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Figure 1: Mesostructures produced using MesoGen. The design of very intricate topology can be achieved rapidly (left and
middle) and a given input macrosurface results in various styles (right) depending on the tile set created with our workflow.

ABSTRACT
Three-dimensional mesostructures enrich coarse macrosurfaces
with complex features, which are 3D geometry with arbitrary topol-
ogy in essence, but are expected to be self-similar with no tiling
artifacts, just like texture-based material models. This is a challeng-
ing task, as no existing modeling tool provides the right constraints
in the design phase to ensure such properties while maintaining
real-time editing capabilities. In this paper, we propose MesoGen,
a novel tile-centric authoring approach for the design of proce-
dural mesostructures featuring non-periodic self-similarity while
being represented as a compact and GPU-friendly model. We en-
sure by construction the continuity of the mesostructure: the user
designs a set of atomic tiles by drawing 2D cross-sections on the
interfaces between tiles, and selecting pairs of cross-sections to be
connected as strands, i.e., 3D sweep surfaces. In parallel, a tiling en-
gine continuously fills the shell space of the macrosurface with the
so-defined tile set while ensuring that only matching interfaces are
in contact. Moreover, the engine suggests to the user the addition
of new tiles whenever the problem happens to be over-constrained.
As a result, our method allows for the rapid creation of complex,
seamless procedural mesostructure and is particularly adapted for
wicker-like ones, often impossible to achieve with scattering-based
mesostructure synthesis methods.
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1 INTRODUCTION
Geometric surface enrichment is often achieved using displace-
ment mapping, for which content can easily be authored using
standard (2D) painting tools. However, the content injected onto
the macrosurface has fixed disk topology and cannot represent
complex structures, such as tunnels and handles. To overcome this
issue, generalized displacement mapping and shell mapping are
explicitly modeling the surrounding space of the macrosurface
and use various mechanisms to instantiate complex shapes in it.
Unfortunately, this comes at the cost of tedious authoring, as the
mesostructure shall still behave like a mappable object, conforming
to tilability constraints and deforming following the macrosurface
curvature. As a consequence, only complex preprocessings [Zhou
et al. 2006] acting on preexisting geometry have been developed
so far to transform a 3D surface into a proper mesostructure. In
practice, interactive mesostructure synthesis is often achieved us-
ing primitive scattering over the macrosurface, which is efficient at
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reproducing dense packings, but not convenient for stranded ones
e.g., tubular networks or frayed scaffolds (see Fig. 1). We propose
MesoGen, a novel approach to such self-similar mesostructure de-
sign built upon a tiling algorithm [Wang 1961] and adopting an
interface-centric workflow, where the user creates mesostructure
3D tiles through the 2D cross-sections they form at their interfaces.
MesoGen runs in real-time on any quad-based surface domain and
allows for the creation of complex mesostructures using a few brush
strokes. Just like displacement maps, the resulting model can be
reused across macrosurfaces – with minimal tile set adjustments –
and is architectured to be compact and GPU-friendly.

Contributions. Our main contributions are: (i) a mesostructure
design method centered on continuity by construction and built
upon a tiling engine; (ii) a tiling engine, evolving state-of-the-art
with user-prescribed constraints and a tile suggestion mechanism,
that we evaluate; (iii) a compact procedural mesostructure model
feeding this engine, architectured for real-time user feedback and
delivering hundreds of millions of polygons per-second on standard
GPUs; and (iv) a mapping mechanism leveraging the procedural na-
ture of our mesostructure model to fill the macrosurface shell space.
Our method allows designing a variety of mesostructure types, and
is particularly well-suited for stranded structures like wicker, which
contain long connected features; it completes approaches based on
the scattering of mesoelements.

2 RELATEDWORK
Tile-based generation. Inspired by the tiling problem formalized

byWang [1961], the field of computer graphics uses tiling solvers to
address one of its everlasting bottlenecks: authoring in a reasonable
human time the amount of graphic content that a machine can
process. Wang tiling was first applied to texture generation, with
the aperiodic texture mapping of Stam [1997] showing how laying
out multiple patches of texture break the visual repetitivity that
strikes the human eye when naively repeating the same image.

Following Stam’s, multiple other approaches explored tile-based
texturing. Neyret and Cani [1999] used tiles for on-surface synthesis
rather than for paving a plane, thus performing seamless texturing.
They took some liberties with the original Wang tile framework,
changing the tile shape to triangles, and introducing the need to
orient tile edge labels, which we also adopt in our method.

Our tile-based approach draws inspiration from the work of Co-
hen et al. [2003], which highlights that the construction of tile’s
interior content is a key bottleneck. Like ours, their procedure for
building this content leverages the awareness of interface assign-
ments to ensure the continuity of the result, but they focus primarily
on automated tile filling, either from examples (for texture genera-
tion) or using a scattering process (Poisson disc distributions). We
provide more control by letting the users interactively author tile’s
interior while preserving interface-aware constraints. This possi-
bility is briefly mentioned by Cohen et al., but their stamp-based
approach still requires manual adjustment to ensure continuity (see
supplementary document). Instead of letting the user laying out ex-
isting primitives over the tiles, we enable them to design shapes by
first defining their cross-section at each interface and then connect-
ing them. Not only this avoids the problem of overlapping multiple
edges, but it also generalizes to 3D (and so 2D cross-sections).

Cohen et al. also show that, unlike other texture synthesis tech-
niques such as image quilting [2001], tile-based texture generation
limits the computational workload involved in blending texture
patches: once the graph cut sewing is prepared for each tile, the
synthesis itself is very fast – it only consists in laying out tiles –
and can be done on the fly during real time rendering [Wei 2004].
Our method also benefits from this factorization, in contrast to the
mesh quilting method [Zhou et al. 2006] for instance.

In their representation of forest scenes, Decaudin and Neyret
[2004] present tiling as a mean to compactly encode the geome-
try of all trees, since they precompute light transport only for a
set of tiles before instantiating them on the fly at render time. We
adopt a similar strategy in our mesostructure representation, using
tiles to share memory. Although others on-surface texture genera-
tion [Turk 2001] address surface parameterization artifacts as much
as tile-based methods, tiles provide a better control on structures
spanning across long distances. Yarn modeling techniques are good
examples of how tile-based geometry constitutes a rich design space
[Leaf et al. 2018; Narayanan et al. 2019; Nimkulrat et al. 2017; Yuksel
et al. 2012], but these focus on fabricability constraints and/or the
coupling with powerful physical simulations for predefined tiles
with simple cross sections while we focus on designing custom
tilesets.

Tiling engines. Stam [1997] uses a predefined tile set for which
a constructive algorithm for aperiodic tiling is known to always
work [Grünbaum and Shephard 1987]. Neyret and Cani [1999]
consider the exhaustive tile set where all combinations of Wang
labels are available, thus tiling is always solvable. The approach
of Cohen et al. [2003] is more flexible than Stam’s, as the tile sets
are generated depending on the number of Wang labels such that
they can use a tiling algorithm that always succeeds. Also using a
restricted family of tile sets, Fu et al [2005] generalize the solver
to non-regular slot grids. Lastly, some tiling methods do not rely
on Wang’s framework [Chen et al. 2017] but this leads to a heavier
solving operation. Since all these approaches rely on the tile set
being an internal entity hidden from the user, we turned to more
generic tiling engines based on constraint propagation, which have
been used for graphics content by Merrell [2007] and Gumin [2016].

Surface amplification. Enriching a coarse surface with subpolyg-
onal details has been a subject of interest quite since mesh-based
representations are used. These details are typically mapped like
textures; the first example is displacement mapping [Cook 1984],
which deforms polygons along their normal, and then came iter-
ations like View-Dependent Displacement Mapping [Wang et al.
2003] and Generalized Displacement Maps [Wang et al. 2004]. As
displacement-based methods are constrained to the topology of the
original macrosurface, Porumbescu et al. [2005] proposed shell maps
which use surface meshes as 3D texture data of arbitrary topology
along a macrosurface. This work led to a number of follow-ups,
adapting it for real-time mapping [Ritsche 2006], mitigating de-
formation artefacts [Jeschke et al. 2007] or using it for geometry
transfer [Takayama et al. 2011]. In between lies hybrid approaches
like relief mapping of complex mesostructure topology [Policarpo
and Oliveira 2006] (but limited to a few overhanging layers). A
radically different approach to geometric texture mapping is to
leverage an implicit representation of the macrosurface [Brodersen
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Figure 2: Overview of MesoGen. The user controls the synthesis process with the Draw & Select mechanism, detailed in Figure 4.

et al. 2008]. Our approach makes no exception to the overall surface
amplification scheme: the meso-scale geometric content is defined
in a few unit cubes – the tiles – and then mapped onto the target
surface.

Empirically, a limiting factor when using tile-based modeling is
the creation of tile content that remains seamless at any time. Many
approaches are data-based, taking an example as input [Bhat et al.
2004; Cohen et al. 2003; Gumin 2016; Merrell 2007; Zhou et al. 2006].
Although this works well for 2D raster images, it is much harder
to define in the case of 3D vector content laid out on irregular
grids [Merrell and Manocha 2008] so, in practice, tile based 3D
mesh generation uses manually crafted atoms. For 2D vector tiles,
Bian et al [2018] propose an editor in which, while drawing on tiles,
the user sees an onion skin of the continuation lines of neighboring
tiles. Porting this approach to 3D content is not straightforward, and
our work draws from this spirit of attributing a predominant role to
interfaces during authoring. When not based on arbitrary examples,
detail generation methods can also be domain-specific [Landreneau
and Schaefer 2010]. De Toledo et al.[2008] provides a comparison
of various mesostructure techniques.

3 MESOGEN
Our workflow (Sec. 3.1), summarized in Fig. 2, is based on a factor-
ized, highly structured representation of the mesostructure (Sec. 3.2)
which feeds a tiling engine exposing a feedback loop to the user for
efficient authoring (Sec. 3.3) and for which we propose dedicated
mapping (Sec. 3.5) and real-time rendering (Sec. 3.6) procedures.

3.1 Design workflow
MesoGen takes a mesh representing the macrosurface as input,
along which the mesostructure is to be generated. Basically, the
user designs the mesostructure by creating progressively a set of
tiles, while a tiling engine covers the macrosurface by instantiating
consistently and rendering a tile arrangement on-the-fly (Fig. 4).

In the tile set, a tile is defined by (i) a geometric content and (ii)
adjacency rules, with the geometric content being instanced each
time the tile is used by the engine. Adjacency rules are specified
by labeling the four sides of a tile [Wang 1961]: two tiles can be
located next to each other onto the macrosurface if and only if they

share the same interface label. Like Neyret and Cani [1999], we also
add an orientation flag to these interface labels, and only interfaces
that are a mirror of each other may be juxtaposed.

The main friction when defining the content of a tile is to ensure
that it is consistent with the content of any other tile that the tiling
engine could place next to it. This is why we take the problem
the other way around: in our approach, users author geometric
content by drawing 2D cross-sections on the tile’s interfaces. As
such, the tile’s geometric content is entirely defined by (i) assigning
interfaces to the four sides of the tile and (ii) selecting pairs of
cross-sections to connect using a sweep surface. The continuity of
the mesostructure across interfaces is thus ensured by construction.

Another source of friction in the creative process relates to tiling
engine failures. Since we let the user design arbitrary tile sets, and
since the tiling problem is NP-hard in general, failures happen
frequently, even with the best in class tiling engine. Consequently,
we designed our tiling engine to suggest the addition of a new tile to
the user whenever failure occurs, prescribing which configuration
of interfaces could have enabled it to pave the whole macrosurface.

flipped

Figure 3: Wang labelling: A tile references, for each direction
𝑑 ∈ 𝐷 , one of the interfaces 𝑖 ∈ 𝐼 whose geometric content
must comply with. The interface can be horizontally flipped.
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Figure 4: Tile set authoring involves setting combinatorial information (interfaces) and geometric content (2D cross-sections
and 3D sweeps).

3.2 Procedural mesostructure model
Our mesostructure model compactly represents its surface elements
in a factored way. Essentially, it takes the form of a tuple (𝑇, 𝐼, 𝑀,𝐴)
composed of a tile set (𝑇, 𝐼 ), a macrosurface𝑀 and an assignment
𝐴 of tiles to the macrosurface, as summarized in Figure 2.

The tile set is formed by (i) a set 𝐼 of interfaces containing 2D
cross-sections, as well as (ii) a list 𝑇 of tiles. Following the usual
model of Wang tiles, a tile contains for each of its four sides – iden-
tified by its direction 𝑑 ∈ 𝐷 = {N ,S, E,W} for north, south, east
and west – a reference to one of the interfaces (Fig. 3). We also
add a flipping flag and note 𝑖𝑘↔ the flipped version of an interface
𝑖𝑘 . A tile also contains a geometric content, given as a list of 3D
sweep surfaces, each referencing a pair of 2D cross-sections inter-
polated along a procedural 3D Bézier curve. The alignment between
the source and target cross-sections is guessed by minimizing the
distance on 20 points sampled along their contours, and can be
manually tuned by the user if they want more torsion (see Fig. 5).
Additional geometric content may be injected into the tile, provided
it is entirely contained within the extent of the tile, i.e., it does not
interact with the interfaces. Lastly, a tile contains a set of flags
indicating whether the tiling engine is allowed to flip and rotate it.

The 2D content of each interface – instantiated on each tile
side that references this interface – is modelled as a binary space
occupancy function over the unit square. During the design phase,
connected components are dynamically detected and constitute the
cross-sections that can be selected for generating sweep surfaces.
Shading information (albedo, roughness, metallicness) is assigned
to each cross-section and interpolated along sweeps.

The macrosurface 𝑀 is the domain where tiles are instantiated,
extending the usual case of grid generation. It takes the form of
a quad surface mesh and defines the associated slot graph (𝑆, 𝐸),
namely the undirected dual graph of the quad mesh connectivity
where a vertex 𝑠 of the slot graph (a slot) corresponds to a face of
the quad mesh. Each half-edge (𝑠, 𝑒) ∈ 𝑆 × 𝐸 of the slot graph is
labelled with a direction 𝑑 ∈ 𝐷 , with at most one use of a given
direction per slot. This indicates how a tile should be instantiated
on this slot. Vertex positions and normal vectors define the shell
space [Porumbescu et al. 2005] in which the mesostructure lives.

The slot assignment 𝐴 : 𝑆 → 𝑇 × 𝑃 provides for each slot a
transformed tile, namely a tile index and a tile transform indicating
whether the tile should be rotated and/or flipped. This transform
takes the form of a permutation 𝑝 ∈ 𝑃 of its four base corners.
An assignment is valid if the interface assigned to an half-edge is

always the flipped version of the interface of its opposite half-edge.
Formally, let 𝑠1 and 𝑠2 be two slots connected by an edge 𝑒 in the slot
graph, and 𝑑1 (resp. 𝑑2) the direction labeling the half-edge (𝑠1, 𝑒)
(resp. (𝑠2, 𝑒)). Two (transformed) tiles 𝑡1 and 𝑡2 can be assigned to
𝑠1 and 𝑠2 only if the interface attached to the tile 𝑡1 in direction 𝑑1
is the flipped version the one attached to the tile 𝑡2 in direction 𝑑2.

Note that when the slot graph is a regular grid, a half-edge
labelled with a north direction always faces a half-edge labelled
with a south direction, but for an arbitrary graph, it is not necessarily
the case (which is why we reason based on half-edges).

3.3 Tiling
Constraint solving. Given the tile set and the slot graph, the tiling

engine produces a valid slot assignment. Our tiling engine, sum-
marized in Alg. 1, is largely based on the Wave Function Collapse
algorithm [Gumin 2016], itself following mostly the engine pro-
posed byModel Synthesis [Merrell 2007]. It proceeds by progressive
reduction of the possibility space, alternating two steps (see Fig. 6).
Initially, the set of all tiles under all transforms is assigned to each
of the slots, then it greedily propagates constraints through a depth-
first traversal of the slot graph. Each time this recursive propagation
(collapse) step reaches a fixed point, the possibility set of one of the
slots is arbitrarily reduced to a single tile (observe step). In order
to reduce the chance of leading to a dead-end – a case where the
possibility set of a slot is empty – the observed slot is chosen so as
to minimize the amount of information removed from the system.

3D sweep surfaces2D sections

Figure 5: The geometric content of tiles is defined by sweep-
ing across 2D cross-sections drawn on interfaces. The same
cross-section may be used by more than one sweep, and if
they are not used by any, a cap surface is automatically added.
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In the case of equiprobable tiles, this simply means we observe
the slot with the smallest possibility set (that has more than 1 tile).
When stuck, the algorithm restarts with a different random seed.

The tiling problem being NP-hard, this algorithm does not magi-
cally handle all cases, but benefits from some nice properties. First,
it is easy to implement, and has proven to be useful in practice,
especially for video games [Stalberg 2018]. Then, it is not tied to
the regular grid structure on which tiling algorithms are usually
applied; we were able to adapt it to the arbitrary slot graph derived
from our input macrosurface with minimal modification. Lastly,
reasoning about possibility spaces is a flexible framework in which
it is easy to encode extra constraints, like forcing some interfaces
to occur only on the boundaries of the macrosurface. Other work
even ensure path finding or other non-local constraints [Sandhu
et al. 2019], and these could be ported to our use case.

ALGORITHM 1: Outline of the tiling solver. Pink underlined items
show our additions to the typical Wave Function Collapse algo-
rithm [Gumin 2016]: (1) RecordNeighbors saves the cause of the
dead-end for the tile suggestion mechanism, and (2) we traverse an
arbitrary slot graph rather than a regular grid.

Data: Slot graph𝐺 = (𝑆, 𝐸) and tile set𝑇
Result: Slot assignment 𝐴 : 𝑆 → P(𝑇 )
fn Solve𝐺 ,𝑇 :

𝐴0 ← InitialConstraints(𝐺 ,𝑇 );
𝐴← 𝐴0;
repeat

try:
𝑠0 ← Observe(𝐴);
Collapse(𝑠0);

catch Finished:
return 𝐴;

catch DeadEnd:
𝐴← 𝐴0;

fn Observe 𝐴:
if exists 𝑠 ∈ 𝑆 such that |𝐴 [𝑠 ] | = 0 then

RecordNeighbors(s) ; (1)

throw DeadEnd;
if not exists 𝑠 ∈ 𝑆 such that |𝐴 [𝑠 ] | > 1 then

throw Finished;
𝑚 ← min( |𝐴 [𝑠 ] |, for slots 𝑠 ∈ 𝑆 such that |𝐴 [𝑠 ] | > 1);
𝑠0 ← random slot such that |𝐴 [𝑠0 ] | =𝑚;
𝐴 [𝑠0 ] ← { random tile from 𝐴 [𝑠0 ] };
return 𝑠0;

fn rec Collapse 𝑠1:
foreach direction 𝑑1 do
(𝑠2, 𝑑2) ← neighbor half-edge of (𝑠1, 𝑑1) ; (2)

ResolveConflicts(𝑠1, 𝑑1, 𝑠2, 𝑑2);
if 𝑠2 changed then

Collapse(𝑠2);

Boundary constraints. The user may annotate tile interfaces with
two flags: boundary exempt and boundary only. The first one speci-
fies that the interface must never occur in a direction that is con-
nected to no other slot. This is typically used for any non empty
interface when the user does not want open ended sweeps. The
second flag tells that the interface must never be connected, it is

ALGORITHM 2: Initialization of the possibility space prior to run-
ning the tiling engine. The pink underlined section shows how bor-
der exempt/only interfaces can easily be integrated.

Data: Slot graph𝐺 = (𝑆, 𝐸) and tile set𝑇
Result: Slot assignment 𝐴 : 𝑆 → P(𝑇 )
fn InitialConstraints𝑇 :

foreach slot 𝑠 ∈ 𝑆 do
𝐴 [𝑠 ] ← 𝑇 ;
foreach direction 𝑑 ∈ 𝐷 do

if 𝑠 has no half-edge labelled 𝑑 then
𝐴 [𝑠 ] ← 𝐴 [𝑠 ] − {𝑡 ∈ 𝑇 | the interface of 𝑡 in
direction 𝑑 is border exempt };

else
𝐴 [𝑠 ] ← 𝐴 [𝑠 ] − {𝑡 ∈ 𝑇 | the interface of 𝑡 in
direction 𝑑 is border only };

if |𝐴 [𝑠 ] | = 0 then
RecordNeighbors(s);

foreach slot 𝑠 ∈ 𝑆 do
Collapse(𝑠);

allowed only on boundaries. This can be used to ensure that the
generated shape is made of one single piece, without including
empty interfaces. These flags do not really interfere with the solv-
ing algorithm, they can be fully applied as a preprocessing of the
possibility space (Alg. 2). For each slot that has no half-edge la-
belled with a given direction 𝑑 , we initially remove all tiles whose
interface in direction 𝑑 is boundary exempt. And for each direction
for which there exists a half-edge, we remove tiles whose corre-
sponding interface is boundary only. Then we feed the tiling engine
with this initial possibility space (Fig. 6, center).

3.4 Tile suggestion
Our tile suggestion mechanism is executed during the feedback
loop between the model and the user, in order to address the fact
that tiling can be arbitrarily hard or even not possible for a given
tile set on a given macrosurface. When stuck for too long, the tiling
engine provides the user with a new tile, specifying the configura-
tion of interfaces that would have helped it. To do so, we introduce
a suggestion algorithm, listed in Alg. 3, based on a voting scheme.
More precisely, we consider the set 𝐿 of all tile side configurations
that can be generated from the set of interfaces 𝐼 . Each time the pos-
sibility set of a slot becomes empty – forcing the engine to backtrack
– a vote is cast for all configurations of 𝐿 that are compatible with
the possibility sets of its neighbors. All possible transformations
(rotation, flip) are applied to a configuration of 𝐿 when checking
that it can fit, and when the dead-end was reached while apply-
ing the initial constraints, we filter 𝐿 with border constraints. For
instance, an element of 𝐿 labeled with an interface 𝑖 in the north
direction may receive a vote only if there is at least one tile in the
possibility set of the north neighbor that exposes an interface 𝑖↔
towards the empty slot, and if 𝑖 is not border-only. The algorithm
then suggests the tile that received the highest number of votes.
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Figure 6: Outline of the tiling solver described in Algorithm 1. The possibility space of each slot is initialized to the set of
all tiles, then our border exempt/only interfaces imposes some initial constraint, and the remainder of the algorithm is an
alternation of arbitrary local choices and depth-first constraint propagation.

ALGORITHM 3: Our tile suggestion algorithm is based on a voting
system. In practice, we also label votes with the transform 𝑝 and
break ties in the argmax by maximizing the number of identity
transforms.

Data: Dead end neighborhoods 𝑁 recorded during solving. A
neighborhood 𝑛 ∈ 𝑁 gives for each direction 𝑑 ∈ 𝐷 a set of
possible transformed interfaces 𝑛𝑑 = {𝑖1, 𝑖2↔, . . . } (where 𝑖2↔means that interface 𝑖2 is flipped).

Result: An interface 𝑖𝑑 for each direction 𝑑 ∈ 𝐷 of the new tile
fn SuggestNewTile 𝑁 :

Initialize votes: 𝐼 4 → N to 0;
foreach neighborhood 𝑛 ∈ 𝑁 do

foreach 𝒊 ∈ 𝑛N × 𝑛S × 𝑛E × 𝑛W do
foreach tile transform 𝑝 do

𝒊′ ← inverse(𝑝) · 𝒊;
votes(𝒊′)← votes(𝒊′) + 1;

return argmax(votes);

3.5 Shell Mapping
Once a transformed tile is assigned to a slot, the last stage of our
framework aims at mapping it to the actual shell space of the macro-
surface for rendering. We cast this mapping problem as a deforma-
tion one [Porumbescu et al. 2005], from the mesostructure normal-
ized space to the shell one, which thickness is controlled by the
user. We express the geometric content of a tile w.r.t. the 8 corners
of its slot’s bounding box and use these local coordinates to reex-
press it w.r.t. the extruded quad, taking inspiration from cage-based
deformation.

The Shell Mapping approach [Porumbescu et al. 2005] can be
reformulated in our case by replacing the barycentric interpolation
performed over a tetrahedralization of a prism extruded from a tri-
angle with a generalization of barycentric coordinates [Ju et al. 2005;
Langer et al. 2006] computed within the hexahedron extruded from
a quad. However, although this yields smoother deformation than
dicing the hexahedron in tetrahedrons and applying Porumbescu
et al. scheme, significant distortion still subsists.

To contain it, we use the parametric nature of the tile’s geometric
content, i.e., sweep objects, and deform their trajectory curves first,
before the sweeping step. Doing so, the 2D cross-sections preserve
their expected shape, e.g., a circle will produce a perfect tube, not an
ellipsis-based one (see Fig. 7). Note that this may be opted out if one

Figure 7: When mapping a tile’s content into an hexahedron
of the shell, deforming each point of the generated surface
(left) leads to more distortion than applying the deformation
to the underlying curves, prior to sweeping (right, ours).

aims at deforming cross-sections as well, but we found empirically
that cross-section preservation is often the expected behavior.

As our trajectories are cubic Bézier curves, our mapping prob-
lem now boils down to the positioning, for each of them, their four
control points (𝑝0, ..., 𝑝3) in shell space. Our solution is meant to
(i) ensure tangential continuity of the trajectories across interfaces
and (ii) get the trajectories as close as possible to sections of circle
when possible. The point 𝑝0 (resp. 𝑝3) is moved to its correspond-
ing interface and expressed using bilinear interpolation over its 4
corners. Tangential continuity is ensured by placing the remaining
control points using the normal of the corresponding hexahedron
face 𝑛0 (resp. 𝑛3), namely 𝑝1 = 𝑝0 +𝑚0𝑛0 (resp. 𝑝2 = 𝑝3 +𝑚3𝑛3).
To approach a section of circle, the magnitude𝑚0 (resp.𝑚3) of the
tangent is defined as follows: 𝑚𝑖 = 𝑚

𝛼𝑖
𝛼𝑖+𝛼3−𝑖

for 𝑖 ∈ {0, 3} with

𝑚 = 8𝑑
√
2−1
3 and 𝛼𝑖 = ∠ (𝑝3−𝑖 − 𝑝𝑖 , 𝑛𝑖 ). When both 𝑝0 and 𝑝3 are

on the same interface, the diameter 𝑑 is set to | |𝑝1 − 𝑝2 | |. When
ends are on neighboring interfaces, this distance is multiplied by√
2/2. When they are on opposite interfaces, we no longer try to

match a circle; we use the same value of 𝑑 but set the weights 𝛼0
and 𝛼3 to 1 since 𝛼0 + 𝛼3 is null. We adopted this heuristic for its
visual consistency, and the value of𝑚0 and𝑚3 can be globally or
locally scaled by the user to produce various looks.

3.6 GPU Rasterization
We start by sampling each 2D cross-section of each interface us-
ing Clipper [Angus Johnson 2014]. These are stored as CSG trees
modeling a 2D space occupancy function so that we can change
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Table 1: For Fig. 9: GPUmemory, drawn triangles and timing.

Example Memory Triangles Render Tiling

(1a) 5.66 MB 57.9 M 6.2 ms 1132 ms
(1b) 3.06 MB 44.7 M 6.0 ms 3212 ms
(1c) 6.30 MB 70.0 M 7.9 ms 708 ms
(2a) 2.96 MB 24.3 M 5.1 ms 87 ms
(2b) 1.83 MB 18.8 M 5.1 ms 135 ms
(2c) 4.18 MB 29.8 M 5.8 ms 279 ms
(3a) 1.76 MB 6.42 M 3.6 ms 17.8 ms
(3b) 1.33 MB 7.19 M 4.0 ms 43.3 ms
(3c) 3.49 MB 6.18 M 3.1 ms 39.1 ms

the discretization dynamically. The resulting points sets are then
stored in 1D texture maps using a repeat wrap mode.

Second, for each sweep surface in the tile set – not for each
instance – we allocate a VAO modeling a regular grid mesh. Its
horizontal resolution is the maximum of the size of the start and
end cross-section textures. The vertical resolution is a user defined
parameter driving smoothness. We use a compute shader to assign
𝑥 and 𝑦 coordinates to each point by interpolating from the start to
the end section, taking care of reversing the coordinate at which
cross-section textures are sampled from𝑢 to 1−𝑢 when an interface
is flagged as flipped. This creates base sweeps that will later be
deformed per-instance to conform to their target trajectory.

Third, the shell space is represented as a GPU SSBO storing, for
each macrosurface quad, the eight corners of its shell hexahedron.

Fourth, we allocate four SSBOs to hold the control points of the
Bézier curves, containing one vector per instance of a sweep. A
compute shader uses the shell space SSBO and the slot assignments
to fill these control point buffers.

Finally, one draw call is issued for each sweep surface, and
hardware-instanced as many times as there are uses of the cor-
responding tile in the slot assignment. We deform the VAOs at the
vertex shader stage to follow the Bézier trajectory. Any shading
method can be used on the rasterized fragments.

4 RESULTS
The renderings from Figure 1 have been computed using a third
party render engine. The performances of our C++/OpenGL pro-
totype are reported in Tab. 1, measured on an Intel Core i5 CPU,
with 16GB Ram and an NVidia GeForce Titan RTX. As an element
of comparison to show the compactness of our representation, the
example (1c) occupies 1.75 GB when exported as a binary PLY
file. Figure 9 shows that once a tile dictionary has been defined,
it may easily be used across multiple macrosurfaces, applying a
similar style to various shapes, requiring the user to only create
missing tiles corresponding to unseen topological configurations.
We observed that the most pleasant mesostructures are obtained
when the macrosurface is coarse, with convex quads aligned along
curvature flows and moderate elongation, but these are not strict
requirements. More examples can be found in the supplementary
material.

Figure 7 illustrates the interest of manipulating a procedural
representation of tile content when it comes to mapping the con-
tent into a cell of the macrosurface’s shell. Rather than blindly
deforming the synthesized mesostructure, we deform the input

Figure 8: Macrosurface with boundaries: enforcing an empty
interface at boundaries to prevent open geometry (middle
and right). One can also prevent this empty interface from
occurring away from boundaries (right).

Table 2: Success rate 𝑅 and amount 𝑁 of new tiles needed
by different suggestion strategies to complete the tiling
(clamped to 10, beyond which it is considered unsuccessful).
Averaged over 14𝑘 runs (100 times 20 random tile sets and
7 macrosurfaces). For each of the 140 scenarios, a strategy
counts as best (𝑏) when its 𝑅 is higher, or for equal 𝑅 its 𝑁 is
lower. It counts as exclusive best (𝐵) when it is the only best.

Strategy 𝑅 𝑁 𝑏 𝐵

Fully Random 5.3% ± 14.9% 6.7 ± 0.2 7.1% 0.0%
Guided Random 75.9% ± 34.3% 4.1 ± 1.3 34.9% 23.0%
Voting (ours) 85.3% ± 30.9% 3.7 ± 0.7 77.0% 65.1%

of the procedural construction, namely the control points of the
sweep’s trajectories. This leads to a more natural deformation, that
conserves the aspect ratio of user-drawn 2D cross-sections. Fig. 8
is a typical use case of our border constraints. Without them, open
ended surfaces appear on the boundaries (fig. 8.a). The user can
then add an empty interface and flag all the other ones as border
exempt, so only the empty interface is used at boundaries (fig. 8.b),
and prevent disconnection using the border only flag (fig. 8.c).

Tile suggestion ablation study. Our tile suggestion mechanism
essentially consists in two parts: (i) consolidating a set of candidates
based on the solver’s failure situations and (ii) vote for these candi-
dates depending on their occurrence under any possible transform.
Table 2 compares our strategy (Voting) with one where the voting
part (ii) is replaced by a random draw (Guided Random), and one
where the solver’s failure cases (i) are completely ignored (Fully
Random). Statistics are detailed in the additional material. We can
observe that the awareness of failure cases greatly improves the
suggestion over the baseline in all scenarios. Our voting scheme
helps further and is, in a large majority of our 140 test cases, the
most efficient mean to produce a solvable tile set. Interestingly our
method reduces the variance of the results. This and its determin-
ism makes our approach more predictable for the end user. It is
nevertheless a heuristic, which may not be optimal in some cases.

Additional examples. Fig. 11 provides additional examples ren-
dered in our real-time viewer, with complex topologies emerging
from a few tiles only, per-sweep material properties, boundary-
aware behaviors and use cases ranging from basketry to sci-fi.
More examples are provided in our supplemental material.
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5 DISCUSSION
Limitations & Future Work. MesoGen lacks structural constraints

which would be essential for fabrication. Although successful, the
mesostucture synthesis may sometimes not be as visually pleasing
as expected, as exemplified in Fig 10. Directions for future work
include anchoring specific tiles on the macrosurface, reversing
the tiling to operate on interfaces rather tiles, fusing suggestion
and solving, using macrosurface attributes to locally restrict the
use of some tiles, using data-driven schemes [Tu et al. 2020; Zhou
et al. 2006] and exploring implicit sweeps [Schmidt and Wyvill
2005] to address smoothly self-intersections in highly curved base
domain regions. Last, quad mesh design could be incorporated in
MesoGen, either by embedding remeshing tools [Jakob et al. 2015]
or by suggesting local remeshing operations as an alternative to
new tiles when the tiling fails. On-surface direction fields may also
be instrumental in giving more macroscopic control to the user by
biasing the initial configuration of the solver.

Conclusion. We proposed MesoGen, a method for authoring and
representing rich 3D mesostructures along the surface of a quad
mesh. Our approach is efficient at creating filament-like mesostruc-
tures, a case which is not covered by scattering-basedmesostructure
synthesis. We reduced the boilerplate involved in defining the 3D
content of tiles by integrating the constraint of continuity at tile
interfaces from the very beginning of the design process. And as a
by-product, the parametric nature of the content interacts nicely
with the mapping into the shell space, mitigating deformations.

REFERENCES
Angus Johnson. 2014. Clipper. http://www.angusj.com/delphi/clipper.php
Pravin Bhat, Stephen Ingram, and Greg Turk. 2004. Geometric Texture Synthesis by

Example. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing (SGP ’04). Association for Computing Machinery, New York,
NY, USA, 41–44. https://doi.org/10.1145/1057432.1057437

Xiaojun Bian, Li-Yi Wei, and Sylvain Lefebvre. 2018. Tile-Based Pattern Design with
Topology Control. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 1 (2018), 23–38. https://doi.org/10.1145/3203204

A. Brodersen, K. Museth, S. Porumbescu, and B. Budge. 2008. Geometric Texturing
Using Level Sets. IEEE Transactions on Visualization and Computer Graphics 14, 2
(March 2008), 277–288. https://doi.org/10.1109/TVCG.2007.70408

Weikai Chen, Yuexin Ma, Sylvain Lefebvre, Shiqing Xin, Jonàs Martínez, and wenping
wang. 2017. Fabricable Tile Decors. ACM Transactions on Graphics 36, 6 (Nov. 2017),
175:1–175:15. https://doi.org/10.1145/3130800.3130817

Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver Deussen. 2003. Wang Tiles
for Image and Texture Generation. ACM Transactions on Graphics 22, 3 (July 2003),
287–294. https://doi.org/10.1145/882262.882265

Robert L. Cook. 1984. Shade Trees. In Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’84). Association for
Computing Machinery, New York, NY, USA, 223–231. https://doi.org/10.1145/
800031.808602

Rodrigo De Toledo, Bin Wang, and Bruno Lévy. 2008. Geometry Textures and Applica-
tions†. Computer Graphics Forum 27, 8 (2008), 2053–2065. https://doi.org/10.1111/
j.1467-8659.2008.01185.x

Philippe Decaudin and Fabrice Neyret. 2004. Rendering Forest Scenes in Real-Time. In
EGSR04: 15th Eurographics Symposium on Rendering. Eurographics Association, 93.

Alexei A. Efros and William T. Freeman. 2001. Image Quilting for Texture Synthesis
and Transfer. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’01). Association for Computing Machinery,
New York, NY, USA, 341–346. https://doi.org/10.1145/383259.383296

Chi-Wing Fu and Man-Kang Leung. 2005. Texture Tiling on Arbitrary Topological
Surfaces Using Wang Tiles. Eurographics Symposium on Rendering (2005) (2005), 6
pages. https://doi.org/10.2312/EGWR/EGSR05/099-104

Branko Grünbaum and G. C. Shephard. 1987. Tilings and Patterns (first ed.). W. H.
Freeman and Company, New York.

Max Gumin. 2016. Wave Function Collapse.
Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant

Field-Aligned Meshes. ACM Transactions on Graphics (2015). https://doi.org/10.

1145/2816795.2818078
Stefan Jeschke, Stephan Mantler, and Michael Wimmer. 2007. Interactive Smooth

and Curved Shell Mapping. In Proceedings of the 18th Eurographics Conference on
Rendering Techniques (EGSR’07). Eurographics Association, Goslar, DEU, 351–360.

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed
Triangular Meshes. ACM Trans. Graph. 24, 3 (2005), 561–566.

Eric Landreneau and Scott Schaefer. 2010. Scales and Scale-like Structures. Computer
Graphics Forum 29, 5 (2010), 1653–1660. https://doi.org/10.1111/j.1467-8659.2010.
01774.x

Torsten Langer, Alexander Belyaev, and Hans-Peter Seidel. 2006. Spherical Barycentric
Coordinates. In SGP.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner.
2018. Interactive Design of Periodic Yarn-Level Cloth Patterns. ACM Transactions on
Graphics 37, 6 (Dec. 2018), 202:1–202:15. https://doi.org/10.1145/3272127.3275105

Paul Merrell. 2007. Example-Based Model Synthesis. In Proceedings of the 2007 Sympo-
sium on Interactive 3D Graphics and Games (I3D ’07). Association for Computing
Machinery, New York, NY, USA, 105–112. https://doi.org/10.1145/1230100.1230119

Paul Merrell and Dinesh Manocha. 2008. Continuous Model Synthesis. In ACM SIG-
GRAPH Asia 2008 Papers (SIGGRAPH Asia ’08). Association for Computing Machin-
ery, New York, NY, USA, 1–7. https://doi.org/10.1145/1457515.1409111

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual Knitting
Machine Programming. ACM Transactions on Graphics 38, 4 (Aug. 2019), 1–13.
https://doi.org/10.1145/3306346.3322995

Fabrice Neyret and Marie-Paule Cani. 1999. Pattern-Based Texturing Revisited. In 26th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’99). ACM SIGGRAPH, 235. https://doi.org/10.1145/311535.311561

Nithikul Nimkulrat, Janette Matthews, and Tuomas Nurmi. 2017. Tiling Notation as
Design Tool for Textile Knotting. In Bridges 2017 Conference Proceedings. David
Swart, Carlo H. Séquin, and Kristóf Fenyvesi, Waterloo, Canada, 4.

Fabio Policarpo and Manuel M. Oliveira. 2006. Relief Mapping of Non-Height-Field
Surface Details. In Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games (I3D ’06). Association for Computing Machinery, New York, NY, USA,
55–62. https://doi.org/10.1145/1111411.1111422

Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. 2005. Shell Maps.
ACM Transactions on Graphics 24, 3 (July 2005), 626–633. https://doi.org/10.1145/
1073204.1073239

Nico Ritsche. 2006. Real-Time Shell Space Rendering of Volumetric Geometry. In
Proceedings of the 4th International Conference on Computer Graphics and Interactive
Techniques in Australasia and Southeast Asia (GRAPHITE ’06). Association for Com-
puting Machinery, New York, NY, USA, 265–274. https://doi.org/10.1145/1174429.
1174477

Arunpreet Sandhu, Zeyuan Chen, and Joshua McCoy. 2019. Enhancing Wave Function
Collapse with Design-Level Constraints. In Proceedings of the 14th International
Conference on the Foundations of Digital Games (FDG ’19). Association for Comput-
ing Machinery, New York, NY, USA, Article 17. https://doi.org/10.1145/3337722.
3337752

Ryan Schmidt and Brian Wyvill. 2005. Generalized Sweep Templates for Implicit
Modeling. In Proceedings of the 3rd International Conference on Computer Graphics
and Interactive Techniques in Australasia and South East Asia (GRAPHITE ’05).
Association for Computing Machinery, New York, NY, USA, 187–196. https:
//doi.org/10.1145/1101389.1101428

Oskar Stalberg. 2018. Wave Function Collapse in Bad North. (April 2018).
Jos Stam. 1997. Aperiodic Texture Mapping.
Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi, Tamy Boubekeur, and

Olga Sorkine-Hornung. 2011. GeoBrush: Interactive Mesh Geometry Cloning.
Computer Graphics Forum (Proc. EUROGRAPHICS 2011) 30, 2 (2011), 613–622.

Peihan Tu, Li-Yi Wei, Koji Yatani, Takeo Igarashi, and Matthias Zwicker. 2020. Continu-
ous Curve Textures. ACM Transactions on Graphics 39, 6 (Nov. 2020), 168:1–168:16.

Greg Turk. 2001. Texture Synthesis on Surfaces. In Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’01). Association for Computing Machinery, New York, NY, USA, 347–354. https:
//doi.org/10.1145/383259.383297

Hao Wang. 1961. Proving Theorems by Pattern Recognition — II. Bell System Technical
Journal 40, 1 (1961), 1–41. https://doi.org/10.1002/j.1538-7305.1961.tb03975.x

Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-
Yeung Shum. 2003. View-Dependent Displacement Mapping. ACM Transactions on
Graphics 22, 3 (July 2003), 334–339. https://doi.org/10.1145/882262.882272

Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum.
2004. Generalized Displacement Maps. The Eurographics Association. https:
//doi.org/10.2312/EGWR/EGSR04/227-233

Li-Yi Wei. 2004. Tile-Based Texture Mapping on Graphics Hardware. In Proc. Graphics
Hardware. 55–63.

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
Meshes for Modeling Knitted Clothing with Yarn-Level Detail. ACM Trans. Graph.
31, 4, Article 37 (2012), 37:1–37:12 pages.

Kun Zhou, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining Guo, and
Heung-Yeung Shum. 2006. Mesh Quilting for Geometric Texture Synthesis. In ACM
SIGGRAPH. 690–697.

http://www.angusj.com/delphi/clipper.php
https://doi.org/10.1145/1057432.1057437
https://doi.org/10.1145/3203204
https://doi.org/10.1109/TVCG.2007.70408
https://doi.org/10.1145/3130800.3130817
https://doi.org/10.1145/882262.882265
https://doi.org/10.1145/800031.808602
https://doi.org/10.1145/800031.808602
https://doi.org/10.1111/j.1467-8659.2008.01185.x
https://doi.org/10.1111/j.1467-8659.2008.01185.x
https://doi.org/10.1145/383259.383296
https://doi.org/10.2312/EGWR/EGSR05/099-104
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1145/2816795.2818078
https://doi.org/10.1111/j.1467-8659.2010.01774.x
https://doi.org/10.1111/j.1467-8659.2010.01774.x
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1145/1230100.1230119
https://doi.org/10.1145/1457515.1409111
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1145/311535.311561
https://doi.org/10.1145/1111411.1111422
https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1145/1073204.1073239
https://doi.org/10.1145/1174429.1174477
https://doi.org/10.1145/1174429.1174477
https://doi.org/10.1145/3337722.3337752
https://doi.org/10.1145/3337722.3337752
https://doi.org/10.1145/1101389.1101428
https://doi.org/10.1145/1101389.1101428
https://doi.org/10.1145/383259.383297
https://doi.org/10.1145/383259.383297
https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
https://doi.org/10.1145/882262.882272
https://doi.org/10.2312/EGWR/EGSR04/227-233
https://doi.org/10.2312/EGWR/EGSR04/227-233


MesoGen SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

(1)

(2)

(3)
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Figure 9: Once designed, the same tile set can be applied to various macrosurfaces.

(a) (b) (c) (d)

Figure 10: Limitations. Deforming sweep trajectories rather than resulting sweep surfaces conserves cross-sections but may
create intersections not present in the unit tiles (a, c). Our construction of sweep trajectories efficiently ensures tangential
continuity but is too local to follow alignments at larger scale (b, d). Conservation of straight lines requires macrosurface faces
to be close to rectangles.
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5.8M tris / 1.30MB / 1.5 ms 6.2M tris / 1.41 MB / 1.6 ms 26M tris / 3.0 MB / 6.0 ms 109M tris / 9.71 MB / 24 ms

6.4M tris / 1.69 MB / 1.4 ms 8.6M tris / 1.48 MB / 1.8 ms 6.4M tris / 1.69 MB / 1.4 ms 2.9M tris / 0.87 MB / 0.71 ms

32M tris / 2.6 MB / 7.1 ms 1.6M tris / 0.64 MB / 0.46 ms 1.6M tris / 0.64 MB / 0.46 ms 8.5M tris / 1.49 MB / 2.0 ms

6.1M tris
1.76MB / 1.5 ms

7.2M tris
1.33 MB / 1.7 ms

8.2M tris
3.49 MB / 1.9 ms24M tris / 2.96MB / 5.6 ms 19M tris / 1.83 MB / 4.3 ms 34M tris / 4.18 MB / 7.5 ms

81M tris
6.30 MB / 18 ms

45M tris
3.06 MB / 10 ms

57M tris
5.66MB / 13 ms

Figure 11: Additional results illustrating the variety of mesostructures achievable with our system, captured from our real-time
generated mesostructures. For each example, we report the amount of synthesized polygons, the GPU memory footprint of
our procedural model and the render time on an Nvidia RTX 3070 Ti device for 720p images. The last row corresponds to the
beauty shots of Fig. 9 and the examples of Tab. 1.
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