
HAL Id: hal-04255412
https://telecom-paris.hal.science/hal-04255412

Submitted on 23 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a unique revision loop updating courses
simultaneously on different MOOC platforms

Ella Hamonic, Rémi Sharrock, Petra Bonfert-Taylor, Michael Goudzwaard,
Gérard Memmi, Catherine Chow, Josh Meise

To cite this version:
Ella Hamonic, Rémi Sharrock, Petra Bonfert-Taylor, Michael Goudzwaard, Gérard Memmi, et al..
Designing a unique revision loop updating courses simultaneously on different MOOC platforms.
Learning With MOOCs, MIT, Oct 2023, Cambridge (MA), US, United States. pp.1-6, �10.1109/LW-
MOOCS58322.2023.10305900�. �hal-04255412�

https://telecom-paris.hal.science/hal-04255412
https://hal.archives-ouvertes.fr

Designing a unique revision loop updating courses

simultaneously on different MOOC platforms

Ella Hamonic

Telecom Paris & Le Monde

Après

Paris, France

0000-0001-6158-1572

Rémi Sharrock

Telecom Paris

Paris, France

0000-0001-8952-8933

Petra Bonfert-Taylor

Thayer School of Engineering

Dartmouth College

Hanover, NH, USA

petra.bonfert-

taylor@dartmouth.edu

Michael Goudzwaard

Dartmouth Center for the

Advancment of Learning

Dartmouth College

Hanoer, NH, USA

0000-0002-1240-7348

Gérard Memmi

Telecom Paris

Paris, France

0000-0002-3380-8394

Catherine Chow

Dartmouth College

Hanover, NH, USA

catherine.m.chow.24@dartmouth

.edu

Josh Meise

Dartmouth College

Hanover, NH, USA

joshua.m.meise.24@dartmouth.e

du

Abstract— This study introduces a content revision loop for

simultaneous course updates across MOOC platforms. It uses a

single source of truth and iterative, data-driven methodologies,

enabling efficient dissemination of updates and assessment

improvement. The approach provides a model for instructors

managing courses on multiple platforms.

Keywords— LTI, single source of truth, feedback collection

process, revision, design, learning programming

I. INTRODUCTION

The dissemination of educational courses across numerous
MOOC (massive open online course) platforms can be
simplified through the incorporation of the LTI (Learning Tools
Interoperability) protocol. Implementing a centralized content
hosting system also facilitates simultaneous course content
updates and continuous enhancement of assessments. The
present study scrutinizes the development of a content revision
pipeline, which employs iterative and data-driven
methodologies to optimize course updates.

In this paper, we will delve into the course architecture,
examining the intricate dynamics between learners, the course
team, and developers as they collaboratively interact and
exchange information to enhance the course quality. The
uniqueness of the course architecture lies in its ability to offer
the computer programming MOOC course series
simultaneously on edX, Coursera, and on-campus LMS through
the France-IOI learning platform and interactive tools to learn
programming [1].

 Our analysis focuses on how this architecture supports
feedback collection, iterative revisions, and continuous
improvements. Two key research questions are:

• How can we efficiently coordinate a diverse team of
teaching assistants across different platforms and
institutions for efficient forum monitoring and issue
reporting?

• How does a single source of truth for course content
enhance quality, consistency, and adaptability of

materials, and what are the associated benefits and
challenges of multi-platform implementation?

These questions will help optimize the course improvement
efforts, ensuring a high-quality learning experience across
platforms.

II. OFFERING COURSES ON MULTIPLE PLATFORMS USING A

SINGLE SOURCE OF TRUTH WITH A CENTRALIZED CONTENT

MODIFICATION

A. Multiple Sources Versus Single

Fig. 1 Multiple Sources vs Single Source

We evaluated the pros and cons of using a single source of
truth (via LTI or iframe integration) for updating course content
across multiple MOOC platforms, such as Coursera, edX,
Moodle, or Canvas, versus using built-in editing tools within
each platform. As depicted in Figure 1, built-in tools often lead
to content duplication and risk of inconsistencies, while a single
source provides centralized, consistent content across platforms.
It also allows for seamless course migration across platforms,
unlike built-in editors, which create strong platform
dependency.

With a single source, course updates are simplified as
changes made to the central content are reflected across all
platforms. This method enables centralized modifications to
course material, assessments, instructions, and documentation,
reducing complexity and streamlining the editing process.
Conversely, built-in tools require separate updates for each
content instance, making the process time-consuming and error-
prone.

The use of a single source ensures content stability amid
constant MOOC platform evolution, offering a consistent
learning experience. Built-in tools may result in unexpected
disruptions due to changes in platform functionality. Moreover,
a single source allows simultaneous presence on multiple
platforms, maximizing course exposure. However, platform-
specific requirements must be manually configured, and some
limitations, such as customization of grading criteria, exist.

In summary, while built-in tools offer advantages, using a
single source for updating courses across platforms provides
numerous benefits. These include content consistency, reduced
platform dependence, simplified update process, streamlined
editing, minimized disruptions, cost optimization, and enhanced
course exposure.

B. Revision loop for iterative improvements

Fig. 2 Revision loop to improve the course quality

Our design choices for the revision loop were inspired by the
CI/CD (Continuous Integration and Deployment) practice [2].
In the revision loop for iterative improvements, we will consider
dynamicity as an important characteristic when designing a
content update architecture. We also consider that the course
team works co-jointly with some course content developers or

tool developers that manage the learning tools hosted on third
party providers. Continuous monitoring of the course and
prompt issue reporting play a crucial role in ensuring its smooth
operation. As shown in Figure 2, we suggest that in the context
of MOOC and to enable scalability, some Teaching Assistants
(TAs) actively monitor the learners via forums across various
MOOC platforms and employ multiple channels to report issues
to the course team. The best practice would be to have at least
one Teaching Assistant dedicated to one platform. Urgent
matters, such as tool breakdowns, must immediately be
communicated via email or a phone call to the course team,
ensuring timely attention and resolution. Additionally, regular
meetings provide a dedicated space for TAs to provide updates
on ongoing issues and discuss potential solutions and must be
scheduled in the long term. A ticketing system, such as GitHub
Issues, is a good practice to track and manage reported issues
systematically, allowing for efficient collaboration within the
course team. An example of using GitHub project management
features is given in [3] for the introductory computer
programming course CS50 at Harvard University.

 To gather further insights, the course team can leverage
the different MOOC platform's support centers, which provides
valuable information if students have reached out with specific
concerns or inquiries. Moreover, platforms like Coursera often
feature other types of feedback systems tailored to each
component of the course, enabling learners to provide feedback
directly. This feedback system serves as an additional source of
information for the course team to identify areas of improvement
or address any issues reported by students. When urgent bugs or
critical issues are identified, the course team can notify the
developers or third party provider promptly, triggering
necessary fixes or updates to the tools or platform infrastructure.

 In addition to human monitoring, developers and
maintainers of the third party tools have access to server metrics,
allowing them to closely monitor the hosting environment as it
is crucial to have a scalable infrastructure for the third-party
tools. This access enables them to proactively identify any
potential server-related issues or anomalies and promptly notify
the course team. By staying informed about server performance
and addressing potential infrastructure concerns, the course
team can maintain the stability and availability of the course
tools.

 In summary, continuous monitoring is facilitated by
Teaching Assistants who monitor forums, report issues via
email, weekly meetings, and a ticketing system. The course team
also benefits from insights gathered through the MOOC
platform's support center, feedback systems, and server metrics.
By employing a comprehensive monitoring approach, the course
team can promptly address issues, enhance the learning
experience, and ensure the course operates smoothly at scale and
throughout its duration.

C. Single Source Of Truth, Versioning and Backup

Content editing, tool updates and any other modification of
the content or the third-party tools takes place based on learner
feedback and ongoing improvements identified by the course
team. We suggest having within the process a versioned,
backed-up single source of truth, which serves as the
authoritative repository of the course content. Versioning allows

for easy access to previous versions, enabling the team to revert
to an older version if necessary or understand who and why a
modification of a content occurred in the past. Maintaining a
comprehensive history of all content changes and having access
to a global historical record is invaluable for the course team as
it provides visibility into the evolution of the course materials
over time, enabling them to track modifications, view the delta
of changes, and understand the progression of content
development. The ability to trace the history of changes not only
ensures transparency and accountability within the team but also
facilitates effective collaboration and the ability to analyze the
impact of modifications on the overall course structure and
content quality.

 Furthermore, a backup system must be in place to
ensure the integrity and availability of the course content,
safeguarding in the long term the learning experience for
students and minimizing any potential downtime.

D. Extending the Framework for Revision of MOOC

Assessments

We also build our approach upon the Framework for
Revision of MOOC assessments created by C. M. Friend, M.
Avello, M. E. Wiltrout and D. G. Gordon [4]. The framework
provides a structured approach to revising formative
assessments in MOOCs. The framework aims to guide
instructors in evaluating and revising their online course
assessments using data-driven approaches. The framework
involves analyzing learner performance data, evaluating the
quality of formative assessments, identifying common learner
errors, and revising assessments based on the findings. This
iterative, data-driven approach aims to improve the
effectiveness of formative assessments in subsequent course
runs. The paper outlines the steps of the framework for revising
MOOC formative assessments.

These steps shown in Figure 3 include identifying low-
performance questions, evaluating the causes of low
performance (instructor-based, learner-based, or both), revising
the questions based on the identified causes, and iterating the
process in subsequent course runs. The authors provide specific
strategies for revising low-performance questions, such as
adjusting coding, modifying wording, decomposing complex
questions, emphasizing key areas in instructions, and providing
context-specific hints.

Fig. 3 Extended framework of formative assessment revision

This paper extends the framework in Figure 3 by
incorporating additional sources of learning barriers. The
extended framework aims to proactively identify educational
barriers by considering various metrics that assess the
effectiveness of online learning experiences.

In addition to instructor- and learner-based causes, the
framework also considers the source of barriers, which can
originate from platforms or tools used in the online courses. The
causes of low performance may include functional bugs,
content accuracy issues, user interface/experience problems,
performance optimization challenges, compatibility issues, and
scalability limitations such as capacity exceeding.

To improve the online course, the framework suggests
applying the revision loop, which involves addressing errors on
the platform or tool, making necessary fixes, enhancing content
accuracy, improving user interface/experience, optimizing
performance, and resolving compatibility and scalability issues.

The process of improvement may include actions such as
fixing bugs in the online learning platform, updating and
refining content, enhancing the user interface to provide a better
experience, optimizing performance by implementing technical
improvements, and addressing compatibility issues across
different devices and browsers.

Scaling up the infrastructure by adding more servers or
expanding the capacity can also be a part of the improvement
process to ensure the online course can accommodate a larger
number of learners without compromising performance.

III. APPLYING THE ARCHITECTURE TO A COMPUTER SCIENCE

COURSE SERIES ON COURSERA, EDX AND LOCAL LMS

In this section, we will explain the steps we took to implement

the previously described architecture in order to deploy a

series of courses on multiple MOOC platforms. Additionally,

we will demonstrate how we incorporated a revision loop to

consistently enhance the material across these platforms.

Therefore, we will first introduce the course series in

subsection A, followed by the platform in subsection B, and

finally, we focus more on the revision loop in subsection C.

A. The C Programming with Linux Course Series

 The "C Programming with Linux" course series, a joint
effort between Dartmouth College and Institut Mines-Télécom
(IMT in France), was created in 2017. This comprehensive
program aims to provide individuals with a strong foundation
in C programming and the Linux operating system. The series
consists of seven courses endorsed by prominent global high-
tech companies, including Nokia Bell Labs, Airbus, Thales, and
Gainwell Technologies. Designed to facilitate the onboarding
of beginners, these courses introduce the fundamentals of C
programming, even for those with no prior programming
experience. Learners gain hands-on experience writing,
reading, and debugging computer programs in C, while also
familiarizing themselves with the Linux operating system.

 The course series offers a unique feature that allows
beginners to immediately start coding in C through web
browser-based coding tools, eliminating the need for

installation. The significance of learning C programming lies in
its widespread usage in various technologies, including
smartphones, navigation systems, robots, drones, trains, and
electronic devices. C is the preferred language in scenarios
where speed and flexibility are critical, such as embedded
systems and high-performance computing. As one of the
foundational programming languages, it continues to be taught
in engineering schools worldwide and remains a stable and
popular choice among programmers.

 Additionally, the course series covers the Linux operating
system, which is widely used by computer scientists and
developers. Linux powers supercomputers, servers, Android
devices, and most internet of things (IoT) devices. The course
series provides an introduction to the Linux command line and
essential Linux tools for C programmers. These skills are highly
sought after in today's tech industries. The program offers
guided exercises, coding demonstrations, and more elaborate
assignments to provide learners with practical experience and
proficiency in C programming.

 The "C Programming with Linux" course series initially
launched as a Professional Certificate on edX in 2018, won the
edX prize in 2019, offering learners the opportunity to earn a
recognized certification upon completion. Building upon its
success, the series expanded its reach and was introduced as a
Coursera specialization in 2022. This enabled a wider audience
to access the course content. Additionally, the course series has
been adopted and utilized on local Learning Management
Systems (LMS) within each partnering institution, ensuring
accessibility and flexibility for learners associated with
Dartmouth College and Institut Mines-Télécom (IMT).
Whether through edX, Coursera, or local LMS platforms, the
course series has been made available to learners across various
educational environments, catering to their specific needs and
preferences.

 Because the team had previously developed a French
version of the content on the FUN-MOOC platform (the French
government public instance of edX) we already had experience
developing and integrating LTI content into an open-edX
platform. When the team decided to deploy the course series on
Coursera a few years later, they worked closely with the
Coursera developers to try a new beta feature to automatically
import content from an edX course export. Because of the
difficulty encountered during this import/export process, we
decided to focus on using a single source of truth and came up
with the “single source” architecture presented in section II,
Figure 1.

B. The implementation of the single source of truth

 The implementation of the single source of truth
architecture involved close collaboration between the course
team and developers associated with France-IOI, a non-profit
organization dedicated to supporting educational initiatives and
developing open-source tools for programming [5]. The course
series emphasizes problem-solving through programming
exercises, with online formative assessments playing a critical
role in facilitating engagement and learning in MOOCs [4]. To
support this approach, the team developed LTI specific tools for
the purpose and integrated them using the LTI modules for each
platform.

 Taskgrader, an open-source autograding tool [6], provides
instant feedback in large-scale online programming classes,
offering extensive feedback to student code submissions. It is
also capable of creating quizzes and we only used this tool to
create quizzes across all platforms. Codecast [1], an in-browser
C language interpreter, is paired with an event and voice
recorder and player, synchronizing audio with source code
edition, visualization, step-by-step execution, and testing,
facilitating teaching and learning programming concepts.
Weblinux [7], a web app tool, offers a client-side and offline
Linux OS environment within the browser, allowing learners to
experiment with Linux without the need for software
installation.

 To maintain a single source of truth and enable continuous
improvements, the team developed a centralized editing
interface. This interface allows for updates to Taskgraders,
Codecasts, and Weblinux while maintaining a versioned, single
source of truth within a GIT repository. The repository is
backed up on Amazon S3 for secure storage. By using this
architecture, the course team avoids the proliferation of
multiple copies of content with different formats, ensuring
consistency across platforms.

For a detailed visual representation of the specific C
programming MOOC series architecture, refer to Figure 4.

C. The implementation of the revision loop

 Within our specific context of offering courses on C
programming with Linux through multiple platforms
(Coursera, edX, Moodle, and various local Learning
Management Systems), the revision loop operates within a
coordinated and international ecosystem. Learners, including
registered individuals from Coursera, edX, and our respective
local universities (Dartmouth College in the USA and IMT in
France), engage with the course content across these platforms.
They interact through platform-specific built-in forums or
directly with local professors, asking questions, providing
feedback, and seeking support as needed.

 To ensure effective monitoring of these forums, we have a
team of over 15 teaching assistants, with a maximum of four
working simultaneously, who maintain a coordinated schedule.
The course team itself consists of professors and learning
designers from the two institutions, bringing together
international expertise from the United States and France.
Weekly meetings are conducted to address issues, track
progress, and implement necessary actions continuously since
2018.

 Involving undergraduate students in the course series has
been a priority for the course team. To date, 14 undergraduate
students have been trained to work with the MOOCs, gaining
valuable experience in course design, content creation, and
online teaching [8]. These students have actively contributed to
the revision process and played a vital role in ensuring that the
courses meet the diverse needs of the audience. Additionally,
the course team has collaborated with a community teaching
assistant (TA) to enhance the learning experience for learners
within the community. By involving undergraduate students
and community members in the course revision process, the
course team has not only expanded access to high-quality

education but also fostered a culture of collaboration and
knowledge-sharing.

 To facilitate feedback collection and organization, the
course team set up a GitHub repository, leveraging the
platform's issue tracking system. The team has implemented a
robust feedback collection system by utilizing a GitHub
repository. This feedback from learners and teaching assistants
is then used to inform updates and revisions to the course
content, allowing the instructor team to identify and address
bugs, provide better hints and possible solutions to assessments,
and overall enhance the quality of the course. The course team
recognized the importance of collecting feedback from learners
and teaching assistants to continuously improve the course
content. A systematic process was established to ensure the
quality of the learning experience and address any issues or
challenges faced by the learners.

Fig. 4 C Programming with Linux architecture

Teaching assistants were encouraged to report any issues,
provide suggestions, or ask questions through the GitHub
repository. The team established guidelines for submitting
issues and feedback, ensuring that it was comprehensive, clear,
and actionable: what exactly are we talking about, how to
access it, how to reproduce a bug, when an event happened.

According to Hooimeijer and Weimer [9], bug triage is the
act of inspecting an issue or bug report, understanding its
contents, and making the initial decision regarding how to
address the report. To ensure efficient bug triage and effective
course improvement, the course team has established a
systematic process for handling reported issues using specific
tags and categories and to ensure that no reported issues are
overlooked or duplicated.

The bug triage process involves assigning priorities to each
bug based on its impact and urgency. Urgent issues that
severely hinder the learning experience or functionality of the
course are given immediate attention and allocated the
necessary resources for prompt resolution. These could include

critical tool breakdowns, major content inaccuracies, or critical
UI/UX issues.

For bugs that are categorized as long-term improvements,
the course team conducts a thorough analysis to identify
patterns and recurring issues. They carefully review learner
feedback, conduct surveys, and monitor user engagement
metrics to gain insights into areas that require significant
enhancements. By considering the feedback and prioritizing
long-term improvements, the team can allocate resources
effectively and focus on addressing the most impactful issues.

Bug triage techniques offer valuable support to the course
team in their endeavor to continuously enhance the course. By
implementing effective bug triage, the team can prioritize
issues based on their urgency and impact. Urgent matters
requiring immediate attention, such as critical tool breakdowns
or severe grading problems, can be promptly addressed to
minimize disruption to learners. Similarly, short-term, low-
effort actions, such as fixing typographical errors or addressing
minor accessibility issues, can be quickly resolved to ensure
content quality.

During the bug triage process, the course team also
collaborates with technical experts or developers to address
platform-specific problems or technical issues. This
collaboration ensures that compatibility issues across different
platforms, browsers, or devices are identified and resolved. The
team thoroughly tests the course on various configurations and
environments to ensure a consistent and seamless learning
experience for all learners.

Long-term improvements can also be identified through bug
triage. By analyzing recurring issues or feedback, the course
team can identify patterns and prioritize long-term
enhancements that have a substantial impact on the course
experience. For example, if learners consistently struggle with
a particular concept, the team can allocate resources to develop
additional explanatory materials or supplementary resources to
address this challenge comprehensively. Furthermore, bug
triage can also aid in identifying and prioritizing platform-
specific problems, technical issues, or suggestions for
improving the overall user experience, thereby guiding the
team's efforts in creating a more seamless and engaging
learning environment.

GitHub issues were used to collect and manage feedback
effectively. Each issue represented a specific problem,
suggestion, or question raised by the learners or teaching
assistants. The team categorized the issues based on their
nature, such as bug reports, feature requests, or general
feedback. This categorization helped in prioritizing the issues
and addressing them efficiently.

Bug triage in the context of course improvement can
encompass various aspects, such as:

● Functional Bugs: These are issues that affect the core
functionality of the course, such as broken links, non-
functioning interactive elements, or dysfunctional
features within the learning platform. Categorizing
these bugs helps prioritize fixes that directly impact
the learners' ability to navigate and interact with the
course materials effectively.

● Content Accuracy: Bugs related to content accuracy
involve incorrect information or inaccuracies in course
materials. Categorizing such bugs helps ensure that the
content aligns with the latest knowledge, facts, and
industry standards, ensuring a high-quality learning
experience for the students.

● User Interface/Experience (UI/UX) Issues: Bugs in
this category pertain to problems with the course's
visual design, layout, or user interface. Examples
include inconsistent formatting, confusing navigation,
or accessibility issues. By categorizing UI/UX issues,
the course team can prioritize improvements that
enhance usability, readability, and overall user
experience.

● Performance Optimization: These bugs refer to issues
that impact the course's performance, such as slow
loading times, high resource utilization, or inefficient
use of network bandwidth. Prioritizing these bugs
allows the team to optimize the course's technical
aspects, ensuring smooth and responsive performance
for learners across different devices and network
conditions.

● Compatibility Issues: Bugs related to compatibility
encompass problems that arise when the course is
accessed on different platforms, browsers, or devices.
This could involve issues with rendering,
functionality, or responsiveness on specific
configurations. By categorizing compatibility issues,
the course team can prioritize efforts to ensure the
course functions consistently and seamlessly across
various platforms and environments.

● Bug triage also extends to platform-specific issues,
such as financial aid. Identifying and addressing bugs
related to financial aid can help ensure that eligible
learners can access the necessary support to participate
in the course effectively.

 By incorporating bug triage techniques and addressing these
various aspects, the course team can continuously improve the
course, enhance the learning experience for students, and create
a more robust and reliable educational offering, even in the long
term. 782 issues were created since October 2018.

VI. CONCLUSION: CONTINUOUS IMPROVEMENT THROUGH

DATA-DRIVEN DESIGN

 The course team demonstrated a strong recognition of the
value of data in informing the revisioning process and
improving the learning experience [8]. By systematically
collecting and analyzing learner feedback and assessment data
from various sources, including platforms such as Coursera,
edX, Moodle, and local Learning Management Systems, the
team gained valuable insights into the effectiveness of the
course content. This learner-centered approach supported
evidence-based decision-making and facilitated continuous
improvement of the course material.

The utilization of a single source of truth architecture proved to
be extremely beneficial in our specific use case, despite the
heavy development involved [5]. This approach ensured that
improvements made to the course content automatically filtered

into all offerings of the course, regardless of the particular
platform. The single source of truth reduced the complexity of
managing multiple copies of content and streamlined the
revision process, allowing for efficient updates and
enhancements.

Moving forward, further investigation is needed to understand
the impact of utilizing multiple MOOC platforms (Coursera,
edX, Moodle) along with local Learning Management Systems
on student learning experience and engagement. Additionally,
exploring the contribution of teaching assistants (TAs) and their
impact on course quality [10], as well as striking the right
balance between using third-party content creation tools and
MOOC platforms built-in tools, are areas that warrant
continued examination.

Through the implementation of a single source of truth

architecture and the utilization of learner feedback and

assessment data, the course team has demonstrated a

commitment to providing an optimal learning experience for

students. By continuously improving the course content and

leveraging data-driven insights, we can enhance the

educational journey for learners and ensure the course remains

effective and engaging.

REFERENCES

[1] R. Sharrock, E. Hamonic, M. Hiron, & Carlier, S, 2017,. Codecast: An

innovative technology to facilitate teaching and learning computer
programming in a C language online course. In Proceedings of the Fourth
(2017) ACM Conference on Learning@ Scale (pp. 147-148).

[2] M. Shahin, M. A. Babar, & L. Zhu, L. 2017 Continuous integration,
delivery and deployment: a systematic review on approaches, tools,
challenges and practices. IEEE access, 5, 3909-3943.

[3] D.Malan, J. Sharp, C., van Assema, B. Yu, & K. Zidane. (2021, March).
CS50's GitHub-Based Tools for Teaching and Learning. In Proceedings
of the 52nd ACM Technical Symposium on Computer Science Education
(pp. 1354-1354).

[4] C. M. Friend, M. Avello, M. E. Wiltrout and D. G. Gordon, "A
Framework for Revision of MOOC Formative Assessments," 2022 IEEE
Learning with MOOCS (LWMOOCS), Antigua Guatemala, Guatemala,
2022, pp. 151-154, doi: 10.1109/LWMOOCS53067.2022.9927973.

[5] R. Sharrock, E. Collin,T. Labat, E. Hamonic, P. Bonfert-Taylor, M.
Goudzwaard, Teaching and Learning Programming with Linux using In-
Browser Client-Side Web Technologies: Exploring the Key Features for
Achieving Systems and Tools Scalability, L@S '22: Proceedings of the
Ninth ACM Conference on Learning @ Scale June 2022 Pages 427–430
doi.org: 10.1145/3491140.3528295

[6] R.Sharrock, P, Bonfert-Taylor, M. Hiron, M. Blockelet, C. Miller, C, M.
Goudzwaard, E, Hamonic, 2019, June, Teaching c programming
interactively at scale using taskgrader: An open-source autograder tool.
In Proceedings of the Sixth (2019) ACM Conference on Learning@ Scale
(pp. 1-2).

[7] Sharrock R., Angrave L., & Hamonic E.. 2018. WebLinux: a scalable in-
browser and client-side Linux and IDE. In Proceedings of the Fifth
Annual ACM Conference on Learning at Scale (L@S '18). Association
for Computing Machinery, New York, NY, USA, Article 45, 1–2.
https://doi.org/10.1145/3231644.3231703

[8] S. Labrique, D. Ducarme, B. Raucent, B., Se former en ligne au Tutorat :
un défi pour les assistants-chercheurs, 2021, Les Annales De QPES, 1(4).
https://doi.org/10.14428/qpes.v1i4.62423

[9] Hooimeijer P. & Weimer W.. 2007. Modeling bug report quality. In
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE '07). Association for Computing
Machinery, New York, NY, USA, 34–43.
https://doi.org/10.1145/1321631.1321639

[10] T. Bouvy, M. de Theux, B. Raucent et al., « Chapitre 14. Compétences et
rôles du tuteur en pédagogies actives », dans : Benoît Raucent éd.,
Accompagner des étudiants. Quels rôles pour l’enseignant ? Quels
dispositifs ? Quelles mises en œuvre ? Louvain-la-Neuve, De Boeck
Supérieur, « Pédagogies en développement », 2010, p. 371-396. DOI :
10.3917/dbu.rauce.2010.01.0371. URL :
https://www.cairn.info/accompagner-des-etudiants--9782804133313-
page-371.htm

