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We introduce an explicit construction for a key distribution protocol in
the Quantum Computational Timelock (QCT) security model, where one as-
sumes that computationally secure encryption may only be broken after a time
much longer than the coherence time of available quantum memories. Tak-
ing advantage of the QCT assumptions, we build a key distribution protocol
called HM-QCT from the Hidden Matching problem for which there exists an
exponential gap in one-way communication complexity between classical and
quantum strategies.

We establish that the security of HM-QCT against arbitrary i.i.d. attacks
can be reduced to the difficulty of solving the underlying Hidden Matching
problem with classical information. Legitimate users, on the other hand, can
use quantum communication, which gives them the possibility of sending mul-
tiple copies of the same quantum state while retaining an information advan-
tage. This leads to an everlasting secure key distribution scheme over n bosonic
modes. Such a level of security is unattainable with purely classical techniques.
Remarkably, the scheme remains secure with up to O

( √
n

log(n)
)

input photons for
each channel use, extending the functionalities and potentially outperforming
QKD rates by several orders of magnitudes.

1 Introduction
1.1 Quantum Cryptography
Quantum cryptography has been largely defined [1] as a novel form of cryptography that
would not rely on computational hardness assumptions but on quantum means, and in
particular quantum communications, to achieve information-theoretic security. Encoding
classical information redundantly, on multiple copies of the same quantum state, could
be highly beneficial from an engineering viewpoint, allowing for higher rates and better
resilience to loss. However, this is a problem for the security of many quantum cryptography
protocols as it would allow the adversary to gain more information about the underlying
state than if just a single copy is sent. This limitation translates into a mean photon
number that is typically upper bounded by 1 in QKD protocols, and more generally into
the existence of a fundamental rate-loss trade-off that severely limits the distances over
which we can perform QKD [2].

In this work, we explore a new approach to quantum cryptography, by considering a
hybrid security model. In particular, we unlock the possibility of sending multiple copies
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of the same state to perform key establishment with everlasting security [3] with perfor-
mances that go beyond standard QKD. We specifically consider a cryptographic protocol
built on top of the Hidden Matching quantum communication complexity problem [4, 5],
for which there exists an exponential gap between classical and quantum strategies. We
prove its security by establishing a reduction to the classical strategies for this communi-
cation complexity problem, effectively connecting the field of communication complexity
and quantum cryptography.

1.2 QCT Security model
A novel security model called Quantum Computational Time-lock (QCT ) was introduced
in [6], building a bridge between the often disparate worlds of classical and quantum
cryptography. The model is based on two nested assumptions. The first one is that Alice
and Bob can use a tcomp-secure encryption scheme.

Definition 1.1 (tcomp-secure encryption scheme). An encryption scheme (Gen;Enc;Dec)
is said to be tcomp-secure if it is computationally secure with respect to any unauthorized
attacker Eve for a time at least tcomp, after a ciphertext is exchanged on the classical
channel,

The second assumption is that an adversary Eve cannot reliably store a quantum state
during a time larger than tcomp i.e. that she has access to what we call a (tcomp, δ)-noisy
quantum memory, defined as follows.

Definition 1.2 ((tcomp, δ)-noisy quantum memory). A (tcomp, δ)-noisy quantum memory
is a Markovian time-dependent quantum memory Φt such that at time tcomp:

∥Φtcomp − F∥⋄ ≤ δ , (1)

where F(ρ) := Tr[ρ]
dout

1dout , ∥·∥⋄ is the diamond norm [7] and dout is the dimension of the
output of the quantum memory.

In other words, a (tcomp, δ)-noisy quantum memory is a quantum memory that is hard to
distinguish (parametrized by a parameter δ) from a completely mixing channel F , when
it stores a quantum state for a time tcomp or longer. One can note that assuming that the
coherence time of available quantum memories is much shorter than tcomp corresponds to
taking δ ≪ 1.

1.2.1 Validity of QCT model

The validity of the QCT model is solidly grounded in practice when one considers existing
and prospective quantum storage capabilities [8] and puts them in perspective with an ex-
tremely conservative lower bound on the time tcomp for which current encryption schemes
would be considered secure, such as tcomp ≥ 105 s ∼ 1 day. Moreover, it is interesting to
understand that although the QCT assumptions set some limits to the scaling of quan-
tum error-corrected quantum memory, it does not rule out the possibility of having useful
quantum computers. Extrapolating for instance on [9] we see that 20 million noisy (with
physical gate error 10−3) qubits would be sufficient to factor a RSA 2048 key, using 104

logical qubits. However, considering the same resources, and the same number of logical
qubits, they could be stored during only few hours. This would hence not rule out the
conservative QCT assumptions mentioned above. We should also stress that the QCT ap-
proach enables us to build key establishment schemes that offer everlasting security. This
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means that the secret keys can be provably secure against an adversary who is compu-
tationally unbounded after quantum storage decoherence, where the decoherence time to
be considered is the one technologically available at the time of protocol execution. In
particular, security holds against any future progress of the attacker’s computational and
quantum storage capabilities.

1.3 Our work
1.3.1 Sketch of the protocol

In our work we introduce an explicit construction for a new key distribution protocol
called Hidden-Matching Quantum Computational Timelock (HM-QCT). It is built on top
of a computational problem with a boolean output, called β-Partial Matching (βPM)
[4], for which Ω(

√
n) bits of communication from Alice to Bob are required, against only

O
(

log(n)
)

qubits, with n the length of input x. In each round of the HM-QCT protocol
Alice generates both inputs x and y and shares the latter with Bob using a computationally
secure encryption scheme. Alice and Bob can then solve the βPM protocol with a quantum
strategy to extract a bit, sending m copies of the same n-dimensional quantum state. See
Figure 1 for a pictorial representation. Finally, by performing standard classical post-
processing to their string of bits, they can distill a secure key.

Quantum channel

time-locked 

Figure 1: One round of the HM-QCT protocol

1.3.2 Advantages over standard QKD

Our results illustrate that the QCT hybrid security model constitutes a promising route
to enhance the capabilities and effectiveness of quantum cryptography, while retaining
some core advantage against classical cryptography: the possibility of providing everlasting
security. In particular, our protocol offers the following benefits:

• Boosted key rates: Security can be achieved while sending up to O
( √

n
log(n)

)
photons

per channel use, overcoming the standard limit of one photon per channel use. As
detailed in Section 3, the HM-QCT protocol, based on the βPM problem, can be
implemented with 2 single-mode threshold detectors, and performance can hence be
benchmarked with 2-output-mode protocols. The fact that security can be achieved
with many photons per channel use leads to asymptotic achievable secret key rates
that can be boosted by a factor O

( √
n

log(n)
)

with respect to BB84 QKD. As illustrated
on Figure 5, HM-QCT could moreover overcome the fundamental secret key capacity
[2].
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• Improved functionalities: A fascinating advantage of enabling multiple copies per
channel use is the potential to consistently hit the classical capacity of one bit per
channel use over relatively short distances, as illustrated in Figure 5 — a feat unseen
in standard QKD. Moreover, multiple photons not only offer improved efficiency
but also enable multicast key distribution with up to O

( √
n

log(n)
)

authorized Bobs
simultaneously.

• Security with untrusted detectors: Eve’s information can be upper bounded by only
considering the state that Alice inputs and does not require (as in QKD) any infor-
mation about Bob measurement results, as discussed in Section 3.3. Consequently,
the implementation of Bob’s measurement device is not required to be trusted, a
property analog to measurement-device independent security.

Moreover, the security proof that we have established for a key distribution scheme
based on the βPM problem could also be applied to any one-way communication com-
plexity problem with a boolean output. The results obtained in this article hence also
pave the way to the study of other communication complexity problems with larger gaps
between classical and quantum strategies, which would lead to even greater performances.

1.3.3 Technical contributions

One of the main technical achievements has been to reduce Eve’s general i.i.d. attack
strategy, represented in Figure 4, to a strategy where she has no access to any quantum
storage at the cost of an additive linear term in the noise parameter δ, as formally proved
in Theorem 3.1. Since this result is solely based on the fact that an eavesdropper has
access to a noisy memory in Definition 1.2, Theorem 3.1 could be of independent interest
for other protocols that exploit noisy storage.

Once we reduce to an eavesdropper with no quantum memory, a central result of
our work is the exploitation of the communication gap between quantum and classical
strategies to build a secure key distribution protocol. In particular, the security reduction
to the communication complexity of the βPM problem cannot be done directly. First,
since Alice is sending m copies of the same n-dimensional quantum state, the amount of
information that she is leaking to Eve about the input x is at most m log(n) bits thanks to
the Holevo bound. This simply reduces the security proof to the study of the information
complexity [10] of the classical βPM problem, a quantity which describes the amount
information exchanged about the input needed to reliably solve the complexity problem.

Through mapping communication complexity to information complexity in the one-
way setting in Lemma 2.1, we demonstrated in Theorem 3.2 that Eve’s one-round guessing
probability is safely bounded away from 1 when Alice sends O

( √
n

log(n)

)
copies of the quan-

tum state.

1.4 Previous work
Communication complexity [11] is a model of computation where two parties, Alice with
input x and Bob with input y, collaborate to compute with high probability the value of
f(x, y), where f is a function (or relation) defining the computational problem that the
players have to solve. An exponential separation in the required amount of communication
between quantum and classical strategies has been already shown experimentally [12] and
then used to build a private quantum money scheme [13]. However, to the best of our
knowledge, ours is the first explicit quantum key distribution protocol that guarantees
security based on this exponential separation.
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On the other hand, it is not the first time that someone relies on physical limitations
of the quantum storage capabilities to extend the functionality of QKD. In the quantum
bounded-storage model, for example, by limiting the amount of quantum information that
an eavesdropper can store and process, QKD protocols can be designed to allow for higher
error rates compared to the standard model with unbounded adversaries [14]. An addi-
tional way to provide high resilience to noise, either caused by a malevolent Eve or simply
environmental, is to perform QKD with high dimensional quantum states [15] in the stan-
dard security model. However, both these frameworks are still highly susceptible to loss,
since their security is limited to send only one photon per channel use.

Another example is also the theoretical framework of Quantum Data Locking (QDL)
[16], where the security of communication schemes is based on the even stricter assumption
that quantum storage fully decoheres (i.e. δ = 0) after some finite time. Existing work
on QDL is either restricted to single-photon encoding [16, 17], with limitations in terms
of loss-tolerance, or resorts to constructions based on random coding arguments [18] for
which practical decoding measurements with current technologies are not possible.

Security models with limitations in the accuracy of the storage of quantum states do
not solely focus on key distribution schemes. The noisy-storage model [19, 20] is indeed a
well-known security model, which generalizes the quantum bounded-storage model. It has
been used to prove security of two-party protocols such as oblivious transfer [21] and bit
commitment [22], for which full unconditional security is impossible [23, 24]. Experimental
demonstrations of these protocols were moreover performed, with typical hardware used in
key distribution protocols, both for discrete [25, 26] and continuous variable protocols [27].
However, unlike the QCT model, both QDL and the noisy-storage model do not rely on
any computational assumptions, but they force the adversary to store the quantum states
by intentionally delaying the classical post-processing. While this solution is enough to
prove security, it has clear setbacks in the speed of the key exchange which is an important
practical consideration.

2 Preliminaries
2.1 General notation
We reserve capital letters for random variables and distributions, calligraphic letters for
sets, and lowercase letters for elements of sets. Let S be a set. We use ∆(S) to denote
the family of all probability distributions on S. We use D(H), L(H) and P(H) to denote
the space of density operators, square linear operators and positive operators, respectively,
acting on a finite dimensional Hilbert space H. Moreover, we will use extensively the
notation d[·] := dim[H[·]]. The trace norm on L(H) is defined as ∥σ∥1 := Tr

√
σσ†.

Consider a classical random variable A with distribution PA on some set A. Since we are
going to treat classical and quantum variables with the same formalism, it is useful to view
A as a particular case of a quantum system. We shall identify the classical values a ∈ A
with some fixed orthonormal basis |a⟩ on some Hilbert space HA. The random variable A
can then be identified with the quantum state ρA =

∑
a∈A PA(a) |a⟩⟨a| . We can extend this

representation to hybrid settings where the state ρa of a quantum system HQ depends on
the value of a of a classical random variable A. Such a state is called a classical-quantum
state, or simply cq-state, and takes the form ρAQ =

∑
a∈A PA(a) |a⟩⟨a| ⊗ ρa.
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2.2 Classical and quantum information theory
We need to define some notions of classical and quantum information theory. First, we
quantify the amount of information shared between two random variables A and B with dis-
tribution PAB ∈ ∆(A×B) and marginal distributions PA and PB respectively. We call I(A :
B) := H(A) − H(A|B), the mutual information, where H(A) := −

∑
a PA(a) log(PA(a))

is the Shannon entropy and H(A|B) := −
∑

a,b PAB(a, b) log
(

PAB(a,b)
PA(a)

)
is the conditional

entropy.
Given any cq-state ρAQ, another useful quantity in quantum cryptography is the prob-

ability of guessing the random variable A for an adversary holding a quantum system Q,
given by Pguess(A|Q) := maxΠ

∑
a PA(a)Tr[Π(a)ρa], where we maximize over all POVMs

Π : A → P(HQ). Finally, we can define a conditional entropy, called the min-entropy,
given by Hmin(A|Q) := − log(Pguess(A|Q)).

Now we introduce the generalization of Shannon entropy for quantum states, called
the von Neumann entropy. The von Neumann entropy of ρ ∈ D(HA) is H(A)ρ :=
−Tr[ρ log(ρ)]. One can notice that by considering a classical state we recover back the
Shannon entropy. For a bipartite state ρAE ∈ D(HA ⊗ HE), we use the notation ρE for
TrA[ρAE ] and define the conditional von Neumann entropy of system A given system E
when the joint system is in the state ρAE by H(A|E)ρ := H(AE)ρ −H(E)ρ. We can finally
define the quantum mutual information as I(A : B) := H(A)ρ −H(A|B)ρ.

2.3 One-way Communication and Information Complexity
Communication complexity is a computation model introduced by Yao [11]. It involves two
players, Alice and Bob, who receive inputs: Alice receives x from set X and Bob receives
y from set Y. Their objective is to compute the value of f(x, y) with high probability
using allowed communication methods (classical or quantum). In this article, we focus on
one-way settings, where only Alice can send messages to Bob. The message sent by Alice
to Bob is called the transcript, and Bob’s final guess of f(x, y) is called the output. In
the public-coin model, they share a random string r, while in the private-coin model, they
have private random strings rA and rB. We start by defining the communication cost of a
protocol and the one-way distributional complexity in the public-coin setting.

Definition 2.1 (Communication Cost). The communication cost of a public coin protocol
π, denoted by CC(π), is the maximum number of bits that can be transmitted in any run
of the protocol.

Definition 2.2 (One-way distributional complexity). For a function f : X × Y → Z, a
distribution µ ∈ ∆(X × Y) and a parameter ϵ > 0, we define the one-way distributional
complexity D1

µ(f, ϵ) as the communication cost of the cheapest one-way deterministic pro-
tocol for computing f on inputs sampled according to µ with error ϵ, i.e.

D1
µ(f, ϵ) := min

π: P(X,Y )[πout(x,y),̸=f(x,y)]≤ϵ
CC(π) , (2)

where πout(x, y) describes Bob’s output.

We also consider different relevant quantities that apply an information-theoretic formalism
to computational settings.

Definition 2.3 (External Information Cost). Fix a one-way private-coin communication
protocol π on inputs X × Y and a distribution µ ∈ ∆(X × Y). The one-way external
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information cost of π with respect to µ, denoted by IC1
µ(π) is defined as

IC1
µ(π) := I(Π : X) , (3)

where Π = Π(X,RA) describes the transcript of the protocol.

Intuitively, the external information cost captures how much information an external viewer
who does not know the inputs learns about X. Similarly to the communication version,
we can define the information complexity of a problem as the infimum over all possible
protocols.

Definition 2.4 (One-way external information complexity). Let π be a one-way private-
coin protocol on inputs X × Y and µ ∈ ∆(X × Y). The one-way external information
complexity of f with error tolerance ϵ is defined as the infimum of the one-way external
information cost over all private-coin protocols π for computing f that achieve an error
no larger than ϵ with respect to µ:

IC1
µ(f, ϵ) := inf

π: P(X,Y ),RA,RB
[πout(x,y,rA,rB) ̸=f(x,y)]≤ϵ

IC1
µ(π) , (4)

where πout(x, y, rA, rB) describes Bob’s output.

In this case we only considered a private-coin model, since one can see that any public
randomness can be simulated by a private-coin model: Alice can send to Bob a portion
of rA together with the private-coin transcript. Now they can use this portion as shared
randomness r. However, while this extra step increases the communication cost, it doesn’t
affect the external information cost.

2.3.1 From distributional to information complexity

In [28], the authors demonstrated that it is possible to compress each message of a protocol
to approximately its contribution to the external information cost plus some additional
constant term. While the authors focused only on the scaling laws, we carefully derived
all the specific constants for the compression scheme. We refer to the Appendix A for a
description of how to derive the theorem from [29].

Theorem 2.1 (Message compression). Consider a message M sent by Alice, who holds
X. M is extracted from a conditional probability distribution PM |X . Alice and Bob can use
public randomness to simulate1 sending M by sending an expected number of bits upper
bounded by I(X : M) + 1.262 log(1 + I(X : M)) + 11.6. The simulation is one round (i.e.
only Alice has to send information) and without error.

Finally, one can then map the one-way distributional communication complexity to the
external information complexity in a one-way setting, exploiting the message compression
in Theorem 2.1, obtaining the result in [28, Lemma V.3] with explicit constants.

Lemma 2.1 (Mapping to information complexity). Let ϵ, δ2 > 0, µ ∈ ∆(X × Y) and
f : X × Y → Z. Then

IC1
µ(f, ϵ) ≥ δ2

2 D
1
µ(f, ϵ+ δ2) − 6 .

1Instead of sending directly M , Alice and Bob can use their shared randomness to decrease the number
of bits Alice has to send, while Bob can still retrieve completely the message M .
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Proof. Let f be a function, µ ∈ ∆(X × Y) be a joint probability distribution over the
inputs of f , and π a one-way private-coin protocol which computes f with error upper
bounded by ϵ such that

IC1
µ(π) ≤ IC1

µ(f, ϵ) + 0.05 . (5)

We use Theorem 2.1 to deduce a new one-way public-coin protocol π′ such that the average
size of the transcript is upper bounded by

E
(
|Π′|

)
≤ I(Π : X) + 1.262 log(1 + I(Π : X))) + 11.6

and the error probability is at most ϵ. Then we apply the inequality 1.262 log(1 + x) ≤
x+ 0.3 for any x ≥ 0 to deduce

E
(
|Π′|

)
≤I(Π : X) + 1.262 log(1 + I(Π : X))) + 11.6
≤2I(Π : X) + 11.9
≤2IC1

µ(f, ϵ) + 12 ,

where in the last inequality we used (5). By using Markov’s inequality, we can create a
new protocol π′′ which is identical to π′ except when the transcript Π′′ has size greater
than 1

δ2
E
(
|Π′|

)
, then the protocol simply aborts. By suitably fixing the public randomness,

one can a deterministic protocol which has probability to fail upper bounded by ϵ + δ2

and a communication cost at most 2IC1
µ(f,ϵ)+12

δ2
. The lemma then follows from Definition

2.2 (see Eq. (2)).

2.4 β-Partial Matching problem
In this subsection we shall present the quantum communication complexity problem that
we want to use to build a key distribution protocol. Let n ∈ N. We use the notation
[n] = {1, ..., n}. In the following n will be assumed to be even. A matching M is a set
of pairs (a, b) ∈ [n]2, such that no two pairs contain the same index, where, each index is
called a vertex and a pair of vertices is called an edge. For example if n = 4 then the set
of edges {(1, 2), (3, 4)} or {(2, 3)} are valid matchings whereas {(1, 2), (2, 3)} are not. See
Figure 2 for a pictorial representation.

34

1 2

34

1 2

34

21

Figure 2: Illustration of a set of perfect matchings for size n = 4. For example, considering x = 1001,

ω = 11, for the first perfect matching in blue we have Mx =
[
x1 ⊕ x2 = 1
x3 ⊕ x4 = 1

]
, resulting in a = 0.

We sayM is a β-matching if in addition |M | = βn. The βPM problem is built around a
β-matching M , that constitutes part of the input given to Bob. M consists of a sequence of
βn disjoint edges (i1, j1)...(iβn, jβn) over [n]. We will call Mβn the set of all β-matchings
on n bits: if β = 1

2 the matching is called perfect and if β < 1
2 the matching is called

partial. M can be represented as a βn × n matrix with only a single one in each column
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and two ones per row, namely at position il and jl for the l-th row of matrix M . Let
x ∈ {0, 1}n, applying the matching M to x leads to the βn-bit string v = v1, ..., vl, ..., vβn

where vl = xil
⊕ xjl

. Finally, we call aβn a vector of dimension βn with value a in each
component. Using the notation above, we can finally define the βPM problem:

Alice’s input: x ∈ {0, 1}n.
Bob’s input: M ∈ Mβn and ω ∈ {0, 1}βn.
Promise P: given a bit a ∈ {0, 1}, then ω = Mx⊕ aβn.
Communication Model: Classical or Quantum one-way communication between Alice and
Bob.
Goal: Bob outputs b = a with high probability.

We shall call for clarity X := {0, 1}n, y := (M,ω) and Y := Mβn × {0, 1}βn. Moreover, we
define the (partial) function βPM : X × Y → {0, 1} as the function that randomly picks
an element from the vector Mx⊕ ω.

Input distribution: we call µ ∈ ∆(X × Y) the input probability distribution uniform over
x ∈ {0, 1}n and M ∈ Mβn. The inputs x and M together determine the βn-bit string
v = Mx. To complete the input distribution, with probability 1/2 we set ω = v and with
probability 1/2 we set ω = v̄.

Finally, one can derive from [4] the prefactors of the scaling law for the one-way distri-
butional complexity of the βPM protocol.

Theorem 2.2. Let β ∈ (0, 1/4], ∀ϵ ∈ (0, 1
2 ]. Then

D1
µ(βPM, ϵ) ≥ k(ϵ)

√
n+ d(ϵ) , (6)

where

k(ϵ) = 4γ
25

√
β

(1
2 − ϵ

)2
and d(ϵ) = 2 log

(1
2 − ϵ

)
+ 2(log(2) − log(5)) , (7)

with γ = 1
8e .

Proof. A complete description of how to derive this theorem from [4] is given in Appendix
C.

3 Key Establishment Protocol
3.1 Security model and definitions
Considering the novelty of our hybrid security model, the assumptions on the resources
of an adversary and the security properties that can be achieved in this model must be
described thoroughly.

In the QCT construction, authorized parties, Alice and Bob, are assumed to be con-
nected via a noiseless and authentical classical channel and an insecure quantum channel.
An adversary, Eve, is assumed to have full access to the input of Alice and Bob’s commu-
nication channels. Every classical (quantum) message communicated between Alice and
Bob over the classical (quantum) channel can be wiretapped by Eve and stored in classical
(quantum) memory. With this pessimistic setting for Eve’s channel, we are in a simi-
lar set-up as strong data locking [16, 30] wherein an adversary Eve receives direct inputs
from Alice. As stated in Section 1.2, the QCT model is based on two main assumptions
on the power of an eavesdropper: a computational assumption (see Definition 1.1) and a
noisy-storage assumption (see Definition 1.2).
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We start by stating the type of computational assumption needed to prove security
in our scheme. What Alice and Bob need is a semantically secure symmetric encryption
scheme against adaptive chosen-ciphertext attacks (CCA2) for a time at least tcomp. Se-
mantic security means that it is computationally unfeasible for an eavesdropper to learn
any partial information about a plaintext from the corresponding ciphertext (see [31] for a
formal definition.) This implies that the encrypted message Enck(m) is (computationally)
indistinguishable from a completely random string until at least a time tcomp. Furthermore,
the security against adaptive chosen-ciphertext attacks ensures another required property:
non-malleability [31]. In simple terms, an encryption scheme is called non-malleable if
one cannot feasibly manipulate a given ciphertext in such a way that it produces another
ciphertext, which, when decrypted, yields a plaintext related to the original. Finally, the
desired security for the hybrid key distribution protocol is based on the trace distance cri-
terion [32], a standard criterion to prove information-theoretic security for quantum key
distribution.

3.2 Protocol description
Now that we have introduced all the crucial ingredients, we can present and analyze our
protocol. The main building block for our construction is an explicit quantum commu-
nication protocol that solves the βPM problem by simply sending a constant number of
n-dimensional quantum states [4].

3.2.1 βPM quantum protocol

Alice sends a uniform superposition of her bits to Bob:

|ψx⟩ = 1√
n

n∑
i=1

(−1)xi |i⟩ . (8)

Bob completes his βn edges to a perfect matching in an arbitrary way and measures
with the corresponding set of n/2 rank 2 projectors, where for an edge (a, b) the projec-
tor is P = |a⟩⟨a| + |b⟩⟨b|. With probability 2β he will receive an output corresponding
to one of the edges (il, jl) from his input β-matching M . The state then collapses to

1√
2((−1)xil |il⟩ + (−1)xjl |jl⟩ , from which Bob can obtain the bit vl = xil

⊕ xjl
using a

measurement containing projectors {|+⟩⟨+| , |−⟩⟨−|}, where |+⟩ = (|il⟩ + |jl⟩)/
√

2 and
|−⟩ = (|il⟩ − |jl⟩)/

√
2, and immediately retrieve the bit a. With probability 1 − 2β, in-

stead, he will receive an output that doesn’t correspond to any edge of the β-matching M :
in this case, he immediately outputs b =⊥, aborting the protocol. One important point
is that Bob can perform his measurement with only two single photon detectors, since he
can pre-route, in accordance with (M ;ω) the output of the n beamsplitters. See Figure 3
for a pictorial representation.

In practice the quantum channel and detectors will be subject to loss and errors. What
Alice and Bob can implement is a practical version of the βPM protocol, described in
detail in Appendix B, where they compensate for the loss by sending several copies of the
same state |ψx⟩.
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b=0

b=1

�-matching

Switches

Figure 3: Illustration of a possible implementation of Bob’s decoding with n = 6 spatial modes and
β = 1/3. In the β-matching part Bob uses his knowledge of M to control each switch and direct each
mode to the corresponding beam splitter (BS). The modes with dotted lines are blocked instead, since
they don’t correspond to any vertex of the partial matching. Then, in the rerouting part, he reorders
the modes based on ω. Finally, thanks to a mode combiner, he directs the first (second) half of the
modes to the first (second) detector.

3.2.2 HM-QCT key distribution scheme

Now that we have described the main building block, we are ready to present our hybrid
key distribution protocol.

HM-QCT Protocol

Parameters:

- dimension n of the problem
- number of copies m
- number of rounds l.

1. Data Generation:

- Alice generates and stores x⃗ =
(
x1, ...xl

)
and y⃗ =

(
y1, ...yl

)
from the proba-

bility distribution µl ∈ ∆l(X × Y). She then computes and stores the string
a⃗ = (a1, ..., al), where aj = βPM(xj , yj).

2. QCT exchange

- Alice and Bob run Gen and obtain a shared secret k.
- Alice sends Enck(y⃗) to Bob.
- Bob decrypts Enck(y⃗) using Deck, obtaining y⃗.

3. Quantum communication

• for i = 1; i ≤ l; i+ +

11



– Alice and Bob run the βPM quantum protocol, with input xi and yi. Bob
stores the output bi.

4. Sifting:

- Alice and Bob discard all rounds with bi =⊥.

5. Classical post processing:

- Parameter estimation: Alice and Bob estimate the quantum bit error rate
(QBER) i.e. the error rate of a conclusive round, by revealing a part of their
string.

- Alice and Bob perform error correction [33] followed by privacy amplification
[34] to distill a secret key.

Remark 3.1. The correctness of our protocol is ensured by the correctness of the βPM
protocol together with an extra step of error correction to deal with noise and loss present
in practical scenarios.

3.3 Security Analysis
3.3.1 Achievable key rate in the i.i.d. setting

We now focus on how to derive an achievable key rate within our model. In this article
we shall analyze the security of our key distribution protocol in the i.i.d.∼setting, i.e.
a restricted case where the adversary Eve performs the same strategy independently on
every round. In this setting, we can consider, without loss of generality, the most general
attack from Eve on a single round of the protocol. It consists of immediately applying an
encoding operation E : L

(
(Cn)⊗m

)
→ L

(
HZ ⊗ HQin

)
statistically independent of y due

to the semantic security of the encryption scheme, before storing the quantum state on
her (tcomp, δ)-noisy quantum memory Φtcomp : L(HQin) → L(HQout), following a similar
strategy of [27]. Moreover, the non-malleability of the classical encryption scheme prevents
Eve from running any homomorphic strategy, i.e. a quantum operation depending also on
Enck(y), which could eventually leak sensitive information. The encoding E also includes
a classical outcome Z that can, for instance, result from measuring part of the copies.
Moreover, we consider that after the time tcomp, Eve is given the encrypted secret y, i.e.
that Enc can be fully decrypted after tcomp, which is the most favorable case for Eve.

Z

Y

Figure 4: General form of an attack of Eve. It consists in an encoding E that maps (conditioned on
some classical outcome Z) the m copies of Alice’s quantum state to the memory input Qin. At time
tcomp, when she unlocks the secret Y , she decodes the key bit by performing the measurement Π̃ on
Qout using both the secret Y and the classical outcome Z.
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One should note that this general strategy also includes the limit strategies where Eve
either simply stores the quantum input2 |ψx⟩⊗m, since we have never given any bound
on the dimension of our memory, or the case where she measures all the copies imme-
diately. Moreover, any strategy that consists of performing any general measurement at
times different from 0 and tcomp, even if surely suboptimal, can be described by this gen-
eral strategy. As a consequence of this setting, at the end of each round Alice and Bob
have access to a realization of correlated classical random variables A and B, respectively,
whereas the adversary Eve holds the quantum system E = Y ZQout. The final joint state
for each round between Alice and Eve will therefore have the form

ρAY ZΦtcomp (Qin) =
∑
x,y,a

µ(x, y)δβP M(x,y),a

|a⟩⟨a| ⊗ |y⟩⟨y| ⊗ (1dZ ⊗ Φtcomp)(E(ρx)) . (9)

At this point Eve performs the POVM Π̃ : {0, 1} → P(HY ⊗HZ ⊗HQout) on the output of
the quantum memory to guess the bit a, making use of y and the classical string z. Finally,
we can lower bound the achievable key rate under this general i.i.d. attack, depicted on
Figure 4. Since the min-entropy lower-bounds the von Neumann entropy, we can lower
bound the Devetak-Winter bound [36] and obtain the following achievable key rate

R ≥ (1 − P (abort))
(
Hmin(A|E) −H2(QBER)

)
, (10)

where Hmin(A|E) = − log(Pguess(A|Y ZΦtcomp(Qin))), H2 is the binary Shannon entropy,
and P (abort) is the probability that a round of the protocol is inconclusive. In Appendix
B we have evaluated P (abort) and QBER as a function of the number of copies sent m in
a practical scenario.

3.3.2 Bounding Pguess(A|Y ZΦtcomp(Qin))

We now compute a lower bound for the achievable key rate in Eq. (10). In particu-
lar here we focus on computing Hmin(A|E). We evaluate Eve’s guessing probability
Pguess(A|Y ZΦtcomp(Qin)) in two steps. First we want to bound it with respect to a re-
stricted strategy where she never uses a noisy quantum memory, but she performs im-
mediately a joint measurement on the m copies. We call such a strategy an immediate
measurement strategy. The second step consists instead in deriving a bound on the guess-
ing probability of this restricted strategy by exploiting the communication complexity gap
between quantum and classical strategies for the βPM protocol.

3.3.3 Reduction to immediate measurement

In this restricted scenario, following a standard post-measurement information strategy
[37], Eve performs an immediate measurement Z : L

(
(Cn)⊗m

)
→ L

(
HZ

)
on the input

state ρx := (|ψx⟩⟨ψx|)⊗m and obtains a classical outcome z. At time tcomp, she unlocks y
and extracts the final guess by performing a classical decoding Π̃1, that can be expressed

2Storing all copies simultaneously and measuring once the encrypted message y is unlocked can be
viewed a generalized version of the photon number splitting attack (PNS) [35]. In PNS, eavesdroppers
store extra photons in their quantum memory until they obtain the basis information, enabling them to
execute the appropriate measurement.
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as a POVM Π̃1 : {0, 1} → P(HY ⊗ HZ). The guessing probability can therefore be written
as

Pguess(A|Y Z(Q)) := max
Π̃1

∑
x,y,a

µ(x, y)δβP M(x,y),aTr[Π̃1(a)(|y⟩⟨y| ⊗ Z(ρx))] . (11)

To show the security reduction we first prove the following useful (and more general)
theorem.

Theorem 3.1. If ∥Φ − F∥⋄ ≤ δ, with F being the completely mixing channel, then for
any cqq-state ρAXQ we have

Pguess(A|XΦ(Q)) ≤ Pguess(A|X) + δ . (12)

Proof. We can bound the guessing probability as follows

Pguess(A|XΦ(Q)) = max
Π

∑
a

p(a)Tr[Π(a)Φ(ρXQ)]

≤ max
Π

∑
a

p(a)
(
∥Π(a)∥∞∥(Φ−F)(ρXQ)∥1+Tr[Π(a)F(ρXQ)]

)
≤δ + max

Π

∑
a

p(a)Tr[Π(a)F(ρXQ)] ,

where we used the notation N (ρXQ) := (1dX ⊗ N )(ρXQ) for any quantum channel N
acting only on Q. In the second line we used the Hölder’s inequality, while the last
inequality is obtained by noticing that ∥M∥∞ ≤ 1 for any element of a POVM, the fact
that

∑
a p(a) = 1, and the fact that ∥(Φ − F)(ρAX)∥1 ≤ δ, since we have ∥Φ − F∥⋄ ≤ δ.

Finally, since F destroys all the quantum information in the system Q, we directly have
maxΠ

∑
a p(a)Tr[Π(a)F(ρXQ)] = Pguess(A|X) which concludes the proof.

Now from Theorem 3.1 we simply have that for any encoding attack

Pguess(A|Y ZΦtcomp(Qin)) ≤ Pguess(A|Y Z) + δ

≤ max
Z

Pguess(A|Y Z(Q)) + δ , (13)

where we maximized over all possible Eve’s immediate measurements Z. Hence, consider-
ing δ << 1, we have successfully reduced any general attack strategy to an immediate joint
measurement on the m multiple copies.

3.3.4 Exploiting the complexity gap

To finally estimate an upper bound to Eve’s guessing probability we still have to study
this restricted scenario. Our approach for a full proof follows the idea that extracting a
bit of the key with an immediate measurement strategy is as hard as solving the classical
βPM problem. In particular, Eve cannot do better than what one would get for the βPM
problem by sending m log(n) bits of information about the input x, where m log(n) bits
is the maximum classical information one can extract from m copies of a n-dimensional
quantum state thanks to the Holevo bound.

Lemma 3.1. ∀ϵ ∈
(
0, 1

2
)

if an immediate measurement strategy with Pguess(A|Y Z(Q)) ≥
1 − ϵ exists, then Alice has sent m copies of the quantum state (8), with

m ≥
IC1

µ(βPM, ϵ)
⌈log(n)⌉ .
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Proof. Let’s suppose there exists an immediate measurement strategy with
Pguess(A|Y Z(Q)) at most 1−ϵ, then we can transform this strategy into a classical protocol
to solve the βPM problem. The transformation is straightforward, Alice generates m
copies of the quantum state (8), then she immediately performs the measurement Z and
sends the classical output z to Bob who, after performing the final POVM Π̃1 on z and y,
will output the correct answer with probability at least 1 − ϵ. Note that the string z is the
transcript of the protocol. Since from Holevo’s bound we know that I(X;Z) ≤ m⌈log(n)⌉,
by definition of IC1

µ(βPM, ϵ) we have

m ≥
IC1

µ(βPM, ϵ)
⌈log(n)⌉

that concludes the proof.

Finally, thanks to the complexity gap between classical and quantum strategies, The-
orem 3.2 ensures that Eve’s guessing probability is safely bounded far from 1 as long as
Alice is sending O

( √
n

log(n)
)

copies of the quantum state.

Theorem 3.2. Let us suppose n ≥ 4. For any encoding attack Eve’s guessing probability
is bounded by

Pguess(A|Y ZΦtcomp(Qin)) ≤ 1
2 + 2

(
3
√

−q +
√
p

3

)
+ δ, (14)

with

q = −50√
n
e
√
β((m+ 1)⌈log(n)⌉ + ln(4) + 6)

p = −50√
n
e
√
β
(

log
(5

2

)
− ln(4)

)
.

Proof. The proof is given in Appendix E.

Remark 3.2. From Theorem 3.2 we can effectively establish a bound on the min-entropy
Hmin(A|E). Notably, this bound is independent of Bob’s measurements, ensuring security
in a measurement-device-independent manner.

3.3.5 Everlasting secure key expansion

The security analysis shows that, within the QCT model, we can simplify the scenario to
one where Eve’s interaction (measurement) on the quantum state occurs right at the begin-
ning, at t = 0. The security analysis after tcomp, then purely relies on information-theory
principles. Hence the resulting key rates are valid against an adversary with unbounded
computational power after tcomp, i.e. our schemes have everlasting security [3]. We note
that everlasting secure key establishment cannot be attained with cryptographic protocols
relying solely on classical communication, even with computational assumptions. Classi-
cal communication can be copied, making harvesting attacks (store now, attack later) a
significant vulnerability.

Furthermore, to ensure the effectiveness of our hybrid key distribution scheme, the
rate of secure key generation must exceed the rate of key consumption due to the need
for a pre-shared key. One way to achieve this is by employing a block cipher in the QCT
exchange described in Section 3.2, where Alice divides the message y⃗ into fixed-size blocks.
As a block cipher can encrypt an exponential number of blocks in the key size, the rate
of pre-shared key consumption grows logarithmically with the number of protocol rounds,
while the final key size increases linearly, ensuring secure key expansion.
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3.4 Key rate from best-known protocol
Theorem 3.2 is a significant result, derived from a lower bound of the one-way information
complexity of the βPM problem, but this bound may not be tight. In fact, the error
ϵBKP (d) from the best-known classical protocol with a communication cost d, analyzed in
Appendix D, is quite larger than what one would get from the lower bound. Nevertheless,
one can consider an optimistic scenario where the actual one-way information complexity
for any error ϵ is equal to the information cost of the best-known protocol3. In this
context, by combining Theorem 3.1 and Lemma 3.1 we have Pguess(A|Y ZΦtcomp(Qin)) ≤
1 − ϵBKP (m⌈log(n)⌉) + δ.

Consequently, in Figure 5 we plot the achievable key rate from (10), considering the
best-known classical protocol, and performing numerical optimization on the number of
copies m. Since our protocol is implemented using two detection modes, effectively sending

Figure 5: Key rate comparison between the upper bound for the HM-QCT protocol with δ = 10−4 and
β = 1

4 , the BB84 protocol with decoy states [38] and the 2-mode Secret Key Capacity (SKC) [2], The
plot for the HM-QCT protocol is derived under a practical implementation, as detailed in Appendix B.
For both the HM-QCT protocol and the BB84 protocol with decoy states, we used the same detector
specifications. These detectors are state-of-the-art SNSPDs, as detailed in [39], characterized by a dark
count probability of Pdark = 10−8 and a detection efficiency of ηdet = 65%.

at most one bit per channel use, we benchmark it with two standard key rate limits: the
BB84 protocol with decoy states [38] and the more general limit for 2-mode optical key
distribution [2]. From the plot we note that we can overcome the former with only a
thousand modes. Notably, an experimental implementation of a variant of the quantum
βPM protocol has already been performed with a similar number of modes [12]. We also
observe that by increasing the number of modes n we can provide a key rate of almost
one bit per channel use for short distances since at least one photon always reaches the
detectors. At longer distances, the key rate scaling is similar to the 2-mode QKD limit,

3In other words, assuming that future developments on finding tighter lower bounds will show that the
current best-known classical protocol is the optimal protocol.
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decaying exponentially with distance, since Bob receives on average less than one photon
per channel use. Ultimately, the protocol is constrained at very long distances by detector
dark counts, drastically restricting the achievable key rate.
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A Derivation of Theorem 2.1
For the sake of completeness, in this section we show how to derive Theorem 2.1, which is
an analog result to Corrollary 7.7 in [29] with a concrete constant. First we need to define
a one-way compression scheme to transmit integers in an optimal way.

Lemma A.1 (Compression scheme). Let z be an integer. There exists a one-way protocol
that allows Alice to communicate z to Bob using at most log(z) + 1.262 log(log(z)) + 6.3
bits.

Proof. The protocol consists of two phases. In the first phase Alice sends y := ⌈log(z)⌉ in
base 3 using the two-bit letters 00, 01, 10. Alice then sends the bits 11 to indicate to Bob
that the first phase is complete. In the second phase Alice sends the binary representation
of z to Bob. Note that because Bob knows ⌈log(z)⌉, he knows when the protocol stops.

In the first phase of the protocol Alice sends ⌈log3(⌈log(z)⌉)⌉ two-bit letters plus an
addition two bits to complete the phase. Thus the total number of bits can be bounded
as

2⌈log3(⌈log(z)⌉)⌉ + 2 ≤ 2 log3(⌈log(z)⌉) + 4
=2 log3(2) log(⌈log(z)⌉) + 4 ≤ 2 · 0.631 · log(⌈log(z)⌉) + 4
=1.262 log(⌈log(z)⌉) + 4 ≤ 1.262 log(log(z) + 1) + 4
≤1.262 log(log(z)) + 5.3 ,

where in the last inequality we used the fact that log(x+ 1) ≤ log(x) + 1 for x ≥ 1. In the
second step Alice only needs to send ⌈log(z)⌉ ≤ log(z) + 1 bits. By combining the upper
bounds we obtain the claimed result.

Then, we can use Claim 7.9 of [29], and replace the Claim 7.8 by our Lemma A.1 to
complete the derivation.

B Practical quantum protocol
In this section, we analyze a practical quantum protocol for the βPM problem. Alice
sends m copies of the quantum state |ψx⟩ in Eq. (8) to Bob. Bob performs a measurement
form the ideal protocol where there are three possible outcomes: he aborts the protocol
with probability P (abort) if the measurement result is inconclusive (b =⊥), otherwise,
he outputs b = a with probability (1 − P (abort))(1 − QBER) or b ̸= a with probability
(1 − P (abort))QBER.

Given a dimension n and a number of copies m, the physical implementation of the
protocol determines the QBER and the abort probability P (abort). In the following we
will analyze these quantities for a physical implementation based on photonics, where each
copy of the quantum state is encoded in a photon with n optical modes, and where Bob’s
outcome decision-making process relies on detecting photons using two detectors.

B.1 QBER and P(abort) derivation
Consider a lossy channel, with T the transmittance of the channel, defined as T = 10−0.02L,
where L is the length of the quantum channel expressed in kilometers. Let ηdet be the
detector efficiency and Pdark the dark-count probability per detector. We will assume
that the error rate is dominated by dark counts and that clicks due to signals and due
to dark counts are independent. In this analysis we will not consider photon counting
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detectors. Now let us consider the probability of a photon sent by Alice being detected:
it will be transmitted with probability T due to loss in the transmission channel; once
it has successfully reached Bob’s measurement apparatus, there is a probability 2β of
addressing one of the modes described by the partial matching; finally, once it is rerouted
to one of the two detectors, it will be detected only with probability ηdet. Combining all
these steps, the final probability for a photon to be detected is T̃ := 2βηdetT . Since each
photon is independent, the probability that there is at least one click due to the signal is
Ps = 1 − (1 − T̃ )m. Moreover, the probability of getting zero clicks is the probability of
having at the same time no clicks from dark counts and no clicks due to the actual signal,
i.e. (1 − Pdark)2(1 − Ps). On the other hand, the probability of getting a click in both
detectors at the same time is P 2

dark +Pdark(1 −Pdark)Ps. We now assume that Bob aborts
the protocol every time he has 0 clicks or clicks in both detectors, obtaining

P (abort) = Pdark + (1 − 3Pdark + 2P 2
dark)(1 − T̃ )m . (15)

Now we have that the QBER is the probability of giving a wrong answer after the sifting,
i.e.

QBER = P (B ̸= A ∧B ̸=⊥)
1 − P (abort) , (16)

with P (B ̸= A ∧ B ̸=⊥) = Pdark(1 − Pdark)(1 − Ps), obtaining eventually by direct
calculation

QBER = Pdark − P 2
dark

1 − Pdark − (1 − 3Pdark + 2P 2
dark)(1 − T̃ )m

(1 − T̃ )m . (17)

Finally, we have evaluated the P(abort)4 and QBER as a function of the number of copies
sent m.

C Derivation of Theorem 2.2
In [4] the authors prove that, given β ∈ (0, 1/4]5 and ϵ1 ∈ (0, 1/2), for any deterministic
protocol π for the β-partial Matching Problem that has a communication cost at most
γϵ1
√
n/β + log(ϵ1), with γ a positive constant which we will determine afterwards, the

probability of success with respect to the distribution µ is upper bounded by 1
2 + 5

2
√
ϵ1. To

make the correspondance with Theorem 2, we can write ϵ1 in terms of the error probability
ϵ by noticing that 1 − ϵ ≤ 1

2 + 5
2
√
ϵ1. This in fact implies ϵ1 ≥ 4

25
(1

2 − ϵ
)2. By definition of

the distributional complexity we can therefore obtain Theorem 2, where all we need now
is to retrieve the desired upper bound for γ.

C.1 About γ

Still from [4], in their analysis they require the value of γ to be small enough to satisfy the
following inequalities:

4One can notice that even in the case where Alice is sending a large number of copies P (abort) converges
to Pdark instead of simply 0. This is due to the fact that we didn’t considered an implementation with
photon counting detectors.

5Note that in this work we have used the notation β in place of the α from [4].
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ϵ21
2 ≥

4c−2∑
even k=2

(64eγ2ϵ21
k

)k/2
(18)

ϵ21
2 ≥

(
8
√

2eγϵ1

√
β

n

)2c

, (19)

with c ≥ 1. First, let’s prove that the bound γ ≤ 1
8e implies Eq. (18). We notice that

γ ≤ 1
8e ≤

√
1

96e , resulting in 96eγ2 ≤ 1. Then we obtain the following bound for ϵ2
1
2 :

ϵ21
2 ≥ 96eγ2ϵ21

2 (From 1 ≥ 96eγ2)

≥ 32eγ2ϵ21
1 − 32eγ2 (Using 2 ≤ 3 − 96eγ2)

≥
∞∑

k=1

(
32eγ2

)k
ϵ21 (Given

∞∑
k=1

xk = x

1 − x
)

≥
∞∑

k=1

(
32eγ2ϵ21

)k
(From ϵ1 < 1)

≥
∞∑

even k=2

(64eγ2ϵ21
k

)k/2
(Using k > 1)

≥
4c−2∑

even k=2

(64eγ2ϵ21
k

)k/2
. (Truncating the sum).

To conclude, we demonstrate that γ ≤ 1
8e implies (19). First, we notice that we can

rewrite the bound as 1
2 ≥

(
4
√

2eγ
)2. Then, as before, we derive the desired upper bound

for ϵ2
1
2 :

ϵ21
2 ≥

(
8
√

2eγϵ1
1
2

)2

(From
1
2 ≥

(
4
√

2eγ
)2)

≥
(

8
√

2eγϵ1

√
β

n

)2

(Using ϵ1 <
1
2)

≥
(

8
√

2eγϵ1

√
β

n

)2c

, (Given c ≥ 1 and β/n ≤ 1
4) .

D Best-known classical protocol
In this section we analyze the best-known classical protocol for the βPM problem, which
has already been sketched in [4].

Classical protocol πBKP : Alice and Bob can exploit their public randomness to agree on a
subset s :={j1, . . . , jd} ∈ S, where S is the set of all the possible subsets of d indices in [n].
Subsequently, Alice transmits the corresponding bit values xs := (xj1 , xj2 , . . . xjd

) to Bob.
As such, the communication cost of this protocol is d. Consequently, in this protocol, Bob
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receives the corresponding d(d−1)
2 edges6. We call σ(s) the set of all those edges. Finally,

Bob, by knowing ω, can give the right answer whenever he gets at least an edge in the
matching M and randomly guesses the bit otherwise.

From our analysis, we find an upper bound of the error probability:

Theorem D.1. Let d be an integer. An explicit one-way public-coin protocol πBKP exists
with a communication cost CC(πBKP ) = d which solves the n-dimensional βPM protocol
with an error probability for any input at most7

ϵBKP (d) =
d∑

k=0

(2βn
k

)(n−2βn
d−k

)
2
(n

d

) e
− k(k−1)

4βn . (20)

Proof. First, we define sM as the list of all the vertices in the β-matching M . For example,
let n = 4 and M be a perfect matching (i.e. β = 1/2) such that M = {(1, 2), (3, 4)},
then sM = {1, 2, 3, 4}. We call dM the number of indices in s that are part of sM , i.e.
dM := |s ∩ sM |. One can evaluate probability distribution of dM :

P
(
dM = k

)
=
(2βn

k

)(n−2βn
d−k

)(n
d

) , (21)

where
(n

d

)
is the number of ways to pick d indices in [n],

(2βn
k

)
is the number of ways to

pick k indices which are part of a β-matching sM and
(n−2βn

d−k

)
is instead the number of

ways to pick d− k indices which are not part of a β-matching M .
We now want to evaluate the probability of Bob not receiving any edge which is part

of his β-matching for a known value of dM . Trivially, whenever Bob doesn’t receive any
index in sM then the probability of not receiving any edge which is part of M , i.e. dM = 0,
is always equal to 1, otherwise we have

P (∄(i, j) ∈ σ(s) s.t. (i, j) ∈ M |dM = k) =
k∏

l=1

(2βn− 2(l − 1)
2βn− (l − 1)

)

=
k−1∏
l′=0

(
1 − l′

2βn− l′

)

≤
k−1∏
l′=0

(
1 − l′

2βn
)

≤ e
−
∑k−1

l′=0
l′

2βn

≤ e
− k(k−1)

4βn ,

(22)

where in the first line we used that, after having checked that the first l− 1 indices in sdM

do not form any edge in M , 2βn− 2(l− 1) is the remaining number of possible indices in
sM that won’t form an edge in M when paired with the indices in the already extracted
list {j′

1, . . . j
′
l−1}, and 2βn − (l − 1) is the total number of remaining indices in sM . In

the second line we have simply replaced l with l′ := l − 1. The third line is obtained by
noticing that a

x−a >
a
x for any x, a > 0 with x > a. The fourth and fifth lines come from

1 − x < e−x and
∑k−1

i=0 i = k(k − 1)/2 respectively.

6Whenever we say that Bob receives an edge, say (j1, j2), it implies that he acquires the bit values
assigned to the corresponding vertices, i.e. (xj1 , xj2 ).

7Note that in (20) we considered
(

a
b

)
= 0 whenever b > a.
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Finally, since Bob, by knowing ω, can give the right answer whenever he gets at least
an edge in the matching M and randomly guesses the bit otherwise, the error probability
for the best-known protocol is at most

1
2

d∑
k=0

P
(
dM = k

)
P (∄(i, j) ∈ σ(s) s.t. (i, j) ∈ M |dM = k)

≤ 1
2

d∑
k=0

P
(
dM = k

)
e

− k(k−1)
4βn

≤
d∑

k=0

(2βn
k

)(n−2βn
d−k

)
2
(n

d

) e
− k(k−1)

4βn .

where in the second line we used the fact that dM cannot be larger than d, Eq. (22) in the
third line and (21) in the last line.

E Proof of Theorem 3.2
We first prove an useful lemma:

Lemma E.1. ∀ϵ ∈
(
0, 1

2
)
, ∀δ2 ∈

(
0, 1

2 − ϵ
)

if an encoding attack with
Pguess(A|Y ZΦtcomp(Qin)) ≥ 1 − ϵ + δ exists, then Alice must have sent m copies of the
quantum state (8), with

m ≥
δ2
( 1

50e
√

β

(
1
2 − ϵ− δ2

)2√
n+ 2 log

(
1
2 − ϵ− δ2

))
− log(5

2)δ2 − 6

⌈log(n)⌉ .

Proof. Let ϵ ∈
(
0, 1

2
)
, δ2 ∈

(
0, 1

2 − ϵ
)
. Let us suppose there exists an encoding attack

with Pguess(A|Y ZΦtcomp(Qin)) ≥ 1 − ϵ + δ. First, by using Theorem 3.1, we deduce
maxZ Pguess(A|Y Z(Q)) ≥ 1 − ϵ. Then we use Lemma 3.1 to deduce m ≥ IC1

µ(βP M,ϵ)
⌈log(n)⌉ .

Furthermore, from Lemma 2.1 we obtain m ≥
δ2
2 D1

µ(f,ϵ+δ2)−6
⌈log(n)⌉ . Finally, we conclude the

proof by showing that from Theorem 2.2 we have

m ≥
δ2
2
(
k(ϵ+ δ2)

√
n+ d(ϵ+ δ2)

)
− 6

⌈log(n)⌉ ,

with k and d defined in (7).

Now we are ready to prove Theorem 3.2. Let x be equal to 1
2 − ϵ and δ2 := x

2 . By
contraposition, Lemma E.1 implies that for any encoding attack acting on m copies, with

m =
1

50e
√

β

(
x
2

)3√
n− ln(4) − 6 − (log(5

2) − ln(4))x
2

⌈log(n)⌉ − 1 , (23)

Eve’s guessing probability is bounded by Pguess(A|Y ZΦtcomp(Qin)) < 1
2 + x + δ. We now

have to find the real zero of Eq. (23) by using Cardan’s method. We first rewrite (23) in
in the canonical form

z3 + pz + q = 0 , (24)
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where

z = x

2 , q = −50√
n
e
√
β
(
(m+ 1)⌈log(n)⌉ + ln(4) + 6

)
,

p = −50√
n
e
√
β
(

log
(5

2

)
− ln(4)

)
.

We now notice that q < 0 and, since
(
log

(
5
2

)
− ln(4)

)
< 0, that p > 0. This means

that ∆ := −(4p3 + 27q2) is negative. Therefore, thanks to Cardan’s method, the zero of
equation (24) expressed in the variable x is:

x = 21− 1
3

(
3

√√√√−q +

√
−∆
27 + 3

√√√√−q −

√
−∆
27

)
. (25)

From Eq. (25), noting the negative second term with 3
√

· and the fact that d
√

· is subadditive
for any integer d, we deduce that

Pguess(A|Y ZΦtcomp(Qin)) ≤ 1
2 + 2

(
3
√

−q +
√
p

3

)
+ δ .
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