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ABSTRACT

Event cameras generate data based on the amount of motion present
in the captured scene, making them attractive sensors for solving ob-
ject tracking tasks. In this paper, we present a framework for tracking
humans using a single event camera which consists of three compo-
nents. First, we train a Graph Neural Network (GNN) to recognize a
person within the stream of events. Batches of events are represented
as spatio-temporal graphs in order to preserve the sparse nature of
events and retain their high temporal resolution. Subsequently, the
person is localized in a weakly-supervised manner by adopting the
well established method of Class Activation Maps (CAM) for our
graph-based classification model. Our approach does not require the
ground truth position of humans during training. Finally, a Kalman
filter is deployed for tracking, which uses the predicted bounding
box surrounding the human as measurement. We demonstrate that
our approach achieves robust tracking results on test sequences from
the Gait3 database, paving the way for further privacy-preserving
methods in event-based human tracking. Code, pre-trained models
and datasets of our research are publicly available 1.

Index Terms— Human Tracking, Event-based Cameras, Kalman
Filtering

1. INTRODUCTION

Event-based cameras are bio-inspired vision sensors that recently at-
tracted the attention of researchers for solving different problems in
the domain of computer vision. They create instances of data de-
noted as events once the per-pixel brightness change exceeds a given
threshold. The generation of events is steered by the dynamics of the
captured scene and the overall output is a sparse and asynchronous
stream of events. Event-cameras offer some appealing properties
such as high temporal resolution, high dynamic range and low en-
ergy consumption [1]. Thus, for object tracking problems, they seem
to be promising alternatives to standard frame-based cameras for
scenarios with high-speed motion or extreme lighting conditions.

Recently, several approaches for event-based object tracking [2–
4] have been proposed, which are mainly focused on the tracking of
objects having simple shapes. In this work, we examine the tracking
of humans using a single, static event camera. When designing sys-
tems with standard cameras for video surveillance tasks, oftentimes
sensitive, personal information can be inferred from intensity images
without the consent of the individual. As such, we believe that event
cameras can be beneficial for these applications as they capture data
based solely on a person’s movement and therefore pose fewer pri-
vacy risks.

1Code and data will be shared after review.

Thus, we propose a framework for tracking a single person us-
ing a static event camera. The system is comprised of the three
core components Human Classifier, Human Localizer and Human
Tracker which are illustrated in Figure 1. Our contributions can be
summarized as follows: First, we introduce the Human Classifier
which is a convolutional graph neural network trained on the task
of binary object classification such that the model can distinguish
a single human from background objects. We represent groups of
events as spatio-temporal graphs in order to retain the high temporal
resolution and sparse nature of events. Then, we present the Hu-
man Localizer, which is a module that can generate a bounding box
surrounding the human within the stream of events. Therefore, we
adopt class activation maps [5] for GNNs and exploit the method’s
weakly supervised object localization abilities. Hence, our approach
doesn’t depend on the availability of the human’s ground truth lo-
cation. Finally, we implement the Human Tracker which deploys a
Kalman filter for tracking a detected human throughout the course
of a given event stream.

2. RELATED WORK

While extensive research has been conducted on human tracking us-
ing frame-based cameras, only few works have been published on
capturing human features in the domain of event-based vision. [6]
presented an approach for event-based tracking of multiple persons.
They focus on detecting persons in the case of occlusions by mod-
eling humans as gaussian mixture models. Xu et al. [7] contribute a
method for capturing high-speed human motions using a hybrid set-
ting fusing information from intensity images and the event stream.
Moreover, [8,9] propose learning-based methods for 3D human pose
estimation. In both approaches, batches of events are accumulated to
form frame-like structures for training a CNN-model which predicts
heatmaps of 2D body joint positions.

Grouping events into dense event-frame representations is a pop-
ular choice for processing the event stream as this has the advantage
that established deep learning models and libraries can be leveraged.
Hence, [10, 11] solve the problem of event-based object detection
by redesigning CNN models to work with events while Perot et
al. [12] present a recurrent architecture with ConvLSTM layers to
implement a memory mechanism. However, processing a batch of
events as dense structure, eliminates their sparse and asynchronous
nature. Recently, a line of research has emerged [13–17] which mod-
els groups of events as spatio-temporal graphs and thereby enables
a sparse representation of events while retaining their high temporal
resolution. As a consequence, GNNs have been trained for event-
based object detection setting new benchmarks in terms of computa-
tional efficiency and latency reduction [13, 16].
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Fig. 1. Our proposed single human tracking framework: The Human Classifier is a binary classifier that predicts whether the event graph
contains a human or background object. In the case of a predicted human label, the Human Localizer produces a bounding box which encodes
the location of the human. The Human Tracker deploys a Kalman filter for tracking the human which models the generated bounding box as
a sensor measurement.

3. METHODOLOGY

3.1. Event Processing

In order to exploit the sparsity of events, we represent them as spatio-
temporal graphs and hence follow the approach of [13] and [16]. The
event stream is sliced along the temporal dimension into groups of
events, each of them corresponding to a time interval of ∆t. There-
fore, we also refer to the obtained batch of events as event slice. Each
obtained subset of the event stream is represented as a set of tuples
given by

{ei}N = {(xi, yi, ti, pi)}N . (1)

Thus, an event ei, is uniquely defined by its position in the pixel
coordinate system, xi and yi, its time of occurrence ti and its po-
larity pi ∈ {+1,−1} indicating whether the pixel brightness has
increased (+1) or decreased (−1).

To compensate for the difference in spatial and temporal resolu-
tion, the timestamps are normalized such that t̃i = β · ti. Moreover,
M events are sampled randomly from {ei}N for saving memory and
computation expenses. Subsequently, a spatio-temporal graph G =
{N , E} is constructed with N , E being the set of nodes and edges,
respectively. A node i is allocated for every event in {ei}M and
the polarity pi is assigned as the initial node feature with f (0)(i) =
pi ∈ {+1,−1} as proposed in [13]. The spatio-temporal position
xi = (xi, yi, t̃i) [16] of node i is used to find neighboring nodes in
the (x, y, t̃)–space and to connect them via an edge in G. An edge
connecting two nodes i and j is created and added to E if the Eu-
clidean distance di,j between xi and xj is below a fixed threshold
R such that

di,j =

√
|xi − xj |2 + |yi − yj |2 +

∣∣t̃i − t̃j
∣∣2 < R. (2)

3.2. Tracking Framework

Classification. Inspired by [16], we present the Human Classifier,
a convolutional GNN, which takes event graphs as input and learns
to distinguish a human from background objects within the given
slice of events. Its architecture is visualized in Figure 1 and consists
of a series of graph convolution blocks and pooling layers that act

as a feature extractor as well as a single fully-connected (FC) layer.
Within a convolutional block, the feature vectors of all graph nodes
are updated by aggregating information from their graph neighbor-
hood. For a given node i, all of its neighboring nodes contribute to
f(i) through their node features which are weighted based on their
relative positioning to i. Graph pooling is applied for coarsening the
graph and obtaining more expressive node features. Ultimately, the
FC-layer generates an output based on the extracted features and pre-
dicts class probability scores for the labels human and background.
Localization. In this section we introduce the Human Localizer
which builds on top of the previously introduced Human Classifier
and aims at finding the human’s location within an event slice once
it has been classified as human. One option for implementation is
to extend the classification model by a detection head as has been
done by [16]. However, this requires the availability of the object’s
ground truth location which is often hard to obtain. Therefore we
apply the well known concept of class activation maps (CAM) [5]
on our graph-based classification model and exploit its localization
capabilities. Pope et al. [18] showed a proof-of-concept for adopting
CAM as explainability method on convolutional GNNs. Yet, to the
best of our knowledge, this is the first work which makes use of
CAM’s localization ability in the domain of convolutional GNNs for
object tracking.

First, we designed the Human Classifier such that it meets the re-
quirements for applying CAM. We deployed a global average pool-
ing (GAP) layer after the last conv-block followed by a single FC-
layer using Softmax. Pope et al. [18] derived a node-wise compu-
tation scheme for obtaining the CAM heat-maps which is described
in the following. Let F ∈ RN×K be the feature matrix of the graph
which has just been processed by the last conv-block of the clas-
sifier where Fnk denotes the k-th feature of node n. Further, let
w

(c)
k denote the weight of the FC-layer activated by the k-th feature

and corresponding to class c. Then the CAM score of node n with
respect to class c can be calculated as

LCAM [n] =
∑
k

w
(c)
k Fnk. (3)

We observe that one can compute the CAM scores for all nodes
in the graph by a simple matrix vector multiplication. Let w(c) be
a vector holding the weights of the FC-layer belonging to class c.



Then we can compute a vector l(c) ∈ RN with class-specific dis-
criminative scores for all nodes by

l(c) = F ·w(c). (4)

The scores in l(c) can be mapped to their respective nodes’ pixel
coordinates to obtain a heat-map M(x, y) that is inherently sparse
compared to the dense CAM from [5]. Thus, we adopted the proce-
dure for generating a bounding box using our sparse heat-map while
still following the original idea. In analogy to [5], our approach
finds the largest connected component within the subset of points
that have a score in l(c) which lies above the 80-th percentile. First,
DBSCAN clustering [19] is applied for grouping points into clus-
ters which is equivalent to identifying connected components within
this set of points. Subsequently, we developed a heuristic which ex-
amines whether multiple clusters are in a meaningful configuration.
That is, based on the clusters’ density and their relative positioning,
multiple clusters can be combined to form a larger cluster. Then, a
bounding box is generated from the smallest rectangle surrounding
all cluster points.
Tracking. We design a single human tracking framework for event-
based cameras which is depicted in Figure 1. The Human Tracker
deploys a Kalman filter which models the movement of the person
inside the stream of events as a discrete time-controlled process. The
discretization along the temporal axis is obtained by slicing the event
stream into groups of events from constant time intervals with ∆t.
At each iteration step, we want to track the bounding box surround-
ing the human given that a person is present in the respective event
slice. Similar to [20], we define the system state vector holding the
bounding box in the two-corner representation along with a velocity
component for each position parameter such that

x = [xmin, ẋmin, ymin, ẏmin, xmax, ẋmax, ymax, ẏmax]
T . (5)

The physical process is governed by the state transition function
as described in [21]:

xk+1 = Fxk +wk (6)

We choose a linear motion model for the person with indepen-
dent motion of the individual dimensions and thus F is a block-
diagonal matrix implementing xk+1 = xk +∆t · ẋk for all compo-
nents of x. The vector wk models the process noise which is sam-
pled from a normal distribution with covariance matrix Q. In each
iteration step, the Kalman filter first predicts the system state based
on the previous state and the process model and then updates its be-
lief according to the current measurement zk and its notion of the
sensor’s noise. The measurement vector z holds the bounding box
generated by the Human Localizer in two-corner parameterization
such that z = [xmin, ymin, xmax, ymax]

T . As formulated by [21],
the measurement update function links the state to the current mea-
surement as

zk = Hxk + vk, (7)

where H is the observation matrix and vk is the measurement noise
vector.

4. EXPERIMENTAL RESULTS

Datasets. We use the Gait3 database [22] to create training samples
for the classification model and to obtain test sequences for evaluat-
ing the performance of the tracker. Gait3 is a multimodal database
for gait recognition unifying an event-based, an RGB and a thermal

camera. It features recordings of humans performing three variations
of walking, that is normal and quick walking along with walking
while carrying a backpack. For the purpose of creating training sam-
ples for the human class we only used the normal and quick walking
event camera recordings from Gait3 [22]. The database does not
provide human ground truth bounding boxes and thus we labeled
groups of events manually based on event-frame representations. We
recorded the data for the background label of the classification train-
ing set ourselves by capturing a series of background objects with a
DAVIS346 event camera which is the same sensor that was used for
creating the Gait3 database. Finally, the data samples in the training
dataset are distributed evenly such that half of the samples belong to
the human label and the other half consists of background samples.
Training Details. For training the classification model introduced
in subsection 3.2, data augmentation is performed by randomly flip-
ping positions of graph nodes along two axes with probabilities 0.2
and 0.3 as well as scaling them with a random factor between 0.95
and 0.999 [16]. The Human Classifier is trained for 14 epochs,
using Adam as optimizer, a learning rate of 0.001, Negative Log-
Likelihood as loss function, and a batch size of 64. Each conv-block
of the classification model comprises of a graph convolution layer
followed by an ELU activation function and batch normalization. In
analogy to [13, 16], we employ a spline-based convolution operator
[23] for the convolution layers which have a kernel size of k = 8 and
output dimensions M

(i)
out = (16, 32, 32, 32, 128, 128, 128). Graph

pooling is effectuated using a max pooling and a global average
layer (after Conv5 and Conv7 respectively). The Human Classifier
is implemented with the PyTorch Geometric library [24]. Training
samples have been constructed by using a temporal window with
∆t = 50ms for slicing the event stream and a radius filtering tech-
nique for point clouds [25] is applied in order to eliminate noisy
outlier events.
Evaluation Metrics. To date, no advanced object tracking bench-
mark exists for event-based cameras and hence also no correspond-
ing set of standard evaluation metrics. Therefore, we are introducing
the following compact set of evaluation metrics in order to quantify
the performance of our proposed tracker.
Precision. Inspired by [26], we measure the precision as the aver-
age center error (ACE) between the center of the estimated and the
ground truth bounding boxes. Moreover, we adopt the representative
precision score (RPS) which indicates the percentage of samples for
which the estimated location is below a threshold distance of 20 pix-
els [26] to the ground truth.
Accuracy. We utilize the average overlap score (AOS) for quantify-
ing the tracking accuracy [27] [26]. This is based on the intersection
over union score (IoU) which relates the area of overlap and union
of the estimated and the ground truth bounding box.
Robustness. Similar to [27], we conduct a basic robustness analysis
which measures how often the tracker drifts away from the target.
A tracking failure is produced once the estimated bounding box has
a zero overlap with the ground truth and the robustness is defined
as the average number of failures. In contrast to [27], our tracker
doesn’t require initialization by ground truth and thus we consider
all samples to contribute to the metrics.
Evaluating the Influence of a Kalman Filter. Subsequently, we
present two versions of the Human Tracker and compare their per-
formances on 11 test sequences using the previously introduced eval-
uation metrics. Firstly, we refer to the tracker that complies with
the scheme from Figure 1 as Human Tracker with Kalman (HT w/
Kalman). Moreover, we evaluate a second tracker which naively
believes in the output generated by the Human Localizer without
considering knowledge from prior time steps. Therefore, we denote



HT w/o Kalman HT w/ Kalman

Seq. AOS ↑ ACE ↓ RPS ↑ R ↓ AOS ↑ ACE ↓ RPS ↑ R ↓

1 0.524 16.7 63.0 % 1 0.567 10.1 99.1% 0
2 0.438 24.2 40.5% 1 0.446 23.1 29.7% 0
3 0.638 11.3 83.8% 0 0.646 10.9 97.1% 0
4 0.471 25.8 42.4 % 4 0.417 24.4 25.8% 0
5 0.477 22.6 54.7% 5 0.463 17.9 66.7% 0
6 0.420 26.4 55.8 % 10 0.391 23.5 55.8% 1
7 0.452 23.7 53.9% 5 0.452 12.9 89.5% 0
8 0.417 31.0 40.3% 5 0.374 24.7 38.9% 0
9 0.457 21.9 60.5% 8 0.434 16.8 71.1% 0

10 0.506 22.7 63.4% 7 0.441 15.9 74.6% 2
11 0.331 35.2 23.8 % 9 0.368 27.1 27.4% 0

Total 0.466 23.6 52.9% 0.065 0.456 18.6 62.7% 0.004

Table 1. Evaluation results of the Human Tracker (HT) with (w/) and
without (w/o) deploying a Kalman filter with respect to the metrics
AOS, ACE, RPS and R on given test sequences.

this tracker as Human Tracker without Kalman (HT w/o Kalman).
We quantify the performance of both trackers sequence by sequence
and also compute scores measuring their total performances. It is
important to note that the total scores represent the average over all
event slices from all test sequences. Hence, in terms of the robust-
ness R, the score signifies the risk that the respective tracker drifts
away from the target at a given time step. The results of the evalua-
tion are summarized in Table 1 and we will focus on comparing the
trackers’ total performances.

First of all, the deployment of the Kalman filter significantly im-
proves the precision of the tracker. On average the estimated bound-
ing box center is 5 pixels closer to the ground truth when compared
to HT w/o Kalman. Moreover, HT w/ Kalman outperforms HT w/o
Kalman in terms of total RPS with 62.7% to 52.9%. Also, it can be
observed that the Kalman filter significantly increases the tracking
robustness R, as the risk of a tracking failure is reduced from 0.065
to 0.004. Still, when comparing the accuracy of HT w/ Kalman and
HT w/o Kalman, one can see that the AOS shrinks by a margin of
0.01.

A comparison of the success plots of the two trackers, illus-
trated in Figure 2, sheds more light on the influence of the Kalman
filter. The success plot visualizes the percentage of successfully
tracked event slices at different IoU-thresholds [26]. At a thresh-
old of tIoU = 0, HT w/o Kalman has a lower success rate than HT
w/ Kalman which conforms to its lower robustness score. Besides,
one can see that HT w/ Kalman dominates HT w/o Kalman until a
threshold of tIoU = 0.45. For larger thresholds tIoU ≤ 0.45, HT
w/o Kalman has a higher success rate. Thus, deploying the Kalman
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Fig. 3. Precision plots [26] of the Human Tracker (HT) with (w/)
and without (w/o) Kalman filter.

filter in the tracking framework decreases the number of bounding
box estimates with high IoU-scores while at the same time it elim-
inates predictions exhibiting a small overlap with the ground truth
and hence leads to a much higher robustness compared to HT w/o
Kalman. A similar observation can be made by examining the track-
ers’ precision plots in Figure 3. According to [26], the precision plot
displays the precision for different location error thresholds. For low
thresholds with tloc < 14, HT w/o Kalman is slightly more pre-
cise than HT w/ Kalman while for tloc > 14 the opposite holds
true. Overall one can obtain that the deployment of the Kalman filter
in HT w/ Kalman yields significant improvements in precision and
robustness compared to HT w/o Kalman and comes at a cost of a
slightly lowered accuracy.

5. CONCLUSION

We have demonstrated how human tracking can be realized using a
static event-based camera by representing groups of events as spatio-
temporal graphs. Thus, our approach makes use of the sparse nature
of the event stream and moreover, it doesn’t require ground truth data
for predicting the human’s position and shape. Therefore, we adopt
the proven concept of Class Activation Maps (CAM) for our GNN-
based classifier and exploit the method’s localization capabilities.
We deploy a Kalman filter which models the generated bounding box
as measurement in order to implement an event-based human track-
ing framework with high robustness. To conclude, we have shown
that human tracking is possible using a single event-based camera
and we suggest that future research focuses on more advanced sce-
narios including multiple objects.
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