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Abstract—The fifth-generation (5G) of mobile networks and
beyond is to host a variety of services for industry verticals with a
diverse range of requirements. Network slicing (NS) is considered
to be the fundamental enabling technology to address legacy
networks’ shortcoming, by tailoring logical virtual networks,
called network slices, over the same infrastructure. Adopting
the concepts of virtualization and open interfaces, Virtual radio
access networks (vRAN) and Open RAN (ORAN) are two of
the most promising architectures proposed for slicing radio
access networks. To realize the efficient deployment (i.e. increase
flexibility, scalability ,and decreased CAPEX and OPEX) of these
architectures, a proper network planning approach is essential.
This paper introduces a novel approach to planning and design
of the ORAN architecture that takes into account QoS, CAPEX,
OPEX and the transport network, simultaneously. The ORAN
slice planning and design is formulated as a multi-objective
optimization with binary variables and solved by simulated
annealing.This paper provides a comprehensive discussion of the
results. The proposed approach can be used in designing 5G
ORAN network slices but also can be used as a transition network
solution to integrate the 4G tier together with 5G for enabling a
smooth and less costly transition.

Index Terms—optimization, RAN planning, network slicing,
transition network.

I. INTRODUCTION

Next generation of mobile networks are expected to host
diverse services and applications ranging from massive internet
of things (IoT) to autonomous driving, augment reality, etc.
These services impose a wider range of performance and
cost requirements onto the legacy networks [1]. The three
main categories of services, i.e, Enhanced Mobile Broadband
Connectivity (eMBB), Massive Machine Type Communica-
tions (mMTC) and Ultra-Reliable Low Latency Communi-
cation (URLLC), prioritize high-speed and capacity, high
density support and reliability, and low latency for service
provisioning, respectively [2].

The diverse range of requirements, imposed by new set of
services from vertical industries, do not integrate well with
the traditional one-size-fits-all approach of network planning,
design and operation. In the traditional design approach,
all services are provisioned over the same network [1]. In
addition, the existing network infrastructures incorporate a
variety of proprietary and monolithic devices that makes
the integration of new services more difficult, costly and
less flexible. Thus, new technologies, deployment and design
solutions are expected to be cost-efficient and flexible in both
infrastructure and operation management. Network slicing is

the key enabler technology proposed to address the above
mentioned challenges.

Network slicing is the concept of sharing the same physical
infrastructure for building several logical networks known as
network slices. Each Network slice is designed and tailored to
requirements of a specific service. The virtual RAN (vRAN)
and open RAN (ORAN) alliances are the 2 main next-
generation RAN (NG-RAN) architectures proposed for inte-
grating NS. The vRAN architecture decomposes RAN to 8
virtual functions and aims at deploying them on common-
off-the-shelf (COTS) hardware to decrease the capital and
operation expenditure (CAPEX and OPEX) [3]. The ORAN
alliance packages the virtual functions into 3 main units called
radio, distributed/data and central units (RU, DU and CU).
Thus, it considers low level splits which connects RU and
DU via fronthaul. The high-level splits connect DU and CU
via midhaul. It also splits the core network into the user and
control plane based on the software defined networking (SDN)
concept. However, a proper planning and deployment approach
is essential to fully meet the goals of the above architectures.
Moreover, to realize the requirements of some of the services,
it is envisioned that the components (RU, DU and CU) are to
be placed in multi-access edge computing [2] clouds/servers
distributed closer to the end user. To realize the ORAN archi-
tecture’s future vision, an adequate design and deployment and
management plan is essential. Thus, the research community
has proposed several optimization approaches [4]–[11] to
address the radio resource managements (RRM) challenges.
On the other hand, only a few works tackle the design and
deployment of ORAN architecture.

The addition of the network slicing concept to radio access
networks results in the introduction of new challenges, such
as split option selection, assignment of the radio resources
to several services, and the location options of different
components in vRAN and ORAN architecture. There exist
only a few works that address the packaging, as well as
the placement of the functions in a, RAN equipped with
distributed MEC servers. Morais et al. [3] propose an exact
model for placing virtual functions in a vRAN architecture for
a given set of RUs by minimizing the computation resources
and maximizing the aggregation of functions. Murti et al. [12]
propose an optimal deployment approach for placing DU and
CU radio functions. Unlike our proposed solution, neither of
the above articles considers the radio coverage of different
slice types or the integration of existing base stations into their
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formulation. Garcia et al. [13] propose another virtual function
placement approach called FluidRAN that explores the trade-
off of different split options, network cost, and base station
load. However, none of the above works take into account
the geographical coverage of the area (i.e. coverage holes)
or consider the integration of already existing eNBs when
deploying different slice types. This paper’s contribution can
be summarized as follows:

• Introducing an optimization model for 5G ORAN plan-
ning considering geographical coverage constraints

• Empowering the proposed model from the designing
phase to be compatible with the network slicing concept
and to enable the support of different slice types

• Enabling a simultaneous trade-off evaluation of different
network operational costs, crosshaul delay, and the trans-
port network

• Providing a comprehensive analysis of the results and
providing guidelines to generalize the model for any
mobile network

In this paper, a novel approach to the planning of radio units
in ORAN architectures is proposed. The proposed approach
considers the assignment of slice types to the next-generation
of base stations(gNBs) while providing radio coverage over
the given area. The proposed approach not only alleviates the
complexity of the RRM approaches for spectrum sharing by
reducing the number of the variables but also models and
optimizes the CAPEX, and OPEX. Moreover, it takes into
consideration the fronthaul and the delay constraints, simulta-
neously. The gNBs which are only assigned a certain type of
slice may be substituted with an eNB for reducing CAPEX.
The planning model proposed in this paper is unlike the
isolated hierarchical traditional approaches in RAN planning
that take weeks to provide a solution. The proposed model is
capable of finding a practical optimal solution in less than 3
hours for a network consisting of 50 nodes.

The remainder of the paper is organized as follows: Sec-
tion II sheds light on slice aware planning, the system model
and the problem formulation. Section III includes the optimiza-
tion algorithm (simulated annealing) methodology. Section IV
presents the numerical results and compares the impact of
the different cost components in the overall design objective.
Section V includes the conclusion and future works.

II. ORAN PLANNING

With the prevalence of virtualization and the need for
placements of different components closer to the end user,
new approaches for 5G network planning and design are
necessary. The common approach in network planning is
to first collect the general requirements in terms of user,
service, the operational environment, and business goals. The
network operator (NO) then designs a slice(i.e. selecting the
split option, estimating the necessary virtual infrastructure re-
sources, and the assignment of radio resources) based on these
requirements. The next step is to map the virtual resources to
the physical infrastructure. This last step wraps up the initial
deployment of the network. However, to keep the network in

check and obtain run-time insurance, dynamic management
of resources (optical wavelengths, resource blocks, etc.) is
required. Therefore, resource adjustments are made based on
service demand, the number of active users, policy adaptation,
and mobility management [14]. To the authors’ knowledge, all
existing design and planning approaches for ORAN and vRAN
architectures are based on the full implementation of a 5G tier
network, with the support of all slice types on every gNB. The
network planning approaches have isolated hierarchical steps
which could take up to weeks to design. This paper presents
a novel practical approach to the slice-aware design of ORAN
radio units, which can provide a reasonable solution in only a
few hours. The proposed approach determines the number of
slice instances and the location and assignment of slice types
to the BSs. The model also provides a rough approximation
of the spectrum shares required on gNBs that support more
than one slice type.

A. Network model

In this work, a slice instance is defined as the combination of
an RU, DU, and CU of a particular type of service. Therefore,
thorough planning requires the placement of all 3 components.
In this paper, the planning problem is split into two parts: i)
RU placement and ii) DU and CU placement. This paper only
addresses the first half of the planning problem due to space
constraints. The RU placement problem includes finding an
adequate number of slice instances and their types as well
as their assignment to geographical locations so that radio
coverage constraints are met. To provide radio coverage for
a given type of service over a given geographical area, several
of the slice instances are necessary. Fig. 1 depicts a simple
scenario.

In this paper, the infrastructure network is modeled as a
graph G = (V, E). There exists A antenna locations in set
A = {1, ..., A} which are candidate RUs for different slice
instances. The candidate locations could be already existing
antenna polls or only candidate locations. There are N edge
nodes in the set N = {A+1, ..., A+N} which are candidate
nodes with or without computation resources for placing DUs
and CUs. The setR = {A+N+1, ..., V } consists of R routers
with no extra compute resources which are only responsible
for the data transmission and are not suitable for resource
placement. The index 0 is reserved for the Evolved packet
core (EPC), which in this work, is where the core network is
located. Thus, the set of vertices is V = A∪N ∪R∪ 0. Each
edge/link of eij which connects node i to j has the capacity
cij . The set T = {t1, t2, t3} are the 3 types of the slices i.e.,
URLLC, eMMBC and mMTC, respectively. The parameter t

is defined as the expected number of users to be covered by
slice type t in the given area. The variables rta is a binary
variable which is set to 1 when node a ∈ A is set to support
the slice type t.

B. Problem formulation

Providing radio coverage for users of a given area is one
of the most pivotal factors for operators when building and

Authorized licensed use limited to: Telecom ParisTech. Downloaded on November 13,2023 at 10:48:52 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Illustration of potential slice assignment to BSs and user associa-
tion (note: they may not connect to their BEST choice of BS)

designing their virtual networks (slices). Every gNB in the 5G
tier network is expected to support all slice types and provision
their spectrum by the Bandwidth parts (BWPs) concepts [8].
The BWPs concept divides the available bandwidth between
the slices and assign each particular portion to one slice with
potentially different sub-carrier spacing and radio configura-
tions. Although hosting every slice on every gNB is a straight
forward way to provide radio coverage, it introduces additional
complexities to the DUs and CUs as well as the radio resource
scheduling (spectrum and resource block). The RU planning
problem is thus formulated as follows:

The binary variable rta = 1 denotes the association of BS
a to slice type t. The parameter ξ is the maximum number of
slice types to be hosted on a BS, which in this paper is set to
3. Eq. 1 ensures correct association of BSs and slice types.

∀a ∈ A,
∑
t∈T

rta ≤ ξ (1)

To ensure the radio coverage of every slice, this paper utilizes
the simplicial topologies and Betti numbers to model the
radio coverage conditions [8]. Simplicial topology is a part of
algebraic topology that uses simplexes to summarize the infor-
mation in a topology. A simplicial complex is a combination of
vertices (i.e. a combination of base stations) that intersect each
other. The number of elements in the combination gives the
dimension of the simplicial complex. A k dimension simplicial
complex is called a k-simplex. Thus, a vertex is a 0-simplex,
an edge is a 1-simplex, a triangle a 2-simplex, a tetrahedron
a 3-simplex, etc. Betti numbers (noted β0, β1,...,βk) are the
dimensions of each homology group. Their geometric meaning
is defined to be the number of k-dimension holes in the
network. Thus, β0 represents the number of related/connected
components in the network, β1 represents the number of
coverage holes, β2 represents the number of zones where there
is no 2-connectivity, etc. Eq. 2 and 3 impose the absence of
any coverage holes and the connectivity of BSs in the network
for every slice type, respectively.

∀t ∈ T , β1(a, a ∈ A where rta = 1) = 0 (2)

∀t ∈ T , β0(a, a ∈ A where rta = 1) = 1 (3)

Another condition to factor in when planning radio networks is
the number of users to be covered by the area. In this paper, the
spectrum available at BSs is assumed to provide Λt number
of users for slice t if it were to provide all its BW to that
slice. To simplify the model the whole available BW load of
a BS is considered to be 1 and thus, the following conditions
will ensure that the spectrum resources of the active BSs are
enough to provide for the planning demand in terms of user
numbers.

∀a ∈ A,
∑
t∈T

ρtgnb ≤ 1 (4)

The notation ρt ∈ [0, 1] is the portion of spectrum resources
on gNBs for slice t to realize the user demand λt when the
users are divided equally between the gNBs. Note that in this
calculation, the eNBs are considered to be at a full load of
their spectrumρtenb = 1. Thus, the condition to fulfill the user
demand is as follows:

∀t ∈ T ,
∑
a∈A

rtaρ
tΛt ≥ λt (5)

Although in this work, the RU selection and placement are
treated as separate problems from the DU and CU placement,
the location of RU and its link capacity and delay to other
nodes plays an important part in the placement of the DU and
CU. Therefore, to factor in the transport network in the cost
function the following cost is defined:

∀t ∈ T , γfh,t = |1−
∑

a∈A Car
t
a

CFH ×
∑

a∈Arta∑
a∈A

∑
t∈T rta

| (6)

where CFH and Ca are the total available fronthaul capacity
and the node fronthaul capacity of node a, respectively which
are calculated as follows:

CFH =
∑
a∈A

∑
j∈N∪R

Iajcaj

∀a ∈ A, Ca =
∑

j∈R∪N

Iajcaj

The binary parameter Iaj is 1 when the physical link eaj
exists between node a and node j. Note that Eq. 6 is an
indication of overall fornthaul link capacity available to a slice
type compared to their supposed share of fronthaul capacity
based on their assigned number of BSs in the network.
The condition above, though not perfect, is a step towards
considering the transport network in the selection of the
RUs. Another important factor in RU placement is the capital
expenditure (CAPEX) of BSs which is denoted as γa. The
cost of BSs, existing or not formulated as Eq. 7 follows:

∀a ∈ A, γnode,a = (
∑
t∈T

rta) . γ
comp + γsetup . γru

a (7)
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where γcomp is the complexity cost (in terms of resource
allocation and management) of placing different slice types
in one node, γsetup is the cost of prepping up the node
if it already exists, and γru

a factors in whether the node is
existing or just a candidate. If existing γru

a = 1. Otherwise, the
candidate node will be considered to have a link to the closest
edge nodes and routers with a default link capacity value.
Therefore, γru

a already encapsulates the node and link setup
costs for candidate nodes. The cost of transport is assumed
to be proportional to the distance of fiber required for the
Ethernet connection.

To integrate the difference in the quality of service provided
by eNB and gNBs, the cost function γdelay is introduced.
Eq. 8 integrates the effects of using larger sub-carrier spacing
in gNBs which will potentially result in less user experience
delay. f(rta) is a factor defined based on sub-carrier spacing.
In this paper, f(rta) of the gNBs (60 kHz) is set to 0.25 and
eNBs (15 kHz) is 1. τfh,t is the delay budget of slice type t
for split option 7.2.

∀t ∈ T , γdelay,t = τfh,t × f1(r
t
a) (8)

The final term of the cost function is the slice-awareness
factor. The cost function in Eq. 9 provides a bias in placing
the more sensetive slice instances closer to the edge nodes.
Note that the priority can be given to any of the slice types
based on policies by changing the parameter values as long as
placing the slice closer to the edge nodes is desired. f2(t) is
a function of slice type that prioritize the slice types. In this
paper, f2(t) = b1δ(t− t1) + b2δ(t− t2) + b3δ(t− t3) where
δ(t) is a the Dirac function.

∀a ∈ A, γsa,a =
∑
t∈T

rta
(
f2(t)× ea + (1− ea)× b0

)
(9)

ea = 1 if an edge node is not in direct neighbor nodes of
the antenna node a. Moreover, b0 < {b1, b2, b3} to emphasize
the advantage of having an edge node as neighbor. The total
cost function is thus as defined in Eq. 10. Note that to be
able to add the different components, the cost functions are
scaled with their maximum possible value. Note that some
of the cost functions may never reach their maximum value
throughout the optimization based on the topology thus, there
might be differences in the amplitude of the cost functions.

ΓTot = w1

∑
t∈T

γfh,t

︸ ︷︷ ︸
γfh

+w2

∑
a∈A

γSA,a

︸ ︷︷ ︸
γsa

+w3

∑
a∈A

γnode,a

︸ ︷︷ ︸
γnode

+

w4

∑
t∈T

γdelay,t

︸ ︷︷ ︸
γdelay

(10)

The optimization is, therefore, formulated as follows:

min
rta,ρ

t
ΓTot

subject to; (1), (2), (3), (4), (5)

III. METHODOLOGY: SIMULATED ANNEALING

This section provides the algorithm used to solve the opti-
mization problem presented in Section II-B. The optimization
approach used in this paper is simulated annealing which is
often used in global optimization of large solution spaces [15].

In general, simulated annealing methods work as follows.
The algorithm starts from a positive temperature value. The
temperature decreases at each step and is proportional to
the probability of accepting worse solutions throughout the
optimization. The higher the temperature, the more the pos-
sibility of accepting worse solutions. At each iteration/time
step, a random solution close to the current one is selected and
evaluated against the previous valid solution. The solution is
accepted or rejected based on the temperature of the system
at that step. The optimization is often stopped after a certain
number of steps.

In this paper, the temperature (T ) is set to cool down around
the 300th step thus T0 = 1/300. The minimum acceptable
temperature is set to 0.01. The acceptance probability is
defined as presented in [15]. However, the following minor
adjustments are made to the algorithm’s general form.

• Random neighbor generation: the solutions are not gen-
erated in a completely random manner. At each iteration,
one type of slice is randomly selected and is then removed
from a randomly selected BS, which already supports
the mentioned slice type. The selected slice type instance
is only removed if the radio coverage of that slice type
remains intact. The algorithm proposed to generate neigh-
bor solutions is presented in Algorithm 1.For simplicity,
the set of rta, ρ

t
a ∀a ∈ A, ∀t ∈ T is replaced with the

matrix π ∈ RA×T and matrix ϱ ∈ RA×T notations,
respectively. πi is the solution in iteration/step i of the
optimization.

• Reset mechanism: in cases where the algorithm fails to
find a valid new neighbor 20 times in a row, the core
solution is changed to one of the previous valid ones.
This process allows for exploring more of the solution
space.

Note that since the objective function is the sum of several
cost functions there are several feasible solutions. In this paper,
all feasible solutions are stored in a database but only the
selected ones according to the simulated annealing method
are depicted in the results.

IV. RESULTS ANALYSIS

In this section, a comprehensive discussion of the sim-
ulations is presented. The network graph G is randomly
generated over a 5.5km × 5.5 km area. In the generated
network V = 50, A = 19, R = 12 and N = 19. The link
capacities are randomly assigned from 4Gb/s to 16Gb/s. The
fronthaul delay budget is considered to be 100, 300 and 5000
microseconds for URLLC, eMBB and mMTC, respectively. The
user coverage demand is 1000, 80 and 20000 mobile users
for URLLC, eMBB and mMTC, respectively. The maximum
iteration is set to 5000. Moreover, for simplicity, the weights in
Eq. 10 are presented as W = [w1, w2, w3, w4] in this section.
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Algorithm 1: Random neighbor solution generator in
step i

Input: System parameters G = (V, E), πi−1,
Algorithm parameters T

Output: πi that is the neighbor solution to πi−1

1: Select a random active BS k from the solution πi−1;
2: ζ ← Get neighbors of the BS k in terms of radio

coverage;
3: flag ← True ;
4: t← random slice type from T
5: while flag do

πi ← πi−1

for bs in ζ do
if rtbs = 1 ∈ πi−1 then

πi ← update πi−1 by setting rtbs ← 0
flag ← False
break

flag ← False

The first step in a weighted multi-objective optimization
is to assign the proper weights. Although the cost functions
are normalized appropriately, some of the cost functions are
dependent on the network topology and the value calculated
in the first reference step is not necessarily the maximum cost
value of that cost function. Thus, the scaling applied in this
paper can be done by division of an approximation or ideal
expectation for the cost function.

Fig. 2 shows the values of different cost components in
ΓTotal when the same weights,[0.25, 0.25, 0.25, 0.25], are as-
signed to all components. It can be seen that the node and
delay cost have maximum values of 1 while the other two
cost functions have values less than 0.5 throughout the opti-
mization. Therefore, the weight vector [0.25, 0.25, 0.25, 0.25]
is effectively similar to applying [0.25, 0.5, 1, 1]. For instance,
when node cost can have an impact of up to 1 in the cost
function, the slice-awareness cost can only go as far as
changing the total cost up to 0.5. Thus, the effective weights
are calculated if the cost functions were to have the same
range of values. The reason behind defining this concept is
that the range of the cost function values can slightly change
in different networks and so the effective weight can help
in generalizing the explanation. In simple terms, to have
a balanced cost function and avoid missing the impact of
different cost components, proper scaling of the cost functions
should be done. This normalization not only allows for a
fair comparison of different costs but also fair optimization
progress. To avoid any confusion, the weights in the remainder
of the paper are translated to effective weights as described
above.

Note that although often the total sum of weights is assumed
to be a constant value, this assumption is solely for the sake
of making the total cost comparable. However, in this paper,
the goal is not to find the optimal weights for the optimization
but rather to compare the impact of the different cost functions

as each of them has its practical importance. Thus, instead of
having a constant total of weights to allow for a total cost
comparison, the total cost is presented as a percentage relative
to the cost function of a reference deployment (The reference
deployment is considered to have all BSs support all slice
types) when each weight set is applied. It is noteworthy to
mention that, though finding the best weights configuration is
not the ultimate goal of this study, the best option for this
network after several experiments based on the optimization
progress and the cost values is found to be W1.

Fig. 2 also shows that γnode has a step-like reduction during
optimization while γdelay and γsa has a gradual, almost linear
decrease in their values. Finally, γfh has the least changes
and does not appear to follow a particular pattern and solely
depends on the selection of nodes and their assignment to
different slice types. Based on the above observations, each
cost function’s weight is elevated to facilitate exploring the
effect on the total cost and optimization progress.

Fig. 2. Normalized total cost in percentage

Fig. 3 shows the total normalized cost throughout the
optimization. The optimal solution found for the weights
W1,W2,W3,W4,W5 is at the 24%, 38%, 40%, 22% and
26% of the full 5G deployment costs, respectively. It is
important to understand that, often, elevating the weights of
a certain cost function mostly depends on the priorities of
the operators. While one operator may have limited access
to transport network resources (thereby using elevated w1),
another might be prioritizing the cost of BS deployment (pre-
ferring elevating w3). It can be seen from the results that the
proposed model and architecture can reduce the cost by 70%
on average in the given network in this paper. It can also
be seen that the first 500 steps of the optimization explore
numerous options in the solution space. The solution space
will later be further explored thanks to the reset mechanism
explained in Section III while maintaining the convergence of
the algorithm. It is seen that different weights have different
convergence speeds. For instance, W4 requires 4232 steps to
converge while W2 only requires 985 iterations.
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Fig. 3. The ln of the normalized total cost by the iteration number

Fig. 4 shows the relationship between the different more
tangible factors in planning ( the number of active BSs, slice
instances, and their distribution between different types) when
Γtot is quantized to 5 buckets. The 5 buckets ranges can be
seen in the legend and is differentiated by different colors in
the figure. In the first column, it can be seen that the fewer
the number of slice instances, the less the cost function will
be. The same conclusion applies to the number of BSs and
different types of slices in the next two columns. Whereas,
the more eNBs in the network, the less the cost function as
can be seen in the last column. Yet, the most interesting point
to mention is found when comparing the error lines. When the
2 error lines of two bars is overlapping, it means that the 2
bars does have similarity in their solution with respect to that
column. The means, at two cost ranges we can have solutions
that have similar slice number, BS number etc. In other words,
for a given cost there could be several different solutions that
have a different number of slice instances, active BSs, and
different associations of slice types to BSs and that is because
the error bars overlap in some cases. It can also be seen in
the figure that the mMTC experiences the least number of
variations in the same range of costs and thus have almost
similar number of slice instances which is due to the huge
number of users it can cover by utilizing only one BSs full
spectrum. Since a fixed minimum number of BSs is required
to provide coverage for each slice type, often the requested
number of users are easily covered by the already associated
BSs to this slice types. Therefore, the solutions in fixed cost
ranges experience less variation.

In multi-objective optimizations it is important to under-
stand the reasons behind different cost function behaviors, to
find make the best decision for optimizing a certain network.
Fig. 5 breaks down the multi-objective cost function to its
building blocks. The γfh values always will have their least
value in the beginning of the optimization. That is because all
BSs are sharing the same resources and host the same slice

Fig. 4. Different parameters relation to the different quantized cost ranges
throughout one optimization for weight configuration W1

types thus there is no imbalance in their accessible fronthaul
resources. It is also seen that it starts to decrease from a certain
total cost. Often, it is expected to have oscillations in this cost
function since no particular measure is taken in the neighbor
generation, which directly results in the decrease of fronthaul
capacity gap. However, note that elevating its weight to 4 time
the other cost functions certainly imposes the total cost to
follow its behavior (see W2), though it does not necessarily
result in the best values for the other cost functions. Another
different scenario is the case of elevated w3 to 4 times the max
value. It is seen that it results in step-like behavior in all the
cost functions but γfh. That is mostly due to the huge impact
of γnode. The node cost function is directly impacted by the
number of active BS, as well as the state of BS (existing or
only candidate). Moreover, it also has a smaller component
connected to the number of slice instances on each BS, which
represents the complexity of DUs and schedulers. Due to its
impact on the number of slice instances, the γsa and γdelay is
also affected. The reason they do not follow the exact patterns
is that they integrate some other details in their cost function,
which are the location of different slice instances and the
type (eNB, gNB) of active BSs, respectively. Note that the
other combinations of weights will often result in a decreasing
trend in all cost functions but γfh, which is expected.

Fig. 6 shows the number of extra users, compared to
the given user demand in the explored valid solutions. The
solutions are presented by their number of eNBs and gNBs.
It can be seen that generally more gNBs (see columns) will
result in more extra users but it is more costly. It is also seen
that the more eNBs in the network, the more users can be
covered. However, deployment of more BSs introduces more
variables to the radio resource (i.e. BS spectrum) optimization
and makes it more complex. Note that there are still cases
where the above conclusion does not necessarily hold. For
instance, in the case of 9 gNBs (see the row with gNB value of
9), it can be seen that the number of extra users in eMBB and
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Fig. 5. The cost breakdown of different weights by the total cost

Fig. 6. The number of extra 5G users for W1 case

URRLC, when accompanied with 5 eNBs, is more than when
it considers 6 eNBs with the same 9 gNB. This difference is
due to the number of slice instances in the solution. In the case
of 9 gNB and 5 eNB the number of mMTTC slice instances
is more than the other solutions with the same gNB numbers.

V. CONCLUSIONS

This paper proposes a novel a slice-aware optimization
model for slice design and planning of the radio access
networks for the ORAN architecture. The proposed model
optimizes the CAPEX and integrates elements in its cost

functions to optimize OPEX by the right association of slice
instances concerning available transport network capacity and
edge nodes. It also integrates the quality of service of users by
considering the fronthaul delay in the optimization function.
The paper provides a comprehensive analysis of the results
and the impact of different cost functions. The proposed model
resulted in an average of 70% reductions in cost for the given
network. The proposed model can be utilized in planning full
5G tier networks as well as designing transition networks by
integrating 4G base stations to further reduce the CAPEX.

Future works include analysis of the impact of different
coverage demands on optimization, as well as complementing
the model with a placement strategy for the DU and CUs.
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