spatial Reasoning

Spatial reasoning enriches data in terms of space and organization
through structural information. In the case of 3D space modeling,
spatial reasoning is possible by acquiring qualitative and
quantitative knowledge of spatial locations in the observed scene.
In the particular context of this survey, these are represented by the
positions and orientations of detected objects or parts, modeled by
simple geometric primitives, with relations to each other.

Several recent methods have looked into quantitatively describing
these relations, in order to infer information about the scene
structure. They can be represented by a graph of objects where the
edges model rigid transformation matrices.

Li et al. [LWC∗11] define a graph of geometric relations between
parts of objects modeled as simple primitives. Initially complex
because of the noise, this graph is simplified by merging nodes
and a regular model can be obtained. The simplification is based
on a limited number of relations of coplanarity, coaxiality and
orthogonality between object parts.

To model relations between objects in a closed room, which
can be particularly useful for household robots, Rusu et
al. [RBM∗07] define relations between detected objects with 3D
rigid transformation matrices. In the same context, Silberman
et al. [SHKF12] hierarchically segment the scene into objects
and infer adjacency relations between them. The method allows
building a graph of objects supporting each other.

In order to model full building interiors, Ochmann et
al. [OVWK14] detect doors and windows to create a graph
of connectivity between rooms. Monszpart et al. [MMBM15]
assume a regular structure between walls and floors in the building
and find regular arrangements of planes to model that structure.
This creates a limited number of geometric relations between parts
of the building.

As a direct follow-up to Efficient RANSAC [SWK07], Schnabel
et al. [SWWK08] use the detected primitives to build a topology
graph of object and object parts within 3D point clouds. The
analysis of this graph leads to the recognition and semantic
interpretation of objects in different types of scans.

Although used in the methods described above, Spatial Reasoning
remains largely under-exploited, in particular with relation to the
ground fitting framework (e.g., E.M.) which could embed such a
notion in its core behavior.

7.3 Research Challenges

The problem of simple geometric primitive detection in captured
3D data raises numerous challenges in the context of modern
applications. Although consumer depth cameras represent a great
opportunity for many applications, they still raise many issues as
their price range implies a lower quality in terms of noise, temporal
consistency and missing data. The more general inlier/outlier
decision is also existing with this type of data. Many solutions have
been proposed to fix the issues due to noise and outliers or even
missing data, but they usually imply a lower performance for the
solution to stay generic enough. Indoor scene modeling methods
based on streams of depth data seem to perform generally well,
as the repetition of observations of a closed environment allows
building a noise-free and consistent model through time. Most
methods aim at modeling man-made environments using planes
or even model curved objects with this primitive shape, because
of its simplicity and the fact that it can be easily identified with
known geometric heuristics such as normal orientations. Fewer
methods detect more complex primitives in order to build a more
reliable model of the data which allows even lighter representations
for a similar quality. Therefore, future research challenges lean
towards the improvement of results in terms of completeness and
consistency of the model. In particular, completeness can take
the form of more complex primitives, although they need to stay
generic and not data-specific. Meanwhile, overall performance and
compatibility with real time constraints remain a key enabler for
future applications.

Interpretation The first challenge we identify when detecting
geometric primitives in 3D data is to give more meaning to the
detected primitives, to get more information beyond a list of 3D
shapes. In order to have better interpretation and make sense of the
resulting objects, several research paths could be explored.

First, semantic classification has already been used in several cases,
but usually as a prior for segmentation to discriminate objects or
parts instead of rising conclusions in the output.

Second, beyond the extraction of per-primitive semantics, a global
consistency check is often missing in state-of-the-art methods, with
two instances of the same semantic object being potentially fit with
different primitive sets.

Third, the amount of variability of primitives detected in a scene,
as well as their uncertainty level, are, so far, not explicitly provided
on the output channel of the detection systems. Instead of a
static primitive, new systems could be built to provide parametric
primitives with restricted parameter spaces. Allowing the user to
explore the space of possible fitted primitives could be achieved
interactively through specifically modulated ranges of parameters
and interfaces. A few methods were developed in that direction, in
order to fit generalized primitives to 2D images. 3-Sweep [CZS∗13]
ask the user to draw strokes along the axes of the primitives, while
Shtof et al. [SAG∗13] automatically fit a selected primitive to parts
of drawings. In both cases, an advanced user interface is required
and the processing is not fully automatic. On the other hand,
the Generalized Cylinder Decomposition [ZYH∗15] automatically
segments a given mesh model into a set of warped cylinders by
growing regions. This type of primitives allows modeling faithfully

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

22 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

trivial objects from our daily lives that cannot be constructed only
with the simpler primitives, while keeping a rather simple set of
parameters.

To some extent, the spatial relationships between the detected
primitives could offer an interpretation of the scene which
goes beyond its sole geometry, including functional behavior,
mechanical constraints and visibility cues. While primitive
detection may often be seen as the first step of such higher level
analysis, the whole process can also be designed as an interleaved
loop, where the spatial relationships help better optimize the
primitives and the primitive placements help better infer the
relationships.

Improvement of the Processing Quite a number of methods
still require long preprocessing, preventing them from being
exploited in real time or on large data sets. To that end,
the development of primitive detection procedures specifically
designed for fine-grained parallel execution would allow to
harvest modern GPU horsepower. In that direction, Oesau et
al. [OLA16] recently proposed an efficient implementation of their
primitive growing building modeling method. By applying parallel
operations of region growing and plane fitting to separate data
segments, the whole processing time could be reduced.

Similarly, parameter space methods have a significant memory
footprint that prevents using them e.g. on embedded systems.
Designing compressed representations for these spaces, while
supporting efficient random-access capabilities, would be key to
their further use in such contexts.

While most methods take raw data as input, one can think about
the high level data interpretation brought by the fitted geometric
primitives as information to be introduced back into the low-level
capture device and help tailor the raw sampling process itself.

Also, with the rise of 3D+time data sets, an important shape
analysis problem will be to detect "simple primitives with simple
motions" in complex scenes. Again, the objective is the explanation
of such scenes at higher levels, prior to more advanced reasoning.

Although a few methods already moved in that direction [TGB13,
AFS06, AP10], high level primitive recognition appears to be
a multiscale problem. It therefore implies a multiscale output
describing complex scenes with simple primitives which have
themselves a multiscale description and hierarchical relationships.
A number of research directions can be designed around this idea.

Connection to Deep Learning There are several ways to envision
connections with the rising deep learning methodology. At first,
deep neural networks may be used for detecting and fitting
primitives, using a similar architecture to what current deep
recognition systems use [KSH12], where convolution layers help
extract advanced features from raw data and dense layers make
possible reconstructing primitive placements and parameters. But
simple primitives sets can also be seen as media to vectorize
complex 3D scenes when it comes to learning higher level
features, offering a compact representation for input/output stream
of neural networks that may impact favorably time and memory
consumption [WSK∗15]. Last, interestingly, the geometry of a deep
neural network is indeed complex and hard to analyze. Simple

primitive detection algorithms might then be used to simplify
inception or drive neural nets processing e.g., compression,
decimation and visualization, by modeling the neural net itself,
raising fundamental questions regarding its spatial embedding.

Acknowledgements This work is partially supported by the
French National Research Agengy (ANR) under grant ANR
16-LCV2-0009-01 ALLEGORI and by BPI France, under grant
PAPAYA.

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 23

Table 7: Visual compendium of presented algorithms. Images courtesy of below cited references.

Least-Squares
Fitting [LMM98]

Plane-based
Registration [WGC99]

Hough-based House
Modeling [VD01]

Grow and
Merge [MLM01]

Hough-based
Reconstruction

[WO02]

Billboard
Clouds [DDSD03]

Assisted Model-Image
Fitting [WT04]

Tensor Voting [Sch04]
Local Slippage

Analysis [GG04]
VSA [CSAD04] Hybrid VSA [WK05]

Ellipsoidal
Modeling [SS05]

Cylindric Hough
Transform [RVDH05]

Patch
RANSAC [WS06]

Outdoor Robot
Navigation [LVHH06]

Hierarchical
Segmentation [AFS06]

Fast
RANSAC [SWK07]

3D Object
Maps [RBM∗07]

Primitive-based
registration

[RDvdHV07]

Architectural
Modeling [CC08]

Hybrid Object
Model [RBMB09]

Volumetric
Integration [FCSS09b]

Manhattan World
Stereo [FCSS09a]

Hierarchical
Modeling [AP10]

Plane Detection for
SLAM [XZZ∗11]

Facade
Partitioning [SHFH11]

GlobFit [LWC∗11]
Cluster Normal

Space [HHRB11]
Algebraic

Templates [CLL11]
Plane Filtering [BV11]

(continued on next page)

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

24 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

CAD Model
Recovery [BSG∗11]

Quadric Surface
Fitting [YWLY12]

Outdoor Planar
SLAM [XAZ12]

Contracting
Segments [WPM∗12]

Planar Surface
SLAM [TRIC12]

Object
Support [SHKF12]

Interactive Semantic
Modeling [SXZ∗12]

Indoor Plane
Mapping [LLL∗12]

Hybrid City
Representation [LM12]

Objects On
Table [GMLB12]

Monocular Occupancy
Maps [CSM12]

Indoor Robot
Navigation [BV12]

2D-structured Point
Cloud [TGRC13]

Sphere
Meshes [TGB13]

Point-plane
SLAM [TJRF13]

Geosemantic
Snapping [SAG∗13]

Semantic
Learning [LGZ∗13]

Point Set
Structuring [LA13]

Learning Object
Templates [KLM∗13]

Fitting Cuboids [JX13] 3-Sweep [CZS∗13] O-Snap [ASF∗13]
Dense Planar

SLAM [SMGKD14]

Hierarchical Building
Descriptions
[OVWK14]

(continued on next page)

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 25

Cluttered Indoor
Scans [MPM∗14]

Planar Hough
Transform [HSSM14]

Agglomerative
Clustering [FTK14]

Semantic
Modeling [CLW∗14]

Generalized
Cylinder [ZYH∗15]

Labeled KinectFusion
[ZXTZ15]

Level of
Detail [VLA15]

RAPter [MMBM15]
3D All The

Way [MKRVG15]
3D Kernel Hough
Transform [LO15]

Boxes around
Objects [KHB∗15]

Bayes SAmple
Consensus [KL15]

Quaternion
Representation [Kae15]

Planar RGB-D
SLAM [ERAB15]

Occupancy
Maps [BFF15]

Parallel
RANSAC [AEH15]

Regular Planar
Modeling [OLA16]

Walls
Layout [OVWK16]

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

26 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

natural outdoor
scene

com
m

unity
input data

graphics

image

vision

robotics

mesh

point cloud

depth map

 : code is available

scene
complexity
(input context)

output primitives

indoor
scene

single
view of

scene

urban
outdoor

scene

organic
shape
object

simple
object

planar
patches planes boxes planes + other primitives

planes +
surfaces

VSA BillboardClouds

Shen11

Chen08

Khan2015

Bagaudtinov15

Jiang13

Kim13

Martinovic2015

Lin13

Weingarten06

Mattausch14

Shao12

Wang02

Chen14

Zhang15

Yan12

Verdie15

Gen. Cyl.

Goron12 Rusu09

HybridVSA

Attene06

Carr12

Woodford12

Marshall01

Attene10

Lafarge12

Schnabel07

Rabbani05

SphereMeshes 3-sweep

Simari05

Lukacs98

Gelfand04

GlobFit

Chen11

Lalonde06

RAPter

Schuster04 Lafarge13

Xiao12 O-Snap

Silberman12Holz11

Feng14

Hulik2014

Salas14

Kaess15

Xiao11

Ochmann14/16

Furukawa09Manhattan

Furukawa09

Elghor15

Lee12

Whitaker99

Biswas11/12

Taguchi13Trevor12

Rusu07

Trevor13Parallel RANSAC

Oesau16

Kang15

Beniere11

Wang04Vosselman01

Limberger15

Shtof13

Figure 10: Plot of input context / output primitive type for all methods (see Section 2).

abstraction
level

data fidelity

output prim
itives

input data

planar patches

planes

boxes

planes + primitives

planes + surfaces

mesh

point cloud

depth map

 : code is available

1 2 3

1

2

3

Zhang15

Yan12

Woodford12

Taguchi13

Xiao12

Furukawa09

Rusu07

BillboardClouds

Silberman12

Biswas12

Weingarten06

Lee12

Biswas11

Whitaker99

Furukawa09Manhattan

Xiao11 Parallel RANSAC

Attene06

Schuster04

Holz11Jiang13

Kim13 Wang02

VSA

Trevor12

Elghor15

Rabbani07 Kaess15 Salas14

HybridVSA

Lukacs98

Shao12

Lafarge13

Trevor13 Simari05

Gelfand04

3-sweepAttene10Schnabel07

Lafarge12 Feng14 Rusu09

Ochmann14
Mattausch14

Gen. Cyl.Rabbani05

Chen14
O-Snap

Verdie15

Lin13

Goron12

GlobFit
Chen11

Marshall01 RAPter

Shen11

Martinovic2015

Ochmann16

SphereMeshes

Hulik2014 Chen08

Lalonde06

Bagaudtinov15

Khan2015

Carr12

Oesau16

Kang15 Beniere11

Wang04

Vosselman01

Limberger15

Shtof13

Figure 11: Plot of data fidelity values / abstraction levels for all methods (see Section 4.2)

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 27

References

[AB73] AGIN G. J., BINFORD T. O.: Computer description of curved
objects. In Proceedings of the 3rd international joint conference
on Artificial intelligence (1973), Morgan Kaufmann Publishers Inc.,
pp. 629–640. 2

[AB99] AMENTA N., BERN M.: Surface reconstruction by voronoi
filtering. Discrete & Computational Geometry 22, 4 (1999), 481–504.
4

[ABCO∗03] ALEXA M., BEHR J., COHEN-OR D., FLEISHMAN S.,
LEVIN D., SILVA C. T.: Computing and rendering point set surfaces.
Visualization and Computer Graphics, IEEE Transactions on 9, 1
(March 2003), 3–15. 4

[ACK01] AMENTA N., CHOI S., KOLLURI R. K.: The power crust.
Proceedings of the sixth ACM symposium on Solid modeling and
applications (June 2001), 249–266. 4

[AEH15] ALEHDAGHI M., ESFAHANI M. A., HARATI A.: Parallel
ransac: Speeding up plane extraction in rgbd image sequences using
gpu. Computer and Knowledge Engineering (ICCKE) (October 2015),
295–300. 9, 13, 15, 19, 25

[AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hierarchical
mesh segmentation based on fitting primitives. The Visual Computer 22,
3 (March 2006), 181–193. 9, 17, 19, 20, 22, 23

[And79] ANDREW A. M.: Another efficient algorithm for convex hulls
in two dimensions. Information Processing Letters 9, 5 (1979), 216–219.
5

[AP10] ATTENE M., PATANÈ G.: Hierarchical structure recovery of
point-sampled surfaces. Computer Graphics Forum 29, 6 (September
2010), 1905–1920. 5, 9, 15, 17, 18, 19, 22, 23

[ASF∗13] ARIKAN M., SCHWÄRZLER M., FLÖRY S., WIMMER M.,
MAIERHOFER S.: O-snap: Optimization-based snapping for modeling
architecture. ACM SIGGRAPH 32, 6 (November 2013), 6:1–6:15. 2, 6,
11, 12, 13, 14, 15, 16, 19, 24

[Avr76] AVRIEL M.: Nonlinear programming: analysis and methods.
Prentice-Hall series in automatic computation (1976). 11

[Bal81] BALLARD D. H.: Generalizing the hough transform to detect
arbitrary shapes. Pattern recognition 13, 2 (1981), 111–122. 7

[BFF15] BAGAUTDINOV T., FLEURET F., FUA P.: Probability
occupancy maps for occluded depth images. Computer Vision and
Pattern Recognition (June 2015). 6, 13, 15, 16, 19, 25

[BGZ16] BUSÉ L., GALLIGO A., ZHANG J.: Extraction of cylinders and
cones from minimal point sets. Graphical Models 86 (2016), 1–12. 6

[BL79] BEUCHER S., LANTUEJOUL C.: Use of watersheds in contour
detection. International Workshop on Image Processing: Real-time Edge
and Motion Detection/Estimation, Rennes, France. (September 1979).
11

[BSG∗11] BÉNIÈRE R., SUBSOL G., GESQUIÈRE G., LE BRETON F.,
PUECH W.: Recovering primitives in 3D cad meshes. IS&T/SPIE
Electronic Imaging (2011), 78640R–78640R. 9, 17, 19, 24

[BTS∗14] BERGER M., TAGLIASACCHI A., SEVERSKY L., ALLIEZ
P., LEVINE J., SHARF A., SILVA C.: State of the art in surface
reconstruction from point clouds. EUROGRAPHICS star reports (April
2014), 161–185. 3, 4

[BV11] BISWAS J., VELOSO M.: Fast sampling plane filtering, polygon
construction and merging from depth images. Robotics: Science and
Systems Conference (RSS) (June 2011). 5, 19, 20, 23

[BV12] BISWAS J., VELOSO M.: Depth camera based indoor mobile
robot localization and navigation. Robotics and Automation (ICRA)
(May 2012), 1697–1702. 16, 19, 20, 24

[CC08] CHEN J., CHEN B.: Architectural modeling from sparsely
scanned range data. International Journal of Computer Vision 78, 2-3
(July 2008), 223–236. 8, 13, 16, 19, 23

[CGF09] CHEN X., GOLOVINSKIY A., FUNKHOUSER T.: A benchmark
for 3D mesh segmentation. ACM Transactions on Graphics (Proc.
SIGGRAPH) 28, 3 (August 2009). 3

[CLL11] CHEN J.-Y., LAI H.-J., LIN C.-H.: Point cloud modeling using
algebraic template. International Journal of Innovative Computing,
Information and Control 7, 4 (April 2011), 1521–1532. 11, 13, 14, 17,
19, 23

[CLW∗14] CHEN K., LAI Y.-K., WU Y.-X., MARTIN R., HU S.-M.:
Automatic semantic modeling of indoor scenes from low-quality rgb-d
data using contextual information. ACM Transactions on Graphics 33, 6
(November 2014), 208:1–208:12. 13, 14, 15, 16, 19, 20, 25

[CM02] COMANICIU D., MEER P.: Mean shift: A robust approach
toward feature space analysis. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 24, 5 (May 2002), 603–619. 10

[CM05] CHUM O., MATAS J.: Matching with prosac-progressive sample
consensus. Computer Vision and Pattern Recognition (June 2005),
220–226. 6

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.: Metro: Measuring
error on simplified surfaces. Computer Graphics Forum 17, 2 (August
1998), 167–174. 18

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Variational
shape approximation. ACM Transactions on Graphics (TOG) 23, 3
(August 2004), 905–914. 2, 10, 12, 14, 16, 17, 19, 23

[CSM12] CARR P., SHEIKH Y., MATTHEWS I.: Monocular object
detection using 3d geometric primitives. ECCV (October 2012),
864–878. 5, 6, 13, 16, 19, 24

[CZS∗13] CHEN T., ZHU Z., SHAMIR A., HU S.-M., COHEN-OR
D.: 3-sweep: Extracting editable objects from a single photo. ACM
Transactions on Graphics (TOG) 32, 6 (November 2013), 195. 11, 13,
15, 17, 19, 21, 24

[DDSD03] DÉCORET X., DURAND F., SILLION F. X., DORSEY J.:
Billboard clouds for extreme model simplification. ACM Transactions
on Graphics (TOG) 22, 3 (August 2003), 689–696. 2, 7, 14, 16, 19, 20,
23

[DH72] DUDA R. O., HART P. E.: Use of the hough transformation to
detect lines and curves in pictures. Communications of the ACM 15, 1
(January 1972), 11–15. 7

[DMPT01] DEVILLERS O., MOURRAIN B., PREPARATA F.,
TREBUCHET P.: On circular cylinders by four or five points in
space. INRIA (2001). 6

[Ebr15] EBRAHIM M.: 3d laser scanners’ techniques overview.
International Journal of Science and Research (IJSR) 4 (10 2015),
5–611. 1

[ERAB15] ELGHOR H. E., ROUSSEL D., ABABSA F., BOUYAKHF
E. H.: Planes detection for robust localization and mapping in rgb-d
slam systems. 3DV (October 2015), 452–459. 16, 19, 25

[FB81] FISCHLER M. A., BOLLES R. C.: Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM 24, 6 (June 1981),
381–395. 6

[FCSS09a] FURUKAWA Y., CURLESS B., SEITZ S. M., SZELISKI R.:
Manhattan-world stereo. CVPR (June 2009), 1422–1429. 8, 16, 19, 23

[FCSS09b] FURUKAWA Y., CURLESS B., SEITZ S. M., SZELISKI R.:
Reconstructing building interiors from images. ICCV (September 2009),
80–87. 3, 14, 15, 19, 23

[FH75] FUKUNAGA K., HOSTETLER L. D.: The estimation of the
gradient of a density function, with applications in pattern recognition.
Information Theory, IEEE Transactions on 21, 1 (January 1975), 32–40.
10

[FH83] FAUGERAS O. D., HEBERT M.: A 3-d recognition and
positioning algorithm using geometrical matching between primitive
surfaces. In Proceedings of the Eighth international joint conference
on Artificial intelligence-Volume 2 (1983), Morgan Kaufmann Publishers
Inc., pp. 996–1002. 2

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

28 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

[FO08] FERNANDES L. A., OLIVEIRA M. M.: Real-time line
detection through an improved hough transform voting scheme. Pattern
recognition 41, 1 (2008), 299–314. 7

[Fol96] FOLEY J.: 12.7 Constructive Solid Geometry. Computer
Graphics: Principles and Practice, Addison-Wesley systems
programming series (1996), 557–558. 4

[FS96] FAROUKI R. A., SVERRISSON R.: Approximation of rolling-ball
blends for free-form parametric surfaces. Computer-Aided Design 28, 11
(1996), 871–878. 4

[FTK14] FENG C., TAGUCHI Y., KAMAT V. R.: Fast plane extraction
in organized point clouds using agglomerative hierarchical clustering.
ICRA (June 2014), 6218–6225. 5, 9, 15, 19, 20, 25

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation using local
slippage analysis. Eurographics, symposium on Geometry processing
(July 2004), 214–223. 9, 17, 19, 23

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. Proceedings of the 24th annual conference on
Computer graphics and interactive techniques (August 1997), 209–216.
18, 20

[GMLB12] GORON L. C., MARTON Z.-C., LAZEA G., BEETZ M.:
Robustly segmenting cylindrical and box-like objects in cluttered scenes
using depth cameras. Proceedings of ROBOTIK 2012 (May 2012), 1–6.
2, 11, 14, 17, 19, 24

[GVL96] GOLUB G., VAN LOAN C.: Matrix computations. Johns
Hopkins Studies in the Mathematical Sciences (1996). 11

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J.,
STUETZLE W.: Surface reconstruction from unorganized points.
Computer Graphics and Applications 26, 2 (March 1992). 4

[HHNM80] HAKALA D., HILLYARD R., NOURSE B., MALRAISON P.:
Natural quadrics in mechanical design. Autofact West 1 (1980), 363–378.
4

[HHRB11] HOLZ D., HOLZER S., RUSU R. B., BEHNKE S.: Real-time
plane segmentation using rgb-d cameras. RoboCup 2011 (July 2011),
306–317. 5, 8, 13, 16, 19, 23

[Hou62] HOUGH P. V. C.: Method and means for recognizing complex
patterns. US Patent 3,069,654 (December 1962). 7

[HP82] HEBERT M., PONCE J.: A new method for segmenting
3-d scenes into primitives. In Proceedings of the 6th International
Conference on Pattern Recognition (Munich, West Germany, October
1982), pp. 836– 838. 2

[HSSM14] HULIK R., SPANEL M., SMRZ P., MATERNA Z.: Continuous
plane detection in point-cloud data based on 3d hough transform. Journal
of visual communication and image representation 25, 1 (January 2014),
86–97. 7, 13, 16, 19, 25

[JH99] JOHNSON A. E., HEBERT M.: Using spin images for efficient
object recognition in cluttered 3d scenes. IEEE Transactions on pattern
analysis and machine intelligence 21, 5 (May 1999), 433–449. 13

[JX13] JIANG H., XIAO J.: A linear approach to matching cuboids in
rgbd images. Computer Vision and Pattern Recognition (CVPR) (June
2013), 2171–2178. 11, 13, 14, 15, 16, 19, 20, 24

[Kae15] KAESS M.: Simultaneous localization and mapping with infinite
planes. ICRA (May 2015). 16, 19, 25

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface
reconstruction. Proceedings of the fourth Eurographics symposium on
Geometry processing 7 (June 2006). 4

[KEB91] KIRYATI N., ELDAR Y., BRUCKSTEIN A. M.: A probabilistic
hough transform. Pattern recognition 24, 4 (1991), 303–316. 7

[KHB∗15] KHAN S. H., HE X., BENNAMOUN M., SOHEL F.,
TOGNERI R.: Separating objects and clutter in indoor scenes. Computer
Vision and Pattern Recognition (June 2015). 9, 11, 13, 15, 16, 19, 25

[KL15] KANG Z., LI Z.: Primitive fitting based on the efficient
multibaysac algorithm. PloS one 10, 3 (2015), e0117341. 6, 17, 19,
25

[KLM∗13] KIM V. G., LI W., MITRA N. J., CHAUDHURI S.,
DIVERDI S., FUNKHOUSER T.: Learning part-based templates from
large collections of 3d shapes. Transactions on Graphics (Proc. of
SIGGRAPH) 32 (November 2013). 10, 11, 13, 14, 15, 17, 19, 20, 24

[KSH12] KRIZHEVSKY A., SUTSKEVER I., HINTON G. E.: Imagenet
classification with deep convolutional neural networks. In Advances in
Neural Information Processing Systems 25. 2012, pp. 1097–1105. 22

[LA13] LAFARGE F., ALLIEZ P.: Surface reconstruction through point
set structuring. EUROGRAPHICS 32, 2pt2 (May 2013), 225–234. 6, 14,
16, 19, 24

[LGZ∗13] LIN H., GAO J., ZHOU Y., LU G., YE M., ZHANG C., LIU
L., YANG R.: Semantic decomposition and reconstruction of residential
scenes from lidar data. ACM Transactions on Graphics, (Proc. of
SIGGRAPH) 32, 4 (November 2013). 9, 11, 13, 14, 15, 16, 19, 24

[LLL∗12] LEE T.-K., LIM S., LEE S., AN S., OH S.-Y.: Indoor mapping
using planes extracted from noisy rgb-d sensors. Intelligent Robots and
Systems (IROS) (October 2012), 1727–1733. 9, 15, 19, 24

[LLLM86] LI H., LAVIN M. A., LE MASTER R. J.: Fast hough
transform: A hierarchical approach. Computer Vision, Graphics, and
Image Processing 36, 2-3 (1986), 139–161. 7

[Llo82] LLOYD S. P.: Least squares quantization in pcm. Information
Theory, IEEE Transactions on 28, 2 (March 1982), 129–137. 9, 16

[LM12] LAFARGE F., MALLET C.: Creating large-scale city models
from 3d-point clouds: a robust approach with hybrid representation.
International journal of computer vision 99, 1 (August 2012), 69–85.
5, 10, 14, 17, 19, 24

[LMM98] LUKÁCS G., MARTIN R., MARSHALL D.: Faithful
least-squares fitting of spheres, cylinders, cones and tori for reliable
segmentation. ECCV (June 1998), 671–686. 2, 9, 11, 15, 17, 19, 23

[LO15] LIMBERGER F. A., OLIVEIRA M. M.: Real-time detection of
planar regions in unorganized point clouds. Pattern Recognition 48, 6
(2015), 2043–2053. 7, 14, 16, 19, 20, 25

[Lon98] LONCARIC S.: A survey of shape analysis techniques. Pattern
recognition 31, 8 (August 1998), 983–1001. 3

[LPRM02] LÉVY B., PETITJEAN S., RAY N., MAILLOT J.: Least
squares conformal maps for automatic texture atlas generation. ACM
Transactions on Graphics (TOG) 21, 3 (July 2002), 362–371. 2

[LVHH06] LALONDE J.-F., VANDAPEL N., HUBER D., HEBERT M.:
Natural terrain classification using three-dimensional ladar data for
ground robot mobility. Journal of Field Robotics 23, 10 (November
2006), 839 – 861. 10, 12, 13, 14, 15, 17, 18, 19, 23

[LWC∗11] LI Y., WU X., CHRYSANTHOU Y., SHARF A., COHEN-OR
D., MITRA N. J.: Globfit: Consistently fitting primitives by discovering
global relations. ACM Transactions on Graphics 30, 4 (July 2011),
52:1–52:12. 2, 6, 11, 12, 13, 17, 19, 20, 21, 23

[Mac67] MACQUEEN J.: Some methods for classification and analysis of
multivariate observations. Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability 1, 14 (1967), 281–297. 9

[MC04] MATAS J., CHUM O.: Randomized ransac with t d, d test. Image
and vision computing 22, 10 (September 2004), 837–842. 6

[MKRVG15] MARTINOVIC A., KNOPP J., RIEMENSCHNEIDER H.,
VAN GOOL L.: 3d all the way: Semantic segmentation of urban scenes
from start to end in 3d. Computer Vision and Pattern Recognition (June
2015). 10, 13, 14, 15, 17, 19, 25

[MLM01] MARSHALL D., LUKACS G., MARTIN R.: Robust
segmentation of primitives from range data in the presence of geometric
degeneracy. PAMI 23, 3 (March 2001), 304–314. 11, 19, 23

[MMBM15] MONSZPART A., MELLADO N., BROSTOW G., MITRA
N.: RAPter: Rebuilding man-made scenes with regular arrangements
of planes. ACM SIGGRAPH (August 2015). 9, 11, 12, 13, 14, 15, 19,
20, 21, 25

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data 29

[MPM∗14] MATTAUSCH O., PANOZZO D., MURA C.,
SORKINE-HORNUNG O., PAJAROLA R.: Object detection and
classification from large-scale cluttered indoor scans. Computer
Graphics Forum 33, 2 (July 2014), 11–21. 9, 13, 15, 19, 20, 25

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEIDEL
H.-P.: Multi-level partition of unity implicits. ACM SIGGRAPH 2003
(July 2003), 173. 4

[OLA16] OESAU S., LAFARGE F., ALLIEZ P.: Planar shape detection
and regularization in tandem. Computer Graphics Forum 35, 1 (2016),
203–215. 9, 14, 15, 19, 22, 25

[OVWK14] OCHMANN S., VOCK R., WESSEL R., KLEIN R.: Towards
the extraction of hierarchical building descriptions from 3d indoor scans.
EUROGRAPHICS Workshop on 3D Object Retrieval (April 2014). 11,
13, 14, 15, 16, 19, 21, 24

[OVWK16] OCHMANN S., VOCK R., WESSEL R., KLEIN R.:
Automatic reconstruction of parametric building models from indoor
point clouds. Computers & Graphics 54 (February 2016), 94–103. 12,
13, 14, 15, 16, 19, 25

[PBAC75] POPPLESTONE R. J., BROWN C. M., AMBLER A. P.,
CRAWFORD G. F.: Forming models of plane-and-cylinder faceted
bodies from light stripes. In Proceedings of the 4th International
Joint Conference on Artificial Intelligence - Volume 1 (1975), Morgan
Kaufmann Publishers Inc., pp. 664–668. 2

[RBM∗07] RUSU R. B., BLODOW N., MARTON Z., SOOS A., BEETZ
M.: Towards 3d object maps for autonomous household robots.
Intelligent Robots and Systems (IROS) (October 2007), 3191–3198. 15,
16, 19, 21, 23

[RBMB09] RUSU R. B., BLODOW N., MARTON Z. C., BEETZ M.:
Close-range scene segmentation and reconstruction of 3d point cloud
maps for mobile manipulation in domestic environments. Intelligent
Robots and Systems (IROS) (October 2009), 1–6. 11, 17, 19, 23

[RDvdHV07] RABBANI T., DIJKMAN S., VAN DEN HEUVEL F.,
VOSSELMAN G.: An integrated approach for modelling and global
registration of point clouds. ISPRS journal of Photogrammetry and
Remote Sensing 61, 6 (February 2007), 355–370. 5, 17, 18, 19, 23

[Req80] REQUICHA A. G.: Representations for rigid solids: Theory,
methods, and systems. ACM Comput. Surv. 12, 4 (December 1980),
437–464. 2

[RL05] ROUSSEEUW P., LEROY A.: Robust regression and outlier
detection. Wiley Series in Probability and Statistics (2005). 15

[Rou84] ROUSSEEUW P.: Least median of squares regression. Journal of
the American Statistical Association 79, 388 (January 1984), 871–880.
6

[RVDH05] RABBANI T., VAN DEN HEUVEL F.: Efficient hough
transform for automatic detection of cylinders in point clouds. ISPRS
journal of Photogrammetry and Remote Sensing 3 (September 2005),
60–65. 8, 17, 19, 23

[RWS∗06] REN Z., WANG R., SNYDER J., ZHOU K., LIU X., SUN B.,
SLOAN P.-P., BAO H., PENG Q., GUO B.: Real-time soft shadows in
dynamic scenes using spherical harmonic exponentiation. ACM Trans.
Graph. 25, 3 (2006). 3

[SAG∗13] SHTOF A., AGATHOS A., GINGOLD Y., SHAMIR A.,
COHEN-OR D.: Geosemantic snapping for sketch-based modeling.
Computer Graphics Forum (Proc. EUROGRAPHICS) 32, 2pt2 (May
2013), 245–253. 11, 13, 18, 19, 20, 21, 24

[Sch04] SCHUSTER H.-F.: Segmentation of lidar data using the tensor
voting framework. ISPRS 35, B3 (July 2004), 1073–1078. 9, 16, 19, 23

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6 (2008), 1539–1556. 11

[SHFH11] SHEN C.-H., HUANG S.-S., FU H., HU S.-M.: Adaptive
partitioning of urban facades. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH ASIA 2011) 30, 6 (December 2011),
184:1–184:9. 6, 11, 13, 17, 19, 23

[Shi72] SHIRAI Y.: Recognition of polyhedrons with a range finder.
Pattern Recognition 4, 3 (1972), 243IN1245–244250. 2

[SHKF12] SILBERMAN N., HOIEM D., KOHLI P., FERGUS R.: Indoor
segmentation and support inference from rgbd images. ECCV (October
2012). 12, 16, 19, 20, 21, 24

[SMGKD14] SALAS-MORENO R. F., GLOCKEN B., KELLY P. H.,
DAVISON A. J.: Dense planar slam. ISMAR (September 2014). 9,
15, 19, 24

[SS05] SIMARI P. D., SINGH K.: Extraction and remeshing of ellipsoidal
representations from mesh data. Proceedings of Graphics Interface 2005
(May 2005), 161–168. 18, 19, 23

[Ste91] STEPHENS R. S.: Probabilistic approach to the hough transform.
Image and vision computing 9, 1 (1991), 66–71. 7

[SWK07] SCHNABEL R., WAHL R., KLEIN R.: Efficient ransac for
point-cloud shape detection. Computer Graphics Forum 26, 2 (June
2007), 214–226. 2, 5, 6, 13, 14, 15, 17, 18, 19, 20, 21, 23

[SWWK08] SCHNABEL R., WESSEL R., WAHL R., KLEIN R.: Shape
recognition in 3d point-clouds. The 16-th International Conference in
Central Europe on Computer Graphics, Visualization and Computer
Vision 8 (2008). 6, 21

[SXZ∗12] SHAO T., XU W., ZHOU K., WANG J., LI D., GUO B.: An
interactive approach to semantic modeling of indoor scenes with an rgbd
camera. ACM Transactions on Graphics (TOG) 31, 6 (November 2012),
136. 9, 11, 13, 14, 15, 19, 20, 24

[TGB13] THIERY J.-M., GUY E., BOUBEKEUR T.: Sphere-meshes:
Shape approximation using spherical quadric error metrics. ACM
Transactions on Graphics, (Proc. of SIGGRAPH Asia) 32, 6 (November
2013). 2, 9, 12, 13, 14, 17, 19, 20, 22, 24

[TGBE16] THIERY J.-M., GUY E., BOUBEKEUR T., EISEMANN E.:
Animated mesh approximation with sphere-meshes. ACM Trans. Graph.
35, 3 (2016), 30:1–30:13. 3, 20

[TGRC13] TREVOR A. J., GEDIKLI S., RUSU R. B., CHRISTENSEN
H. I.: Efficient organized point cloud segmentation with connected
components. Semantic Perception Mapping and Exploration (SPME)
(May 2013). 9, 13, 15, 19, 24

[TJRF13] TAGUCHI Y., JIAN Y.-D., RAMALINGAM S., FENG C.:
Point-plane slam for hand-held 3d sensors. Robotics and Automation
(ICRA) (May 2013), 5182–5189. 2, 16, 19, 24

[TPT16] TKACH A., PAULY M., TAGLIASACCHI A.: Sphere-meshes for
real-time hand modeling and tracking. ACM Trans. Graph. 35, 6 (2016),
222:1–222:11. 3, 20

[TRIC12] TREVOR A. J., ROGERS III J. G., CHRISTENSEN H. I.:
Planar surface slam with 3d and 2d sensors. ICRA (May 2012),
3041–3048. 16, 19, 24

[TZ00] TORR P. H., ZISSERMAN A.: Mlesac: A new robust estimator
with application to estimating image geometry. Computer Vision and
Image Understanding 78, 1 (April 2000), 138–156. 6

[VD01] VOSSELMAN G., DIJKMAN S.: 3d building model
reconstruction from point clouds and ground plans. International
archives of photogrammetry remote sensing and spatial information
sciences 34.3, W4 (2001), 37–44. 16, 19, 23

[VLA15] VERDIE Y., LAFARGE F., ALLIEZ P.: Lod generation for urban
scenes. ACM Transactions On Graphics (TOG) (2015). 10, 14, 15, 18,
19, 25

[WGC99] WHITAKER R. T., GREGOR J., CHEN P.: Indoor scene
reconstruction from sets of noisy range image. 3-D Digital Imaging and
Modeling (3DIM) (October 1999), 348–357. 11, 13, 16, 19, 23

[WK05] WU J., KOBBELT L.: Structure recovery via hybrid variational
surface approximation. Computer Graphics Forum 24, 3 (September
2005), 277–284. 2, 12, 14, 17, 19, 23

[WO02] WANG J., OLIVEIRA M. M.: Improved scene reconstruction
from range images. Computer Graphics Forum 21, 3 (September 2002),
521–530. 7, 13, 15, 16, 19, 23

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

30 A. Kaiser, J. A. Ybanez Zepeda & T. Boubekeur / A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data

[WPM∗12] WOODFORD O. J., PHAM M.-T., MAKI A., GHERARDI
R., PERBET F., STENGER B.: Contraction moves for geometric model
fitting. ECCV (October 2012), 181–194. 1, 2, 10, 14, 15, 19, 24

[WPM∗14] WOODFORD O. J., PHAM M.-T., MAKI A., PERBET F.,
STENGER B.: Demisting the hough transform for 3d shape recognition
and registration. International Journal of Computer Vision 106, 3
(February 2014), 332–341. 7

[WS06] WEINGARTEN J., SIEGWART R.: 3d slam using planar
segments. Intelligent Robots and Systems (October 2006), 3062–3067.
16, 19, 23

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG
X., XIAO J.: 3d shapenets: A deep representation for volumetric shapes.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015), pp. 1912–1920. 22

[WT04] WANG S., TSENG Y.: Semi-automated csg model-based
building extraction from photogrammetric images. XXth Congress of
the International Society for Photogrammetry and Remote Sensing 24, 3
(2004), 277–284. 17, 19, 23

[XAZ12] XIAO J., ADLER B., ZHANG H.: 3d point cloud registration
based on planar surfaces. Multisensor Fusion and Integration for
Intelligent Systems (MFI) (September 2012), 40–45. 12, 15, 19, 24

[XKH∗16] XU K., KIM V. G., HUANG Q., MITRA N., KALOGERAKIS
E.: Data-driven shape analysis and processing. SIGGRAPH ASIA 2016
Courses, 4 (2016). 11

[XOK90] XU L., OJA E., KULTANEN P.: A new curve detection method:
randomized hough transform (rht). Pattern recognition letters 11, 5
(1990), 331–338. 7

[XOT13] XIAO J., OWENS A., TORRALBA A.: Sun3d: A database of
big spaces reconstructed using sfm and object labels. International
Conference on Computer Vision (ICCV) (December 2013), 1625–1632.
20

[XZZ∗11] XIAO J., ZHANG J., ZHANG J., ZHANG H., HILDRE H. P.:
Fast plane detection for slam from noisy range images in both structured
and unstructured environments. Mechatronics and Automation (ICMA)
(August 2011), 1768–1773. 9, 15, 19, 20, 23

[YWLY12] YAN D.-M., WANG W., LIU Y., YANG Z.: Variational mesh
segmentation via quadric surface fitting. Computer-Aided Design 44, 11
(November 2012), 1072–1082. 5, 10, 13, 17, 19, 20, 24

[ZXTZ15] ZHANG Y., XU W., TONG Y., ZHOU K.: Online structure
analysis for real-time indoor scene reconstruction. ACM Transactions
on Graphics (TOG) 34, 5 (November 2015), 159. 9, 13, 15, 19, 25

[ZYH∗15] ZHOU Y., YIN K., HUANG H., ZHANG H., GONG
M., COHEN-OR D.: Generalized cylinder decomposition. ACM
Transactions on Graphics (TOG) 34, 6 (November 2015), 171. 9, 12,
13, 17, 19, 20, 21, 25

This is the authors’ draft. The final paper will be published in COMPUTER GRAPHICS Forum.

