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Abstract
In spite of the high performance and reliability
of deep learning algorithms in a wide range of
everyday applications, many investigations tend
to show that a lot of models exhibit biases, dis-
criminating against specific subgroups of the pop-
ulation (e.g. gender, ethnicity). This urges the
practitioner to develop fair systems with a uni-
form/comparable performance across sensitive
groups. In this work, we investigate the gender
bias of deep Face Recognition networks. In or-
der to measure this bias, we introduce two new
metrics, BFAR and BFRR, that better reflect
the inherent deployment needs of Face Recog-
nition systems. Motivated by geometric consid-
erations, we mitigate gender bias through a new
post-processing methodology which transforms
the deep embeddings of a pre-trained model to
give more representation power to discriminated
subgroups. It consists in training a shallow neural
network by minimizing a Fair von Mises-Fisher
loss whose hyperparameters account for the intra-
class variance of each gender. Interestingly, we
empirically observe that these hyperparameters
are correlated with our fairness metrics. In fact,
extensive numerical experiments on a variety of
datasets show that a careful selection significantly
reduces gender bias.

1. Introduction
In the past few years, Face Recognition (FR) systems have
reached extremely high levels of performance, paving the
way to a broader range of applications, where the reliability
levels were previously prohibitive to consider automation.
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This is mainly due to the adoption of deep learning tech-
niques in computer vision since the famous breakthrough
of (Krizhevsky et al., 2012). The increasing use of deep FR
systems has however raised concerns as any technological
flaw could have a strong societal impact. Besides recent
punctual events1 that received significant media coverage,
the academic community has studied the bias of FR systems
for many years (dating back at least to (Phillips et al., 2003)
who investigated the racial bias of non-deep FR algorithms).
In (Abdurrahim et al., 2018) three sources of biases are
identified: race (understood as biological attributes such as
skin color), age and gender (available gender labels from FR
datasets are males and females). The National Institute of
Standards and Technology (Grother et al., 2019) conducted
a thorough analysis of the performance of several FR al-
gorithms depending on these attributes and revealed high
disparities. For instance, some of the top state-of-the-art
algorithms in absolute performance have more than seven
times more false acceptances for females than for males. In
this paper, we introduce a novel methodology to mitigate
gender bias for FR. Though focusing on a single source of
bias has obvious limitations regarding intersectional effects
(Buolamwini & Gebru, 2018), it is a first step to gain in-
sights into the mechanisms at work, before turning to more
complex situations. Actually, the method promoted in this
paper, much more general than the application considered
here, could possibly alleviate many other types of bias. This
will be the subject of a future work.

The topic corresponding to the study of different types of
bias and to the elaboration of methods to alleviate them is re-
ferred to as fairness in machine learning, which has received
increasing attention in recent years, see e.g. (Mehrabi et al.,
2019), (Caton & Haas, 2020), (Du et al., 2020). Roughly
speaking, achieving fairness means learning a decision rule
that does not mistreat some predefined subgroups, while
still exhibiting a good predictive performance on the overall
population: in general, a trade-off has to be found between
fair treatment and pure accuracy2. In this regard, one needs

1See for instance the study conducted by the American Civil
Liberties Union.

2This dichotomy somewhat simplifies the problem since an
increase in accuracy could also lead to a better treatment of each
subgroup of the population.

https://www.aclu.org/blog/privacy-technology/surveillance-technologies/amazons-face-recognition-falsely-matched-28


Mitigating Gender Bias in Face Recognition

to carefully define what will be the relevant fairness met-
ric. From a theoretical viewpoint, several ones have been
introduced, see e.g. (Garg et al., 2020) or (Castelnovo et al.,
2021) among others, depending on how the concept of eq-
uity of treatment is understood. In practice, these very re-
fined notions can be inadequate, as they ignore specific use
case issues, and one thus needs to adapt them carefully. This
is particularly the case in FR, where high security standards
cannot be negotiated. The goal of this article is twofold:
novel fairness metrics, relevant in FR applications in partic-
ular, are introduced at length and empirically shown to have
room for improvement by means of appropriate/flexible
representation models.

Contribution 1. We propose two new metrics, BFAR and
BFRR, that incorporate the needs for both security and
fairness (see section 2.2). More precisely, the BFAR (resp.
BFRR) metric accounts for the disparity between false ac-
ceptance (resp. rejection) rates between subgroups of inter-
est, computed at an operating point such that each subgroup
has a false acceptance rate lower than a false acceptance
level of reference.

It turns out that state-of-the-art FR networks (e.g. ArcFace
(Deng et al., 2019a)) exhibit poor fairness performance w.r.t.
gender, both in terms of BFAR and BFRR. Different strate-
gies could be considered to alleviate this gender bias: pre-,
in- and post-processsing methods (Caton & Haas, 2020),
depending on whether the practitioner “fairness” interven-
tion occurs before, during or after the training phase. The
first one, pre-processing, is not well suited for FR purposes
as shown in (Albiero et al., 2020), while the second one,
in-processing, has the major drawback to require a full re-
training of a deep neural network. This encouraged us to
design a post-processing method so as to mitigate gender
bias of pre-trained FR models.

In order to improve BFAR and BFRR disparities, we cru-
cially rely on the geometric structure of the last layer of
state-of-the-art FR neural networks. The latter is a set of
embeddings lying on a hypersphere. Those embeddings
are obtained through two concurrent mechanisms at work
during the learning process: (i) repel images of different
identities and (ii) bring together images of a same identity.

Contribution 2. We set a von Mises-Fisher statistical mix-
ture model on the last layer representation, which corre-
sponds to a mixture of gaussian random variables condi-
tioned to live on the hypersphere. Based on the maximum
likelihood of this model, we introduce a new loss we call
Fair von Mises-Fisher, that we use to supervise the training
of a shallow neural network we call Ethical Module. Taking
the variance parameters as hyperparameters that depend on
the gender, this flexible model is able to capture the two
previously mentioned mechanisms of repulsion / attraction,
which we show are at the origin of the biases in FR. Indeed,

our experiments remarkably exhibit a substantial correla-
tion between these hyperparameters and our fairness metrics
BFAR and BFRR, suggesting a hidden regularity captured
by the model proposed. More precisely, we identify some
regions of hyperparameters’ values that (i) significantly im-
prove BFAR while keeping a reasonable performance but
degrading BFRR, (ii) significantly improve BFRR while
keeping a reasonable performance but degrading BFAR
and (iii) improve both BFAR and BFRR at the cost of little
performance degradation. This third case actually achieves
state-of-the-art results in terms of post-processing methods
for gender bias mitigation in FR.

pre-trained model
(frozen)

von Mises-Fisher

Loss

shallow MLP

training set

sensitive
attribute

Ethical Module

MS1MV3

gender

ArcFace size: (512, 1024, 512)

Fair

Figure 1: Illustration of the Ethical Module methodology.
In gray: our experiment choices.

Besides a simple architecture and a fast training (few hours),
the Ethical Module enjoys several benefits we would like to
highlight.

Taking advantage of foundation models. In the recent
survey (Bommasani et al., 2021), the authors judiciously
point out a change of paradigm in deep learning: very ef-
ficient pre-trained models with billions of parameters they
call foundation models are at our disposal such as BERT
(Devlin et al., 2018) in NLP or ArcFace (Deng et al., 2019a)
in FR. Many works rely on these powerful models and fine
tune them, inheriting from both their strengths and weak-
nesses such as their biases. Hence the need to focus on
methods to improve the fairness of foundation models: our
method is in line with this approach.

No sensitive attribute used during deployment. Though
the Ethical Module requires access to the sensitive label
during its training phase, this label (e.g. gender) is not
needed anymore, once the training is completed. This is
compliant with the EU jurisdiction that forbids the use of
protected attributes for prediction rules.

Organization of the paper. Section 2.1 presents the widely
spread usage of FR and its main challenges. It is followed
by section 2.2 where we discuss different fairness metrics
that arise in FR and introduce two new ones we think are
more relevant with regards to operational use cases. In sec-
tion 3, we present the von Mises-Fisher loss that is used for
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the training of the Ethical Module and discuss its benefits.
Finally, in section 4, we present at length our numerical
experiments, which partly consist in learning an Ethical
Module on the ArcFace model, pre-trained on the MS1MV3
dataset (Deng et al., 2019b). Our results show that, remark-
ably, some specific choices of hyperparameters provide high
performance and low fairness metrics both at the same time.

Related works. The correction of bias in FR has been
the subject of several recent papers. (Liu et al., 2019) and
(Wang & Deng, 2020) use reinforcement learning to learn
fair decision rules but despite their mathematical relevance,
such methods are computationally prohibitive. Another line
of research followed by (Yin et al., 2019), (Wang et al.,
2019a) and (Huang et al., 2019) assumes that bias comes
from the unbalanced nature of FR datasets and builds on
imbalanced and transfer learning methods. Unfortunately,
these methods do dot completely remove bias and it has
been recently pointed out that balanced dataset are actually
not enough to mitigate bias, as illustrated by (Albiero et al.,
2020) for gender bias, (Gwilliam et al., 2021) for racial
bias and (Wang et al., 2019b) for gender bias in face detec-
tion. (Gong et al., 2019), (Alasadi et al., 2019) and (Dhar
et al., 2021) rely on adversarial methods that can reduce
bias but are also known to be unstable and computationally
expensive. All of the previously mentioned methods try to
learn fair representations. In contrast, some other works
do not affect the latent space but modify the decision rule
instead: (Terhörst et al., 2020) act on the score function
whereas (Salvador et al., 2021) rely on calibration methods.
Despite encouraging results, these approaches do not solve
the source of the problem which is the bias incurred by the
embeddings used.

2. Fairness in Face Recognition
In this section, we first briefly recall the main principles of
deep Face Recognition and introduce some notations. The
interested reader may consult (Masi et al., 2018) or (Wang
& Deng, 2018) for a detailed exposition. Then, we present
the fairness metrics we adopt and argue of their relevance
in our framework.

2.1. Overview of Face Recognition

Framework. A typical FR dataset consists of face images
of individuals from which we wish to predict the identi-
ties. Assuming that the images are of size h × w and
that there are K identities among the images, this can
be modeled by i.i.d. realizations of a random variable
(X, y) ∈ Rh×w×c × {1, . . . ,K}, where c corresponds to
the color channel dimension. In the following, we denote
by P the corresponding probability law.

Objective. The usual goal of FR is to learn an encoder
function fθ : Rh×w×c → Rd that embeds the images in a
way to bring same identities closer together. The resulting
latent representation Z := fθ(X) is the face embedding of
X . Since the advent of deep learning, the encoder is a deep
Convolutional Neural Network (CNN) whose parameters θ
are learned on a huge FR dataset (xi, yi)1≤i≤N made of N
i.i.d. realizations of the random variables (X, y). There are
generally two FR use cases: identification, which consists
in finding the specific identity of a probe face among several
previously enrolled identities, and verification (which we
focus on throughout this paper), which aims at deciding
whether two face images correspond to the same identity
or not. To do so, the closeness between two embeddings
is usually quantified with the cosine similarity measure
s(zi, zj) := zᵀi zj/(||zi|| · ||zj ||), where || · || stands for
the usual Euclidean norm (the Euclidean metric ||zi − zj ||
is also used in some early works e.g. (Schroff et al., 2015)).
Therefore, an operating point t ∈ [−1, 1] (threshold of ac-
ceptance) has to be chosen to classify a pair (zi, zj) as
genuine (same identity) if s ≥ t and impostor (distinct
identities) otherwise.

Training. For the training phase only, a fully-connected
layer is added on top of the deep embeddings so that the
output is a K-dimensional vector, predicting the identity of
each image within the training set. The full model (CNN +
fully-connected layer) is trained as an identity classification
task. Until 2018, most of the popular FR loss functions were
of the form:

L = − 1

n

n∑
i=1

log

(
eκµ

ᵀ
yi
zi∑K

k=1 e
κµᵀ

kzi

)
, (1)

where the µk’s are the fully-connected layer’s parameters,
κ > 0 is the inverse temperature of the softmax function
used in brackets and n is the batch size. Early works
(Taigman et al., 2014; Sun et al., 2014) took κ = 1 and
used a bias term in the fully-connected layer but (Wang
et al., 2017) showed that the bias term degrades the per-
formance of the model. It was thus quickly discarded in
later works. Since the canonical similarity measure at the
test stage is the cosine similarity, the decision rule only
depends on the angle between two embeddings, whereas
it could depend on the norms of µk and zi during train-
ing. This has led (Wang et al., 2017) and (Hasnat et al.,
2017) to add a normalization step during training and take
µk, zi ∈ Sd−1 := {z ∈ Rd : ||z|| = 1} as well as introduc-
ing the re-scaling parameter κ in Eq. 1: these ideas signifi-
cantly improved upon former models and are now widely
adopted. The hypersphere Sd−1 to which the embeddings
belong is commonly called face hypersphere. Denoting by
θi the angle between µyi and zi, the major advance over
the loss of Eq. 1 (with normalization of µk, zi) in recent
years was to consider large-margin losses which replace
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µᵀ
yizi = cos(θi) by a function that reduces intra-class an-

gle variations, such as the cos(mθi) of (Liu et al., 2017) or
the cos(θi)−m of (Wang et al., 2018). The most efficient
choice is cos(θi+m) and is due to (Deng et al., 2019a) who
called their model ArcFace, on which we build our method-
ology. A fine training should result in the alignment of each
embedding zi with the vector µyi . The aim is to bring to-
gether embeddings with the same identity. Indeed, during
the test phase, the learned algorithm will have to decide
whether two face images are related to the same, potentially
unseen, individual (one refers to an open set framework).

Evaluation metrics. Let (X1, y1) and (X2, y2) be two in-
dependent random variables with law P. We distinguish
between the False Acceptance and False Rejection Rates,
respectively defined by

FAR(t) := P(s(Z1, Z2) ≥ t | y1 6= y2)
FRR(t) := P(s(Z1, Z2) < t | y1 = y2)

These quantities are crucial to evaluate a given algorithm
in our context: Face Recognition is intrinsically linked to
biometric applications, where the usual accuracy evaluation
metric is not sufficient to assess the quality of a learned
decision rule. For instance, security automation in an airport
requires a very low FAR while keeping a reasonable FRR
to ensure a pleasant user experience. As a result, the most
widely used metric consists in first fixing a threshold t so
that the FAR is equal to a pre-defined value α ∈ [0, 1],
and then computing the FRR at this threshold. We use the
canonical FR notation to denote the resulting quantity:

FRR@(FAR = α) := FRR(t) with FAR(t) = α.

The FAR level α determines the operational point of the FR
system and corresponds to the security risk one is ready to
take. According to the use case, it is typically set to 10−i

with i ∈ {1, . . . , 6}.

2.2. Incorporating Fairness

While the FRR@FAR metric is the standard choice for
measuring the performance of a FR algorithm, it does not
take into account its variability among different subgroups
of the population. In order to assess and correct for potential
discriminatory biases, the practitioner must rely on suitable
fairness metrics.

Framework. In order to incorporate fairness with respect
to a given discrete sensitive attribute that can take A > 1
different values, we enrich our previous model and consider
a random variable (X, y, a) where a ∈ {0, 1, . . . , A − 1}.
With a slight abuse of notations, we still denote by P the
corresponding probability law and, for every fixed value a,
we can further define

FARa(t) := P(s(Z1, Z2) ≥ t | y1 6= y2, a1 = a2 = a)
FRRa(t) := P(s(Z1, Z2) < t | y1 = y2, a1 = a2 = a).

In our case, we focus on gender bias so we take A = 2 with
the convention that a = 0 stands for male, a = 1 for female.

Existing fairness metrics. Before specifying our choice
for the fairness metric used here, let us review some existing
ones (Mehrabi et al., 2019) that derive from fairness in the
context of binary classification (in FR, one classifies pairs
in two groups: genuines or impostors). The Demographic
Parity criterion requires the prediction to be independent
of the sensitive attribute, which amounts to equalizing the
likelihood of being genuine conditional to a = 0 and a = 1.
Besides heavily depending on the number and quality of
impostors and genuines pairs among subgroups, this crite-
rion does not take into account the FARs and FRRs, which
are instrumental in FR as previously mentioned. An at-
tempt to incorporate those criteria could be to compare
the intra-group performances: FRR0@(FAR0 = α) v.s.
FRR1@(FAR1 = α). However, the operational points
t0 and t1 satisfying FAR0(t0) = α and FAR1(t1) = α
generically differ as pointed out by (Krishnapriya et al.,
2020). To fairly assess the equity of an algorithm, one
needs to compare intra-groups FARs and FRRs at the same
threshold. Two such criteria exist in the fairness literature:
the Equal Opportunity fairness criterion which requires
FRR0(t) = FRR1(t) and the Equalized Odds criterion
which additionally requires FAR0(t) = FAR1(t). Never-
theless, working at an arbitrary threshold t does not really
make sense since, as previously mentioned, FR systems
typically choose an operational point achieving a predefined
FAR level so as to limit security breaches. This is why most
current papers consider a fixed operational point t such that
the global population False Acceptance Rate equals a fixed
value α. For instance, (Dhar et al., 2021) computes

|FRR1(t)− FRR0(t)| with FAR(t) = α. (2)

However, we think that the choice of a threshold achieving
a global FAR is not entirely relevant for it depends on the
relative proportions of females and males of the considered
dataset together with the relative proportion of intra-group
impostors. For instance, at fixed images quality, if females
represent a small proportion of the evaluation dataset, the
threshold t of Eq. 2 is close to the male threshold t0 satis-
fying FAR0(t0) = α and away from the female threshold
t1 satisfying FAR1(t1) = α. Such a variability among
datasets could lead to incorrect conclusions.

New fairness metrics. In this paper, we go one step further
and work at a threshold achieving maxa FARa = α instead
of FAR = α. This alleviates the previous proportion de-
pendence. Besides, this allows to monitor the risk one is
willing to take among each subgroup: for a pre-definite rate
α deemed acceptable, one typically would like to compare
the performance among subgroups for a threshold where
each subgroup satisfies FARa ≤ α. Our two resulting
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metrics are thus:

BFRR(α) :=
maxa∈{0,1} FRRa(t)

mina∈{0,1} FRRa(t)
(3)

and

BFAR(α) :=
maxa∈{0,1} FARa(t)

mina∈{0,1} FARa(t)
, (4)

where t is taken such that maxa∈{0,1} FARa(t) = α.

One can read the above acronyms “Bias in FRR/FAR”. In
addition to being more security demanding than previous
metrics, BFRR and BFAR are more amenable to interpreta-
tion: the ratios of FRRs or FARs correspond to the number
of times the algorithm makes more mistakes on the discrim-
inated subgroup. Those metrics generalize well for more
than 2 distinct values of the sensitive attribute.

3. Geometric Mitigation of Biases
Contrary to a common thinking about the origin of bias,
training a FR model on a balanced training set (i.e. with as
much female identities/images than male identities/images)
is not enough to mitigate gender bias in FR (Albiero et al.,
2020). It is therefore necessary to intervene by designing a
model to counteract the gender bias.

3.1. A Geometrical Embedding View on Fairness

In fact, impostor scores (cosine similarities of impostor
pairs) are higher for females than for males while genuine
scores are lower for females than for males (Grother et al.,
2019; Robinson et al., 2020). This puts females at a disad-
vantage compared to males in terms of both FAR and FRR.
Typically, this is due to (i) a smaller repulsion between
female identities and/or (ii) a greater intra-class variance
(spread of embeddings of each identity) for female identities,
as illustrated in Figure 2. Thus, we present in the follow-
ing a statistical model which enables to set the intra-class
variance for each identity on the face hypersphere.

Figure 2: Illustration of the geometric nature of bias. Each
point is the embedding of an image. In green: two male
identities. In red: two female identities. The overlapping
region between two identities is higher for females than for
males. The grey circles are the acceptance zones, centered
around an embedding of reference, associated to a constant
threshold t of acceptance.

3.2. von-Mises Fisher Mixture Model

In order to mitigate the gender bias of deep FR systems, we
set a statistical model on the latent representations of images.
Recall that we assumed that each individual of a FR dataset
is an i.i.d. realization of a random variable (X, y, a), where
X is the image, y the identity and a the gender attribute.
Also, recall that, both at the training and the testing stages,
the embeddings are normalized on the hypersphere, meaning
that Z = fθ(X) ∈ Sd−1. As previously mentioned, a fine
learning should result in an alignment of the embeddings
{zi} of a same identity yi around their associated centroid
µyi ∈ Sd−1. It is therefore reasonable to assume that the
embeddings of a same identity are i.i.d. realizations of
a radial distribution of gaussian-type on the hypersphere,
centered atµyi . A natural choice is thus to take the so-called
von-Mises Fisher (vMF) distribution which is nothing but
the law of a gaussian conditioned to live in the hypersphere.
Before turning to the formal definition of the statistical
model we put on the hypersphere, let us give the definition
of this vMF distribution.

The von Mises-Fisher distribution. The vMF distribution
in dimension d with mean direction µ ∈ Sd−1 and concen-
tration parameter κ > 0 is a probability measure defined on
the hypersphere Sd−1 by the following density:

Vd(z;µ, κ) := Cd(κ)eκµ
ᵀz ,

with Cd(κ) = κ
d
2−1/((2π)

d
2 I d

2−1(κ)). Iν stands for the
modified Bessel function of the first kind at order ν, whose
logarithm can be computed with high precision (see supple-
mentary material A.1). The vMF distribution corresponds
to a gaussian distribution in dimension d with mean µ and
covariance matrix (1/κ)Id, conditioned to live on Sd−1.
Figure 3 illustrates the influence of the concentration param-
eter κ on the vMF distribution.

Mixture model. Since the vMF distribution seems to re-
flect well the distribution of the embeddings of 1 identity
around their centroid, we extend the model to include all the
K identities from the training set by considering a mixture
model where each component k (1 ≤ k ≤ K) is equiproba-
ble and follows a vMF distribution Vd(z;µk, κk). Figure 4
provides an illustration of the mixture model.

Maximum likelihood. Let N ≥ 1 and (xi, yi, ai)1≤i≤N
be i.i.d. realizations of (X, y, a). Under the previous vMF
mixture model assumption, the probability pij that a face
embedding zi = fθ(xi) belongs to identity j is given by

pij =
Vd(zi|µj , κj)∑K
k=1 Vd(zi|µk, κk)

=
Cd(κj) e

κj µ
ᵀ
j zi∑K

k=1 Cd(κk) eκk µ
ᵀ
kzi

.
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Figure 4: Illustration of a vMF mixture model.

Therefore, the negative log-likelihood of the model is

NLL = − 1

N

N∑
i=1

log

[
Cd(κyi) e

κyi µ
ᵀ
yizi∑K

k=1 Cd(κk) eκk µ
ᵀ
kzi

]
. (5)

In that case, the above NLL is in fact the vMF loss function,
firstly introduced in the context of FR by (Hasnat et al.,
2017) who took a unique hyperparameter value κ. In this
situation, the vMF loss reduces to the classical loss of Eq. 1
(when zi and µk are normalized). This makes the vMF loss
a natural generalization of popular FR loss functions, before
the advent of large-margin losses. (Zhang et al., 2019a) in-
troduce a similar loss with 2 distinct κ values but they do not
take into account the normalization constant Cd(κ). (Zhe
et al., 2019) use the vMF loss with unique concentration
parameter κ for image classification and retrieval but the
centroids µk are not learned by gradient descent but rather
by an approximate maximum likelihood estimation.

Training an Ethical Module with the vMF-loss. In order
to correct for the gender bias contained within the learned
latent representation, we train a shallow MultiLayer Percep-
tron (MLP) which is designed to give more representation
power to females. To do so, we slightly modify Eq. 5 by
replacing the concentration parameter κk of each identity
k by a concentration parameter that only depends on the
gender ak ∈ {0, 1} of the identity k. In other words, we
replace κk by κak and we end up with only 2 concentration
parameters (κ0, κ1 > 0) that we take as hyperparameters.
To sum up, we train the MLP with the following Fair von

Mises-Fisher loss (FvMF), on batches of size n:

LFvMF = − 1

n

n∑
i=1

log

 Cd(κayi )e
κayiµ

ᵀ
yizi∑K

k=1 Cd(κak)eκakµ
ᵀ
kzi

 .

(6)
Notice that there are two ways of minimizing LFvMF: either
by aligning normalized face embeddings zi with associated
ground-truth µyi (the intra-class variance is characterized
by κayi ) or by pushing back wrong µk (with k 6= yi) from
zi (the repulsion strength is related to κak ). This brings us
back to the two geometric causes for bias in FR, presented
in section 3.1. However, those two phenomena are in com-
petition during the loss minimization, especially with two
distinct values of concentration parameter, which makes it
difficult to predict the optimal values of κ0 and κ1.

4. Numerical Experiments
Pre-trained models. We use the trained model ArcFace3

whose CNN architecture is a ResNet100 (Han et al., 2017).
As emphasized before, it achieves state-of-the-art perfor-
mances in FR. It has been trained on the MS1M-RetinaFace
dataset (also called MS1MV3), introduced by (Deng et al.,
2019b) in the ICCV 2019 Lightweight Face Recognition
Challenge. MS1MV3 is a cleaned version of the MS-
Celeb1M dataset (Guo et al., 2016); all its face images have
been pre-processed by the Retina-Face detector (Deng et al.,
2019c) and are of size 112× 112 pixels. It contains 5.1M
images of 93k identities. We also consider other pre-trained
models4 (AdaCos (Zhang et al., 2019b), CosFace (Wang
et al., 2018), CurricularFace (Huang et al., 2020)) whose
backbone is a MobileFaceNet (Chen et al., 2018), trained
on the MS-Celeb-1M-v1c-r dataset5. This dataset is an-
other cleaned version of the MS-Celeb1M dataset and it
contains 3.28M images of 73k identities. The images are
also pre-processed by the Retina-Face detector and are of

3https://github.com/deepinsight/
insightface/tree/master/recognition/
arcface_torch.

4https://github.com/JDAI-CV/FaceX-Zoo/
blob/main/training_mode/README.md.

5See footnote 4.

https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch
https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch
https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch
https://github.com/JDAI-CV/FaceX-Zoo/blob/main/training_mode/README.md
https://github.com/JDAI-CV/FaceX-Zoo/blob/main/training_mode/README.md
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size 112× 112 pixels.

Gender labels. For a fair comparison, we train our Ethical
Module on the training set used to train the pre-trained mod-
els (MS1MV3 for ArcFace, MS-Celeb-1M-v1c-r for the
models with MobileFaceNet backbone). However, ground-
truth gender labels for MS1MV3/MS-Celeb-1M-v1c-r are
not available. As the training of our Ethical Module needs
the gender label of each face image within the training set,
we use a private gender classifier to get those gender labels.
Current gender classifiers achieve around 95% prediction ac-
curacy on standard evaluation datasets and are widely used
in FR to get gender annotations (Acien et al., 2018; Gong
et al., 2020). Since some images from the same identity
might be assigned different gender predictions, it is com-
mon practice to use a majority vote to decide the correct
gender for each identity. We follow (Albiero et al., 2020)
and only keep in our training sets the identities for which
at least 75% of the same-identity face images are assigned
the same gender. Doing so, we discard 25k images and 835
identities for MS1MV3, 10k images and 500 identities for
MS-Celeb-1M-v1c-r.

Ethical Module. The face embeddings output by the pre-
trained models are of dimension 512. Thus, the MLP within
our Ethical Module has an input layer of 512 units. To em-
phasize the fact that our gender bias mitigation solution is
much less costly than current solutions such as (Wang &
Deng, 2020) and (Dhar et al., 2021), in terms of both train-
ing time and computation power (see supplementary mate-
rial A), we choose a shallow MLP of size (512, 1024, 512)
with a ReLU activation after the first layer, the output di-
mension being the same than for the pre-trained models.
This MLP is trained with the fair version LFvMF of the vMF
loss, introduced in Eq. 6. For each experiment, we train the
Ethical Module during 50 epochs with the Adam optimizer
(Kingma & Ba, 2014). The batch size is set to 1024 and
the learning rate to 0.01. The training is efficient as we
first compute the face embeddings of the pre-trained models
(on MS1MV3 for ArcFace, on MS-Celeb-1M-v1c-r for the
models with MobileFaceNet backbone), store them, and
then train a shallow MLP on those embeddings. Using one
single GPU (NVIDIA RTX 3090), the computation of the
embeddings takes 4 hours and each training takes 8 hours.

Reproducibility. We plan to release the code used to con-
duct our experiments.

4.1. Grid-Search on IJB-C

In order to select relevant pairs of gender-hyperparameters
(κ0, κ1), we perform a grid-search and keep track of the
canonical performance metric FRR@(FAR = 10−3) to-
gether with our two fairness metrics BFRR(10−3) and
BFAR(10−3) introduced in Eq. 3 and 4. To obtain reli-
able results, we need to compute the latter metrics on a

sufficiently large FR dataset containing gender labels. We
choose IJB-C (Maze et al., 2018), which contains about 3,5k
identities for a total number of about 31k images and 117k
unconstrained video frames. The 1:1 verification protocol6

is performed on 19k genuine pairs and 15M impostor pairs.
We choose ArcFace ResNet100 as the pre-trained model for
this experiment. The results are displayed in Figure 5.

Several interesting trends emerge from Figure 5, suggest-
ing an underlying regularity of the model with respect to
the hyperparameters’ space. More precisely, when κ0 is
fixed and κ1 increases, BFAR tends to decrease, BFRR
first increases and then decreases and FRR@FAR tends to
increase. When κ1 is fixed and κ0 increases, BFAR first
increases and then decreases, BFRR tends to decrease and
FRR@FAR increases. In the supplementary material C, we
give some explanations of the trends in Figure 5. Note that
BFAR and BFRR have opposite behaviors, which reveals a
trade-off between both fairness metrics.

Many (κ0, κ1) pairs could be considered as relevant and
instead of defining an objective criterion, we select three
of them in order to illustrate the trade-offs one needs to
make between fairness metrics and pure performance. The
selection is made based on Figure 5. We provide in Table 1
the (κ0, κ1) pairs which optimize each pair of the considered
metrics and give them a name for what follows. The three
versions of the Ethical Module presented in Table 1 are
robust to a change of FAR level, when performing the grid-
search, as illustrated in the supplementary material D.

Table 1: Hyperparameters selected to optimize each pair of
metrics. We give a name to each of the (κ0, κ1) pairs. EM
stands for Ethical Module.

NAME BFRR BFAR FRR@FAR κ0 κ1

EM-FAR ×
√ √

15 20
EM-FRR

√
×

√
25 20

EM-C
√ √

× 45 30

4.2. Fairness Evaluation on LFW

In this section, we evaluate the three versions of our Ethical
Module (EM-FAR, EM-FRR, EM-C) and we compare them
to the pre-trained model in terms of fairness and perfor-
mance. All the models are evaluated on the LFW dataset
(Huang et al., 2008). The official LFW protocol only con-
siders a few matching pairs among all the possible pairs
given the whole LFW dataset. The number of female im-
ages is typically not enough to get good estimates of our
fairness metrics. To overcome this, we consider all possible
same-gender matching pairs among the whole LFW dataset.

6https://github.com/deepinsight/
insightface/tree/master/recognition/
_evaluation_/ijb.

https://github.com/deepinsight/insightface/tree/master/recognition/_evaluation_/ijb
https://github.com/deepinsight/insightface/tree/master/recognition/_evaluation_/ijb
https://github.com/deepinsight/insightface/tree/master/recognition/_evaluation_/ijb
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Figure 5: Fairness and evaluation metrics on IJB-C for the Ethical Module when one of the two hyperparameters is fixed. The
FAR level defining the threshold t is set to 10−3; the pre-trained model is ArcFace with a ResNet100 backbone. FRR@FAR
is expressed as a percentage (%). The three versions of the Ethical Module presented in Table 1 are annotated with circles.

Table 2: Evaluation on LFW for ArcFace with ResNet50 backbone. FRR@FAR is expressed as a percentage (%).
Bold=Best, Underlined=Second best.

FAR LEVEL: 10−4 10−3

MODEL FRR@FAR (%) BFRR BFAR FRR@FAR (%) BFRR BFAR

ARCFACE 0.078 10.27 4.72 0.059 4.17 1.81
ARCFACE + PASS-G 0.315 4.54 6.51 0.107 5.22 2.11
ARCFACE + EM-FAR 0.151 11.22 2.11 0.072 9.16 1.19
ARCFACE + EM-FRR 0.100 5.89 33.65 0.058 4.11 5.24

ARCFACE + EM-C 0.164 9.18 2.44 0.081 5.15 1.20

Doing so, we obtain 9.8k female genuine pairs, 232k male
genuine pairs, 4.4M female impostor pairs and 52M male
impostor pairs.

Baseline. The current state-of-the-art post-processing
method for gender bias mitigation of FR models is achieved
by PASS-g (Dhar et al., 2021). It also consists in transform-
ing the embeddings output by the pre-trained model but it
is trained in an adversarial way to classify identities and
simultaneously reduce encoding of gender within the new
embeddings. Although attempting to output embeddings
that are independent from gender seems a good idea, we
believe that the gender information contained within the
embeddings helps any FR model a lot at the training stage
(identity classification), and thus that such a training cannot
be achieved without losing too much performance.

We first verify the effectiveness of our Ethical Module using
the pre-trained model ArcFace ResNet50. For a fair com-
parison, we train PASS-g on the same training set than the
Ethical Module (MS1MV3 in this case). In Table 2, we sum-

marize the different metrics evaluated for the three versions
of our Ethical Module on the LFW dataset and compare
them with the pre-trained ArcFace and PASS-g baselines, at
two FAR levels. EM-FAR achieves the best BFAR at both
FAR levels while the best BFRR is obtained by EM-FRR at
FAR = 10−3 and by PASS-g at FAR = 10−4. At the latter
FAR level, the error rate FRR@FAR of PASS-g is slightly
more than 4 times the error rate of the original pre-trained
model. Finally, EM-C is the only model which succeeds in
reducing both fairness metrics (BFRR and BFAR) of the
pre-trained model at the same time for FAR = 10−4.

In addition, we check the robustness of our method to a
change of pre-trained model by considering competitive
FR loss functions (AdaCos, CosFace, CurricularFace) with
MobileFaceNet backbone. The results are displayed in Ta-
ble 3. Additional results with other pre-trained models are
available in the supplementary material G.



Mitigating Gender Bias in Face Recognition

Table 3: Evaluation on LFW for different pre-trained models (AdaCos, CosFace, CurricularFace) with MobileFaceNet
backbone. By ”Original” we mean no Ethical Module is added to the pre-trained model. FRR@FAR is expressed as a
percentage (%). Bold=Best, Underlined=Second best.

FAR LEVEL: 10−4 10−3

MODEL FRR@FAR (%) BFRR BFAR FRR@FAR (%) BFRR BFAR

ADACOS

ORIGINAL 2.97 3.64 3.84 0.98 5.29 2.23
EM-FAR 4.56 4.42 1.41 1.33 6.34 1.01
EM-FRR 3.12 2.71 8.37 0.91 4.23 3.71

EM-C 4.05 4.51 1.57 1.26 7.28 1.08

COSFACE

ORIGINAL 1.73 5.89 2.51 0.58 8.18 1.74
EM-FAR 3.69 5.76 1.13 1.05 8.41 1.02
EM-FRR 2.41 3.03 9.66 0.67 5.09 4.75

EM-C 2.60 4.30 3.69 0.82 6.81 1.87

CURRICULARFACE

ORIGINAL 2.52 3.67 2.92 0.81 4.88 1.91
EM-FAR 3.86 5.26 1.16 1.17 6.35 1.10
EM-FRR 2.82 2.58 9.10 0.82 3.89 4.28

EM-C 3.61 3.40 2.30 1.02 5.63 1.27

5. Conclusion
In this paper, we introduce a novel method, the Ethical
Module, to mitigate the gender bias of Face Recognition
state-of-the-art models. It consists in learning a shallow
MLP on top of a frozen pre-trained model, so as to correct
the biases that exist in the embedding space. To achieve
fairness, we rely on a fair version of the von Mises-Fisher
loss that incorporates an hyperparameter per gender, related
to the intra-class variance of each gender. Measuring the
fairness of Face Recognition systems is a very challenging
task and we introduce two new metrics, BFAR and BFRR,
that both respond to the need for security and equity.

Besides being very simple, the resulting methodology is
more stable and faster than most current methods of bias
mitigation. It both leverages the strong accuracy of pre-
trained models while correcting their bias. We illustrate
the soundness of our methodology on several pre-trained
models, and strongly believe it could also be used to alle-
viate other types of bias. Our work opens several lines of
research: for instance, it would be interesting to extend our
ideas to the context of multiclass sensitive attributes and of
continuous sensitive attributes such as age. Another idea
would be to somehow incorporate our fairness criteria dur-
ing the training of the Ethical Module. Finally, we think that
incorporating large-margin constraints into the loss used to
train the Ethical Module would be a promising attempt to
go beyond the trade-off between fairness and performance.
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A. Numerical stability
A.1. von Mises-Fisher constants

Recall the loss defined in Equation 6:

LFvMF = − 1

n

n∑
i=1

log

(
Cd(κayi )eκayi

µᵀ
yi
zi∑K

k=1 Cd(κak)eκak
µᵀ

kzi

)
with Cd(κ) =

κ
d
2−1

(2π)
d
2 I d

2−1(κ)
.

Iν stands for the modified Bessel function of the first kind at order ν, whose logarithm can be computed with high precision
using a Python library for arbitrary-precision floating-point arithmetic such as mpmath (Johansson et al., 2021; Kim, 2021).

Once log(I d
2−1(κ)) is obtained, one is able to compute the logarithm of Cd(κ) as:

log(Cd(κ)) = (
d

2
− 1) log(κ)− d

2
log(2π)− log(I d

2−1(κ)).

Figure 6 displays log(I d
2−1(κ)) and log(Cd(κ)) as functions of κ for d = 512.
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Figure 6: log(I d
2−1(κ)) and log(Cd(κ)) as functions of κ for d = 512.

A.2. Loss stability

To make use of the numerical stability of the quantity log(Cd(κ)), LFvMF can be written as:

LFvMF = − 1

n

n∑
i=1

log

(
elog(Cd(κayi

))+κayi
µᵀ

yi
zi∑K

k=1 e
log(Cd(κak

))+κak
µᵀ

kzi

)
.

Recall the cross-entropy loss LCE({qi,k}, {yi}) with 1 ≤ i ≤ n and 1 ≤ k ≤ K defined as:

LCE({qi,k}, {yi}) = − 1

n

n∑
i=1

log

(
eqi,yi∑K
k=1 e

qi,k

)

LFvMF can be expressed as the cross-entropy loss:

LFvMF = LCE({qi,k}, {yi})

where the logits qi,k = log(Cd(κak)) + κakµ
ᵀ
kzi satisfy (µk, zi ∈ Sd−1):

log(Cd(κak))− κak ≤ qi,k ≤ log(Cd(κak)) + κak
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Those bounds are displayed in Figure 7. The fact that LFvMF can be expressed as the cross-entropy loss makes it possible to
use the logsoftmax trick and thus further increases its numerical stability.

We provide on Figure 8 the behavior of our LFvMF training loss, used to train the Ethical Module on top of ArcFace
ResNet50.
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Figure 7: Range of values of the LFvMF loss logits for d = 512.
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Figure 8: LFvMF training loss for the pre-trained model ArcFace ResNet50.

B. Grid-search on IJB-C
In order to select relevant pairs of gender-hyperparameters (κ0, κ1), we perform a grid-search on a square of size 9 × 9
and keep track of the canonical performance metric FRR@(FAR = 10−3) together with variants of our two fairness
metrics BFRR(10−3) and BFAR(10−3) introduced in Eq. 3 and 4. These variants are respectively FRR1(t)/FRR0(t) and
FAR1(t)/FAR0(t) computed at the threshold t satisfying maxa∈{0,1} FARa(t) = 10−3. In this way we can visualize the
inversion of bias incurred by our model: in most settings, females are disadvantaged while some extreme values of the
hyperparameters disadvantage males. The results displayed in Figure 9 contain the results of Figure 5 but they are more
complete.

C. Trends in Figure 5
Recall that the vMF parametric interpretation of the model is that each identity is associated with a gaussian on the sphere
with fixed mean and fixed concentration parameter. The images of a dataset are then seen as i.i.d. realization of the mixture
of these gaussians and the loss consists in maximizing the log-likelihood. In order to control the representation power of
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Figure 9: Three metrics along the grid-search. Notice that 9(a) and 9(b) are computed at the threshold t satisfying
maxa∈{0,1} FARa(t) = 10−3. The pre-trained model is ArcFace with a ResNet100 backbone and the Ethical Module is
evaluated on IJB-C.

males and females, we fix a concentration parameter κ0 (resp. κ1) for all males (resp. females). In Figure 5, we observe that
the different metrics exhibit smooth behavior with respect to these hyperparameters. Let us give some insights on these
phenomenons. In general, female are discriminated against so that the maximum is realized for FAR1: we will always place
ourselves in this situation for the following heuristic reasoning, meaning that we will always assume that

max(FAR0(t),FAR1(t)) = FAR1(t). (7)
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Therefore, our heuristic will not take into account the observed empirical fact that, for some specific choices of hyperparme-
ters, male are discriminated against. We think one could push further the reasoning to include this case but restrict the scope
of our explanations in order to focus on the underlying mechanisms of the vMF loss.

Restriction to the study of FAR1(t)/FAR0(t). We claim it is sufficient to focus on the evolution of FAR1(t)/FAR0(t),
from which the evolution of FRR1(t)/FRR0(t) can be deduced, at least at the heuristic level developed here. Two cases
may occur:

• If FAR1(t)/FAR0(t) increases, it means that there are more False Acceptance among females. From a geometric
viewpoint, this means that females are more spread around than males. Therefore, there will be more False Reject
among males who are more concentrated. Thus, when FAR1(t)/FAR0(t) increases, FRR1(t)/FRR0(t) decreases.

• If FAR1(t)/FAR0(t) decreases, it means that there are less False Acceptance among females. From a geometric
viewpoint, this means that females are more concentrated than males. Therefore, there will be less False Reject among
males who are less concentrated. Thus, when FAR1(t)/FAR0(t) decreases, FRR1(t)/FRR0(t) increases.

These two observations are confirmed by the graphical representations of Figure 5.

Suppose that κ1 is increased by a small amount ∆κ1 while κ0 remains fixed.
We will denote by FARκ1

a the False Acceptance Rate curve of subgroup a for the hyperparameters choice (κ0, κ1) and by
FARκ1+∆κ1

a the False Acceptance Rate curve of subgroup a for the hyperparameters choice (κ0, κ1 + ∆κ1).
The representation with hyperparameters (κ0, κ1 + ∆κ1) increases the concentration parameter of females. As a result, the
images stemming from a same female identity should be closer from one another, leading to a better FAR performance.
Therefore, one should have:

∀t ∈ [0, 1], FARκ1+∆κ1
1 (t) < FARκ1

1 (t). (8)

Let us denote by tκ1 and tκ1+∆κ1 the points satisfying:

FARκ1
1 (tκ1) = α and FARκ1+∆κ1

1 (tκ1+∆κ1) = α.

Using Equation 7 and Equation 8, this implies that tκ1+∆κ1 < tκ1 , as illustrated in Figure 10.

We can now distinguish two situations depending on the magnitude of κ1.

• If κ1 is small, its variation does not affect the representation of males at least at a first order approximation. In
that case FARκ1

0 (tκ1
) = FARκ1+∆κ1

0 (tκ1+∆κ1
). Since FARκ1

0 is nonincreasing, we deduce that FAR0(tκ1+∆κ1
) >

FAR0(tκ1
), which finally implies that:

FARκ1
1 (tκ1

)

FARκ1
0 (tκ1)

=
α

FARκ1
0 (tκ1)

>
α

FARκ1+∆κ1
0 (tκ1+∆κ1

)
=

FARκ1+∆κ1
1 (tκ1+∆κ1

)

FARκ1+∆κ1
0 (tκ1+∆κ1

)
.

• If κ1 is large enough, tightening the representations of females among themselves starts to affect the males repre-
sentation. Indeed, they enjoy more space and can therefore be better spread, which implies that FARκ1

0 (tκ1
) >

FARκ1+∆κ1
0 (tκ1+∆κ1

), as illustrated in Figure 10 (b). As a result:

FARκ1
1 (tκ1

)

FARκ1
0 (tκ1)

=
α

FARκ1
0 (tκ1)

<
α

FARκ1+∆κ1
0 (tκ1+∆κ1

)
=

FARκ1+∆κ1
1 (tκ1+∆κ1

)

FARκ1+∆κ1
0 (tκ1+∆κ1

)
.

The two previous points are confirmed by the top left corner graphical representation of Figure 5: for all fixed values of κ0,
the curves start by decreasing when κ1 increases, then begin an increasing phase when κ1 becomes sufficiently large.

Suppose that κ0 is increased by a small amount ∆κ0 while κ0 remains fixed.
We will denote by FARκ0

a the False Acceptance Rate curve of subgroup a for the hyperparameters choice (κ0, κ1) and by
FARκ0+∆κ0

a the False Acceptance Rate curve of subgroup a for the hyperparameters choice (κ0 + ∆κ0, κ1).
The representation with hyperparameters (κ0 + ∆κ0, κ1) increases the concentration parameter of males. As a result, the
images stemming from a same male identity should be closer from one another, leading to a better FAR performance.
Therefore, one should have:

∀t ∈ [0, 1], FARκ0+∆κ0
0 (t) < FARκ0

0 (t). (9)

As before, we can distinguish two situations depending on the magnitude of κ0.
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Figure 10: Heuristic explanation of the FARa(t) evolution at fixed κ0 and when κ1 increases.

• If κ0 is small, one can suppose that females are not affected by its variation, meaning that FARκ0
1 = FARκ0+∆κ0

1 at a
first order approximation (see (a) of Figure 11 for an illustration). In that case, tκ0

= tκ0+∆κ0
, and Equation 9 implies

that FARκ0+∆κ0
0 (tκ0) < FARκ0

0 (tκ0). As a result:

FARκ0
1 (tκ0

)

FARκ0
0 (tκ0)

=
α

FARκ0
0 (tκ0)

<
α

FARκ0+∆κ0
0 (tκ0+∆κ0

)
=

FARκ0+∆κ0
1 (tκ0+∆κ0

)

FARκ0+∆κ0
0 (tκ0+∆κ0

)
.

• If κ0 is large enough, tightening the representations of males among themselves starts to affect the females
representation: they have more space to spread around (see (b) of Figure 11). As a result, one can have
FARκ0+∆κ0

0 (tκ0+∆κ0
) > FARκ0

0 (tκ0
)

FARκ0
1 (tκ0)

FARκ0
0 (tκ0

)
=

α

FARκ0
0 (tκ0

)
>

α

FARκ0+∆κ0
0 (tκ0+∆κ0)

=
FARκ0+∆κ0

1 (tκ0+∆κ0)

FARκ0+∆κ0
0 (tκ0+∆κ0)

.

D. Robustness of the selected hyperparameters
The grid-search, presented in Figure 5, is performed using the IJB-C dataset, at a FAR level equal to 10−3. The three
versions of the Ethical Module presented in Table 1 are found, based on this grid-search. One relevant issue about this
method is the robustness of the three selected hyperparameters, typically when performing the grid-search at a different FAR
level. Figure 12 displays the same grid-search on IJB-C than Figure 5, but at a FAR level equal to 10−4. The three versions
of the Ethical Module are robust to a change of FAR level on the validation set.
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Figure 11: Heuristic explanation of the FARa(t) evolution at fixed κ0 and when κ1 increases.

E. Comparison of the spread of embeddings between genders
The Ethical Module has hyperparameters which partly control the intra-class variance per gender. Our solution EM-FRR
significantly reduces the BFRR metric: at any given operating point t, we should thus have FRR0(t) ∼ FRR1(t). This
could be understood as follows: genuine male images are as spread around their centroid than genuine female images are
around their own centroid. We would like to check whether this phenomenon occurs.

Since the training phase is an iterative process, the centroids might not represent the exact center of each identity within the
hypersphere. We choose to compute the center of a given identity by the mean of the embeddings that form this identity,
renormalized to lie on the hypersphere.

To measure the variability of the embeddings z1, . . . , zn of a given identity, we first compute the empirical mean z :=
(1/n)

∑
1≤i≤n zi, and renormalize it on the hypersphere: z = z/||z||2. Then, we compute the inertia of z1, . . . , zn with

respect to z:

I :=
1

n

n∑
i=1

||zi − z||22.

We use the pre-trained model ArcFace ResNet100 for this experiment; trained on MS1MV3 as our EM-FRR. In order to
have good estimates of this spread measure, we only considered identities having at least 100 images within the training set
(MS1MV3). We end up with 3569 male identities and 5045 female identities. For each of those identities, we compute
the spread measure and get an histogram of those values per gender (one histogram for male identities, another for female
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Figure 12: Fairness and evaluation metrics on IJB-C for the Ethical Module when one of the two hyperparameters is
fixed. The FAR level defining the threshold t is set to 10−4; the pre-trained model is ArcFace with a ResNet100 backbone.
FRR@FAR is expressed as a percentage (%). The three versions of the Ethical Module presented in Table 1 are robust to a
change of FAR level, when performing the grid-search.

identities).

F. Influence of κ1 on FARa(t) and FRRa(t)

After training our Ethical Module with ArcFace ResNet100 as the pre-trained model, we evaluate it on the LFW dataset and
compute the quantities FARa(t) (Figure 15) and FRRa(t) (Figure 16) with varying κ1. This shows that our vMF mixture
statistical model has a clear impact on the representation of deep embeddings.
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(a) ArcFace

Figure 13: Histograms of identities inertias. In orange: for females. In blue: for males. For the pretrained model, the two
histograms are not aligned.
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(a) EM-FRR

Figure 14: Histograms of identities inertias. In orange: for females. In blue: for males. For our EM-FRR model, the two
histograms are aligned.
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(a) Influence of κ1 on FARa(t). Females are depicted with solid lines while
males are depicted with dashed lines.

(b) Zoom on Figure 15(a) for females. (c) Same as Figure 15(a) but only males are dis-
played. The female concentration parameter does
not affect FAR0(t).

Figure 15: Influence of κ1 on FARa(t).
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(a) Influence of κ1 on FRRa(t). Females are depicted with solid lines while
males are depicted with dashed lines.

(b) Zoom on Figure 16(a) for females. (c) Same as Figure 16(a) but only males are dis-
played. The female concentration parameter barely
affects FRR0(t).

Figure 16: Influence of κ1 on FRRa(t).
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Table 4: Evaluation on LFW for ArcFace with ResNet100 backbone and different pre-trained models (AdaCos, CosFace,
CurricularFace) with MobileFaceNet backbone. By ”original” we mean no Ethical Module is added to the pre-trained
model. The tuples correspond to the choices of κ0 (first argument) and κ1 (second argument). FRR@FAR is expressed as a
percentage (%).

FAR level: 10−4 10−3

model FRR@FAR (%) BFRR BFAR FRR@FAR (%) BFRR BFAR
original 0.063 10.76 3.98 0.052 2.23 1.81

ArcFace (15,20) 0.119 12.73 1.72 0.067 8.43 1.04
(25,20) 0.076 5.35 29.33 0.052 1.94 3.96
(45,30) 0.129 13.47 2.99 0.067 6.02 1.24

original 2.97 3.64 3.84 0.98 5.29 2.23

AdaCos (15,20) 4.56 4.42 1.41 1.33 6.34 1.01
(25,20) 3.12 2.71 8.37 0.91 4.23 3.71
(45,30) 4.05 4.51 1.57 1.26 7.28 1.08
original 1.73 5.89 2.51 0.58 8.18 1.74

CosFace (15,20) 3.69 5.76 1.13 1.05 8.41 1.02
(25,20) 2.41 3.03 9.66 0.67 5.09 4.75
(45,30) 2.60 4.30 3.69 0.82 6.81 1.87
original 2.52 3.67 2.92 0.81 4.88 1.91

Curricular (15,20) 3.86 5.26 1.16 1.17 6.35 1.10
(25,20) 2.82 2.58 9.10 0.82 3.89 4.28
(45,30) 3.61 3.40 2.30 1.02 5.63 1.27

G. Additional numerical results
In this section, we provide more numerical experiments, varying the evaluation dataset (LFW, IJB-C, IJB-B) and different
kinds of pre-trained models (ArcFace with several ResNet architectures, other pre-trained models with MobileFaceNet
backbone).

G.1. Fairness evaluation on IJB-C and LFW

In Table 4, Table 5, Table 6, Table 7, we provide additional fairness evaluations on the IJB-C and LFW datasets, for ArcFace
(with different ResNet architectures) and other pre-trained models with MobileFaceNet backbone (CosFace, CurricularFace,
AdaCos (Zhang et al., 2019b)).

G.2. Verification evaluation on IJB-B

We finally investigate the FRR@FAR metric (Table 8, Table 9) of the three selected points (κ0, κ1) on IJB-B (Whitelam
et al., 2017). In the verification setting, this dataset contains 10k genuine pairs and 8M impostor pairs. Notice that we do not
lose too much in performance with respect to the original model.
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Table 5: IJBC 1:1 protocol for ArcFace with ResNet100 backbone and different pre-trained models with MobileFaceNet
backbone. By ”original” we mean no Ethical Module is added to the pre-trained model. The tuples correspond to the choices
of κ0 (first argument) and κ1 (second argument).

FAR level: 10−4 10−3

model FRR@FAR (%) BFRR BFAR FRR@FAR (%) BFRR BFAR
original 3.94 1.97 4.06 2.68 1.79 2.04

ArcFace (15,20) 4.90 2.33 1.17 2.90 1.98 1.15
(25,20) 4.34 1.62 11.86 2.76 1.60 5.58
(45,30) 5.20 1.92 1.25 3.53 1.91 1.07

original 18.85 1.18 5.44 9.74 1.24 3.84

AdaCos (15,20) 20.75 1.30 2.06 10.31 1.42 2.20
(25,20) 20.28 1.02 13.00 10.09 1.06 7.80
(45,30) 17.48 1.28 2.86 9.85 1.33 2.06
original 15.67 1.24 3.08 8.55 1.35 2.54

CosFace (15,20) 19.52 1.35 2.75 10.24 1.41 2.33
(25,20) 20.57 1.03 86.69 10.24 1.04 13.61
(45,30) 17.27 1.12 8.67 9.69 1.11 4.29
original 17.69 1.19 8.18 9.26 1.30 4.21

Curricular (15,20) 19.97 1.33 3.23 10.37 1.42 2.23
(25,20) 20.35 1.04 20.88 10.02 1.03 9.54
(45,30) 18.07 1.18 5.29 9.99 1.22 3.33

Table 6: Evaluation on LFW for ArcFace on different ResNet architectures. By ”original” we mean no Ethical Module is
added to the pre-trained model. The tuples correspond to the choices of κ0 (first argument) and κ1 (second argument).

FAR level: 10−4 10−3

model FRR@FAR (%) BFRR BFAR FRR@FAR (%) BFRR BFAR
original 0.063 10.76 3.98 0.052 2.23 1.81

R100 (15,20) 0.119 12.73 1.72 0.067 8.43 1.04
(25,20) 0.076 5.35 29.33 0.052 1.94 3.96
(45,30) 0.129 13.47 2.99 0.067 6.02 1.24
original 0.078 10.27 4.72 0.059 4.17 1.81

R50 (15,20) 0.151 11.22 2.11 0.072 9.16 1.19
(25,20) 0.100 5.89 33.65 0.058 4.11 5.24
(45,30) 0.164 9.18 2.44 0.081 5.15 1.20
original 0.104 11.81 7.62 0.063 8.64 2.17

R34 (15,20) 0.204 14.27 3.31 0.087 17.56 1.59
(25,20) 0.163 5.63 43.55 0.069 8.09 6.43
(45,30) 0.226 8.85 4.42 0.095 8.80 1.02
original 0.214 11.16 2.80 0.116 7.53 1.93

R18 (15,20) 0.465 11.15 1.59 0.197 10.60 1.34
(25,20) 0.310 4.44 24.59 0.125 6.53 7.57
(45,30) 0.349 6.69 4.21 0.162 6.92 1.76
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Table 7: IJBC 1:1 protocol for ArcFace on different ResNet architectures. By ”original” we mean no Ethical Module is
added to the pre-trained model. The tuples correspond to the choices of κ0 (first argument) and κ1 (second argument).
Notice that PASS-g performs as well as our method on BFRR, but at the price of a poor performance / BFAR metrics
compared to our method.

FAR level: 10−4 10−3

model FRR@FAR (%) BFRR BFAR FRR@FAR (%) BFRR BFAR
original 3.94 1.97 4.06 2.68 1.79 2.04

R100 (15,20) 4.90 2.33 1.17 2.90 1.98 1.15
(25,20) 4.34 1.62 11.86 2.76 1.60 5.58
(45,30) 5.20 1.92 1.25 3.53 1.91 1.07
PASS-g 9.00 1.70 4.49 6.27 1.79 2.97
original 4.29 1.81 3.41 3.00 1.88 1.95

R50 (15,20) 5.56 2.18 1.28 3.40 2.18 1.00
(25,20) 4.91 1.49 10.87 3.19 1.50 6.49
(45,30) 5.41 1.73 1.24 3.71 1.77 1.09
PASS-g 10.34 1.45 6.93 7.06 1.51 3.63
original 4.95 1.72 2.83 3.47 1.77 1.88

R34 (15,20) 6.38 2.05 1.17 3.85 2.04 1.06
(25,20) 5.67 1.45 13.69 3.60 1.50 5.86
(45,30) 6.13 1.62 1.70 4.24 1.69 1.06
PASS-g 12.03 1.43 4.00 8.36 1.50 2.79
original 6.64 1.68 3.81 4.41 1.58 2.37

R18 (15,20) 8.64 1.83 1.39 4.96 1.88 1.43
(25,20) 8.27 1.19 16.25 4.76 1.26 10.94
(45,30) 7.46 1.50 3.16 4.97 1.56 1.85

Table 8: IJB-B 1:1 protocol for ArcFace on different ResNet architectures. By ”original” we mean no Ethical Module is
added to the pre-trained model. The tuples correspond to the choices of κ0 (first argument) and κ1 (second argument).

FRR@FAR (%)
FAR level: 10−4 10−3

original 5.38 3.78

R100 (15,20) 6.79 4.11
(25,20) 6.00 3.84
(45,30) 7.03 4.81
original 5.95 4.20

R50 (15,20) 7.58 4.71
(25,20) 6.71 4.26
(45,30) 7.34 5.10
original 6.72 4.63

R34 (15,20) 8.54 5.18
(25,20) 7.62 4.60
(45,30) 8.11 5.57
original 8.59 5.76

R18 (15,20) 11.12 6.53
(25,20) 10.94 6.01
(45,30) 9.72 6.35
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Table 9: IJB-B 1:1 protocol for ArcFace with ResNet100 backbone and different pre-trained models with MobileFaceNet
backbone. By ”original” we mean no Ethical Module is added to the pre-trained model. The tuples correspond to the choices
of κ0 (first argument) and κ1 (second argument).

FRR@FAR (%)
FAR level: 10−4 10−3

original 5.38 3.78

ArcFace (15,20) 6.79 4.11
(25,20) 6.00 3.84
(45,30) 7.03 4.81

original 22.98 12.27

AdaCos (15,20) 24.06 12.78
(25,20) 24.41 12.78
(45,30) 21.25 12.44
original 18.85 10.65

CosFace (15,20) 23.38 12.51
(25,20) 26.10 13.01
(45,30) 21.22 12.27
original 12.20 11.42

Curricular (15,20) 24.50 12.56
(25,20) 24.91 12.35
(45,30) 21.88 11.97


