
HAL Id: hal-04260803
https://telecom-paris.hal.science/hal-04260803v1

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing and reliability enhancement of security
primitives: Methodology and experimental validation

Md Toufiq Hasan Anik, Jean-Luc Danger, Omar Diankha, Mohammad
Ebrahimabadi, Christoph Frisch, Sylvain Guilley, Naghmeh Karimi, Michael

Pehl, Sofiane Takarabt

To cite this version:
Md Toufiq Hasan Anik, Jean-Luc Danger, Omar Diankha, Mohammad Ebrahimabadi, Christoph
Frisch, et al.. Testing and reliability enhancement of security primitives: Methodology and experimen-
tal validation. Microelectronics Reliability, 2023, 147, pp.115055. �10.1016/j.microrel.2023.115055�.
�hal-04260803�

https://telecom-paris.hal.science/hal-04260803v1
https://hal.archives-ouvertes.fr

Testing and Reliability Enhancement of Security Primitives:
Methodology and Experimental Validation
Md Toufiq Hasan Anikd, Jean-Luc Dangera, Omar Diankhae, Mohammad Ebrahimabadid,
Christoph Frischc, Sylvain Guilleyb, Naghmeh Karimid, Michael Pehlc and Sofiane Takarabtb

aLTCI, Télécom Paris, Institut polytechnique de Paris, France
bSecure-IC, France
cTechnical University of Munich, Department of Electrical and Computer Engineering, Germany
dUniversity of Maryland Baltimore County, United States
eParis 8 University, France

A R T I C L E I N F O
Keywords:
Test
Physically Unclonable Function (PUF)
High order Alphabet (HoA)
True Random Number Generation (TRNG)
side-channel analysis (SCA)
fault injection attack (FIA)
Digital Sensor (DS)
Automatic Test Pattern Generation (ATPG)

Abstract
The test of security primitives is particularly strategic as any bias coming from the implementation
or environment can wreak havoc on the security it is intended to provide. This paper presents how
some security properties are tested on hardware security primitives including TRNG, PUF, and
cryptographic modules. Moreover, we discuss how the sensors embedded to protect cryptographic
modules against fault injection attacks should be calibrated over time to fulfill the requirement it
was designed for. The testing we discuss in this paper is different from the conventional testing
where we consider a fault model and generate test patterns via an ATPG to detect such faults. The
test of TRNG and PUF to ensure a high level of security is mainly about the entropy assessment,
which requires specific statistical tests. The security against SCA of cryptographic primitives, like the
substitution box in symmetric cryptography, is generally ensured by masking. However, the hardware
implementation of masking can be damaged by glitches, which create leakages on sensitive variables.
Accordingly, a test method is to search for nets of the cryptographic netlist, which are vulnerable to
glitches. Finally, the DS is an efficient primitive to detect disturbances and raise alarms in the case of
FIA. The dimensioning of this primitive requires a precise test to take into account the environmental
variations including aging.

This paper extends on a conference paper presented at DFTS ’21 by the same co-authors, where
the test methodology for three critical security primitives is presented. In addition, in this paper, we
add experimental validation to show how such testing methodology is applied in practice.

1. Introduction
Functional testing has become a mandatory requirement

for circuits to be admitted in downstream supply chain.
Involved techniques are JTAG for boundary scan, and inner
logic validation, BIST for memories, etc. Although these
methods are well-known and have been deployed for a long
time in digital circuits, their suitability for security functions
appears to be insufficient. Indeed, those techniques only
assess the correct functional behavior, but fail to test security
functionalities (which are often non-functional).

Typically, regarding security applications, it is expected
that some domain-specific tests are carried out. A secure
chip typically embeds key generation logic (such as a PUF
and/or a TRNG), cryptographic algorithms, and embedded
sensors to monitor the operating conditions and/or prevent
fault injection attacks. Obviously, PUFs used as master keys
shall be reliable1. In addition, as any cryptographic key,
they must be unpredictable; hence their randomness shall
be ensured. Indeed, cryptographic algorithms are designed
and proven secure assuming keys of maximal entropy (see
for instance the recommendation from [39, § B.3.14.8]). Be-
sides, cryptographic key management shall be secure against

ORCID(s):
1International standard ISO/IEC 20897-2 [2] gives a comprehensive

list of requirements regarding PUFs, which can be found in [10, §3.2].

side-channel attacks, such as those exploiting masking coun-
termeasures. Such protections are nowadays well known,
in general. But without special care, they are vulnerable to
glitches, which shall be managed responsibly. Eventually,
digital sensors, which are standard-cell based structures shall
be calibrated in terms of aging, so that they remain as
efficient as possible across device utilization stages.

This paper addresses all these issues in a pedagogical
manner. Three sections are devoted to security-specific tests
that shall be carried out in addition to the usual functional
tests. Given the fast spread of security features in chips, these
tests shall not only be considered as nice features, but very
soon, as mandatory features. Indeed, silicon security pieces
of “intellectual properties” (IP) are required to fulfill the
requirements of some safety or cyber-security certification
schemes. Table 1 lists some such schemes and indicates
which IP allows getting compliance. The safety schemes are:

• IEC 61508, entitled “Functional Safety of Electrical/
Electronic/Programmable Electronic Safety-related
Systems”, published by the International Electrotech-
nical Commission (IEC) and

• ISO 26262, entitled “Road vehicles – Functional
safety”, is published by International Organization for
Standardization (ISO) sub-committee ISO/TC 22/SC
32, and is an adaptation for the automotive market.

Anik et al.: Preprint submitted to Elsevier Page 1 of 16

The security schemes are multiple. We list them hereafter:
• The “Security Evaluation Standard for IoT Platforms”

(SESIP) is a Global Platform standard specifying
lightweight requirements dedicated to the Internet of
Things (IoT) market. The SESIP can be seen as a
simplified profile from Common Criteria.

• The standard ISO/IEC 15408, also known as “Common
Criteria” (CC), is an open, rigorous, scheme aim-
ing at providing a given level of assurance of the
platform. Part 2 of the CC defines a list of Security
Functional Requirements, which are referred to as
<CLASS>_<FAMILY>.

• Regarding key management, the USA National Insti-
tute of Standards and Technology (NIST) defines the
FIPS 140-3 standard for hardware security modules
(HSM). This Federal Information Processing Stan-
dard (FIPS) 140-3 lists security requirements. The 3rd
revision (hence the “-3” suffix) is actually the same as
the international standard ISO/IEC 19790:2012.

• The Office of State Commercial Cryptography Ad-
ministration (OSCCA) is a Chinese administration
organized in a similar manner as NIST. Its resulting
norm is referred to as GM/T 0008:2012.

• The European Telecommunications Standards Insti-
tute (ETSI) is endowed with the capability to define
European Norms (abridged EN). In the IoT market, the
ETSI has published the “Cyber Security for Consumer
Internet of Things: Baseline Requirements” as ETSI
EN 303 645 V2.1.1.

• Eventually, the European project “E-safety Vehicle
Intrusion proTected Applications” (or EVITA, per-
taining to the Seventh Framework Program) defines
de facto the normative requirements for automotive
HSMs.

It can be seen that only sensors matter in terms of safety.
The reason is that weak keys and leaky cryptography do
not hinder systems’ safety at all. Regarding cybersecurity,
more requirements come into play. Indeed, security requires
safety, but calls for more caution, namely:

• secrecy of keys upon generation (when spawned by
a PUF or a TRNG) and upon use (in cryptographic
algorithms exposed to side-channel attacks);

• protection against perturbations, which can lead to
cryptanalysis [40]. The very same sensors as lever-
aged for achieving safety goals can be reused verbatim
in this respect.

In Tab. 1, the EFP acronym in FIPS standard line stands
for “Environmental Failure Protection” (see §4), whereas
for CC, one has FCS_CKM = “Cryptographic key generation”,
FPT_PHP = “Passive detection of physical attack”, and FRU_FLT

= “Fault tolerance”. Notice that there is currently no mature
test suite for PUF.

Certif.
scheme

PUF /
TRNG Masking Sensors

Safety
(IEC 61508,
ISO 26262)

N/A N/A

A safety
mechanism
whose
“diagnostic
coverage”
shall be
measured by
tests

SESIP
v1.1

N/A Level 3 on-
ward

Level 3 on-
ward

Common
Criteria

FCS_CKM FPT_PHP FRU_FLT

NIST
FIPS
140-3

Sensitive
Security
Parameter
Manage-
ment

Module is
designed
to mitigate
against
non-invasive
attacks
specified in
Annex F.

Tamper
detection
and response
envelope.
EFP. Fault
injection
mitigation.

OSCCA,
GM/T 0008

Same as
above

Same as
above

Same as
above

ETSI EN
303 645

No univer-
sal default
passwords

N/A N/A

EVITA Yes (D3.2) N/A N/A

Table 1
Mapping between certification schemes and applicable IPs to
meet their safety/security requirements.

Contributions. As mentioned earlier, in this paper, we DO
NOT apply conventional testing for which we need to deploy
an ATPG to generate patterns for the targeted fault model
and apply these patterns to ensure that the circuit output does
not deviate from the expected output. Rather we discuss the
requirements that each of our targeted security primitives
(PUFs, TRNGs, Cryptographic Modules, and Digital Sen-
sors) should meet to ensure security and/or safety. In sum, in
this paper, we aim at providing a full overview of tests related
to security chips (this test is a non-functional test needed
for each of the targeted primitives to fulfill the application
they were designed for). Such information is usually only
available in specialized publications, or even worse, is not
publicly discussed. Based on our results in [6], we detail
the nature of the tests for three classes of security functions,
namely:

1. Functions managing the need for randomness, namely
through TRNGs (dynamic randomness) and PUFs
(static randomness);

2. Leakage Analysis in cryptographic algorithms, whose
resistance to side-channel attacks shall be extensively
proven;

Anik et al.: Preprint submitted to Elsevier Page 2 of 16

3. Resistance of sensors against perturbation, via consid-
ering aging into account.

We provide examples of experimental validation to show
how these tests apply in practice. Namely, we discuss differ-
ences in testing binary and higher-order alphabet PUFs and
illustrate our findings based on measurement results taken
from 180 FPGA boards. Also, we show that side-channel
attacks can extract secret keys if the netlist-level testing
reveals a vulnerability owing to spurious glitches whose
activity discloses clear (unmasked) information. Eventually,
regarding the sensor, we show on an FPGA platform how to
calibrate a digital sensor, and explain the impact of intra- and
inter-die variability.
Scope of the paper. The paper covers a broad scope, as it
aims at addressing relevant aspects of security testing. Still,
in addition to the panorama, we offer some deep-dive into
the addressed topics by providing some novel contributions.
Namely:

• Regarding PUFs, we introduce and discuss the inno-
vate concept of high-order alphabets;

• Regarding side-channel protection of cryptographic
functions, we illustrate how to spot glitches from a
theoretical manner (in the netlist) and we confirm that
it leads to real exploitation (in practice);

• Regarding digital sensors, we show how to cope with
aging, and in addition we provide actual FPGA re-
sults.

Outline. The rest of the paper is structured as follows. The
question of entropy testing is tackled in Sec. 2. Also, in this
section, an example of high-alphabet PUF is introduced and
analyzed. Testing for harmfulness of glitches in side-channel
protections is the topic of Sec. 3. The validation of digital
sensors across aging is discussed in Sec. 4. Eventually,
Sec. 5 concludes the paper. A technical proof is relegated
in Appendix. A.

An orientation regarding the different security-related
aspects covered throughout the paper is depicted in Figure 1.

2. Evaluation of PUFs and TRNGs
Two kinds of randomness are necessary for secure de-

vices: A secret key requires randomness, which is stable over
time. However, security also relies on randomness which
is fresh whenever sampled, e.g., for nonces. These differ-
ent kinds of randomness for the overall cryptosystem are
provided by security primitives such as PUFs and TRNGs.
PUFs extract static randomness from manufacturing vari-
ations. Dynamic randomness, e.g., for nonces, stems from
TRNGs whose randomness consist in the digitization of
noise. Nonetheless, in either case an attacker should not be
able to predict the random data. Therefore, the entropy of
PUFs and TRNGs is crucial for the security of a system, as

Crypto
blockPUF

 Sensors Fault
attack

Side-
channel
leakage

Low entropy

TRNG

Low entropy and
reliability

Section 2 Section 4

Section 3

Figure 1: Security IPs and threats targeting them.

it has been shown in Fig. 1. To make this entropy usable
as a key, reliability – i.e., the property that always the same
realization of a random number is derived – is an important
property for PUFs, too. However, evaluating the reliability of
PUFs is a separate issue that needs to be addressed and out-
of-scope in this work. An exemplary approach can be found
in [41]. Other PUF metrics, like Uniformity, Uniqueness,
Bit-Alias [19, 27] are generally used in literature for testing
PUFs regarding the quality of their randomness and stan-
dardized test suits are used to test TRNGs. However, such
security-specific statistical tests ensuring a sufficient quality
of the randomness, and ultimately the correct functionality
of PUFs and TRNGs are hard to realize without infusing a
backdoor, since access to security relevant internal data must
be provided at least temporarily for testing. For TRNGs,
test suites partly consist out of complex tests and are thus
not suitable for testing on a device. They require offline
testing. For PUFs, some metrics additionally require data
from multiple devices which also necessitates offline tests.
2.1. Fundamental Differences in Statistical

Properties
At first glance, PUFs and TRNGs both produce random-

ness. However, applying the same tests to them is problem-
atic because their randomness has several differences:

Source of Randomness: The most important difference
between PUFs and TRNGs is their basis for randomness. A
PUF extracts randomness from the variations in the manu-
facturing process which should stay constant. For a TRNG,
the randomness stems from noise. This disparity is the
foundation for more differences.

Amount of Data: Statistical tests require large amounts of
data to ensure a sufficient significance of the results. Disre-
garding latency, TRNGs can output arbitrarily much random
data because the noise keeps changing over time. In contrast,
PUFs can provide only a limited amount of randomness
since process variations are fixed after the production of the
chip. Hereby, the PUF primitive determines the amount of

Anik et al.: Preprint submitted to Elsevier Page 3 of 16

data that can be extracted. Normally, PUFs as key storage
output one bit (e.g., SRAM PUF [17]) or only few bits (e.g.
Loop PUF [12]) per PUF instance, and a chip possesses a
limited number of PUF instances2. As a result, many devices
are necessary to enable testing with enough data.

Dimension of data: Whereas the bit-stream of a TRNG
is one-dimensional and from a single source, testing of PUFs
has to be along multiple dimensions: (i) For many PUFs, a
combination of multiple PUF instances on a device results
in a key of the desired length. Consequently, there are two
dimensions to test – the unpredictability of a single PUF
instance at a specific position evaluated over several devices
and the relation of the PUF responses on a single device. (ii)
Oftentimes, PUF instances on a single device are structured
in a two-dimensional array. The findings in [31] show that
the way of concatenating the data row- or column-wise to
get a stream of responses has an impact on the test result.
(iii) Some PUFs are configurable by a challenge; in this case,
the choice of the challenges adds another dimension. (iv) In
addition, so called higher-order alphabet (HoA) PUFs output
multiple symbols per challenge or position.

One approach to tackle the different dimensions in (i),
(ii), and (iii) is to understand the PUF not as one source
outputting multiple bits, but as a multi-bit source or as
multiple one-bit sources. Beyond, HoA PUFs need even
more advanced techniques for testing as discussed below.

Impact of Noise: PUFs extract a constant randomness
from noisy data, whereas TRNGs generate fresh randomness
from noisy data. There are two aspects linked to that: (i)
Testing a PUF means dealing with samples from a joint
distribution of manufacturing variations and noise3. (ii) The
entropy of a PUF is restricted by the limited variations
in the manufacturing process and is effectively lowered by
noise which often imposes remediation means such as error
correction4.
2.2. Properties to be Tested

Because of the different nature of TRNGs and PUFs,
the tests themselves have to evaluate distinct properties.
TRNG tests can be divided into two categories: Either, the
test compares the TRNG output sequences to sequences of
independent and identically distributed (iid) numbers, i.e.
ideal randomness. If they cannot be distinguished, the TRNG
is considered to be of a high quality. Or, a test estimates the
entropy of a TRNG output.

Similarly, a PUF test checks if a PUF response is random
enough, i.e., unpredictable. Due to the multiple dimensions
of a PUF, this unpredictability has to hold even if an at-
tacker collects information across any of the dimensions.
Consequently, a PUF test has to cover several aspects: PUF

2Please note that multi-challenge PUFs like Arbiter PUFs [26] or
SUM PUFs [47] and their relatives are rarely used for key storage and are
potentially weak against machine learning [36].

3Potentially, more effects can also be part of this distribution, e.g.,
temperature shifts, fluctuations in the supply voltage, or device parameters
variation owing to its aging.

4Some PUFs, such as the Loop PUF [12], can achieve a required
entropy / reliability by adapting the number of oscillations.

responses have to be free of bias or correlation effects,
regardless of whether they are from different PUF instances
on the same device, for different challenges, or over more
devices for a fixed position.

In addition to statistically testing the unpredictability of
a PUF, noise effects have to be analyzed as well. The noise
should be low enough such that only a minimum amount
of post-processing, e.g., in the form of error corrections, is
needed.

Lastly, the entropy is important for PUFs as well as for
TRNGs. Hereby once again, the entropy estimator has to
incorporate the intricacies of PUFs, such as their multiple
dimensions.
2.3. Test Methods for TRNGs

No test can prove randomness. Thus, the evaluation of
a TRNG relies on statistical test suites with multiple tests.
Whenever a test is passed, this strengthens the confidence in
the overall output.

The NIST SP 800-22 standard [7] compares the TRNG
output with iid bits. 15 tests evaluate the input by looking for
patterns under the null hypothesis 𝐻0 that the tested RNG’s
output sequence is random. A test rejects this null hypothesis
if its 𝑝 value is too low. The overall test suite finally interprets
the individual tests and gives a concluding result.

The BSI AIS 31 standard [23] (as well as its current draft
of an update [24]) defines a second standardized test suite. It
has nine tests which in parts overlap with [7] and also analyze
different criteria of a TRNG’s output. Besides, it requires
information about the structure of the TRNG to enhance the
overall test result.

There are also non-standardized tests such as TESTU01
[25] with six test batteries which follow a similar concept as
the standardized ones. Also, e.g., in the BSI AIS 31 a model
for the source of entropy is required to substantiate the claim
of true randomness.

Instead of comparing the observed randomness of the
TRNG under test with an ideal one, estimating the entropy
is also possible such as in the NIST SP 800-90B [35]. First,
a user has to pick either the iid or the non-iid track. Then
the estimators evaluate the min-entropy. The lowest value,
finally is the output of the whole test.
2.4. Test Methods for PUFs with Binary Responses

Unlike for TRNGs, for PUFs there is only one standard
at the moment: ISO/IEC 20897-2 [2] which evaluates ran-
domness and reliability. Part of the test can be found in the
standardized TRNG test suite, and part of them is based on
PUF-specific publications, e.g., [19, 27]. It also applies the
NIST SP 800-90B to estimate the entropy of a PUF.

Besides [2], research has proposed other methods. Over-
all, there is a large amount of various qualitative PUF tests.
Visualizing their output can highlight issues of the un-
derlying PUF, such as the Principal Component Analysis
(PCA) in [45], which can show gradients of the process
variations. In recent years, the general concept of testing has
improved by introducing statistics in the form of confidence

Anik et al.: Preprint submitted to Elsevier Page 4 of 16

intervals or hypothesis testing (e.g., [46]). As an additional
dimension, spatial information can be integrated [44], which
highlights the difference to TRNG tests. Spatial information
also enhances entropy estimation for PUFs [32]. However,
in some scenarios, not only the entropy in the PUF is
relevant, but also in the extracted key. The findings in [43]
demonstrate how this key entropy can be evaluated.

The tests discussed so far mainly focus on PUFs with
binary responses, even if few are extendable to PUFs with
responses from a higher order alphabet. Therefore, next, we
describe issues and solutions for testing such HoA PUFs.
2.5. Test Methods for HoA PUFs

Recently, higher-order alphabet PUFs (HoA-PUFs) have
gained attention [16, 20, 28]. Instead of deriving a single
bit per PUF instance, challenge, and position on a device,
HoA-PUFs provide symbols from a higher-order alphabet,
typically encoded as a bit sequence. For this purpose, special
quantization strategies, like equi-probable or equi-distant
quantization [22], are used. Such an approach can allow
for deriving more entropy per area and thus makes a PUF
more efficient. It was suggested, e.g., for a PUF-based secure
enclosure [21]. However, current testing strategies have to be
adapted or different, and novel ones are necessary in order
to test such PUFs.

In [20], the author modifies the reliability and unique-
ness as two state-of-the-art binary metrics for HoA-PUFs.
For these two metrics, an adaption is possible because the
Hamming distance of two PUF responses is defined not only
for binary data but also for HoA-PUF responses. Compres-
sion based on Context Tree Weighting (CTW) can also be
extended from a binary to a higher-order alphabet setting
[32, 42]. Even NIST SP 800-90B tests have the capability
to handle symbols from a higher-order alphabet. However,
most tests for binary PUFs are not applicable to HoA-PUFs,
because they assume a binary probability distribution.

Therefore [13] proposes new tests for statistically sound
analysis of bias effects5 of HoA-PUFs. Note that metrics for
HoA-PUFs are also applicable to binary data, but potentially
have lower precision, because the underlying mathematical
approximations are less exact.

Summarizing the work in [13], we now illustrate current
research on finding suitable test schemes for HoA-PUFs. A
Loop PUF [12], which is a ring oscillator based PUF prim-
itive with configurable delay stages, serves as an example.
Most commonly, a Loop PUF would (i) measure frequencies
of the same ring under always two specific configurations
by counting the number of periods within a fixed time
and (ii) take the sign bit of the counter difference as the
binary response. In addition, we emulate a HoA PUF, by
mapping the counter difference after step (i) to more than
two intervals. This results in more than two distinct response
symbols. Figure 2 depicts the measurement of data from 48
Loop PUF instances on 180 BASYS 3 FPGAs implemented
according to [38] and quantized to 16 different symbols. For

5Bias metrics evaluate if a symbol occurs more (or less) frequently than
expected and thus target the unpredictability as a core property of a PUF.

1000 750 500 250 0 250 500 750 1000
Counter Difference

480

500

520

540

560

580

Sy
m

bo
l F

re
qu

en
cy

Figure 2: Histogram of symbol frequency of Loop PUF data.
The expected symbol frequency for each symbol is 540 [13] .

quantization, intervals were selected so that on a normal
distribution approximating the expected counter differences’
distribution all symbols are equally likely. As a consequence,
the intervals do not have the same size; the intervals toward
the tails of the underlying probability distribution are larger
than the ones closer to the mean.

Given such a data set, the underlying PUF can be checked
for sufficiently low bias using hypothesis testing.6 This is
possible at first glance by interpreting the HoA PUF output
as a binary string or as HoA symbols.

Assuming symbols from a higher order alphabet, the
following newly proposed tests in [13] evaluate this data: (i)
Pearson’s Chi-squared Test checks the null hypothesis that
the measured data corresponds to the expected probability
distribution of the counter differences. (ii) The Multinomial
Confidence Intervals compute the overall confidence inter-
val for all symbols at once. (iii) The Acceptable Intervals de-
fine intervals for the amount of occurrences for each symbol.
The limits of the intervals depend on symbol probabilities
and other test parameters for which a user would define
the PUF to have a sufficiently high quality. If the measured
symbol frequency all are within their respective intervals,
then a user can deduce a high quality from the PUF.

For the sake of a comparison between binary bias test and
HoA-PUF bias tests in [13] , we now map the symbols in
Figure 2 to their binary representation (e.g., symbol 5 would
be 0101) and compute the average Hamming weight of the
corresponding binary data. The resulting average Hamming
weight per bit is 0.499 (also known as bit-alias), which is
very close to the ideal value of 0.5. Consequently, the PUF
might be considered to have no bias when applying a test for
binary data.

In comparison, the evaluation based on symbols and
using the new tests in [13] provides more precise statements
about bias effects: Given the data set, Pearson’s Chi-squared
Test does not reject the null hypothesis that symbols do not
follow a uniform distribution. The Multinomial Confidence
Intervals contain the expected probability for each symbol,
which also indicates a low bias. However, the min-entropy

6Please note, that “sufficiently low bias” refers to a parameter choice
by the designer and implies that subsequent postprocessing of the PUF
prevents any predictability issues of a PUF derived secret.

Anik et al.: Preprint submitted to Elsevier Page 5 of 16

computed based on the received intervals is 3.76 bit (instead
of 4 bit), which indicates a slight discrepancy from an ideal
HoA-PUF. For the Acceptable Intervals, recall that the 16
symbols are ideally uniformly distributed occurring with
probability 1

16 . As an example, we allow for the PUF an offset
from this ideal value by at most 1

80 , i.e., assuming that some
subsequent compression counters such a defect. If we try to
guarantee that the bias for each symbol is in such an interval
of 1

16
1
80 , five out of 16 symbols – namely symbols 3, 4, 5,

6, 15 – fail the test, i.e., based on the test, we do not reject the
null hypothesis that the symbol probabilities are outside of
1
16

1
80 . So unlike the exemplary test for binary data, such as

the average Hamming weight which does not detect any bias
effects, the new tests for HoA-PUFs point to several issues,
highlighting the benefit of such tests.
2.6. Discussion of Test Strategies

This introduction to testing PUFs and TRNGs shows
that testing randomness adds another level of complexity to
functional testing in the security domain. The comparison
illustrates that PUFs are even harder to test than TRNGs.
This and the novelty of PUFs mean that for PUFs no well-
established test suite exists today. Thus, further investigation
is needed to substantiate the recommendations in the existing
PUF standard with a complete set of tests like for TRNGs. In
particular, the example given for testing HoA PUFs shows
the importance of developing dedicated tests for specific
usecases.

The randomness of PUFs and TRNGs constitutes one
important part of the overall security of a system and thus
deserves dedicated testing strategies. Yet there are additional
aspects regarding the security (such as SCA or FIA) of a
system which also motivate security-specific testing. These
considerations are discussed in the following sections.

3. Assessment of SCA leakage in
cryptographic circuits

3.1. Presentation of the problem
Cryptographic algorithms consume keys generated by

TRNGs and PUFs. They compute ciphertexts from plain-
texts, or generate signatures from hashes of messages. While
they compute, they inadvertently leak information on the
key, as represented in Fig. 1. As a matter of fact, the interme-
diate variables within the algorithm incur more or less power
consumption. Related to that, the electromagnetic field emit-
ted during the computation is also somehow dependent on
the key. For this reason, the RTL description of crypto-
graphic algorithms often leverages “random masking”. This
is an implementation style whereby a random input is fed to
the module, and mixed to the computation. Correct imple-
mentations ensure that key-dependent intermediate variables
(without mask) are turned into independent variables.

In this context of gate-level masking, not only every net
must be duly masked, but also the netlist must be protected
against glitches. A glitch is a difference in the evaluation of
the netlist, which is likely (or not) to happen, depending on

the internal delays while executing the netlist. In this section,
we formalize the notions of perfect masking (known since
2014) and perfect masking in the presence of glitches (our
contribution). Moreover, we propose efficient methods to
verify whether the properties are met. Such methods make
up the announced tests of masked logic in the presence of
glitches.
3.2. Formalization of correct masking scheme

Let 𝑘 ≥ 1, and 𝐹 ∶ 𝔽 3𝑘
2 → 𝔽2 a Boolean function of 3

variables, each of 𝑘 bits.
The Boolean function 𝐹 models a net in a netlist, and:
• 𝑎 ∈ 𝔽 𝑘

2 is the masked information,
• 𝑚𝑖 ∈ 𝔽 𝑘

2 is the input random mask, and
• 𝑚𝑜 ∈ 𝔽 𝑘

2 is the output random mask.
For example, the masking of a substitution box (also known
as an S-box, a permutation from 𝑘 bits, denoted 𝑆 ∶ 𝔽 𝑘

2 →

𝔽 𝑘
2) is (𝑎, 𝑚𝑖, 𝑚𝑜) ↦ 𝑆(𝑎 ⊕ 𝑚𝑖) ⊕ 𝑚𝑜. One coordination of

this function is denoted by 𝐹 .
We aim to verify that𝐹 protects the value of the sensitive

information 𝑥 = 𝑎 ⊕ 𝑚𝑖, leveraging either input mask 𝑚𝑖 or
output mask 𝑚𝑜.Notice that the masks are uniformly distributed, that is
𝑃 (𝑀𝑖 = 𝑚𝑖) = 2−𝑘, for all value 𝑚𝑖 ∈ 𝔽 𝑘

2 , and similarly
𝑃 (𝑀𝑜 = 𝑚𝑜) = 2−𝑘, for all 𝑚𝑜 ∈ 𝔽 𝑘

2 .
In the sequel, to simplify the analysis, we focus on nets

which are balanced. We define two properties.
Property 1 (Perfect masking [9]). The function 𝐹 is per-
fectly masked if, for all 𝑥 ∈ 𝔽 𝑘

2 ,

𝑃 (𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) =
𝑃 (𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 0|𝑋 = 𝑥).

Property 2 (Perfect masking against glitches). The function
𝐹 is perfectly masked against glitches if, for all 𝑥 ∈ 𝔽 𝑘

2 , for
all 𝛿 ∈ 𝔽 3𝑘

2 ∖{0}, denoted 𝛿 = (𝛿𝐴, 𝛿𝑀𝑖
, 𝛿𝑀𝑜

),

𝑃 (𝐹 (𝐴⊕ 𝛿𝐴,𝑀𝑖 ⊕ 𝛿𝑀1
,𝑀𝑜 ⊕ 𝛿𝑀𝑜

)⊕ 𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) =

𝑃 (𝐹 (𝐴⊕ 𝛿𝐴,𝑀𝑖 ⊕ 𝛿𝑀1
,𝑀𝑜 ⊕ 𝛿𝑀𝑜

)⊕ 𝐹 (𝐴,𝑀𝑖,𝑀𝑜) = 0|𝑋 = 𝑥).

It is proven in Appendix A that properties 1 and 2 can be
checked efficiently based on computing Walsh transforms.
These can be speeded up with butterfly algorithms. Namely,
the systematic and automatic masking verification is carried
out as shown in Alg. 1. The design is classified as secure if
the two lists 𝑢 and 𝑔 are empty.
3.3. Emblematic example

One challenge is, for instance, to verify each and every
net from Canright’s masked S-Box [11] of AES. The netlist
can be found in [14], and the function we consider is:
module bSbox (A, M, N, encrypt, Q);

at line 234 (see Listing 1).
Anik et al.: Preprint submitted to Elsevier Page 6 of 16

Algorithm 1: Masking verification method
input : Netlist
output: Lists of unmasked gates and of gates susceptible

to glitching unmasked value
1 𝑢 ← ∅,𝑔 ← ∅ // Unmasked / Glitching nets

2 for 𝐹 ∈ Netlist do // Traversal is chosen by the tester

3 for 𝑥 ∈ 𝔽 𝑘
2 do

4 𝑤𝑢 ← 0
5 for 𝑚𝑖, 𝑚𝑜 ∈ 𝔽 𝑘

2 do
6 𝑤𝑢 ← 𝑤𝑢 + (−1)𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)

7 if 𝑤𝑢 ≠ 0 then // Verification of Prop. 1

leveraging Lem. 1

8 𝑢 ← 𝑢 ∪ {𝐹 }

9 for 𝛿 ∈ 𝔽 3𝑘
2 ∖{0} do

10 𝑤𝑔 ← 0
11 for 𝑚𝑖, 𝑚𝑜 ∈ 𝔽 𝑘

2 do
12 𝑤𝑔 ←

𝑤𝑔 + (−1)𝐹 ((𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)⊕𝛿)⊕𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)

13 if 𝑤𝑔 ≠ 0 then // Verification of Prop. 2

leveraging Cor. 2

14 𝑔 ← 𝑔 ∪ {𝐹 }

15 return 𝑢,𝑔

Listing 1: S-Box definition, in Canright’s masked AES im-
plementation.

231 [...]

232 /* find either Sbox or its inverse in GF(2^8), by Canright Algorithm

233 with MASKING: the input mask M and output mask N must be given */

234 module bSbox (A, M, N, encrypt , Q);

235 input [7:0] A;

236 input [7:0] M;

237 [...]

The masked information on 𝑘 = 8 bits is 𝐴, the input
mask 𝑚𝑖 is 𝑀 and the output mask 𝑚𝑜 is 𝑁 . The signal
𝑒𝑛𝑐𝑟𝑦𝑝𝑡 selects whether the S-Box is the direct or inverse
function (SubBytes vs. InvSubBytes), and the output is 𝑄.
We shall test all 8 bits of 𝑄, and also all internal nets within
the netlist.

In this netlist, it is known that all nets are well masked,
but also that some nets are vulnerable to glitches. This
has motivated to elaborate more complex protections, such
as threshold [30], glitch-free [29], or glitch-immune [37]
implementations. We recall the list 𝑔 of glitching gates
which disclose the secret here. They consist in the code
below the comment [sic]:
// YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL

ORDER FOR SECURITY !!!!

at lines 74, 96, 100, and 106 of the netlist [14] (see Listing 2).
Listing 2: S-Box implementation, in Canright’s masked AES
implementation.

73 [...]

74 // YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!

75 /* optimize section below using NOR gates */

76 assign cst = { /* note: ~| syntax for NOR won 't compile */

77 ~(a[1] | b[1]) ^ (~(af[2] & bf[2])) ,

78 ~(af[2] | bf[2]) ^ (~(a[0] & b[0])) }

79 ^ m2 ;

80 /* end of NOR optimization */

81 assign csa = cst ^ an ;

82 assign csb = csa ^ mb ;

83 assign cm = { /* this includes mask switch */

84 m[1] ^ nf[2] ,

85 mf[2] ^ n[0] }

86 ^ mn ^ m2 ;

87 assign c = csb ^ cm ;

88 assign e = { /* inverse masked by n (lo input mask) */

89 c[0] ,

90 c[1] };

91 FAC_2 efac(e, ef);

92 GF_MULS_2 qmul(ef, af, q);

93 GF_MULS_2 emmul(ef, mf, em);

94 /* NOTE: to maintain masking , the output mask N must be added BEFORE

95 p, q are added to other terms */

96 // YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!

97 assign qsa = N[1:0] ^ an ; /* mask terms for q (lo output) */

98 assign qsb = qsa ^ em ; /* mask terms for q (lo output) */

99 assign qm = qsb ^ mn ; /* mask terms for q (lo output) */

100 // YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!

101 assign dm = m ^ n; /* mask adjustment */

102 assign d = e ^ dm; /* switch masks: n -> m (hi input mask) */

103 FAC_2 dfac(d, df);

104 GF_MULS_2 pmul(df, bf, p);

105 GF_MULS_2 dnmul(df, nf, dn);

106 // YO! NEED TO DO SUMMATION BELOW IN SEQUENTIAL ORDER FOR SECURITY !!!!

107 [...]

Those lines can be spotted by our method by running Alg. 1.
This method is automatic and extends beyond the verifica-
tion of S-boxes to any masked combinational logic.
3.4. Validation of the methodology by attacks

In this section, we confirm that the glitch-based side-
channel generated by Canright’s netlist is indeed exploitable
by a first-order attack. We recall that the leakage detection
method (Alg. 1) returns an empty list 𝑢 for unmasked nets,
but finds some nets which leak unmasked information (list
𝑔 is not empty). In this respect, we analyze the Canright
netlist code mapped on a SPARTAN6 XC6SLX75 FPGA
target. Mapping is obtained using ISE tool from within
Xilinx Vivado toolchain.

First of all, digital simulation is carried out with Mentor
Graphics Modelsim, without considering timing in the sig-
nals (except the clock signal). Synthetic traces are built by
collecting, at each clock cycle, the toggle count over all sig-
nals of the netlist. We perform a Correlation Power Analysis
(CPA), using as a model the “Hamming distance” between
the netlist consecutive inputs. This leakage model indeed
reflects the switching of nets within the netlist. This CPA
analysis is first performed, and, without surprise, no leakage
is reported. All combinational signals are independent of the
secret data, and the synthesizer did not make any optimiza-
tion that may unmask the secret data. This is consistent with
our constraints: we have forced the synthesizer to keep all
intermediate signals and the hierarchy of each module, using
the attribute “keep”.

Second, we add the timing information to the netlist
(namely, each gate is annotated with a propagation time),
and simulations are re-run. Synthetic traces are regenerated
by processing the simulation waveforms as follows:

• a simulation step is selected (1 ps), and
• the trace value at each step is set to be the measured

toggle count within the past step.

Anik et al.: Preprint submitted to Elsevier Page 7 of 16

Figure 3: Correlation Power Analysis on the transiently un-
masked variables identified within Canright’s Sbox’s netlist.

Such traces do exhibit glitches. We subsequently replay the
same CPA. As shown in Figure 3, the CPA succeeds in
extracting the key, which confirms that Alg. 1 does work.
Namely, the working factor for the attack is that the “Ham-
ming distance” model is correlated with the activity of nets
belonging to list 𝑔 , when the simulation includes propaga-
tion delays. Actually, only 75 traces are sufficient to recover
the secret key. This low value can be accounted by the fact
the simulation is noise-less. In practice, real measurements
bear noise; hence successful key extraction requires more
traces.

To check this leakage on real-world traces, we acquired
200,000 electromagnetic captures on an actual FPGA tar-
get (SPARTAN6 XC6SLX75 soldered on a SAKURA-G
board [18]). We then applied the Normalized Inter-Class
Variance (NICV [8]) leakage detection statistical tool using
the unmasked Sbox input. The resulting curve is shown in
Figure 4; it is clear that the NICV detects a leakage, as
there are significant spikes (localized in time, though, around
samples 2300 ∼ 2500). This confirms the existence of a
leakage. We note that a correlation attack gives the same
result, namely, the secret key can be extracted.

4. Aging-Aware Digital Sensor dimensioning
to enhance reliability
Cryptographic devices are also vulnerable to fault injec-

tion attacks. Referring to Fig. 1, adversaries may perturb the
system via injecting faults into the cryptographic devices
through environmental changes (or even via injecting tar-
geted faults via laser illuminations) in order to operate the
device out of specifications to extract its secret information.
To detect such Fault Injection Attacks (FIAs), researchers
frequently use Digital Sensors (DS) as a countermeasure [3,
6].

DSs are designed to detect clock / voltage glitches and
temperature attacks. Note that they cannot prevent them,

Figure 4: NICV using the unmasked input of the Sbox.

but they can detect such attacks and thus prevent leak-
age of secure data after such detection. DSs are designed
based on the designers’ preferable range of operation, which
covers the whole operating range of the targeted system.
In this way, the sensor can ensure system security and
integrity even if the system is operated out-of-specification
via raising an alarm. For example, let us consider the oper-
ating range of voltage and temperature as [1.0, 1.4] V and
[0, 85] ◦C respectively for a cryptographic block. To detect
FIAs launched by change of temperature or by a voltage
glitch, the deployed DSs should be designed such that the
range of operating conditions they can cover is beyond the
range in which the system is supposed to operate properly,
e.g., [0.65, 1.5] V and temperature as [−10, 150] ◦C. Note
that in practice during their lifetime, devices experience
aging-induced changes [5]. As DS are also aged over time,
the sensor outcome can be affected during the course of
usage. This in turn can introduce security concerns. Thereby
as we will discuss below the sensor should be designed such
that even if it is aged, its outcome (detecting the faults that
affect the cryptographic block it is monitoring) remains ac-
curate. To do so, we need to test the sensor before fabrication
(test in its non-conventional form as mentioned earlier) in
different operating conditions and aging durations to decide
about its dimensions (number of flip-flops and buffers) for
fabrication. Additionally, DSs (like other circuits) encounter
process variation during the manufacturing process. Given
the impact of process variation, it is crucial to calibrate the
DSs after fabrication. Thus, we need to consider the impact
of process variation by testing the sensor outcome after
fabrication, and calibrate it accordingly. In this section, we
present our DS dimensioning algorithm and show its validity
in real silicon more specifically in FPGAs. We demonstrate
the impact of process variation in the DS outcome as well.
4.1. Introduction on Digital Sensor

To break a system by FIA, an adversary may perturb
it. Thereby detecting abnormal operating conditions, e.g.,
change of voltage, temperature, or the frequency at which the

Anik et al.: Preprint submitted to Elsevier Page 8 of 16

system operates is of utmost importance. To address such se-
curity and safety concerns, digital sensors have been broadly
deployed in recent years, and have replaced the traditional
analog counterparts. Indeed, being designed in full custom
layout [34], and accordingly vulnerability to removal attacks
due to their identifiability from the intractable sea of gates,
the substantial calibration cost, the high power consumption
due to their always-on status, and finally, the low failure rate
detection due to dealing with physical quantities separately
(e.g., voltage alone, temperature alone) make the analog
sensors less attractive than the digital opponents [33]. Being
part and parcel of the reactive arsenal, DSs must be tested,
as they must operate reliably in all corners.

A Digital Sensor (DS) can be realized by inserting a
delay chain in the target circuitry. The idea is to implicitly
measure the time to propagate a transition (a rising or falling
edge) over such a path in different operating conditions. In
practice, the propagation time is not really quantified; rather,
it is checked if the transition manages to propagate to the end
of the delay chain at the considered frequency [15]. Figure 5
shows a sample DS sensor architecture in which a chain of
buffers realizes the critical path, and multiple D Flip-Flops
(DFFs) sample the delay of the transitions fed from signal 𝑎0,
generated by a Toggling DFF (TFF) at the beginning. Based
on the operating conditions, i.e., voltage and temperature, as
well as clock frequency, the setup time violation occurs in
a different sampling DFF. This sensor can be characterized
using the so-called Average Flip-Flop Number (𝐴𝐹𝑁) [3],
that is extracted based on the flip-flop outputs in each voltage
and temperature combination, noted as (V,T) hereafter. What
follows discusses the AFN assessment in more detail.

Figure 5: The architecture of the target digital sensor.

In the sensor shown in Figure 5, in each clock cycle 𝐶𝑖,when this sensor is fed with 𝑎0, the first 𝐹𝑁𝑖 flip-flops are in
phase 𝐴 (say 0 → 1 → 0), and the next flip-flops are in phase
�̄� (say 1 → 0 → 1) where 1 ≤ 𝑖 ≤ 𝑛1, 𝑛1 is the number
of DFFs. Here 𝐹𝑁𝑖 denotes to the index of the first DFF
whose phase is different from its predecessors. For example,
the waveform in Figure 6 shows the values of different
DFFs of the sensor of Figure 5 with 𝑛0=9 leading buffers
followed by 𝑛1=43 buffers and DFFs when operating under
(V,T)=(1.2V, 27◦C). In this case𝐹𝑁𝑖 is 31 in all clock cycles
and accordingly 𝐴𝐹𝑁 which is considered as the average of
the 𝐹𝑁𝑖 values would be 31. Indeed averaging 𝐹𝑁 values
over a number of clock cycles is pursued to reduce the effect

of unwanted noise. In practice, the AFN value is found to
be an appropriate representative of the operating condition.
Note that for the conditions under which the circuit operates
faster (lower temperature and higher voltage) the AFN gets
higher values, while the AFN value is lower when the circuit
operates slower.

Figure 6: Waveforms of Fig. 5 in (V, T) = (1.2V, 27◦C), where
𝑛0 = 9 and 𝑛1 = 43.

Figure 7 depicts the AFN values in different operating
conditions for the sensor shown in Figure 5 with 9 leading
buffers and 43 following buffers and DFFs. Note that for
the experiments presented in this section, the sensors were
implemented at the transistor level using 45 nm NANGATE
technology [1]. As clearly shown, the AFN value depends
on both voltage and temperature altogether. As expected,
the impact of temperature increase can be compensated
with the increase of voltage and vice-versa. This can be
observed in the trend of AFN value change in different volt-
age and temperature combinations as well, thus confirming
the applicability of the AFN metric in sensing operating
conditions. Indeed analog sensors miss this capability by
making decisions on raising alarms based on monitoring one
physical quantity at a time.

Figure 7: Contour graphs depicting AFN values in different
(V,T) conditions for the fresh (age: 0) sensor shown in Fig. 5
where 𝑛0=9 and 𝑛1=43.

We benefit from the sensor’s AFN quantity for system’s
failure detection, and to predict whether the system works
properly or not based on the operating conditions. To do
so the sensor’s AFN value is compared with a pre-defined

Anik et al.: Preprint submitted to Elsevier Page 9 of 16

threshold value determined based on the worst-case condi-
tion in which the system is expected to work properly, and
an alarm is raised in cases that extracted AFN is lower than
the threshold value relates to the worst-case condition. We
assume the worst-case condition as (V,T)=(1.0V, 85◦C) for
the sensor we implemented here. As Figure 7 shows, the
AFN in this condition is 17. Thus an alarm is raised for
the cases where 𝐴𝐹𝑁 < 17; shown in red in the figure
depicting that the circuit operates slower than expected,
while the grey area shows the conditions considered as safe.
It is noteworthy to mention that this threshold is tuned based
on the application and user’s configuration.

Indeed chips are designed in different temperature grades
(e.g., commercial, industrial, military, etc.), i.e., a different
range of temperatures under which it is expected to work
properly. Thereby to realize a sensor (similar to the one
shown in Figure 5) that can cover the whole expected range
of operating conditions, it is required to have a well-defined
architecture in terms of the number of buffers and DFFs
that the sensor includes what we call the sensor dimension
hereafter.

Note that although digital sensor’s data is sensitive, and
protection is needed to prevent side-channel analysis attacks
using this data, such data is not publicly available. From
a system-level point of view, this data is available to the
system bus, typically addressed by privileged instructions,
and unless the privileges are escalated by the attacker, it will
not be possible to access such data from a digital sensor.
4.2. Digital Sensor dimensioning

We have presented an algorithm for sensor dimensioning
in our prior work (Algorithm 1 in [3]), which determines
the number of DFFs and buffers embedded in the sensor
based on the “Best” and the “Worst” Case conditions the
circuit is supposed to work properly (points 𝐴 and 𝐵 in
Figure 7 in our case). Here 𝐴 and 𝐵 are examples of “Best”
and “Worst” case points. Note that, without loss of gener-
ality, based on any range of operating conditions, we can
dimension the sensor (using Alg. 2) such that it detects the
fault attacks accurately in such a range. Deploying our prior
algorithm (refer to [3] for more details) for dimensioning the
sensor in Figure 5 realized using 45 nm NANGATE tech-
nology while considering the “Best” and “Worst” conditions
as (1.0V,85◦C) and (1.4V,-10◦C), respectively recommends
embedding 𝑛0=9 leading buffers followed by 𝑛1=43 buffers
and DFFs. Although such dimensioning fits the sensor’s
expected operating range well, it fails to consider aging
effects occurring during the circuit lifetime.

In practice, the electrical behavior of the transistors em-
bedded in the deployed DS (similar to other CMOS circuits)
deviates from the original one during the sensor lifetime.
This deviation, so called aging, results in the delay increase
for the gates embedded in the sensor. To show the necessity
of considering aging degradation when dimensioning the
sensor, Figure 8(a) and Figure 8(b) depict the AFN evolution
for the same sensor after 4 and 7 years of aging, respectively.
As expected, the sensor circuitry becomes slower with aging,

(a) 4-year old sensor

(b) 7-year old sensor
Figure 8: Contour graphs depicting AFN values in different
(V,T) conditions for the 4- and 7- year old sensors shown in
Figure 5 where 𝑛0=9 and 𝑛1=43.

thus the AFN value decreases over time for the same operat-
ing condition. This can be observed as a shift of the red zone
in Figure 8(b) compared to Figure 8(a) and Figure 7. Another
important observation is the trend of AFN value change
in the aged sensors shown in Figure 8(a) and Figure 8(b)
when operating under high temperature and low voltage
combinations. In these cases, as the sensor becomes slower
and slower with aging, the AFN value may not be reliable,
i.e., the sensor may need more DFFs to be able to correctly
sample the setup time violation occurring in the buffer chain.
To alleviate this problem, we improved the dimensioning
algorithm presented in [3] by considering aging effects. The
new algorithm is depicted below as Algorithm 2. As shown,
the number of buffers and DFFs is decided based on the
“Best” operating condition (point𝐴when the sensor is fresh)
along with the “Worst Non-Functional” condition (point 𝐶
for the L-year old sensor where 𝐿 is the expected lifetime; 𝐿
is assumed to be 7 in this paper). Note that point 𝐶 denotes
the worst operating condition that the circuit may experience
but is beyond its range of proper operation. Dimensioning
the sensor based on the AFN value it experiences in point C
results in a reliable and accurate outcome over the course of
usage. In other words, sensors’ results remain accurate even
when aged.

Algorithm 2 shows how we dimension the DS by testing
its outcome (via monitoring its included flip-flops’ values)
in different operating conditions (voltage, temperature) and

Anik et al.: Preprint submitted to Elsevier Page 10 of 16

Algorithm 2: Aging Aware DS Dimensioning al-
gorithm

input : Design kit for the target technology, desired
clock period, safety margin of K buffers

output: Sensor dimensions 𝑛0 and 𝑛1; values to be used
for architecturing the sensor aiming at failure
detection during run time

1 Build a netlist consisting of a DFF which samples its
inverted output, and feeding an infinite chain of buffers;
each buffer feeds also a separate flip-flop

2 Set the conditions to Non-Functional worst case (e.g.,
slow process, high temperature, low voltage, maximum
expected age) — point, C in Figure 7

3 Determine the position (N) of first sampling inversion
error by aging simulation for maximum expected
lifetime

4 Remove the Flip-flops connected to the first N buffers
5 Set the conditions to best case (e.g., fast process, low

temperature, high voltage, No age (i.e., age:0)) — point
A in Figure 7

6 Determine the position (AFN_high) of first sampling
inversion error

7 return (𝑛0 = N −𝐾, 𝑛1 = AFN_high − 𝑛0 +𝐾)

expected lifetime. In this algorithm, we first consider a chain
of infinite number of buffers each feeding a flip-flop and then
trim the circuit based on the operating conditions that the
circuit may experience. By “aging” simulation of this chain
of buffers and flip-flops under the “Worst” case condition
that the circuit may experience (not necessarily working
properly at this condition; called “Worst Non-Functional”
condition earlier) the number of leading buffers is decided.
Note that the “aging” simulation is performed assuming the
longest expected lifetime (e.g., 7 years under a high aging
stress). We use the HSpice MOSRA for aging simulations.
Then we decide about the number of following DFFs and
buffers by considering the “Best” case operating condition
for the sensor. Note that the calculations are done based
on simulation using the same technology libraries that will
eventually realize the sensor. Thereby, we consider a safety
margin including “K” to account for process variations.

Applying Alg. 2 to the sensor shown in Figure 5 recom-
mends embedding 𝑛0=4 leading buffers followed by 𝑛1=48
buffers and DFFs. The related contour graphs for the fresh
(age:0) and the 7-year old sensors with this dimension are
shown in Figure 9(a) and 9(b), respectively. As illustrated,
by considering the aging effects in Alg. 2, the trend of AFN
values is as expected even when the circuit is aged.
4.3. Validation on FPGA: Proof of Concept

We validated the dimensioning algorithm of the digital
sensor based on the proposed algorithm on two SPARTAN6
XC6SLX75 FPGAs soldered on a SAKURA-G board [18],
with Xilinx ISE 14.7 software. The goal is to investigate if
calibration is needed after dimensioning the sensor in the
design phase when the sensor is implemented using the same
mask design to realize different chips (here on FPGA). In

(a) Fresh (Age:0) sensor

(b) 7-year old sensor

Figure 9: Contour graphs depicting AFN values in different
(V,T) conditions for the fresh and 7-year old sensors shown in
Figure 5 where 𝑛0 = 4 and 𝑛1 = 48.

other words, we opt to show the impact of process variation
on the sensor outcome.
4.3.1. FPGA Implementation of Digital Sensors

To design a digital sensor on FPGA, a manual place and
route is employed. This is crucial as the sensor outcome
relates to the delay of the buffer chain included in the sensor
thus having almost the same delay between each buffer and
its related DFF is required. As shown in Figure 5 a digital
sensor includes three basic components: A Toggling DFF
(TFF), a set of DFF, and a set of Buffers. In the first step
of implementing a digital sensor in FPGA, three different
hard-macros (a circuit which is already placed and routed on
FPGA) need to be designed; a TFF for generating 𝑎0 signal, a
Buffer to be used in the initial chain, and a Buffer-DFF to be
used in sampling chain. Indeed, using a hard-macro ensures
that specific DFF and LUTs of each slice are used to realize
one buffer and its related flip-flop in the digital sensor;
thereby following a balanced place & route for the whole
sensor. Then in the next step, by instantiating a TFF hard-
macros, 𝑛0 Buffer hard-macros, and 𝑛1 Buffer-DFF hard-
macros the hard-macro of the digital sensor is generated.
This hard-macro is called main hard-macro hereafter.

While designing the sensor, we followed the steps from
Algorithm 2. In these experiments, we considered the volt-
age range from 0.8𝑉 to 1.3𝑉 and temperature as room
temperature for our system (we do not have temperature
change in our FPGA experiments). For this range of voltage,

Anik et al.: Preprint submitted to Elsevier Page 11 of 16

Figure 10: Manual placement & routing of the digital sensor
using the Xilinx ISE 14.7 FPGA Editor.

we needed 𝑛𝑜=7 leading buffers and 𝑛1=54 sampling DFFs
and related buffers. Note that this dimensioning is different
from what we showed for simulation results earlier, as the
technology is different, and also the range of operating
conditions is different.

Figure 10 shows the partial floor plan of our sensor. The
TFF hard-macro is shown in red, followed by the leading
buffers depicted in green. Each green slice implements one
buffer realized via two back-to-back inverters. In our im-
plementation, all leading buffers are placed such that we
have the same routing from one buffer to the next; there-
fore, the same routing delays between each two consecutive
buffers. After implementing the leading buffer chain, the
sampling chain is inserted by using the Buffer-DFF hard-
macros. The Buffer-DFF hard-macro (a pair of blue slices)
is implemented using two back-to-back slices where the left
slice includes the Buffer and the right one implements the
related DFF. Similar to the leading buffers, in the sampling
chain, we make sure that each DFF-Buffer combination
has the same distance from the one it feeds; thus similar
routing delays between them. In our implementation, each
sensor spans in local zones to ensure that each component
residing in each sensor experiences the same power and
clock variations. Note that different sensors may experience
a slightly different IR drop as located in different parts of the
FPGA.

As devised in Alg. 2, we considered a safety margin (here
𝐾=4) in our dimensioning to warrant that the DS works
properly even in the presence of process variations.
4.3.2. Intra- vs inter-die variation of Digital Sensor

To analyze the impact of both intra-die and inter-die
variations on the sensor outcome, we deployed 2 FPGAs
and implemented 8 digital sensors with identical main hard-
macro in each as depicted in Figure 11. Note that we used
the same bitstream to program both FPGAs, thus the sensors
are placed in the same locations in both FPGAs. As shown,
these 8 identical sensors are implemented in two columns

Figure 11: On-chip implementation of Digital sensors in FPGA.

and four rows (the figure has been rotated for the sake of
space). Here the 8 identical sensors are implemented solely
to demonstrate the impact of intra-die process variation in
our sensor outcome. Note that, the number of sensors, and
the location they are resided in a chip (to detect FIAs) depend
on the number of sensitive blocks we want to monitor and
their placement in the chip (refer to fig. 19 of [4]).

(a) FPGA 1

(b) FPGA 2

Figure 12: AFN for the 8 digital sensors implemented in two
different FPGAs using the same bitstream. All sensors in each
FPGA were implemented via the same hard-macros.

Figure 12(a) shows the AFN index for each of the 8
implemented sensors when running the sensor for 16 clock
cycles under different voltages, mainly in the range of 0.8V
to 1.3V with steps of 0.05V. As expected, the AFN index
increases in higher voltages. Another observation that can
be made from this figure is that sensors 1 to 4 mainly follow
a similar voltage-induced AFN change, and sensors 5 to
8 follow another trend. However, for V=1.1V, the AFN is
very similar for all sensors. This is because FPGAs mainly
experience low IR drop variations when operating under
their designed typical voltage. This trend is slightly different
for lower/higher voltages where the IR drop induced changes
can vary in different zones of FPGA. This can be the reason
for sensors 1 to 4 behaving similarly and different from
sensors 5 to 8. Similar observations can be made for FPGA-2
(Figure 12(b)).

Figure 13 compares the variation of sensors’ AFN index
in various voltage quantities vis-a-vis for two sensors in each
FPGA, in particular Sensor-1 and Sensor-8. As depicted in

Anik et al.: Preprint submitted to Elsevier Page 12 of 16

(a) Sensor 1

(b) Sensor 8

Figure 13: Inter-die variations of sensors’ AFN index in various
voltages.

Table 2
Average intra- and inter-process variation induced change of
AFN in different implemented sensors.

Category Intra Inter
FPGA-1 FPGA-2 FPGA-(1 & 2)

V∈[0.8V,1.3V] 2.1 2.0 3.0
V = 1.1V 0.3 0.5 2.3

both cases, FPGA-1 AFN Index is higher than the FPGA-2.
This is also true for the other 6 sensors (not shown for the
sake of space). This truly shows the deterministic trend of
inter-die process variations.

Figure 14: Intra- and Inter-die variations of AFN Index in
voltage of 1.1V in 2 FPGAs.

Figure 14 shows the AFN index of all 8 sensors in each
FPGA for the voltage of 1.1V. As depicted in this voltage,
the maximum AFN index variations among different sensors
in FPGA-1 is 1 related to the difference of sensor-1 and
sensor-8 (due to the intra-die variations). This value is 1.3
for FPGA-2. This confirms the negligible impact of intra-
die process variations in the AFN index when operating at
the typical voltage of 1.1V. Moreover, the maximum inter-
die variation is ≈2.5 related to the difference of sensor-8 in
FPGA-1 and FPGA-2 (the same for sensor-3).

Table 2 assesses the effect of process variations in the
sensors’ outcome in more detail. The results are shown for
the voltage of 1.1V as well as the whole range of voltage we
considered in this study. On average, the AFN index changes
2.1 unit for FPGA-1 and 2.0 for FPGA-2 when considering

the whole voltage pane. However, the process variation
effect is very low for voltage 1.1V, where on average intra-
die variation for AFN index is 0.3 for FPGA-1 and 0.5 for
FPGA-2. For inter-die process variation, these values are
changed to 2.3 and 3.0 on average for the voltage of 1.1V
and the whole voltage range, respectively.

The takeaway points from these experiments are that
process variation effect on the sensor’s outcome is not high,
thus we need a low-cost calibration after the fabrication.
Indeed the effect of process variation on AFN index is low
while the chip is designed with symmetric power lines.

In addition, as discussed earlier, considering the safety
margin 𝐾 in sensor dimensioning (recall Algorithm 2) is
highly crucial as without such consideration, the process
variation may result in an incorrect capture of AFN index in
harsh environments (very high/low temperatures or voltage).
Finally, the results confirm that dimensioning algorithm
(Algorithm 2) is valid for the real-silicon implementation.
Note that the FPGA results were extracted for a new device,
and we leave the impact of aging on FPGA implementations
of sensor for our future work. We assume that ASIC follows
the very same trend as FPGA regarding our sensor dimen-
sioning. We will implement the DS in ASIC to validate our
findings in our future project.

5. Conclusion
This paper demonstrates that security primitives require

specific tests to ensure a high level of security. Emblematic
examples of properties to test are related to hostile envi-
ronment and threats, e.g., randomness quality, information
leakage level, and aging mitigation. The random variable
generation, as provided by the TRNG for dynamic variable,
and PUF for device fingerprint, requires a validation by sta-
tistical tests to ensure a sufficiently large lower bound on the
amount of entropy. PUF requires more complex tests, as it
can be biased by the circuit layout and damaged by dynamic
noise. The masking countermeasure is an efficient method
to protect hardware implementation of cryptographic blocks
against SCA. But it is necessary to avoid glitches which can
unmask the sensitive values. This paper proposes a netlist-
level test algorithm to automatically detect nets which could
leak secret information via glitches. The detection of FIA by
DS requires an accurate test to dimension the sensor(s). It is
shown that it is important to take into account the aging when
dimensioning the DS, in order to enhance the reliability of
detection over time. All these tests have been carried out
and validated on real-silicon (FPGAs). They prove that the
proposed methodology is applicable to these three security
primitives.

Acknowledgment
This work was partly funded by the Federal Ministry of Ed-

ucation and Research (BMBF) under grant no. 16KIS1389K and
the Agence Nationale de la Recherche (ANR) under grant ANR-
20-CYAL-0007 in the project APRIORI.

Anik et al.: Preprint submitted to Elsevier Page 13 of 16

References
[1] Nangate 45nm open cell library. “http://www.nangate.com”.
[2] Information security, cybersecurity and privacy protection - Phys-

ically unclonable functions - Part 2: Test and evaluation methods.
Standard, ISO / IEC, March 2021.

[3] Md Toufiq Hasan Anik, Jean-Luc Danger, Sylvain Guilley, and Nagh-
meh Karimi. Detecting failures and attacks via digital sensors. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 40(7):1315–1326, 2021.

[4] Md Toufiq Hasan Anik, Mohammad Ebrahimabadi, Jean-Luc Danger,
Sylvain Guilley, and Naghmeh Karimi. Reducing aging impacts in
digital sensors via run-time calibration. Journal of Electronic Testing,
37(5):653–673, 2021.

[5] Md Toufiq Hasan Anik, Sylvain Guilley, Jean-Luc Danger, and
Naghmeh Karimi. On the effect of aging on digital sensors. In
2020 33rd International Conference on VLSI Design and 2020 19th
International Conference on Embedded Systems (VLSID), pages 189–
194, 2020.

[6] Toufiq Hasan Anik, Jean-Luc Danger, Omar Diankha, Mohammad
Ebrahimabadi, Christoph Frisch, Sylvain Guilley, Naghmeh Karimi,
Michael Pehl, and Sofiane Takarabt. Testing and reliability enhance-
ment of security primitives. In 2021 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), pages 1–8. IEEE, 2021.

[7] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, S. Leigh,
M. Levenson, M. Vangel, N. Hecker, and D. Banks. A statistical test
suite for random and pseudorandom number generators for crypto-
graphic applications, 2010.

[8] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria
Najm. NICV: Normalized Inter-Class Variance for Detection of Side-
Channel Leakage. In International Symposium on Electromagnetic
Compatibility (EMC ’14 / Tokyo). IEEE, May 12-16 2014. Session
OS09: EM Information Leakage. Hitotsubashi Hall (National Center
of Sciences), Chiyoda, Tokyo, Japan.

[9] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably
Secure Masking of AES. In Helena Handschuh and M. Anwar Hasan,
editors, Selected Areas in Cryptography, volume 3357 of Lecture
Notes in Computer Science, pages 69–83. Springer, 2004.

[10] Nicolas Bruneau, Jean-Luc Danger, Adrien Facon, Sylvain Guil-
ley, Soshi Hamaguchi, Yohei Hori, Yousung Kang, and Alexander
Schaub. Development of the Unified Security Requirements of PUFs
During the Standardization Process. In Jean-Louis Lanet and Cristian
Toma, editors, Innovative Security Solutions for Information Technol-
ogy and Communications - 11th International Conference, SecITC
2018, Bucharest, Romania, November 8-9, 2018, Revised Selected
Papers, volume 11359 of Lecture Notes in Computer Science, pages
314–330. Springer, 2018.

[11] David Canright. A Very Compact S-Box for AES. In Josyula R.
Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded
Systems (CHES), volume 3659 of Lecture Notes in Computer Science,
pages 441–455. Springer, 2005.

[12] Z. Cherif, J-L. Danger, S. Guilley, and L. Bossuet. An easy-to-design
puf based on a single oscillator: the loop puf. In 2012 15th Euromicro
Conference on Digital System Design, pages 156–162. IEEE, 2012.

[13] Frisch Christoph and Michael Pehl. Beware of the bias – statistical
performance evaluation of higher-order alphabet pufs. In 2020
Design, Automation Test in Europe Conference Exhibition (DATE),
2022.

[14] David Leon Gil (coruus). AES S-Box. “https://github.com/coruus/
canright-aes-sboxes/blob/master/verilog/sboxmaskcorr.verilog”.

[15] Mohammad Ebrahimabadi, Md Toufiq Hasan Anik, Jean-Luc Dan-
ger, Sylvain Guilley, and Naghmeh Karimi. Using digital sen-
sors to leverage chips’ security. In Physical Assurance and
Inspection of Electronics (PAINE), pages 1–6, 2020. DOI:
10.1109/PAINE49178.2020.9337730.

[16] Kathrin Garb, Marvin Xhemrishi, Ludwig Kürzinger, and Christoph
Frisch. The wiretap channel for capacitive puf-based security enclo-
sures. IACR Transactions on Cryptographic Hardware and Embedded

Systems, 2022.
[17] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls. FPGA Intrinsic

PUFs and Their Use for IP Protection. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727, pages 63–80. Springer,
Heidelberg, 2007.

[18] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-channel AttacK
User Reference Architecture board SAKURA-G. In IEEE 3rd Global
Conference on Consumer Electronics, GCCE 2014, Tokyo, Japan, 7-
10 October 2014, pages 271–274. IEEE, 2014.

[19] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh. Quantitative and
statistical performance evaluation of arbiter physical unclonable func-
tions on FPGAs. In Proceedings of the 2010 International Conference
on Reconfigurable Computing and FPGAs, RECONFIG ’10, pages
298–303, Washington, DC, USA, 2010. IEEE Computer Society.

[20] Vincent Charles Immler. Higher-order alphabet physical unclonable
functions. PhD thesis, Technische Universität München, 2019.

[21] Vincent Charles Immler, Johannes Obermaier, Kuan Kuan Ng, Fei Xi-
ang Ke, JinYu Lee, Yak Peng Lim, Wei Koon Oh, Keng Hoong
Wee, and Georg Sigl. Secure physical enclosures from covers with
tamper-resistance. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(1):51–96, Nov. 2018.

[22] Vincent Charles Immler and Karthik Uppund. New insights to key
derivation for tamper-evident physical unclonable functions. IACR
Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):30–65, May 2019.

[23] W. Killmann and W. Schindler. A proposal for: Functionality classes
for random number generators version 2.0, 2011.

[24] W. Killmann and W. Schindler. A proposal for: Functionality classes
for random number generators version 2.35 – draft, 2022.

[25] P. L’Ecuyer and R. Simard. Testu01: Ac library for empirical testing
of random number generators. ACM TOMS, 33(4):1–40, 2007.

[26] D. Lim, J. Lee, B. Gassend, G.E. Suh, Ma. Van Dijk, and S. Devadas.
Extracting secret keys from integrated circuits. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 13(10):1200–1205,
2005.

[27] A. Maiti, V. Gunreddy, and P. Schaumont. A Systematic Method
to Evaluate and Compare the Performance of Physical Unclonable
Functions, pages 245–267. Springer New York, 2013. DOI:
10.1007/978-1-4614-1362-2_11.

[28] Holger Mandry, Andreas Herkle, Sven Müelich, Joachim Becker,
Robert FH Fischer, and Maurits Ortmanns. Normalization and
multi-valued symbol extraction from ro-pufs for enhanced uniform
probability distributions. IEEE Transactions on Circuits and Systems
II: Express Briefs, 67(12):3372–3376, 2020.

[29] Amir Moradi and Oliver Mischke. Glitch-free implementation of
masking in modern fpgas. In 2012 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2012, San Francisco,
CA, USA,, pages 89–95. IEEE, 2012.

[30] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hard-
ware Implementation of Nonlinear Functions in the Presence of
Glitches. J. Cryptology, 24(2):292–321, 2011.

[31] M. Pehl, A. Punnakkal, M. Hiller, and H. Graeb. Advanced perfor-
mance metrics for physical unclonable functions. In International
Symposium on Integrated Circuits (ISIC). IEEE, 2014.

[32] Michael Pehl, Tobias Tretschok, Daniel Becker, and Vincent Charles
Immler. Spatial Context Tree Weighting for Physical Unclonable
Functions. In 2020 ECCTD, pages 1–4. IEEE, 2020.

[33] Nidhal Selmane, Shivam Bhasin, Sylvain Guilley, and J-L Danger.
Security evaluation of application-specific integrated circuits and field
programmable gate arrays against setup time violation attacks. IET
information security, 5(4):181–190, 2011.

[34] D. Shahrjerdi, J. Rajendran, S. Garg, F. Koushanfar, and R. Karri.
Shielding and securing integrated circuits with sensors. In ICCAD,
pages 170–174, 2014.

[35] M. Sonmez, E. Barker, J. Kelsey, K. McKay, M. Baish, and M. Boyle.
Recommendation for the entropy sources used for random bit gener-
ation, 2018-01-10 2018.

Anik et al.: Preprint submitted to Elsevier Page 14 of 16

http://www.nangate.com
https://github.com/coruus/canright-aes-sboxes/blob/master/verilog/sboxmaskcorr.verilog
https://github.com/coruus/canright-aes-sboxes/blob/master/verilog/sboxmaskcorr.verilog

[36] E. Strieder, C. Frisch, and M. Pehl. Machine learning of physical
unclonable functions using helper data - revealing a pitfall in the
fuzzy commitment scheme. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(2), 2021.

[37] Sofiane Takarabt, Sylvain Guilley, Youssef Souissi, Khaled Karray,
Laurent Sauvage, and Yves Mathieu. Formal Evaluation and Con-
struction of Glitch-resistant Masked Functions. In IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2021,
Tysons Corner, VA, USA, December 12-15, 2021, pages 304–313.
IEEE, 2021.

[38] Lars Tebelmann, Jean-Luc Danger, and Michael Pehl. Self-secured
puf: protecting the loop puf by masking. In International Workshop on
Constructive Side-Channel Analysis and Secure Design, pages 293–
314. Springer, 2020.

[39] E. Barker. NIST FIPS SP 800-57 Part 1 Rev. 5: Recommendation
for Key Management: Part 1 – General, May 2020. DOI: https:

//doi.org/10.6028/NIST.SP.800-57pt1r5.
[40] Marc Joye and Michael Tunstall, editor. Fault Analysis in Cryptogra-

phy. Information Security and Cryptography. Springer, 2012. ISBN:
978-3-642-29655-0; DOI: 10.1007/978-3-642-29656-7.

[41] Riehm, Carl and Frisch, Christoph and Burcea, Florin and Hiller,
Matthias and Pehl, Michael and Brederlow, Ralf. Structured De-
sign and Evaluation of a Resistor-Based PUF Robust Against PVT-
Variations. In 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS). IEEE,
2023.

[42] Paulus Adrianus Jozef Volf. Weighting techniques in data compres-
sion: Theory and algorithms. Technische Universiteit Eindhoven,
2002.

[43] F. Wilde, C. Frisch, and M. Pehl. Efficient bound for conditional
min-entropy of physical unclonable functions beyond iid. In 2019
IEEE International Workshop on Information Forensics and Security
(WIFS), pages 1–6, 2019.

[44] F. Wilde, B. Gammel, and M. Pehl. Spatial correlation analysis on
physical unclonable functions. IEEE Transactions on Information
Forensics and Security, 13(6):1468–1480, 2018.

[45] F. Wilde, M. Hiller, and M. Pehl. Statistic-based security analysis of
ring oscillator pufs. In 2014 ISIC, pages 148–151. IEEE, 2014.

[46] F. Wilde and M. Pehl. On the confidence in bit-alias measurement of
physical unclonable functions. In 2019 17th IEEE NEWCAS, pages
1–4. IEEE, 2019.

[47] M. Yu and S. Devadas. Recombination of physical unclonable
functions. 35th Annual GOMACTech Conference, 2010.

A. Equivalent formulation of the properties 1
and 2

Proposition 1 expresses the security requirements in statistical
terms. We can reformulate it using Boolean functions:
Lemma 1 (Mathematical formulation of Prop. 1). Let 𝐹 ∶ 𝔽 3𝑘

2 →
𝔽2. 𝐹 satisfies Property 1 if and only if:

∀𝑥 ∈ 𝔽 𝑘
2 ,

∑

𝑚𝑖∈𝔽 𝑘2

∑

𝑚𝑜∈𝔽 𝑘2

(−1)𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜) = 0.

Proof. The three random variables are 𝑀𝑖, 𝑀𝑜 and 𝑋. We know
that 𝑀𝑖 and 𝑀𝑜 are independent and uniformly distributed.

Notice that for a Boolean variable 𝑌 , ℙ(𝑌 = 1) = 𝐸(𝑌).
Let one value of 𝑥. We have:

ℙ(𝐹 (𝑋 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥)
= ℙ(𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1)
= 𝐸𝑀𝑖 ,𝑀𝑜

(𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜))

= 1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜). (1)

Symmetrically,
ℙ(𝐹 (𝑋 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 0|𝑋 = 𝑥)
= ℙ(𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 0)
= 𝐸𝑀𝑖 ,𝑀𝑜

(1 − 𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜))

= 1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

(1 − 𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜)). (2)

Now, (1) is equal to (2) if and only if (iff):
∑

𝑚𝑖 ,𝑚𝑜

𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) =
∑

𝑚𝑖 ,𝑚𝑜

(1 − 𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜))

i.e., iff
∑

𝑚𝑖 ,𝑚𝑜

(1 − 2𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜)) = 0.

We can note also that:
∑

𝑚𝑖 ,𝑚𝑜

(1 − 2𝐹 (𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) =
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐹 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜).

Corollary 1. Let us note 𝐹 as the sum of monomials 𝑓𝑗 .
𝐹 (𝑎, 𝑚𝑖, 𝑚𝑜) =

∑𝑝
𝑗=1 𝑓𝑗(𝑎, 𝑚𝑖, 𝑚𝑜), since 𝑓𝑗 ∈ 𝔽2 then 𝐹 can be

written as
𝐹 (𝑎, 𝑚𝑖, 𝑚𝑜) =

∑𝑝
𝑗=1

1
2
(1−(−1)𝑓𝑗 (𝑎,𝑚𝑖 ,𝑚𝑜)) = 1

2
(𝑝−

∑𝑝
𝑗=1(−1)

𝑓𝑗 (𝑎,𝑚𝑖 ,𝑚𝑜))
and satisfies the Property 1 iff

𝑝
∑

𝑗=1
(
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝑓𝑗 (𝑎,𝑚𝑖 ,𝑚𝑜)) = 22𝑘(𝑝 − 1).

Proof. 𝐹 satisfies the Property 1 iff ∑

𝑚𝑖 ,𝑚𝑜
𝐹 (𝑥 ⊕ 𝑚𝑖, 𝑚𝑖, 𝑚𝑜) =

22𝑘−1 i.e ∑

𝑚𝑖 ,𝑚𝑜
(𝑝 −

∑𝑝
𝑗=1(−1)

𝑓𝑗 (𝑚𝑖 ,𝑚𝑜)) = 22𝑘.
Remark 1. If 𝐹 satisfies the Property 1 then the Walsh transfor-
mation of 𝐹 is null at zero: 𝑊𝐹 (0) = 0 where

𝑊𝐹 (𝑢, 𝑣,𝑤) =
∑

𝑎,𝑚𝑖 ,𝑚𝑜

(−1)𝑢⋅𝑎+𝑣⋅𝑚𝑖+𝑤⋅𝑚𝑜+𝐹 (𝑎,𝑚𝑖 ,𝑚𝑜).

Indeed,

𝑊𝐹 (0) = 𝑊𝐹 (0, 0, 0) =
∑

𝑎,𝑚𝑖 ,𝑚𝑜

(−1)𝐹 (𝑎,𝑚𝑖 ,𝑚𝑜)

=
∑

𝑎

∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐹 (𝑎,𝑚𝑖 ,𝑚𝑜)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

= 0.

Corollary 2 (Mathematical formulation of Prop. 2). Let 𝐹 ∶
𝔽 3𝑘
2 → 𝔽2. 𝐹 satisfies Property 2 if and only if:

∀𝑥 ∈ 𝔽 𝑘
2 ,∀𝛿 ∈ 𝔽 3𝑘

2 ∖{0},
∑

𝑚𝑖∈𝔽 𝑘2

∑

𝑚𝑜∈𝔽 𝑘2

(−1)𝐹 ((𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜)⊕𝛿)⊕𝐹 (𝑥⊕𝑚𝑖 ,𝑚𝑖 ,𝑚𝑜) = 0.

Proof. Pose 𝐺𝛿(𝐴,𝑀𝑖,𝑀𝑜) = 𝐹 ((𝑥 ⊕ 𝑚𝑖, 𝑚𝑖, 𝑚𝑜) ⊕ 𝛿) ⊕ 𝐹 (𝑥 ⊕
𝑚𝑖, 𝑚𝑖, 𝑚𝑜)One has,

ℙ(𝐺𝛿(𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥)
= ℙ(𝐺𝛿(𝑋 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥)
= ℙ(𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1)
= 𝐸𝑀𝑖 ,𝑀𝑜

(𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜)

Anik et al.: Preprint submitted to Elsevier Page 15 of 16

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5

= 1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜).

𝐹 satisfies Property 2 iff
ℙ(𝐺𝛿(𝐴,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) =

ℙ(𝐺𝛿(𝑋 +𝑀𝑖,𝑀𝑖,𝑀𝑜) = 1|𝑋 = 𝑥) = 1
2

iff
1
22𝑘

∑

𝑚𝑖 ,𝑚𝑜

𝐺𝛿(𝑥 ⊕𝑀𝑖,𝑀𝑖,𝑀𝑜) =
1
2

iff
∑

𝑚𝑖 ,𝑚𝑜

(
1 − (−1)𝐺𝛿 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜)

2
) = 22𝑘−1

iff
∑

𝑚𝑖 ,𝑚𝑜

(1
2
) − 1

2
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐺𝛿 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜) = 22𝑘−1

that means
∑

𝑚𝑖 ,𝑚𝑜

(−1)𝐺𝛿 (𝑥⊕𝑀𝑖 ,𝑀𝑖 ,𝑀𝑜) = 0.

Therefore, proving the security of masked cryptographic cir-
cuits in the presence of glitches amounts to computing Walsh
transforms.

Anik et al.: Preprint submitted to Elsevier Page 16 of 16

