
HAL Id: hal-04353215
https://telecom-paris.hal.science/hal-04353215v1

Submitted on 19 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fiblets for Real-Time Rendering of Massive Brain
Tractograms

Jérémie Schertzer, Corentin Mercier, Sylvain Rousseau, Tamy Boubekeur

To cite this version:
Jérémie Schertzer, Corentin Mercier, Sylvain Rousseau, Tamy Boubekeur. Fiblets for Real-Time
Rendering of Massive Brain Tractograms. Computer Graphics Forum, 2022, 41 (2), pp.447-460.
�10.1111/cgf.14486�. �hal-04353215�

https://telecom-paris.hal.science/hal-04353215v1
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Fiblets for Real-Time Rendering of Massive Brain Tractograms

Jérémie Schertzer1, Corentin Mercier1, Sylvain Rousseau1 and Tamy Boubekeur2

1LTCI, Télécom Paris, Institut Polytechnique de Paris
2Adobe Research

Figure 1: Real-time rendering (40ms/frame) of a 64GB brain tractogram containing 3 million of individual fibers (5.37 billion segments)
compressed down to 7GB. From left to right, the figure shows the rendering using different shadings (solid color, fiber orientation, per-fiber
color), the ability for our pipeline to perform interactions with occlusion meshes (here with a cube mesh), and the per-fiber interaction
capabilities with a selection (combined here with an occlusion mesh).

Abstract
We present a method to render massive brain tractograms in real time. Tractograms model the white matter architecture of the
human brain using millions of 3D polylines (fibers), summing up to billions of segments. They are used by neurosurgeons before
surgery as well as by researchers to better understand the brain. A typical raw dataset for a single brain represents dozens of
gigabytes of data, preventing their interactive rendering. We address this challenge with a new GPU mesh shader pipeline based
on a decomposition of the fiber set into compressed local representations that we call fiblets. Their spatial coherence is used at
runtime to efficiently cull hidden geometry at the task shader stage while synthesizing the visible ones as polyline meshlets in a
warp-scale parallel fashion at the mesh shader stage. As a result, our pipeline can feed a standard deferred shading engine to
visualize the mesostructures of the brain with various classical rendering techniques, as well as simple interaction primitives.
We demonstrate that our algorithm provides real-time framerates on very large tractograms that were out of reach for previous
methods while offering a fiber-level granularity in both rendering and interaction.

CCS Concepts
• Hardware → GPUs and Graphics Hardware; • Rendering → Real-Time Rendering; • Visualization → Medical Imaging;

1. Introduction

Brain tractograms are medical imaging data obtained using diffu-
sion magnetic resonance imaging (dMRI). They represent the path
of the axons that connect neurons through the white matter. Trac-
tograms are used by neurosurgeons for operation planning as well
as to predict the possible post-operation consequences. They are
also used by researchers to better understand the brain. Brain trac-
tograms – sometimes referred to as fiber tracking datasets – are
typically composed of millions of 3D polylines, called streamlines
or fibers [TML11]. A dMRI gives the diffusion flux of the water

molecules in the brain with a resolution that is typically between
1.25 and 2 mm3 sampled as a regular 3D grid. The fibers can be ob-
tained from those fluxes using the FACT (fiber assignment by con-
tinuous tracking)-algorithms [MCCV99; MV02; TML11]. Seeds
are randomly placed in the white matter and are propagated fol-
lowing the gradient in the two directions. An explanation of FACT
algorithms is provided in the additional materials. This propagation
can be done with either deterministic or probabilistic algorithms.

Depending on applications, two strategies coexist to compute
and display tractograms. On-the-fly fiber generation from the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-5985-0921

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

Task Shader Mesh Generation Mesh Shader Rasterization Pixel Shader

Figure 2: Mesh/Task Shader pipeline

lightweight dMRI voxel grid [CWF*14] and the use of a precom-
puted file indexing fibers data. At the cost of consequent file size,
visualization from precomputed fiber files allows the visualization
of full tractograms with a sufficient number of fibers. Besides, the
result is invariant and may display precomputed attributes per fiber
that on-the-fly generation would not be able to compute. In this
paper, we target the visualization of offline-computed tractograms,
following most tractograms visualization tools. Still, visualization
from real-time generation is also likely to benefit from our fiblet
formulation and pipeline.

To generate a complete high-definition tractogram, millions of
fibers are usually tracked. Each fiber typically contains hundreds to
thousands of ordered vertices and the whole tractogram can contain
several billion segments. Consequently, most processing, visualiza-
tion, and interaction software are not able to handle such large trac-
tograms. They often sub-sample the fibers, introducing approxima-
tion and loss of information. In this paper, we introduce a pipeline
able to visualize and interact in real-time with tractograms, without
any sub-sampling.

Nvidia’s Turing architecture introduced the Mesh Shading
Pipeline [Kub18; Mou18] which starts with an optional task shader
allowing for high control on the workflow and invocations to the
mesh shader (Fig. 2). The mesh shader is responsible for computing
vertices’ location and attributes, as well as a primitive index buffer.
Each mesh shader invocation processes a few dozen vertices, gen-
erating a meshlet. The two stages have a compute shaders-like syn-
tax. A major consequence is that each task or mesh shader invoca-
tion happens at the scale of a warp (32 threads), so the computa-
tion of meshlets should be collaborative within the warp for good
performances as described in experiments [Kra18; Kub20]. The
mesh shader pipeline has only received little attention so far even
though it offers a powerful framework to handle emerging data rep-
resentation such as brain tractograms. Beyond level-of-detail con-
trol and culling strategies, this new pipeline has been recently used
for custom tessellation [Rah19] and skeletal animation optimiza-
tion [Tor19]. We propose an original use case with a new render-
ing algorithm exploiting the task shader to alleviate the processing
workload down the pipeline.

Contributions. Our main contributions are:

• a new representation model, called Fiblets, designed for efficient
GPU decompression of massive tractogram data
• a fine-grained, parallel scalable fiber synthesis algorithm exploit-

ing the new mesh shading pipeline to achieve from one to two
orders of magnitude rendering speed-up compared to previous
methods.

We also provide all the algorithms and implementation details of
our method.

2. Previous Work

2.1. Medical imaging visualization

A few general medical data visualization tools provide tractogram
rendering capabilities, such as 3DSlicer [PLSK06], OpenWal-
nut [EHS13], or Paraview [AGL05; Aya15] but they are all ex-
tremely limited in terms of scalability and cannot render large trac-
tograms. More specialized tools exist [WBSW07; GBA*14], with
better performances for small tractograms. However, they suffer
from severe limitations when it comes to displaying large trac-
tograms at full resolution, even when the raw data fit into the
VRAM. For instance, Trackvis [WBSW07], only displays a small
percentage of the fibers.

Fiber Navigator [CWF*14; CBF*15] does not only rely on
a precomputed tractogram but can also generate fibers on the
fly depending on a user-selected region of interest. These soft-
ware packages enable simple rendering using lines, as well as
transparency [CBF*15]. Some geometric primitives such as cylin-
ders [WBSW07; PLSK06; EHS13] can also be used at the cost of
lower rendering performances, with different coloring options, in-
cluding solid colors or coloring following the local orientation of
the fibers [PLSK06; WBSW07; EHS13; GBA*14; CBF*15]. We
compare our work to all of these tools.

Alternative methods use approximations to render large trac-
tograms, such as clustering [GBC*12; KAC15; DÇ15], level of
details with cylinders [PFK07] or decimation relying on a lin-
earization process [RHD17]. The latter can have a negative impact
on frameworks relying on point-based interaction and processing
[SMAS13].

Other methods target data understanding, such as LineAO
[EHS12] which introduces ambient occlusion for lines, while not
entirely darkening far away fibers that could still be visible, provid-
ing a better perception of the depth, without losing too many details
in occluded regions. Illuminated lines [MPSS05] enriches lines
with smooth normals depending on the camera position, allowing
shading using standard reflectance models. Depth halo [EBRI09]
improves depth perception by creating halos around fibers that are
visually close to each other. All of these visualization techniques
can be used with our rendering pipeline as post processes. In par-
ticular, we use Illuminated lines [MPSS05] as well as screen space
ambient occlusion in our final renderings. More details on algo-
rithms that help to better understand tractograms can be found in
the recent survey by Isenberg et al. [Ise15].

2.2. Computer graphics

Brain tractograms are represented using 3D polylines. Such data
are commonly used in real-time computer graphics to model hairs
or fur [WBK*07; JCLR19]. Fur typically contains a few hundred
thousand strands with 3 to 4 vertices [JCLR19] while tractograms
can contain several millions of fibers with up to a thousand ver-
tices per fiber leading to billions of segments. Fabric rendering with
fiber-level details uses detailed fibers [ZLB16; WY17] but relies on
procedural generation directly on the GPU as well as on Level of
Details (LoDs). Fiber Navigator [CBF*15; CBF*15] can deal, on
the fly, with parts of a large tractogram but not with an entire model.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

Brain tractograms LoDs methods are based on medical con-
siderations that require specific graphics adaptations [GBC*12;
MGR*18; DMP*19] but cannot cope with topological and visual
changes that a dynamic cut would introduce for instance.

Massive 3D data rendering methods such as QSplat [RL00]
or PCC [SKW21] display large-scale 3D scans by transforming
meshes into point primitives organized in a hierarchy. In our con-
text, however, the fiber connectivity is critical and point-sampling is
not an option. Similarly, methods such as DUODECIM [KSW05]
or Sequential Point Trees [DVS03] would not preserve the in-
dividual fibers. Adaptive TetraPuzzles [CGG*04] and Far Voxels
[GM05] run out-of-core and can display large meshes but they con-
sume respectively 32 and 70 MB per million vertices. Raw poly-
lines are encoded with 12 MB per million vertices, and compres-
sion techniques reduce this size even further, under 1.3 MB per
million vertices, which led us to adopt a more flexible in-core ap-
proach. Modern billboard techniques [MB20] are used to render
massive numbers of small objects sharing a similar shape. In con-
trast, each fiber of a brain tractogram follows a unique data-driven
pattern.

Occlusion culling has been used in the case of massive data ren-
dering, for instance in the case of particles [IRR*22] using a depth
confidence map. However, in our context, each fiber is a set of or-
dered points following a unique path, and it can be hard to keep
track of the connectivity if we were trying to represent each seg-
ment as a particle. In terms of occlusion, a lot of techniques use hi-
erarchies [BWPP04; LJSL21], combined with temporal coherence
[MBJ*15], or a mix of temporal and spatial coherence [MBW08].
However, computing a hierarchy on our data is costly in mem-
ory. We build upon some elements of these concepts and use a
form of occlusion technique in our rendering pipeline with a re-
projection of the coverage buffer, using camera warping techniques
[LKE18] without the need for a hierarchy over the scene. More
recently, real-time visualization of massive geometries was intro-
duced through Nanite [KSW21]. However, it requires triangles and
models that can be simplified using edge decimation and is not suit-
able for datasets composed of lines such as brain tractograms.

Culling of primitives is also a critical task for massive data ren-
dering, Pantazopoulos et al. [PT02] wrote a comprehensive survey
of these techniques. In our context, fibers cross the entire brain and
every single one has a unique shape, complicating their culling.
However, we can rely on our fiblet-based layout to cull geome-
try. We use the temporal coherence of the visibility by applying
morphological operators on the depth buffer to cull fiblets, taking
inspiration from existing techniques in 2.5D [DDS03].

Voxel-based methods that exploit Sparse Voxel Octrees such as
GigaVoxels [Cra11], SVDAGs [KSA13] and SSVDAGs [VMG17]
are designed mostly to exploit the sparsity of surfaces in 3D space,
whereas our tractogram data is densely packed. Moreover, a vox-
elized solution would make per-fiber interaction nearly impossible.
State-of-the-art methods also exist for 3D lines/curves rendering.
Kanzler et al. [KRW19] proposed a voxel-based rendering method
that uses ray-casting and can render global illumination on large
datasets. The curves are discretized using their intersection points
with the surface of the voxels that are then quantized. This dis-
cretization process can introduce errors beyond the dMRI acqui-

sition error and the LoD that is computed afterward would again
lead to the loss of per-fiber control. This method could however
be a good perspective to build a LoD over a brain tractogram. A
recent survey [KNM*20] explains the different methods to render
transparent 3D lines.

We can also relate our work to flow visualization that typi-
cally needs to display a large number of curves. Such methods
exploit transparency, or the selection of relevant lines [Gün20].
While some flow visualization approaches [PWK20] are adapted
to visualize the dMRI data, they do not fit the brain tractograms
constraints. Streamline methods [LS07] generate representative
streamlines, but any approximation or representation that is not
medically justified should be avoided in our context.

2.3. Tractogram compression

The main issue when designing any algorithm working on brain
tractograms is their size. They require high-precision encoding and
are represented using millions of fibers encoded as rather long
3D polylines [TML11], typically representing dozens of gigabytes.
This makes them hard to process, store, share, or visualize, espe-
cially in the context of clinical use [RHD17; MRG*20]. In practice,
they are stored as a set of unorganized 3D polylines for which com-
puter graphics can provide efficient compression techniques.

In our application scenario – visualization – we take interest in
GPU-friendly compression methods that are fast enough to decom-
press the tractogram on the fly on the GPU. General compression
algorithms sush as ZFP for floating-point data [Lin14] or Draco
[Goo17] for general 3D meshes and point clouds can be used.
However, as shown in TRAKO [HFZ*20], the versatility of such
algorithms makes them less efficient than data-specific techniques,
both in terms of speed and compression factor. These are critical to
achieve fast GPU decompression and render massive datasets. ZFib
[PJHD15] is a compression algorithm that makes use of linear ap-
proximation, quantization, and dictionary-based compression. This
method can efficiently reduce the size of the data but happens to
be too slow for our application scenario, while not scaling to large
datasets.

QFib [MRG*20] achieves a high compression ratio with a fast
on the fly compression and decompression technique thanks to a
simple representation of the fiber and a quantization process based
on the construction of the fibers from the dMRI data. This algo-
rithm appears to fit our application scenario, as each fiber can be
individually compressed and decompressed, making the algorithm
embarrassingly parallel and enabling efficient GPU decompression.
It scales to large datasets as an out-of-core version is available, has
an error at least an order of magnitude under the precision of the
dMRI, especially when the distance between the points of the fibers
is small, which is the case in large datasets. We base our primitive
generation process on this method.

3. Compressed Brain tractogram visualization

3.1. Overview

The input of our method is a brain tractogram, that typically con-
tains dozen millions of 3D polylines. This tractogram is com-
pressed and stored in VRAM using the method described in Sec.3.2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

Render PassDeferred Pass
Task Shader Mesh Shader Custom Pass

Post Process

Fragment Shader

View Re-projection Depth Filtering

GPU VRAM

Compressed Points
(58 Vertices)

Padding
(end of
fiber)

M
e
ta

d
a
ta

Po
in

t 0
Po

in
t 1 Fiblet

First and second points
FiberID
Beginning
Ending
Number of compressed points
FibletID
58 Compressed points

Total

Element Size
12 bytes
4 bytes
1 bit
1 bit
6 bits
1 byte
58 bytes
76 bytes

Fiblet Culling Primitives Generation Write G-Buffer
- Occlusion culling
- Frustum culling
- Custom culling

- Fiber Selection
- Alpha Blending
- etc.

- Antialiasing
- Ambiant Occlusion
- Final Shading

- Synthesizing meshlet
from fiblet

- Re-projecting coverage
buffer at camera location

- Subsampling
- Dilation

Fiber ID

Tangent

Depth

(a) (b)

(e)(f)

(d)
(c)

Depth Tangent FiberID
GBufferReprojection Post Process Custom Pass

Figure 3: In our pipeline, the compressed representation (fiblets) is stored directly in VRAM. (a) First, the Task Shader reads the metadata
and the first two points of every fiblet to perform the culling tests. The occlusion test relies on temporal coherence with a texture lookup to a
coverage buffer. (b) The surviving fiblets pass through the mesh shader that retrieves from it a polyline meshlet using a warp-scale parallel
algorithm. (c) The fragment shader writes the z-buffer and the G-buffer. (d) The rendering pass is shaded from the G-buffer. A custom pass
can be added to include other effects such as user-selected fibers highlighting. (e) The z-buffer is subsampled and undergoes a morphological
dilation with a spherical kernel to create a coverage buffer. (f) That coverage buffer is re-projected to the camera of the next frame.

with an adaptation of QFib [MRG*20]. This adaptation consists of
dividing fibers into fixed-size fiblets, for better parallelism and spa-
tial coherence. We then propose the pipeline described in Fig. 3.
The key idea is to discard occluded fiblets while decompressing and
rendering the relevant ones. Therefore, we fully take advantage of
the mesh GPU pipeline, using the task shader to discard fiblets fail-
ing the conditions described in Sec.3.4. The remaining fiblets are
then decompressed to 3D polylines within the mesh shader stage
as described in Sec.3.3. The shaded fragments supply the G-buffer
used for the rendering pass while the z-buffer serves as an input to
define the fiblet rejection criteria for the next frame. We also show
in Sec.5 that our deferred pipeline supports visualization tools as
well as various shading post processes.

3.2. Fiblet Compression

3.2.1. QFib algorithm

Our compressed fiblet scheme is an evolution of QFib [MRG*20]
improving its parallel efficiency for GPU. QFib compresses each
fiber of a tractogram individually, taking into account both the
anatomical properties and the constraints known from the FACT
algorithms used to build the fibers. The first property is that each
segment of a given fiber measures the same length δ, making pos-
sible to express any point using:

Pi = Pi−1 +δ · Pi−Pi−1
||Pi−Pi−1|| (1)

With this representation, a fiber can be stored using the first two
points, δ, and a set of unit vectors. The second property – the max-
imal angle α between consecutive segments – ensures that the rep-
resentation space of a given unit vector according to the previous
one is limited to a small spherical cap. A uniform mapping [RB20]
is used to transform the unit vectors from those spherical caps to
the surface of the whole unit sphere to improve the precision of the
unit vector quantization method.

3.2.2. Adaptation of Qfib to the GPU scenario

We modify the compression scheme by splitting the fibers into
fiblets encoding a fixed number of points. Each fiblet implicitly
stores the compressed coordinates of the points using Qfib uni-
form mapping and octahedral quantization [MSS*10]. The mem-
ory structure of a fiblet is described in Fig.3. Prior to any com-
pression, all vertices from the raw tractogram are translated and
scaled so that every point lies in [0;1]3. The first two points of
each fiblet have their spatial coordinates quantized with 2 bytes
on [0;1], hence counting 12 bytes in total. The subsequent quanti-
zation is not harmful since for a 15cm brain, its typical length is
2µm, which is three orders of magnitude below the typical dMRI
resolution of 1.25mm3. Each fiblet is distinctively referenced using
a unique FiberID and a local FibletID within that fiber. As every
fiblet contains a fixed number of points – 60 in our implementa-
tion – it is possible to compute a unique identifier for any point of
any fiber in the tractogram, keeping the possibility of visual effects

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

at the granularity of the fiber, the fiblet, or even the vertex despite
dealing with massive data. Each fiblet contains a beginning, an end-
ing flag, and the 6 bits remaining store the number of compressed
points. This parameter is essential for fiblets that are ending a fiber
as they encode less than 60 points.

We use the uniform mapping to map the spherical cap of angle
α to a hemisphere while Qfib maps to a sphere. This choice offers
a slightly better precision but is mainly motivated by performance.
Since the UV unfold of a half-octahedron is a square, a direction
is quantized using the UV coordinates of its projection on the half-
octahedron. An 8 bits half-octahedral quantization (4 bits per UV
coordinate) of the mapped directions is precise enough compared
to the dMRI precision (see Sec.4) to encode a direction.

There is a trade-off in the choice of the number of encoded
points per fiblet. GPU hardware specification stipulates that struc-
tures must be 4 bytes aligned, constraining the number of points in a
fiblet to be a multiple of 4 (1 point = 1 byte with our representation)
to avoid unnecessary padding. Using 64 points per fiblet requires
a 65th point to ensure continuity between fiblets. From a hardware
perspective, exceeding the limit of 64 vertices severely slows down
the mesh shader, making 60 points per fiblet the maximum value
possible. Lowering the number of points per fiblet (by multiples of
4) results in a worse compression ratio, less warp occupancy, more
fiblets to test within the task shader, but higher culling rejection.
All things considered, the trade-off in memory consumption makes
60 points our optimal choice.

Qfib encodes its quantized values using an octahedron whose ori-
entation is implicitly defined at each point by the previous decom-
pressed vector, thus forcing a sequential decompression scheme.
To make it possible to retrieve the fiblet vertices using concurrently
the full 32 threads of a warp, (see Sec.3.3), we propagate a local
frame from point to point, storing the quantized coefficients of the
directions expressed in that local frame. This change of frame is a
critical difference with Qfib and part of our contribution. Detailed
mapping and quantization formulas can be found in Appendix A.

3.3. Meshlet synthesis from fiblet

At run time, the GPU is responsible for retrieving fiblets into a
polyline meshlet (later drawn as GL_LINE_STRIPS) represent-
ing the part of the fiber encoded by the processed fiblet. Continuity
between meshlets is made possible since the first point of the next
fiblet is accessed by simply unpacking the 6 first bytes, which is a
coherent memory access relatively to the processed fiblet.

3.3.1. Sequential fiblet synthesis

After unpacking the first two points of the fiblet, decompressing
a fiblet consists in retrieving the unmapped direction and updat-
ing the current point with a translation of the constant length δ in
that direction. Then, the shader is responsible for generating the 60
points of the fiblet in addition to the first of the next fiblet for con-
tinuity, as well as the 60 corresponding primitives. If the fiblet is
ending a fiber, only the required number of vertices and primitives
is generated. The decompression formula can be found in Appendix
B of the additional materials.

3.3.2. Parallel fiblet synthesis

Parallel prefix sums [HSO07; MG16; MYB16] are commonly used
in decompression schemes. The key idea for the parallel fiblets syn-
thesis is to design a parallel prefix sum approach specifically for
spatial transforms, which turns to be a parallel prefix transform ma-
trix multiplication. This section describes this spatial adaptation for
fiblets. The notations defined below are illustrated in Fig. 4.

Figure 4: Notations for a fiblet encoding 4 points. The red angles il-
lustrate the variation of direction that is directly mapped and quan-
tized on 8 bits each. By construction, α is the maximal admissible
value for these angles.

In the world frame Fw, let Pi be the coordinates of the point i, let
Fi be the local frame of the point i. Let Mi be the 4×4 transforma-
tion matrix morphing Fi−1 to Fi, and M0 the transformation matrix
from the world frame Fw to F0.

The rotational submatrix of M0 transforms the unit vector XFw to
the unit vector XF0 =

P1−P0
||P1−P0|| . However the rotational part of Mi

describes the local rotation from the vector X = (1,0,0) to the vec-
tor XLocalFi =

Pi−Pi−1
||Pi−Pi−1|| , expressed in the Fi−1 coordinate sys-

tem. Our compression scheme encodes the mapped and quantized
vectors XLocalFi , knowing that the angle between XLocalFi and X
is smaller than α. For M0, the rotation submatrix is obtained thanks
to the first two points of the fiblet while the rotation submatrices of
Mi are directly derived by decompressing the directions XLocalFi .
Note that the rotation submatrix relative to the last point of a fiblet
is discarded since the frames are not propagated beyond.

The remaining constraint is that the UV coordinates of the half-
octahedron are stored for a given rotation of that half-octahedron
around X. To keep track of that rotation, a unique 3D frame F is
built in a simple and deterministic way knowing only Forward, by
introducing an additional constant vector V:

Up =
Forward×V
||Forward×V|| Left = Up×Forward (2)

In our case the degenerate situation where Forward and V are col-
inear is avoided since Forward is quantized on only 256 values so
V can easily be chosen out of that set. Note that the algorithm must
use the same vector V to propagate the local frames at compression
time and decompression time.

The last column of M0 defines the position of the first point in Fw
coordinate system, which is simply the translation needed to reach
F0 from Fw. The last column of Mi describes the translation from
Fi−1 to Fi in the Fi−1 coordinate system which is simply δ ·X by

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

construction. We finally define the 4×4 matrix Wi as following:

Wi =
i

∏
k=0

Mk (3)

The coordinates of Pi in Fw boils simply down to the translation
submatrix of Wi.

From equation (3) it appears that a parallel prefix algorithm is
suitable to retrieve all Wi. For a fiblet storing N points, an N ele-
ments array of 4×4 matrices is stored within the shared memory of
the invoked warp. The matrix list is initialized with the Mi which
are retrieved from the decompressed fiblet data. The parallel pre-
fix algorithm ensures that the list of the Wi can be concurrently
computed in dlog2 (N)e passes.

A practical illustration of that parallel prefix spatial transform
can be found in additional material. Each pass requires dN/2e ma-
trices computation therefore at least the same number of avail-
able threads. Since each fiblet encodes 60 points, the 32 threads
are enough to compute the parallel prefix multiplications. The
SIMD architecture forces some thread idling because the instruc-
tions to compute M0 (and M0 of the next fiblet, required to link
the mehslets) differs from the rest of the Mi. Once all the Wi are
calculated, each thread writes to the mesh shader buffers two ver-
tices and four primitives indices that build the meshlet. The first
thread also writes the number of primitives to be consumed by the
rasterizer according to the fiblet metadata.

Figure 5: Simplified chronograms of a mesh shader invocation on a
warp. On top, only one thread is synthesizing the meshlet while the
remaining 31 are idling. At the bottom, the parallel scheme takes
advantage of shared memory (barriers in grey) to cooperatively
process the fiblet. M0∗ represents the first matrix of the following fi-
blet, required to keep continuity along the fiber. (a) The first matrix
is decompressed (b) then each thread is responsible for calculating
two matrices so that (c) the 6 passes matrix array reduction can be
computed in order to (d) write the meshlet vertices.

Figure 5 compares the chronograms of the sequential and par-
allel prefix algorithms. For performance comparison see Sec.4. In
our implementation, discarding constant coefficients of the trans-
formation matrices to minimize the shared memory bandwidth and
also storing all coefficients in the same memory bank per matrix
resulted in great performance improvement compared to a naive
implementation of the parallel prefix multiplication.

3.4. Fiblet pipeline

So far, we greatly reduced the GPU bandwidth by expressing ver-
tices in a compressed fiblet structure and ensured an efficient way
to concurrently build the meshlet from the fiblet within the invoked
warp. This section describes our fiblet culling technique, inspired
from existing hierarchical z-buffer and temporal coherence tech-
niques, as mentioned in Sec.2.2. Our contribution stems from a
coverage buffer built from morphological dilation on the z-buffer.
For discarding fiblets, it results in finer culling borders compared
to a direct lookup in a hierarchical z-buffer.

3.4.1. Fiblet culling

By construction, a simple bounding proxy for a fiblet can be ex-
pressed as a sphere S f iblet centered on the first point of that fiblet
with a radius RS = N× δ. By nature, testing if a sphere intersects
a volume corresponds to testing if the center of that sphere is in-
side the volume dilated with that spherical kernel. We exploit this
property to reduce the fiblet bounding test to a much faster point
test against a coverage buffer built by dilating the z-buffer. Figure 6
gives an insight of our culling method that, once the coverage buffer
is generated, simplifies the task shader fiblet culling test to a single
depth test requiring one texture fetch. In practice, since all mesh-
lets are connected to each other unless the fiber reaches an end, it
is profitable to also test the first point from the next fiblet against
the coverage buffer. Fiblets and texture coherence reduce the cost
of that test. If the depth of at least one point is beyond the coverage
buffer, the fiblet is then discarded.

That fiblet culling test is performed within the task shader
(Fig. 2). The performance gain is significant since each saved mesh
shader invocation decreases the memory bandwidth, the number of
shaded fragments, and saves that warp for another invocation.

3.4.2. Building the coverage buffer

In our implementation, the coverage buffer is derived from a sub-
sampled z-buffer. Subsampling serves two purposes: reducing the
number of sprites and texels to process while increasing the tex-
ture cache coherence when the task shader massively fetches from
it during the next frame. Four levels of mipmaps are computed us-
ing a max filter to compute the depth of a texel from the 2× 2 cell
of the previous level. As a consequence, the subsampled z-buffer is
greater or equal to its full-scale value in each direction, preventing
faulty fiblet culling artifacts.

Dilation is computed by drawing a hemisphere centered in the
3D coordinate of each texel with the z-test set to greater function.
In practice, the visibility of those spheres is equal to the visibility of
a disc sprite of the same radius. Depths of the ovoid set of fragments
shaded by a disc are carved to the depth of the hemisphere (formula
can be found in Appendix C) while discs sprites are generated with
a geometry shader stage. Note that subsampling increases γ, the
angular opening of a texel. Therefore, to remain conservative, the
radius of the hemispheres generating the coverage buffer should
depend on z as follow:

RS(z) = N×δ+ z× tan(γ/2) (4)

Figure 7 displays the coverage buffer and the resulting culling.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

Figure 6: 2D analogy of the fiblet culling test based on the cov-
erage buffer. To avoid cluttering the figure with a re-projection, the
camera position is considered static. The red hemispheres illustrate
how the coverage buffer is computed from the z-buffer at the previ-
ous frame. The zoomed inset illustrates the two visibility tests per-
formed by the task shader. In that case, only the red fiblet needs
to be synthesized and rendered since both points fail the depth test
against the coverage buffer.

(a) z-buffer (b) Mipmap(4) (c) Coverage buffer

(d) Top view (e) Back view (f) Rendering

Figure 7: Illustration of the z-buffer (a), the max mipmap subsam-
pling (level 4) (b), its dilation with carved sphere sprites results in
the coverage buffer (c). (d) and (e) shows from a different location
the subset of fiblets synthesized and rendered (f).

Temporal coherence techniques require a mechanism to update
the relevant information from the previous frame. Here, the cover-
age buffer is re-projected and rendered in the novel view using a
mesh-grid of that coverage buffer. Section 4.4 discusses effects of
re-projection on culling conservativeness.

3.4.3. Frustum Culling

Frustum culling enhances performances when the camera is inside
the tractogram. Fast frustum fiblet culling leans on the same mor-
phological considerations described in Sec.3.4.1. Every first point

of a fiblet outside a trapezoidal volume dilated from the camera
frustum leads to culling the entire fiblet. Homogeneous coordinates
come in handy to test that volume. Let xh,yh,zh, and wh be the ho-
mogeneous coordinates of a projected point p. Given the (half) field
of view H f ovx and H f ovy, the fiblet frustum belonging shortens to

|xh|
wh +

Rs
sin(HFovx)

< 1 and
|yh|

wh +
Rs

sin(HFovy)

< 1 (5)

Znear−Rs < wh < Z f ar +Rs

3.4.4. Far view rendering

When seen from very far, many redundant fiblets are not discarded
while many segments are rasterized in the same pixel, harming per-
formances. To counter that effect, a LoD of the fiblet is considered.
The screen size upper bound of a fiblet rendering can be estimated
thanks to S f iblet . When that size is smaller than a few pixels (4 in
our implementation), the mesh shader does not synthesize the fiblet.
Instead, it is restricted to write a line meshlet linking the first point
of that fiblet to the first point of the next fiblet, avoiding sub-pixelic
lines rasterization and unnecessary decompression.

4. Results and analysis

4.1. Data and compression

To evaluate our method, we use dMRI data from the Human Con-
nectome Project (HCP) [VUA*12], which shares anonymized data
of hundreds of people at a 1.25 mm3 voxel size. It is recom-
mended to use a tenth of this size as the stepsize for the track-
ing (seed propagation) algorithm – 0.1mm here [TCC12]. Trac-
tograms are computed using Mrtrix3 [TCC12] with the iFOD1 and
the SD_STREAM algorithms. We randomly selected three differ-
ent patients from the dataset and generated 6 different tractograms
per algorithm and patient, resulting in 36 different tractograms.
Table 1 presents the different files we obtain for one patient (the
other two are in the additional materials). These tractograms are
recorded in the (raw) tck format of Mrtrix3 [TCC12] and range
from 5GB to almost 100GB. They contain at least hundreds of mil-
lions of segments, with 8 billion lines for the most massive one.
Table 1 also contains the compressed size of the same files, both
with Qfib [MRG*20] (using a 8 bits octahedral quantization) and
our approach. We notice that Qfib achieves a higher compression
ratio, which is expected due to our fiber subdivision into fiblets,
required to fulfill the GPU needs.

4.2. Compression precision and comparison with Qfib

Our compression – as Qfib – is lossy. Indeed, we quantize the suc-
cessive directions, resulting in small displacements compared to the
original raw data. The maximum and average error of both tech-
niques (measured at the point level) are exposed in Tab. 1. Our
error is always significantly lower than that of Qfib. This was ex-
pected as our clustered approach allows for readjustments at each
fiblet where Qfib relies only on the two first points of each fiber.
This comes at the expense of our compression ratio. Our error re-
mains low for both tractogram algorithms, way under the dMRI

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

Table 1: Size (GB), maximum and average error (µm) of the different tractograms generated for one patient for the raw data (tck),
Qfib [MRG*20], and our approach. The data for other patients can be found in additional materials.

Algorithm iFOD1 SD_STREAM
Fibers 500k 3M 7M 10M 500k 3M 7M 10M

Stepsize (mm) 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.05 0.1 0.05 0.1 0.1
Segments (billion) 0.43 0.89 2.60 5.37 6.07 8.10 0.38 0.75 2.29 4.50 5.35 7.65

Size (GB)
Tck 5.21 10.7 31.3 64.4 72.9 97.3 4.59 8.99 27.6 54.0 64.3 91.9
Qfib 0.446 0.906 2.67 5.44 6.24 8.34 0.394 0.761 2.37 4.57 5.52 7.89
Ours 0.572 1.16 3.43 6.93 8.00 10.7 0.507 0.971 3.04 5.83 7.09 10.1

Maximum error (µm)
Qfib 47.3 25.4 49.3 27.1 49.8 48.9 907 895 944 928 941 934
Ours 17.1 8.20 17.8 8.64 19.7 12.0 22.5 10.9 22.8 11.2 24.0 23.8

Average error (µm)

Qfib 18.5 9.76 18.6 9.79 18.7 21.6 192 188 192 189 192 192
Ours 5.03 2.23 5.04 2.23 5.05 4.17 7.34 2.99 7.34 2.99 7.34 7.34

Figure 8: Pixel difference between our fiblet rendering of a few
fibers and a rendering without compression. Pixel differences are
shown in red. The left image gives a view from far while the right
image is close.

precision, and an order of magnitude under the stepsize. A major
benefit of our fiblet approach is that our error only depends on the
stepsize (which infers the maximum angle by construction). The
maximum error is reached after 58 compressed points (even using
delta-coding, see [MRG*20]), instead of being dependent on the
longest fiber with Qfib.

4.3. Effects of compression on rendering

To ensure that the loss is not visually significant, we highlighted
in Fig.8 the differences between an OpenGL rendering of the raw
fibers and our fiblet rendering. It is noticeable that these differences
are sparse and of no more than a single pixel. Indeed, since com-
pression error is small (see Tab. 1), at any relevant zoom level the
visual error never exceeds the rasterizer quantization step: a pixel.

4.4. Effect of coverage re-projection on rendering

The use of mipmapping to reduce the cost of the z-buffer dila-
tion also results in a dilation with a radius larger than RS, typically
around 1.2×RS. This extra radius almost guarantees conservative-
ness of the coverage buffer re-projection under small camera trans-
forms. Since our pipeline is designed for high framerate, we were
only able to experience failures of the re-projection on the biggest

Figure 9: Screenshot of a failure case of the coverage buffer re-
projection under big transforms. Red zones highlights faulty culled
fiblets when applying a 60◦ rotation between two frame.

tractogram (meant to test the GPU limits), when moving the cam-
era extremely fast. Figure 9 displays this artifact. It is worthy to
highlight that such artifacts would only last for one frame.

4.5. Performance analysis and comparison between graphics
pipelines

Table 2 presents the average time in milliseconds to draw a frame
using our method on different graphics pipelines, on a machine
equipped with an Intel Xeon e5-1650 v4 (6 cores - 12 threads),
64 GB of RAM, and an Nvidia RTX 2080Ti with 11GB of VRAM.
The viewport is set to 1920×1080, and we compute the exact same
frames around the different tractograms. Averaging on a rotation is
necessary to provide an accurate measurement of a typical use case:
firstly, the number of culled fibers and even fragments shaded de-
pends on the brain shape in the camera frame, and secondly, since
our culling technique makes use of temporal coherence, the effi-
ciency of the coverage buffer is directly impacted by the amplitude
of the transformation from one view to another. Our step choice of
(1.14◦) per frame encompasses the behavior of a normal interaction
case, reaching a 90◦/s speed at 80 fps (and 68◦/s at 60 fps).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

4.5.1. Geometry shader

This graphics pipeline is the most straightforward in terms of com-
plexity. Indeed, its role is to amplify the geometry, which is done
here by synthesizing each fiblet within the shader, emitting a max-
imum of 60+1 vertices per polyline. The implementation of the it-
erative algorithm is fairly simple as the vertices are emitted while
building the chain matrix product. The culling approach is achieved
on this pipeline by testing for the fiblet visibility and terminat-
ing the invocation without emitting any vertex if the test fails. As
expected the performances are not great since geometry shaders
struggle when generating more than four vertices. The improve-
ment brought by the culling mechanism is in proportion the worst
of the four pipelines. The reason is that geometry shaders stall un-
der an unbalanced load. As a consequence of culling, some invoca-
tions are required to generate 61 vertices while others generate no
vertex.

4.5.2. Tessellation shader

Unlike the geometry shader, the tessellation shader stage aims
at generating on-chip a massive number of vertices. Tessellation
natively supports generation of 3D polylines, up to 65 vertices
(MAX_TESSELLATION = 64) on most hardware. Culling is
fairly well supported as it is specified that a tessellation level set
to 0 leads to end the processing of the patch. The Tessellation Con-
trol Shader (TCS) is responsible for testing the fiblet visibility and
setting the tessellation level accordingly, 0 if the fiblet should be
culled or up to 60, thus calling 61 Tessellation Evaluation Shader
(TES) invocations. It is usually advised to have the TES compute
the vertices location in parallel. However, the sequential charac-
teristics of the chain product that needs to be computed prevent
synthesizing each vertex in its own TES invocation, since those in-
vocations cannot share dynamic read/write memory between each
other. Consequently, we iteratively synthesize the fiblet inside the
TCS and store them in the specific patch memory that can be read
by any TES invocation called by that TCS. Then, the TES sim-
ply projects the vertex to the camera frame. Performances of this
pipeline under culling outperform geometry pipeline almost by a
factor of two. For older GPUs not supporting mesh shaders, our
tessellation pipeline still offers way better performances compared
to existing tools (See Tab.3).

4.5.3. Single thread mesh shader

We first implemented the sequential – Qfib like – decompression of
each fiblet inside the mesh shader. The result of such an implemen-
tation is presented on the third line of Tab.2. Because of threads
idling, the performances without fiblet culling are very poor. How-
ever, timings, when the task shader culling is activated, improve
significantly, proving the efficiency of our implementation to mas-
sively cull fiblets.

4.5.4. Parallel mesh shader

In this implementation, we exploit the two stages of the mesh
pipeline as described in Sec.3.3.2 and Sec.3.4. With culling dis-
abled, our parallel scheme with 32 threads warps is almost 5 times
faster than the single-threaded decompression. Most of the time
is spent computing the parallel prefix matrix multiplication, where

shared memory accesses introduce some stalling. When combined
with the task shader culling, we reach significant and scalable per-
formances.

4.6. Comparison to other tractograms rendering tools

We compare our performances and capabilities with existing trac-
togram visualization tools (Tab. 3). Tractograms whose raw size
is bigger than the VRAM cannot be visualized by other methods.
Consequently, we limit our comparison to sizes supported by other
methods. The 500k fibers tractogram can only be visualized us-
ing TrackVis [WBSW07], our basic OpenGL implementation, the
Point Cloud method (PCC) [SKW21], and our method. The Point
Cloud method is included in the comparison as a high perfor-
mances computer graphics timing reference. However, it only dis-
plays points, where tractograms approaches are designed for lines,
meaning that zooming on the data makes the visualization unread-
able. We also experimented with Nanite [KSW21], however, our
data is not adapted to the triangle-based approach of the technique,
requiring triangle strips to represent the fibers, thus increasing data
size and complexity, making unfair the comparison. Useful frame
profiling information under different conditions are presented in the
additional materials.

5. Extended visualization tools

We aim to describe some implemented tools compatible and accel-
erated with our pipeline. Indeed, our fiblet culling pipeline makes
possible fast additional custom culling while the deferred nature of
the pipeline allows many per-pixel shading effects.

5.1. Custom culling: mesh culling

Figure 10: 2D analogy of the fiblet culling method when a mesh cut
is added to the coverage buffer. The test to cull a fiblet or discard
a fragment is the same, but applied with back/front buffers from the
dilated mesh in the task shader and applied with back/front buffers
from the mesh in the fragment shader.

A classic medical data feature is to allow axis-aligned plan cuts.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

Table 2: Rendering times in milliseconds (ms) of our approach compared to alternative pipelines, with and without culling. Results are
presented for a single patient, other patients are presented in additional materials.

Algorithm iFOD1 SD_STREAM
Fibers 500k 3M 7M 10M 500k 3M 7M 10M

Stepsize (mm) 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.05 0.1 0.05 0.1 0.1
Without culling

Geometry 104 203 621 1223 1446 1934 92.1 171 550 1029 1281 1816
Tessellation 76.5 138 456 835 1062 1420 68.1 116 403 701 938 1339

Mesh (1 thread) 211 434 1278 2600 2975 3969 190 367 1132 2183 2632 3748
Mesh (parallel) 44.6 86.9 267 559 626 837 41.1 74.6 238 441 555 791

With culling
Geometry 84.4 140 448 723 1005 1209 80.2 128 427 668 960 1351

Tessellation 44.0 85.9 251 485 579 762 40.0 73.0 225 418 520 741
Mesh (1 thread) 25.6 33.2 94.3 132 196 182 30.0 37.5 111 137 226 307
Mesh (parallel) 7.84 8.92 28.0 33.9 55.9 55.9 8.45 10.1 29.8 36.2 59.9 81.8

Table 3: Rendering times in milliseconds (ms) and file sizes of our fiblet culling and rendering method compared to existing solutions on
various datasets. N/A represents the datasets that the corresponding method was not able to load and render.

Dataset
Fibs # Segs

3D Slicer Paraview TrackVis
Open

Walnut
Fiber

Navigator
Basic

OpenGL PCC Ours

10k 8M ≈ 6.90 <16.7 <8.00 <6.94 <6.06 ≈ 2.70 ≈ 1.50 ≈ 2.08
Encoding size (GB) 0.270 0.963 0.128 0.964 0.289 0.011
100k 81M N/A ≈ 25.0 ≈ 20.0 ≈ 21.7 <6.06 ≈ 17.2 ≈ 8.70 ≈ 3.62
Encoding size (GB) 2.81 0.972 1.30 0.973 2.92 0.107
250k 202M N/A ≈ 50 ≈ 50 ≈ 55.6 N/A ≈ 40 ≈ 22.2 ≈ 4.88
Encoding size (GB) 7.14 2.43 3.24 2.43 7.28 0.268
500k 434M N/A N/A ≈ 500 N/A N/A ≈ 90.9 ≈ 33.3 ≈ 7.87
Encoding size (GB) 15.4 5.20 6.94 5.21 15.6 0.572

Data format vtk trk fib tck las fft

We propose the option to combine to our pipeline a more complete
cutting scheme using a custom closed orientable surface mesh.
The morphological culling strategy described in Sec.3.4 applies
in a very similar manner by computing a back and front cover-
age buffer for the occluding mesh. Those two buffers are processed
in two passes, each one rendering the dilated surface mesh. Back-
face culling with the less depth test function is used for the front
buffer and front-face culling with the greater depth test function
is used for the back buffer. Those buffers are combined within the
task shader to cull fiblets inside or outside of the mesh, depend-
ing on user preference. The fragment shader is also adapted to in-
clude a discarding condition based on a front and back buffer of the
rendered surface mesh. Figure 10 summarizes the strategy, while
Figure 11 displays cuts result. Screenshots of back and front depth
buffers are available in the additional materials. Concave surface
meshes might infer some approximation from certain views since
the back/front buffers allow only one range of depth culling. Com-
plex meshes cut might result in a framerate drop as the number of
rendered fiblets is roughly proportional to the surface of the inter-
face viewed from the camera. On top of that, discarding at the scale
of fragment forces to disable GPU early z-test.

5.2. Custom culling: criterion culling

In addition to mesh culling, our pipeline makes it possible to cull
fiblets and fibers according to a custom criterion computed for each
fiber and stored in a VRAM buffer. Figure 11 displays renderings
using a fiber-proximity criterion and a fiber-length criterion. More
is presented in the additional materials.

5.3. Shading effects

We display renders with SSAO since the medical data visualization
community mostly opts for informative shading to emphasize the
perception of mesostructures. For better light dependent shading,
we propose a shading of Illuminated Line inspired from [MPSS05].
This is possible since per-fragment normal can be retrieved thanks
to tangents stored in the G-buffer. Fiber albedo can be defined using
orientation or even with a custom criterion (see Sec 5.2) combined
with a colormap. Figure 11 illustrates different shading effects. In
this paper, we rely on native FXAA for antialiasing.

5.4. Selection rendering

Since our G-buffer keeps track of a 32bits individual fiber ID, any
rendered fragment written during the deferred phase can be picked
with the mouse, returning the selected IDs to the CPU. This allows

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

(a)

(b)

(c)

(d)

(e)

(f)

Figure 11: Screen captures of our fiblet renderings from a 7M
fibers tractogram. (a) illuminated lines with SSAO, (b) colormap
shading depending on fiber length with a box mesh cut (cull in-
side), (c) orientation shading with mesh cut (cull outside) using a
long flat box, (d) selection rendering from clicked fibers on brain
slice, (e) colormap shading depending on the distance of the fibers
to a zone, (f) custom culling displaying only closest-to-zone fibers,
with additional selected fibers in green.

the generation of an index buffer flagging the fiblets composing
the selected fibers. Then, a draw call triggers a tessellation shader
used to decompress and generate cylindrical volumetric fibers. The
rendering is finally blended into the whole tractogram, as displayed
in Fig. 11. It is similarly possible to draw clusters of individual
fibers generated from the result of a prior tractogram analysis.

6. Conclusion

With fiblets, we introduced a new brain tractogram rendering ap-
proach that takes full advantage of the GPU mesh pipeline. The
task shader running our morphological adaptation of temporal co-
herence depth culling while the threads running mesh shader invo-
cations concurrently cooperate to swiftly synthesize the fibers from
the fiblets within a warp, following a parallel prefix scheme. We
exposed remarkable framerates and are able to accurately visualize
massive brain tractograms for the first time while allowing for the
use of interaction tools, down to the fiber-level granularity.

Our compression scheme improves upon QFib and shares its lim-
itations. The main one is the need for a constant stepsize at trac-
togram scale, a fundamental property for our culling strategy. Note
however that most tractogram generation algorithms do use such a
constraint. We also expect the compressed dataset to fit entirely in
VRAM. To render an even larger tractogram, a streaming strategy
– retrieving only relevant sets of fiblets from out-of-core storage –
could be deployed at the cost of reduced performances. When the
screen-space fiber density becomes too high, some z-fight aliasing
might appear.

Our fiblet pipeline could be adapted to other applications con-
taining lines with similar properties, for example, medical data such
as muscles or capillaries. The memory efficiency of our method

opens a way to superpose multiple large tractograms together to
perform all sorts of comparisons – something only performed in
a very indirect manner today. In that perspective, dynamic trans-
parency would be interesting to study, potentially using multi-
frame depth peeling. A custom anti-aliasing strategy could be de-
ployed through an MSAA G-buffer resolving the most represented
fibers within a pixel. In the context of virtual reality – more and
more studied for medical training – the coverage buffer computa-
tion, as well as the synthesis of the fiblets, could be factorized for
the two eyes cameras. Our fiblet pipeline speeds up cases where a
fast visualization of massive raw line sets is required. For instance,
streamlines, as well as networks representation, may benefit from
fiblets. In the medical context, massive visualization of blood cap-
illary networks and muscle fibers can also be addressed with our
method.

References
[AGL05] AHRENS, JAMES, GEVECI, BERK, and LAW, CHARLES. “Par-

aview: An end-user tool for large data visualization”. The visualiza-
tion handbook 717.8 (2005), 717–731. DOI: 10 . 1016 / B978 -
012387582-2/50038-1 2.

[Aya15] AYACHIT, UTKARSH. The paraview guide: a parallel visualiza-
tion application. Kitware, Inc., 2015 2.

[BWPP04] BITTNER, JIRI, WIMMER, MICHAEL, PIRINGER, HARALD,
and PURGATHOFER, WERNER. “Coherent Hierarchical Culling: Hard-
ware Occlusion Queries Made Useful”. CGF 23.3 (2004), 615–624. DOI:
10.1111/j.1467-8659.2004.00793.x 3.

[CBF*15] CHAMBERLAND, MAXIME, BERNIER, MICHAEL, FORTIN,
DAVID, et al. “3D interactive tractography-informed resting-state fMRI
connectivity”. Frontiers in Neuroscience 9 (2015), 275. DOI: 10.3389/
fnins.2015.00275 2.

[CGG*04] CIGNONI, PAOLO, GANOVELLI, FABIO, GOBBETTI, ENRICO,
et al. “Adaptive Tetrapuzzles: Efficient out-of-Core Construction and Vi-
sualization of Gigantic Multiresolution Polygonal Models”. ACM ToG.
Vol. 23. 3. 2004, 796–803. DOI: 10.1145/1015706.1015802 3.

[Cra11] CRASSIN, CYRIL. “GigaVoxels: A Voxel-Based Rendering
Pipeline For Efficient Exploration Of Large And Detailed Scenes”. PhD
thesis. UNIVERSITE DE GRENOBLE, July 2011 3.

[CWF*14] CHAMBERLAND, MAXIME, WHITTINGSTALL, KEVIN,
FORTIN, DAVID, et al. “Real-time multi-peak tractography for instanta-
neous connectivity display”. Frontiers in Neuroinformatics 8 (2014), 59.
DOI: 10.3389/fninf.2014.00059 2.

[DÇ15] DEMIR, A. and ÇETINGÜL, H. E. “Sequential Hierarchical Ag-
glomerative Clustering of White Matter Fiber Pathways”. IEEE TBME
62.6 (2015), 1478–1489. DOI: 10.1109/TBME.2015.2391913 2.

[DDS03] DÉCORET, XAVIER, DEBUNNE, GILLES, and SILLION,
FRANÇOIS. “Erosion Based Visibility Preprocessing”. Proc. EGSR.
2003, 281–288 3.

[DMP*19] DELMONTE, ALESSANDRO, MERCIER, CORENTIN, PALLUD,
JOHAN, et al. “White matter multi-resolution segmentation using fuzzy
set theory”. ISBI. 2019, 459–462. DOI: 10 . 1109 / ISBI . 2019 .
8759506 3.

[DVS03] DACHSBACHER, CARSTEN, VOGELGSANG, CHRISTIAN, and
STAMMINGER, MARC. “Sequential Point Trees”. ACM ToG 22.3
(2003), 657–662. DOI: 10.1145/882262.882321 3.

[EBRI09] EVERTS, MAARTEN H, BEKKER, HENK, ROERDINK, JOS
BTM, and ISENBERG, TOBIAS. “Depth-dependent halos: Illustrative
rendering of dense line data”. IEEE TVCG 15.6 (2009), 1299–1306. DOI:
10.1109/TVCG.2009.138 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.1111/j.1467-8659.2004.00793.x
https://doi.org/10.3389/fnins.2015.00275
https://doi.org/10.3389/fnins.2015.00275
https://doi.org/10.1145/1015706.1015802
https://doi.org/10.3389/fninf.2014.00059
https://doi.org/10.1109/TBME.2015.2391913
https://doi.org/10.1109/ISBI.2019.8759506
https://doi.org/10.1109/ISBI.2019.8759506
https://doi.org/10.1145/882262.882321
https://doi.org/10.1109/TVCG.2009.138

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

[EHS12] EICHELBAUM, SEBASTIAN, HLAWITSCHKA, MARIO, and
SCHEUERMANN, GERIK. “LineAO—Improved three-dimensional line
rendering”. IEEE TVCG 19.3 (2012), 433–445. DOI: 10.1109/TVCG.
2012.142 2.

[EHS13] EICHELBAUM, SEBASTIAN, HLAWITSCHKA, MARIO,
and SCHEUERMANN, GERIK. “Openwalnut: An open-
source tool for visualization of medical and bio-signal data”.
Biomedical Eng./Biomedizinische Tech. 58.SI-1-Track-G
(2013), 000010151520134183. DOI: 10.1515/bmt-2013-4183 2.

[GBA*14] GARYFALLIDIS, ELEFTHERIOS, BRETT, MATTHEW, AMIR-
BEKIAN, BAGRAT, et al. “Dipy, a library for the analysis of diffusion
MRI data”. Frontiers in Neuroinformatics 8 (2014), 8. DOI: 10.3389/
fninf.2014.00008 2.

[GBC*12] GARYFALLIDIS, ELEFTHERIOS, BRETT, MATTHEW, COR-
REIA, MARTA MORGADO, et al. “QuickBundles, a Method for Trac-
tography Simplification”. Frontiers in Neuroscience 6.175 (2012). DOI:
10.3389/fnins.2012.00175 2, 3.

[GM05] GOBBETTI, ENRICO and MARTON, FABIO. “Far voxels: A mul-
tiresolution framework for interactive rendering of huge complex 3D
models on commodity graphics platforms”. ACM ToG 24 (2005), 878–
885. DOI: 10.1145/1186822.1073277 3.

[Goo17] GOOGLE. Draco: 3D graphics compression. 2017. URL:
https://google.github.io/draco/ 3.

[Gün20] GÜNTHER, T. “Visibility, Topology, and Inertia: New Methods
in Flow Visualization”. IEEE CG&A 40.2 (2020), 103–111. DOI: 10.
1109/MCG.2019.2959568 3.

[HFZ*20] HAEHN, DANIEL, FRANKE, LORAINE, ZHANG, FAN, et al.
“TRAKO: Efficient Transmission of Tractography Data for Visualiza-
tion”. MICCAI. 2020, 322–332. DOI: 10 . 1007 / 978 - 3 - 030 -
59728-3_32 3.

[HSO07] HARRIS, MARK, SENGUPTA, SHUBHABRATA, and OWENS,
JOHN D. “Parallel Prefix Sum (Scan) with CUDA”. GPU Gems 3. Aug.
2007. Chap. 39, 851–876 5.

[IRR*22] IBRAHIM, MOHAMED, RAUTEK, PETER, REINA, GUIDO,
et al. “Probabilistic Occlusion Culling using Confidence Maps for
High-Quality Rendering of Large Particle Data”. IEEE TVCG 28.1
(2022), 573–582. DOI: 10.1109/TVCG.2021.3114788 3.

[Ise15] ISENBERG, TOBIAS. “A Survey of Illustrative Visualization Tech-
niques for Diffusion-Weighted MRI Tractography”. Visualization and
Processing of Higher Order Descriptors for Multi-Valued Data. wiley,
2015, 235–256. DOI: 10.1007/978-3-319-15090-1_12 2.

[JCLR19] JANSSON, ERIK SVEN VASCONCELOS, CHAJDAS,
MATTHÄUS G., LACROIX, JASON, and RAGNEMALM, INGE-
MAR. “Real-Time Hybrid Hair Rendering”. EGSR. 2019, 1–8. DOI:
10.2312/sr.20191215 2.

[KAC15] KRESS, J., ANDERSON, E., and CHILDS, H. “A visualization
pipeline for large-scale tractography data”. LDAV. 2015, 115–123. DOI:
10.1109/LDAV.2015.7348079 2.

[KNM*20] KERN, MICHAEL, NEUHAUSER, CHRISTOPH, MAACK, TOR-
BEN, et al. “A Comparison of Rendering Techniques for 3D Line Sets
with Transparency”. IEEE TVCG 27.8 (2020). DOI: 10.1109/TVCG.
2020.2975795 3.

[Kra18] KRAEMER, MANUEL. Using Turing Mesh Shaders: NVIDIA As-
teroids Demo. 2018. URL: https : / / developer . nvidia .
com / blog / using - turing - mesh - shaders - nvidia -
asteroids-demo/ 2.

[KRW19] KANZLER, MATHIAS, RAUTENHAUS, MARC, and WESTER-
MANN, RÜDIGER. “A Voxel-Based Rendering Pipeline for Large 3D
Line Sets”. IEEE TVCG 25.7 (2019), 2378–2391. DOI: 10 . 1109 /
TVCG.2018.2834372 3.

[KSA13] KÄMPE, VIKTOR, SINTORN, ERIK, and ASSARSSON, ULF.
“High resolution sparse voxel dags”. ACM ToG 32.4 (2013), 1–13. DOI:
10.1145/2461912.2462024 3.

[KSW05] KRUGER, J., SCHNEIDER, J., and WESTERMANN, R.
“DUODECIM - a structure for point scan compression and rendering”.
PBG 2005. 2005, 99, -–146. DOI: 10.1109/PBG.2005.194070 3.

[KSW21] KARIS, BRIAN, STUBBE, RUNE, and WIHLIDAL, GRAHAM.
Nanite, A Deep Dive. Siggraph course. 2021 3, 9.

[Kub18] KUBISCH, CHRISTOPH. New Rendering Techniques for Real-
Time Graphics: Turing - Mesh Shaders. Talk at SIGGRAPH 2018.
2018 2.

[Kub20] KUBISCH, CHRISTOPH. Using Mesh Shaders for Professional
Graphics. 2020. URL: https : / / developer . nvidia . com /
blog / using - mesh - shaders - for - professional -
graphics/ 2.

[Lin14] LINDSTROM, PETER. “Fixed-Rate Compressed Floating-Point
Arrays”. IEEE TVCG 20.12 (2014), 2674–2683. DOI: 10 . 1109 /
TVCG.2014.2346458 3.

[LJSL21] LEE, GI BEOM, JEONG, MOONSOO, SEOK, YECHAN, and
LEE, SUNGKIL. “Hierarchical Raster Occlusion Culling”. CGF 40.2
(2021), 489–495. DOI: https://doi.org/10.1111/cgf.
142649 3.

[LKE18] LEE, SUNGKIL, KIM, YOUNGUK, and EISEMANN, ELMAR. “It-
erative Depth Warping”. ACM ToG 37.5 (2018). DOI: 10 . 1145 /
3190859 3.

[LS07] LI, L. and SHEN, H. “Image-based streamline generation and ren-
dering”. IEEE TVCG 13.3 (2007), 630–640. DOI: 10.1109/TVCG.
2007.8093671 3.

[MB20] MICHEL, ÉLIE and BOUBEKEUR, TAMY. “Real Time Multiscale
Rendering of Dense Dynamic Stackings”. CGF 39.7 (2020), 169–179.
DOI: https://doi.org/10.1111/cgf.14135 3.

[MBJ*15] MATTAUSCH, OLIVER, BITTNER, JIRI, JASPE, ALBERTO, et
al. “CHC+RT: Coherent Hierarchical Culling for Ray Tracing”. CGF
34.2 (2015), 537–548. DOI: 10.1111/cgf.12582 3.

[MBW08] MATTAUSCH, OLIVER, BITTNER, JIRI, and WIMMER,
MICHAEL. “CHC++: Coherent Hierarchical Culling Revisited”. CGF
27.2 (2008), 221–230. DOI: 10.1111/j.1467- 8659.2008.
01119.x 3.

[MCCV99] MORI, SUSUMU, CRAIN, BARBARA J, CHACKO, VADAPPU-
RAM P, and VAN ZIJL, PETER CM. “Three-dimensional tracking of
axonal projections in the brain by magnetic resonance imaging”. An-
nals of Neurology 45.2 (1999), 265–269. DOI: 10 . 1002 / 1531 -
8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 1.

[MG16] MERRILL, DUANE and GARLAND, MICHAEL. “Single-pass Par-
allel Prefix Scan with Decoupled Lookback”. 2016 5.

[MGR*18] MERCIER, CORENTIN, GORI, PIETRO, ROHMER, D., et al.
“Progressive and Efficient Multi-Resolution Representations for Brain
Tractograms”. EG VCBM. 2018, 89–93. DOI: 10 . 2312 / vcbm .
20181232 3.

[Mou18] MOURS, PATRICK. Mesh Shaders in Turing. Talk at GTC Eu-
rope. 2018 2.

[MPSS05] MALLO, OVIDIO, PEIKERT, RONALD, SIGG, CHRISTIAN, and
SADLO, FILIP. “Illuminated lines revisited”. VIS 05. IEEE Visualization,
2005. 2005, 19–26. DOI: 10.1109/VISUAL.2005.1532772 2, 10.

[MRG*20] MERCIER, CORENTIN, ROUSSEAU, SYLVAIN, GORI,
PIETRO, et al. “QFib: Fast and Efficient Brain Tractogram Compres-
sion”. Neuroinformatics 18.4 (2020), 627–640. DOI: 10 . 1007 /
s12021-020-09452-0 3, 4, 7, 8.

[MSS*10] MEYER, QUIRIN, SÜSSMUTH, JOCHEN, SUSSNER, GERD, et
al. “On floating-point normal vectors”. CGF 29.4 (2010), 1405–1409.
DOI: 10.1111/j.1467-8659.2010.01737.x 4.

[MV02] MORI, SUSUMU and VAN ZIJL, PETER CM. “Fiber tracking:
principles and strategies–a technical review”. NMR in Biomedicine 15.7-
8 (2002), 468–480. DOI: 10.1002/nbm.781 1.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/TVCG.2012.142
https://doi.org/10.1109/TVCG.2012.142
https://doi.org/10.1515/bmt-2013-4183
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fninf.2014.00008
https://doi.org/10.3389/fnins.2012.00175
https://doi.org/10.1145/1186822.1073277
https://google.github.io/draco/
https://doi.org/10.1109/MCG.2019.2959568
https://doi.org/10.1109/MCG.2019.2959568
https://doi.org/10.1007/978-3-030-59728-3_32
https://doi.org/10.1007/978-3-030-59728-3_32
https://doi.org/10.1109/TVCG.2021.3114788
https://doi.org/10.1007/978-3-319-15090-1_12
https://doi.org/10.2312/sr.20191215
https://doi.org/10.1109/LDAV.2015.7348079
https://doi.org/10.1109/TVCG.2020.2975795
https://doi.org/10.1109/TVCG.2020.2975795
https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/
https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/
https://developer.nvidia.com/blog/using-turing-mesh-shaders-nvidia-asteroids-demo/
https://doi.org/10.1109/TVCG.2018.2834372
https://doi.org/10.1109/TVCG.2018.2834372
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1109/PBG.2005.194070
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://developer.nvidia.com/blog/using-mesh-shaders-for-professional-graphics/
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/https://doi.org/10.1111/cgf.142649
https://doi.org/https://doi.org/10.1111/cgf.142649
https://doi.org/10.1145/3190859
https://doi.org/10.1145/3190859
https://doi.org/10.1109/TVCG.2007.8093671
https://doi.org/10.1109/TVCG.2007.8093671
https://doi.org/https://doi.org/10.1111/cgf.14135
https://doi.org/10.1111/cgf.12582
https://doi.org/10.1111/j.1467-8659.2008.01119.x
https://doi.org/10.1111/j.1467-8659.2008.01119.x
https://doi.org/10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
https://doi.org/10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
https://doi.org/10.2312/vcbm.20181232
https://doi.org/10.2312/vcbm.20181232
https://doi.org/10.1109/VISUAL.2005.1532772
https://doi.org/10.1007/s12021-020-09452-0
https://doi.org/10.1007/s12021-020-09452-0
https://doi.org/10.1111/j.1467-8659.2010.01737.x
https://doi.org/10.1002/nbm.781

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

[MYB16] MALEKI, SEPIDEH, YANG, ANNIE, and BURTSCHER, MAR-
TIN. “Higher-Order and Tuple-Based Massively-Parallel Prefix Sums”.
Proc. SIGPLAN 51.6 (2016), 539–552. DOI: 10.1145/2908080.
2908089 5.

[PFK07] PETROVIC, V., FALLON, J., and KUESTER, F. “Visualizing
Whole-Brain DTI Tractography with GPU-based Tuboids and LoD Man-
agement”. IEEE TVCG 13.6 (2007), 1488–1495. DOI: 10 . 1109 /
TVCG.2007.70532 2.

[PJHD15] PRESSEAU, CAROLINE, JODOIN, PIERRE-MARC, HOUDE,
JEAN-CHRISTOPHE, and DESCOTEAUX, MAXIME. “A new compres-
sion format for fiber tracking datasets”. NeuroImage 109 (2015), 73–83.
DOI: 10.1016/j.neuroimage.2014.12.058 3.

[PLSK06] PIEPER, STEVE, LORENSEN, BILL, SCHROEDER, WILL, and
KIKINIS, RON. “The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D
slicer as an open platform for the medical image computing commu-
nity”. IEEE ISBI. 2006, 698–701. DOI: 10 . 1109 / ISBI . 2006 .
1625012 2.

[PT02] PANTAZOPOULOS, IOANNIS and TZAFESTAS, SPYROS. “Oc-
clusion Culling Algorithms: A Comprehensive Survey”. JIRS 35
(2002), 123–156. DOI: 10.1023/A:1021175220384 3.

[PWK20] PREUSS, DANIEL, WEINKAUF, TINO, and KRÜGER, JENS
HARALD. “A Discrete Probabilistic Approach to Dense Flow Visualiza-
tion”. IEEE TVCG 27.12 (2020), 4347–4358. DOI: 10.1109/TVCG.
2020.3006995 3.

[Rah19] RAHUL SATHE, MANUEL KRAEMER. Applications of Mesh
Shading with Dx12. Talk at SIGGRAPH 2019. 2019 2.

[RB20] ROUSSEAU, SYLVAIN and BOUBEKEUR, TAMY. “Unorganized
Unit Vectors Sets Quantization”. JCGT 9.3 (2020), 92–107 4, 13.

[RHD17] RHEAULT, FRANCOIS, HOUDE, JEAN-CHRISTOPHE, and DE-
SCOTEAUX, MAXIME. “Visualization, Interaction and Tractometry:
Dealing with Millions of Streamlines from Diffusion MRI Tractogra-
phy”. Frontiers in Neuroinformatics 11 (2017), 42. DOI: 10.3389/
fninf.2017.00042 2, 3.

[RL00] RUSINKIEWICZ, SZYMON and LEVOY, MARC. “QSplat: A Mul-
tiresolution Point Rendering System for Large Meshes”. ACM ToG.
2000, 343–352. DOI: 10.1145/344779.344940 3.

[SKW21] SCHUTZ, MARKUS, KERBL, BERNHARD, and WIMMER,
MICHAEL. “Rendering Point Clouds with Compute Shaders and Ver-
tex Order Optimization”. CGF 40.4 (2021), 115–126. DOI: 10.1111/
cgf.14345 3, 9.

[SMAS13] SOARES, JOSE, MARQUES, PAULO, ALVES, VICTOR, and
SOUSA, NUNO. “A hitchhiker’s guide to diffusion tensor imaging”.
Frontiers in Neuroscience 7 (2013), 31. DOI: 10 . 3389 / fnins .
2013.00031 2.

[TCC12] TOURNIER, J.-DONALD, CALAMANTE, FERNANDO, and CON-
NELLY, ALAN. “MRtrix: Diffusion tractography in crossing fiber re-
gions”. IJIST 22.1 (2012), 53–66. DOI: 10.1002/ima.22005 7.

[TML11] TOURNIER, JACQUES-DONALD, MORI, SUSUMU, and LEE-
MANS, ALEXANDER. “Diffusion tensor imaging and beyond”. Magnetic
Resonance in Medicine 65.6 (2011), 1532–1556. DOI: 10.1002/mrm.
22924 1, 3.

[Tor19] TORABI, PEYMAN. “Skeletal Animation Optimization Using
Mesh Shaders”. PhD thesis. Blekinge Institute of Technology, 2019 2.

[VMG17] VILLANUEVA, ALBERTO JASPE, MARTON, FABIO, and GO-
BETTI, ENRICO. “Symmetry-aware Sparse Voxel DAGs (SSVDAGs)
for compression-domain tracing of high-resolution geometric scenes”.
JCGT 6.2 (2017), 1–30 3.

[VUA*12] VAN ESSEN, D.C., UGURBIL, K., AUERBACH, E., et al. “The
Human Connectome Project: A data acquisition perspective”. NeuroIm-
age 62.4 (2012), 2222–2231. DOI: 10 . 1016 / j . neuroimage .
2012.02.018 7.

[WBK*07] WARD, KELLY, BERTAILS, FLORENCE, KIM, TAE-YONG, et
al. “A Survey on Hair Modeling: Styling, Simulation, and Rendering”.
IEEE TVCG 13.2 (2007), 213–234. DOI: 10.1109/TVCG.2007.
30 2.

[WBSW07] WANG, RUOPENG, BENNER, THOMAS, SORENSEN, ALMA
GREGORY, and WEDEEN, VAN JAY. “Diffusion toolkit: a software pack-
age for diffusion imaging data processing and tractography”. Magnetic
Resonance in Medicine 15.3720 (2007) 2, 9.

[WY17] WU, KUI and YUKSEL, CEM. “Real-time Fiber-level Cloth Ren-
dering”. I3D. 2017. DOI: 10.1145/3023368.3023372 2.

[ZLB16] ZHAO, SHUANG, LUAN, FUJUN, and BALA, KAVITA. “Fitting
Procedural Yarn Models for Realistic Cloth Rendering”. ACM ToG 35.4
(2016). DOI: 10.1145/2897824.2925932 2.

Appendix A: compression (on CPU)

We establish the unit vector mapping and unmapping according
to [RB20] with the two differences that our chained frames only
calls mapping on the average vector X = (1,0,0) and that, since
quantization is performed on an half-octahedron, the mapping fac-
tor somewhat differs. We recall α the maximal admissible angle to
define Ratio = 1− cosα and V the vector to be mapped:

let X∗ = V− (V ·X)X
||V− (V ·X)X|| and c = 1− 1−V ·X

Ratio

Vmap = cX+
√

1− c2X∗

The unit vector quantization on an half-octahedron of Vmap with
4bits per coordinates results in the following integer(4bit) coeffi-
cients u,v that are packed in a single byte B :

qy =
Vmapy
||Vmap||1

and qz =
Vmapz
||Vmap||1

u = b0.5+7.5∗ (1+qy +qz)c
v = b0.5+7.5∗ (1+qy−qz)c

B = u+(v << 4)

Appendix B: Uncompression (on GPU)

Operations are duals with the compression/quantization, retrieving
Vmap from B:

q1 =
B%16

7.5
−1 and q2 =

B >> 4
7.5

−1

Wy =
q1+q2

2
and Wz =

q1−q2
2

Wx = 1−|Wy|− |Wz|

Vmap =
W
||W||

The next formula (already simplified) unmaps Vmap to retrieve V:

Vx = 1−Ratio+RatioVmapx

Vy = Vmapy

√
1−Vx2

1−Vmapx2 and Vz = Vmapz

√
1−Vx2

1−Vmapx2

Appendix C: Fragment shader sphere carving

To retrieve the depth of an half-sphere (of radius R) aligned with the
viewing direction from a disc proxy of the same radius by manually
writing the depth in each fragment, all coordinates are expressed
in the camera frame (where z is the direction of the camera). Let

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/2908080.2908089
https://doi.org/10.1145/2908080.2908089
https://doi.org/10.1109/TVCG.2007.70532
https://doi.org/10.1109/TVCG.2007.70532
https://doi.org/10.1016/j.neuroimage.2014.12.058
https://doi.org/10.1109/ISBI.2006.1625012
https://doi.org/10.1109/ISBI.2006.1625012
https://doi.org/10.1023/A:1021175220384
https://doi.org/10.1109/TVCG.2020.3006995
https://doi.org/10.1109/TVCG.2020.3006995
https://doi.org/10.3389/fninf.2017.00042
https://doi.org/10.3389/fninf.2017.00042
https://doi.org/10.1145/344779.344940
https://doi.org/10.1111/cgf.14345
https://doi.org/10.1111/cgf.14345
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.1002/ima.22005
https://doi.org/10.1002/mrm.22924
https://doi.org/10.1002/mrm.22924
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1109/TVCG.2007.30
https://doi.org/10.1109/TVCG.2007.30
https://doi.org/10.1145/3023368.3023372
https://doi.org/10.1145/2897824.2925932

J. Schertzer & C. Mercier & S. Rousseau & T. Boubekeur / Fiblets for Real-Time Rendering of Massive Brain Tractograms

C be the center of the disc, S the location of the fragment on the
disc, d the direction from the camera to the fragment and P the
unknown location of the intersection between d and the half-sphere.
We define T = S−C, X = ||T||, L = ||P−S|| and D = ||C||, with
β = (P−C,T) and θ = (P− S,T). The projection of the lengths
along T and T⊥ results in:

Rcosβ = T +Lcosθ

Rsinβ = L sinθ

Summing the squares of those equalities results in removing β:

R2 = (X +Lcosθ)2 +L2 sin2
θ

i.e. 0 = L2 +2Lcosθ+X2−R2

By construction we have also θ = arctan D
X , therefore when solving

the equation, L is written as :

L =

√
R2(X2 +D2)−D2X2−X2

√
X2 +D2

Since R, X , and D are accessible by the fragment, the depth of P
can finally be simply calculated:

Pz = Sz+Ld · z

The bottom-right projection submatrix is finally used to transform
Pz in the NDC depth range.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

