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Abstract

We adapt recent tools developed for the anal-
ysis of Stochastic Gradient Descent (SGD)
in non-convex optimization to obtain conver-
gence and sample complexity guarantees for
the vanilla policy gradient (PG). Our only
assumptions are that the expected return is
smooth w.r.t. the policy parameters, that its
H-step truncated gradient is close to the ex-
act gradient, and a certain ABC assumption.
This assumption requires the second moment
of the estimated gradient to be bounded by
A ≥ 0 times the suboptimality gap, B ≥ 0
times the norm of the full batch gradient and
an additive constant C ≥ 0, or any combina-
tion of aforementioned. We show that the
ABC assumption is more general than the
commonly used assumptions on the policy
space to prove convergence to a stationary
point. We provide a single convergence the-
orem that recovers the Õ(ε−4) sample com-
plexity of PG. Our results also affords greater
flexibility in the choice of hyper parameters
such as the step size and places no restric-
tion on the batch size m, including the single
trajectory case (i.e., m = 1). We then instan-
tiate our theorem in different settings, where
we both recover existing results and obtained
improved sample complexity, e.g., for conver-
gence to the global optimum for Fisher-non-
degenerated parameterized policies.

1 Introduction

Policy gradient (PG) is one of the most popular rein-
forcement learning (RL) methods for computing poli-
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cies that maximize long-term rewards (Williams, 1992;
Sutton et al., 2000; Baxter and Bartlett, 2001). The
success of PG methods is due to their simplicity
and versatility, as they can be readily implemented
to solve a wide range of problems (including non-
Markov and partially-observable environments) and
they can be effectively paired with other techniques
to obtain more sophisticated algorithms such as the
actor-critic (Konda and Tsitsiklis, 2000; Mnih et al.,
2016), natural PG (Kakade, 2002), policy mirror de-
scent (Tomar et al., 2020; Vaswani et al., 2022), trust-
region based variants (Schulman et al., 2015, 2017;
Shani et al., 2020), and variance-reduced methods (Pa-
pini et al., 2018; Shen et al., 2019; Xu et al., 2020a;
Yuan et al., 2020; Huang et al., 2020; Pham et al.,
2020; Yang et al., 2021; Huang et al., 2022). Unlike
value-based methods, a solid theoretical understand-
ing of even the “vanilla” PG has long been elusive.
Recently, a more complete theory of PG has been de-
rived by leveraging the RL structure of the problem
together with tools from convex and non-convex opti-
mization (see App. A for a thorough review).

In this paper, we first focus on the sample complex-
ity of PG for reaching a FOSP (first-order stationary
point). We show how PG can be analysed under a
very general assumption on the second moment of the
estimated gradient called the ABC assumption, which
includes most of the bounded gradient type assump-
tions as a special case. Our first contribution is conver-
gence guarantees and sample complexity for both RE-
INFORCE (Williams, 1992) and GPOMDP (Sutton
et al., 2000; Baxter and Bartlett, 2001) under the ABC
and assumptions on the smoothness of the expected re-
turn and on its truncated gradient, Our sample com-
plexity analysis recovers both the well known O(ε−2)

iteration complexity of exact PG and the Õ(ε−4) sam-
ple complexity of REINFORCE and GPOMDP un-
der weaker assumptions than had previously been ex-
plored (Zhang et al., 2020b; Liu et al., 2020; Xiong
et al., 2021). Furthermore, our analysis is less restric-
tive when it comes to the hyper-parameter choices. In
fact, our results allow for a wide range of step sizes and
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Table 1: Overview of different convergence results for vanilla PG methods. The darker cells contain our new
results. The light cells contain previously known results that we recover as special cases of our analysis, and
extend the permitted parameter settings. White cells contain existing results that we could not recover under
our general analysis.

Guarantee∗ Setting∗∗
(our results in bold)

Reference
Bound Remarks

for FOSP
stochastic PG
complexity of

Sample
ABC Thm. 3.4 Õ(ε−4) Weakest asm.

E-LS
Cor. 4.7

Papini (2020) Õ(ε−4)

Weaker asm.;
Wider range of parameters;
Recover O(ε−2) for exact PG;
Improved smoothness constant

for GO
stochastic PG
complexity of

Sample
ABC + PL Thm. H.2 Õ(ε−1)

Recover linear convergence for the
exact PG

ABC + (14) Thm. C.1 Õ(ε−3) Recover O(ε−1) for the exact PG

compatible
E-LS + FI +

Cor. 4.14 Õ(ε−3)
Weaker asm.;
Improved by ε compared to
Thm. 3.4

for AR
stochastic PG
complexity of

Sample compatible
LS + FI +

Liu et al. (2020) Õ(ε−4)

log barrier (28)
Softmax +

Cor. 4.11
Zhang et al. (2021a) Õ(ε−6)

Constant step size;
Wider range of parameters;
Extra phased learning step unnec-
essary

for GO
the exact PG
complexity of

Iteration

log barrier (28)
Softmax +

Cor. E.5
Agarwal et al. (2021) O(ε−2) Improved by 1− γ

Softmax (25)
Thm. C.1

Mei et al. (2020) O(ε−1)

entropy (125)
Softmax +

Thm. H.2
Mei et al. (2020)

linear

+ PPG
LS + bijection

Zhang et al. (2020a) O(ε−1)

Tabular + PPG Xiao (2022) O(ε−1)
LQR Fazel et al. (2018) linear

∗ Type of convergence. PG: policy gradient; FOSP : first-order stationary point; GO : global optimum; AR: average

regret to the global optimum.
∗∗ Setting. bijection: Asm.1 in Zhang et al. (2020a) about occupancy distribution; PPG: analysis also holds for the

projected PG; Tabular : direct parametrized policy; LQR: linear-quadratic regulator.

place almost no restriction on the batch size m, even
allowing for single trajectory sampling (m = 1), which
is uncommon in the literature. The generality of our
assumption allows us to unify much of the fragmented
results in the literature under one guise. Indeed, we
show that the analysis of Lipschitz and smooth poli-
cies, Gaussian polices, softmax tabular polices with or
without a log barrier or an entropy regularizer are all
special cases of our general analysis (see hierarchy di-
agram further down in Figure 1).

Recently, there has also been much work on estab-
lishing the convergence of PG to a global optimum
(i.e., the best-in-class policy). This usually requires
more restrictive assumptions (Zhang et al., 2020a,
2021b), specific RL settings (e.g., linear-quadratic reg-
ulator (Fazel et al., 2018), tabular (Agarwal et al.,
2021) and softmax tabular policy (Mei et al., 2020)),
and it is often limited to exact PG. Inspired by the

sample complexity analysis of the stochastic PG for
the global optimum in Liu et al. (2020) and Ding et al.
(2021a), our second contribution is to establish a novel
global optimum convergence theory of PG when an
additional relaxed weak gradient domination assump-
tion is available. Our sample complexity analysis re-
covers the well known O(ε−1) iteration complexity of
the exact PG with the softmax tabular policy (Mei
et al., 2020) as a special case and obtains a new im-

proved Õ(ε−3) sample complexity compared to Õ(ε−4)
in Liu et al. (2020), with the Fisher-non-degenerate
parametrized policy (Liu et al., 2020; Ding et al.,
2021a) as a special case. We also establish even faster
global optimum convergence theory when replacing the
relaxed weak gradient domination assumption by gra-
dient domination in App. H. Table 1 provides a com-
plete overview of our results.
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2 Preliminaries

Markov decision process (MDP). We consider a
MDP M = {S,A,P,R, γ, ρ}, where S is a state space;
A is an action space; P is a Markovian transition
model, where P(s′ | s, a) is the transition density from
state s to s′ under action a; R is the reward func-
tion, where R(s, a) ∈ [−Rmax,Rmax] is the bounded
reward for state-action pair (s, a) ; γ ∈ [0, 1) is the
discounted factor; and ρ is the initial state distribu-
tion. The agent’s behaviour is modelled as a policy
π ∈ ∆(A)S , where π(a | s) is the density of the dis-
tribution over actions at state s ∈ S. We consider the
infinite-horizon discounted setting.

Let p(τ | π) be the probability density of a single tra-
jectory τ being sampled from π, that is

p(τ | π) = ρ(s0)

∞∏
t=0

π(at | st)P(st+1 | st, at). (1)

With a slight abuse of notation, let R(τ) =∑∞
t=0 γ

tR(st, at) be the total discounted reward ac-
cumulated along trajectory τ . We define the expected
return of π as

J(π)
def
= Eτ∼p(·|π) [R(τ)] . (2)

Policy gradient. We introduce a set of parametrized
policies {πθ : θ ∈ Rd}, with the assumption that πθ
is differentiable w.r.t. θ. We denote J(θ) = J(πθ) and
p(τ | θ) = pθ(τ) = p(τ | πθ). In general, J(θ) is a non-
convex function. The PG methods use gradient ascent
in the space of θ to find the policy that maximizes
the expected return, i.e., θ∗ ∈ arg supθ∈Rd J(θ). We

denote the optimal expected return as J∗
def
= J(θ∗).

The gradient ∇J(θ) of the expected return has the
following structure

∇J(θ) =

∫
R(τ)∇p(τ | θ)dτ (3)

=

∫
R(τ) (∇p(τ | θ)/p(τ | θ)) p(τ | θ)dτ

= Eτ∼p(·|θ) [R(τ)∇ log p(τ | θ)]

(1)
= Eτ

[ ∞∑
t=0

γtR(st, at)

∞∑
t′=0

∇θ log πθ(at′ | st′)

]
.

In practice, we cannot compute this full gradi-
ent, since computing the above expectation re-
quires averaging over all possible trajectories τ ∼
p(· | θ). We resort to an empirical estimate of
the gradient by sampling m truncated trajectories
τi =

(
si0, a

i
0, r

i
0, s

i
1, · · · , siH−1, aiH−1, riH−1

)
with rit =

R(sit, a
i
t) obtained by executing πθ for a given fixed

horizon H ∈ N. The resulting gradient estimator is

∇̂mJ(θ) =

1

m

m∑
i=1

H−1∑
t=0

γtR(sit, a
i
t) ·

H−1∑
t′=0

∇θ log πθ(a
i
t′ | sit′). (4)

The estimator (4) is known as the REINFORCE gra-
dient estimator (Williams, 1992).

The REINFORCE estimator can be simplified by
leveraging the fact that future actions do not depend
on past rewards. This leads to the alternative formu-
lation of the full gradient

∇J(θ) =

Eτ

[ ∞∑
t=0

(
t∑

k=0

∇θ log πθ(ak | sk)

)
γtR(st, at)

]
, (5)

which leads to the following estimate of the gradient
known as GPOMDP (Baxter and Bartlett, 2001)

∇̂mJ(θ) =

1

m

m∑
i=1

H−1∑
t=0

(
t∑

k=0

∇θ log πθ(a
i
k | sik)

)
γtR(sit, a

i
t). (6)

Both REINFORCE and GPOMDP are the truncated
versions of unbiased gradient estimators and they are
unbiased estimates of the gradient of the truncated

expected return JH(θ)
def
= Eτ

[∑H−1
t=0 γtR(st, at)

]
,

Equipped with gradient estimators, vanilla policy gra-
dient updates the policy parameters as follows

θt+1 = θt + ηt∇̂mJ(θt) (7)

where ηt > 0 is the step size at the t-th iteration.

3 Non-convex optimization under
ABC assumption

3.1 First-order stationary point convergence

We use ∇̂mJ(θ) to denote the unbiased policy gradient
estimator of ∇JH(θ) used in (7). It can be the exact
gradient ∇J(θ) when H = m = ∞, or the truncated
gradient estimators in (4) or (6). All our forthcom-
ing analysis relies on the following common assump-
tions.

Assumption 3.1 (Smoothness). There exists L > 0
such that, for all θ, θ′ ∈ Rd, we have

|J(θ′)− J(θ)− 〈∇J(θ), θ′ − θ〉| ≤ L

2
‖θ′ − θ‖2 . (8)
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Assumption 3.2 (Truncation). There exists
D,D′ > 0 such that, for all θ ∈ Rd, we have

|〈∇JH(θ),∇JH(θ)−∇J(θ)〉| ≤ DγH , (9)

‖∇JH(θ)−∇J(θ)‖ ≤ D′γH . (10)

We recall that given the boundedness of the reward
function, we have |J(θ)− JH(θ)| ≤ Rmax

1−γ γ
H by the

definition of J(·) and JH(·). As such, when H is large,
the difference between J(θ) and JH(θ) is negligible.
However, Asm. 3.2 is still necessary, since in our anal-
ysis we first prove that ‖∇JH(θ)‖2 is small, and then

rely on (10) to show that ‖∇J(θ)‖2 is also small.

We also make use of the recently introduced ABC as-
sumption (Khaled and Richtárik, 2020)1 which bounds
the second moment of the norm of the gradient estima-
tors using the norm of the truncated full gradient, the
suboptimality gap and an additive constant.

Assumption 3.3 (ABC). There exists A,B,C ≥ 0
such that the policy gradient estimator satisfies

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] ≤ 2A(J∗−J(θ))+B ‖∇JH(θ)‖2+C,

(ABC)
for all θ ∈ Rd.

The ABC assumption effectively summarizes a num-
ber of popular and more restrictive assumptions com-
monly used in non-convex optimization. Indeed, the
bounded variance of the stochastic gradient assump-
tion (Ghadimi and Lan, 2013), the gradient confu-
sion assumption (Sankararaman et al., 2020), the sure-
smoothness assumption (Lei et al., 2020), the convex
expected smoothness assumption (Gower et al., 2019,
2021) and different variants of strong growth assump-
tions proposed by Schmidt and Roux (2013); Vaswani
et al. (2019) and Bottou et al. (2018) can all be seen as
specific cases of Asm. 3.3. The ABC assumption has
been shown to be the weakest among all existing as-
sumptions to provide convergence guarantees for SGD
for the minimization of non-convex smooth functions.
A more detailed discussion of the assumption for non-
convex optimization convergence theory can be found
in Thm. 1 in Khaled and Richtárik (2020).

We state our main convergence theorem, that we will
then develop into several corollaries.

Theorem 3.4. Suppose that Asm. 3.1, 3.2 and 3.3
hold. Consider the iterates θt of the PG method (7)
with stepsize ηt = η ∈

(
0, 2

LB

)
where B = 0 means

1While Khaled and Richtárik (2020) refer to this as-
sumption as expected smoothness, we prefer the alternative
name ABC to avoid confusion with the smoothness of J .

that η ∈ (0,∞). Let δ0
def
= J∗ − J(θ0). It follows

that

min
0≤t≤T−1

E
[
‖∇J(θt)‖2

]
≤ 2δ0(1 + Lη2A)T

ηT (2− LBη)
(11)

+
LCη

2− LBη
+

(
2D(3− LBη)

2− LBη
+D′2γH

)
γH .

In particular if A = 0, we have

E
[
‖∇J(θU )‖2

]
≤ 2δ0
ηT (2− LBη)

(12)

+
LCη

2− LBη
+

(
2D(3− LBη)

2− LBη
+D′2γH

)
γH ,

where θU is uniformly sampled from {θ0, · · · , θT−1}.

Thm. 3.4 provides a general characterization of the
convergence of PG as a function of all the constants
involved in the assumptions on the problem and the
policy gradient estimator. Refer to App. A.1 for a dis-
cussion comparing the technical aspects of this result
compared to Khaled and Richtárik (2020). From (11)
we derive the sample complexity as follows.

Corollary 3.5. Consider the setting of Thm. 3.4.
Given ε > 0, let η = min

{
1√
LAT

, 1
LB ,

ε
2LC

}
and the

horizon H = O(log ε−1). If the number of iterations
T satisfies

T ≥ 12δ0L

ε2
max

{
B,

12δ0A

ε2
,

2C

ε2

}
, (13)

then min0≤t≤T−1 E
[
‖∇J(θt)‖2

]
= O(ε2).

Despite the generality of the ABC assumption,
Cor. 3.5 recovers the best known iteration complex-
ity for vanilla PG in several well-known cases.

First, (13) recovers the O(ε−2) iteration complexity
of the exact gradient method as a special case. To
see this, let H = m = ∞ and ∇̂mJ(θ) = ∇J(θ)
in (7), thus Asm. 3.2 and 3.3 hold automatically with
A = C = D = D′ = 0 and B = 1. By (13), this shows
that for any policy and MDP that satisfy the smooth-
ness property (Asm. 3.1), the exact full PG converges
to a ε-FOSP in T = O(ε−2) iterations. This is the
state-of-the-art convergence rate for the exact gradient
descent on non-convex objectives without any other
assumptions (Beck, 2017).

Second, we recover sample complexity for stochastic
vanilla PG. From Cor. 3.5, notice that there is no re-
striction on the batch size m. By choosing m = O(1),

Eq. (13) shows that with TH = Õ(ε−4) samples (i.e.,
single-step interaction with the environment and sin-
gle sampled trajectory per iteration), the vanilla PG
either with updates (4) or (6) is guaranteed to con-
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verge to an ε-stationary point. Our sample complex-
ity matches the results of Papini (2020); Zhang et al.
(2020b); Liu et al. (2020); Xiong et al. (2021), but im-
prove upon them in generality, i.e., by recovering the
exact PG analysis, providing wider range of parame-
ter choices and using the weaker ABC assumption (see
Sec. 4.1 for more details).

3.2 Global optimum convergence under
relaxed weak gradient domination

In this section, we present a global optimum conver-
gence of the vanilla PG when the relaxed weak gradient
domination assumption is available, in addition to the
(ABC) assumption.

Assumption 3.6 (Relaxed weak gradient domina-
tion). We say that J satisfies the weak gradient
domination condition if for all θ ∈ Rd, there exists
µ > 0 and ε′ ≥ 0 such that

ε′ + ‖∇JH(θ)‖ ≥ 2
√
µ (J∗ − J(θ)) . (14)

The relaxed weak gradient domination is an extension
of weak gradient domination2 (Agarwal et al., 2021;
Mei et al., 2020, 2021) where ε′ = 0. Equipped with
this assumption, we obtain a new global optimum con-
vergence guarantee (see Thm. C.1 in App. C.3 for the
full details).

Corollary 3.7. Consider the setting of Thm. C.1.
Given ε > 0, let the horizon H = O(log ε−1). If
ε′ = 0, we choose the number of iterations T =
O(ε−3); if ε′ > 0, we choose T = O((ε′)−2ε−1). Then

min
t∈{0,1,··· ,T}

J∗ − E [J(θt)] ≤ O(ε) +O(ε′).

Consequently, when ε′ = Θ(ε) we have that the com-
plexity of PG to reach a global optimum is O(ε−3).
Thus the relaxed weak gradient domination has af-
forded us a factor of ε−1 improvement as compared
to the O(ε−4) complexity in Corollary 3.5. The re-
laxed weak gradient domination is an assumption that
is unique to PG methods. In Sec. 4.3, we show that
the Fisher-non-degenerate parametrized policy satis-
fies this assumption.

4 Applications

In this section we show how the ABC assumption can
be used to unify many of the current assumptions used
in the literature. In Figure 1 we collect all these special
cases in a hierarchy tree. Then for each special case

2The weak gradient domination is the special case of
the Kurdyka- Lojasiewicz (KL) condition with KL exponent
1 (Kurdyka, 1998).

we give the sample complexity of PG as a corollary of
Thm 3.4. Each of our corollaries match the best known
results in these special cases, while also providing a
wider range of parameter choices and, in some cases,
improving the dependency on some terms in the bound
(e.g., the discount factor γ). Finally, we show that the
relaxed weak gradient domination assumption holds
for Fisher-non-degenerate parametrized policies, thus
leading to new improved sample complexity result for
this setting.

4.1 Expected Lipschitz and smooth policies

We consider the expected Lipschitz and smooth
policy (E-LS) assumptions proposed by Papini et al.
(2019)3.

Assumption 4.1 (E-LS). There exists constants
G,F > 0 such that for every state s ∈ S, the ex-
pected gradient and Hessian of log πθ(· | s) satisfy

Ea∼πθ(·|s)
[
‖∇θ log πθ(a | s)‖2

]
≤ G2, (15)

Ea∼πθ(·|s)
[∥∥∇2

θ log πθ(a | s)
∥∥] ≤ F. (16)

We call the above Expected Lipschitz and Smooth (E-
LS), due to the expectation of a ∼ πθ(· | s), in contrast
to the more restrictive Lipschitz and smooth policy
(LS) assumption

‖∇θ log πθ(a | s)‖ ≤ G and
∥∥∇2

θ log πθ(a | s)
∥∥ ≤ F,

(LS)

for all (s, a) ∈ S × A. The (LS) assumption is widely
adopted in the analysis of vanilla PG (Zhang et al.,
2020b) and variance-reduced PG methods, e.g. Shen
et al. (2019); Xu et al. (2020b,a); Yuan et al. (2020);
Huang et al. (2020); Pham et al. (2020); Liu et al.
(2020); Zhang et al. (2021b). It is also a relaxation of

the element-wise boundness of
∣∣∣ ∂∂θi log πθ(a | s)

∣∣∣ and∣∣∣ ∂2

∂θi∂θj
log πθ(a | s)

∣∣∣ assumed by Pirotta et al. (2015)

and Papini et al. (2018)

4.1.1 Expected Lipschitz and smooth policy
is a special case of ABC

In the following lemma we show that (E-LS) implies
the ABC assumption.

3While Papini et al. (2019) refers to this assumption as
smoothing policy, we prefer the alternative name expected
Lipschitz and smooth policy, as they not only induce the
smoothness of J (see Lemma 4.4), but also the Lipschitz-
ness (see Lemma D.1). In Papini et al. (2019), they also as-
sume that Ea∼πθ(·|s) [‖∇θ log πθ(a | s)‖] is bounded, while
it is a direct consequence of (15) by Cauchy-Schwarz in-
equality.
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Softmax with log barrier (28) ABC Softmax with entropy (125)

Gaussian (67) (unbounded action space) E-LS

Gaussian (67) (bounded action space) LS Softmax (25)

Figure 1: A hierarchy between the assumptions we present throughout the paper. An arrow indicates an
implication.

Lemma 4.2. Under Asm. 4.1, consider a trun-
cated gradient estimator defined either in (4) or (6).
Asm. 3.3 holds with A = 0, B = 1− 1

m and C = ν
m ,

that is,

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] ≤ (1− 1

m

)
‖∇JH(θ)‖2 +

ν

m
, (17)

where m is the mini-batch size, and ν =
HG2R2

max

(1−γ)2

when using REINFORCE gradient estimator (4) or

ν =
G2R2

max

(1−γ)3 when using GPOMDP gradient estima-

tor (6).

Bounded variance of the gradient estimator.
Interestingly, from (17) we immediately obtain

Var
[
∇̂mJ(θ)

]
= E

[∥∥∥∇̂mJ(θ)
∥∥∥2]− ‖∇JH(θ)‖2

(17)

≤ ν − ‖∇JH(θ)‖2

m
≤ ν

m
, (18)

which was used as an assumption by Papini et al.
(2018); Xu et al. (2020b,a); Yuan et al. (2020); Huang
et al. (2020); Liu et al. (2020). Yet (18) needs not to
be an additional assumption since it is a direct conse-
quence of Asm. 4.1.

The (LS) and (E-LS) form the backbone of our hier-
archy of assumptions in Figure 1. In particular, (LS)
implies (E-LS), and thus ABC is the weaker (and most
general) assumption of the three.

Corollary 4.3. The (ABC) assumption is the weak-
est condition compared to (LS) and (E-LS).

4.1.2 Sample complexity analysis for
stationary point convergence

Of independent interest to the ABC assumption,
Asm. 4.1 also implies the smoothness of J(·) and the
truncated gradient assumptions as reported in the fol-
lowing lemmas.

Lemma 4.4. Under Asm. 4.1, J(·) is L-smooth,
namely

∥∥∇2J(θ)
∥∥ ≤ L for all θ which is a sufficient

condition of Asm. 3.1, with

L =
Rmax

(1− γ)2
(
G2 + F

)
. (19)

The smoothness constant (19) is tighter by a factor
of 1− γ as compared to the smoothness constant pro-
posed in Papini et al. (2019). This is the tightest upper
bound of ∇2J(·) we are aware of in the existing liter-
ature (see App. A.3).

Lemma 4.5. Under Asm. 4.1, Asm. 3.2 holds with

D =
D′GRmax

(1− γ)3/2
, (20)

D′ =
GRmax

1− γ

√
1

1− γ
+H. (21)

The coefficient D′ in (21) got improved and is tighter
by a factor of (1−γ)1/2 as compared to the same term
analysed in Lemma B.1 in Liu et al. (2020).

As a by-product, in Lemma D.1 in the appendix, we
also show that J(·) is Lipschitz under Asm. 4.1 with a
tighter Lipschitzness constant, as compared to Papini
et al. (2019); Xu et al. (2020a); Yuan et al. (2020). See
more details in App. D.5.

Now we can establish the sample complexity of vanilla
PG for the expected Lipschitz and smooth policy
assumptions as a corollary of Thm. 3.4 and Lem-
mas 4.2, 4.4, and 4.5.

Corollary 4.6. Suppose that Asm. 4.1 is satisfied.

Let δ0
def
= J∗−J(θ0). The PG method applied in (7)

with a mini-batch sampling of size m and constant
step size

η ∈
(

0,
2

L
(
1− 1/m

)), (22)
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satisfies

E
[
‖∇J(θU )‖2

]
≤ 2δ0

ηT
(
2− Lη

(
1− 1

m

))
+

Lνη

m
(
2− Lη

(
1− 1

m

))
+

(
2D
(
3− Lη

(
1− 1

m

))
2− Lη

(
1− 1

m

) +D′2γH

)
γH , (23)

where ν, L and D,D′ > 0 are provided in Lem-
mas 4.2, 4.4 and 4.5, respectively.

We first note that Cor. 4.6 imposes no restriction
on the batch size, allowing us to analyse both exact
full PG and its stochastic variants REINFORCE and
GPOMDP. For exact PG, i.e., H = m = ∞, we re-
cover the O(1/T ) convergence. This translates to an
iteration complexity T = O

(
1
ε2

)
with a constant step

size η = 1
L to guarantee E

[
‖∇J(θU )‖2

]
= O(ε2). On

the other extreme, when m = 1, by (22) we have that
η ∈ (0,∞), i.e., we place no restriction on the step
size. In this case, we have that (23) reduces to

E
[
‖∇J(θU )‖2

]
≤ δ0

ηT
+
Lνη

2
+
(
3D +D′2γH

)
γH .

Thus the stepsize η controls the trade-off between the
rate of convergence 1

ηT and leading constant term Lνη
2 .

Using Cor. 4.6, next we develop an explicit sample
complexity for PG methods.

Corollary 4.7. Consider the setting of Corol-
lary 4.6. For a given ε > 0, by choosing the mini-
batch size m such that 1 ≤ m ≤ 2ν

ε2 , the step size

η = ε2m
2Lν , the number of iterations T such that

Tm ≥ 8δ0Lν

ε4
=

O
(

H
(1−γ)4ε4

)
for REINFORCE

O
(

1
(1−γ)5ε4

)
for GPOMDP

(24)

and the horizon H = O
(
(1− γ)−1 log (1/ε)

)
, then

E
[
‖∇J(θU )‖2

]
= O(ε2).

Remark. Given the horizon H =
O
(
(1− γ)−1 log (1/ε)

)
, we have that (24) shows

that the sample complexity of GPOMDP is a factor
of log (1/ε) smaller than that of REINFORCE.

Cor. 4.7 greatly extends the range of parameters for
which PG is guaranteed to converge within the existing
literature. It shows that it is possible for vanilla policy
gradient methods to converge with a mini-batch size
per iteration from 1 to O(ε−2) and a constant step size
chosen accordingly between O(ε2) and O(1), while still

achieving the Tm×H = Õ
(
ε−4
)

optimal complexity.

In particular, Cor.4.4 in Zhang et al. (2020b), Prop.1
in Xiong et al. (2021) and Thm.E.1 in Liu et al. (2020)

establish Õ
(
ε−4
)

for FOSP convergence by using the
more restrictive assumption (LS). Papini (2020) obtain
the same results with the weaker assumption (E-LS),
which is also our case. However, we improve upon all of
them by recovering the exact full PG analysis, allowing
much wider range of choices for the batch size m and
the constant step size η to achieve the same optimal
sample complexity Õ

(
ε−4
)
. Indeed, to achieve the

optimal sample complexity of FOSP, Papini (2020);
Zhang et al. (2020b); Xiong et al. (2021); Liu et al.
(2020) do not allow a single trajectory sampled per
iteration. They require the batch size m to be either
ε−1 or ε−2. The existing analysis for vanilla PG that
allows m = 1 that we are aware of is Zhang et al.
(2021a), which we compare with in Sec. 4.2.1 under
the specific setting of softmax tabular policy with log
barrier regularization for the average regret analysis.

4.2 Softmax tabular policy

In this section, we instantiate the FOSP convergence
results of Cor. 4.6 and 4.7 in the case of the softmax
tabular policy. Combined with the specific proper-
ties of the softmax, our general theory also recovers
the average regret of the global optimum convergence
analysis for the softmax with log barrier regulariza-
tion (Zhang et al., 2021a) and brings new insights of
the theory by leveraing the ABC assumption analysis.

Here the state space S and the action space A are
finite. For all θ ∈ R|S||A| and any state-action pair
(s, a) ∈ S ×A, consider the following softmax tabular
policy

πθ(a | s)
def
=

exp(θs,a)∑
a′∈A exp(θs,a′)

. (25)

We show that the softmax tabular policy satisfies (E-
LS) as illustrated in the following lemma.

Lemma 4.8. The softmax tabular policy satisfies
Asm. 4.1 with G2 = 1 − 1

|A| and F = 1, that is, for

all s ∈ S, we have

Ea∼πθ(·|s)
[
‖∇θ log πθ(a | s)‖2

]
≤ 1− 1

|A|
, (26)

Ea∼πθ(·|s)
[∥∥∇2

θ log πθ(a | s)
∥∥] ≤ 1. (27)

Remark. The softmax tabular policy also satis-
fies (LS) but with a bigger constant (see App. E.2).

Lemma 4.8 and the results in Section 4.1 immediately
imply that all assumptions including the (ABC) as-
sumption of Thm. 3.4 are verified. Thus, as a con-
sequence of Cor. 4.6 and 4.7, we have the following
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sample complexity for the softmax tabular policy.4

Corollary 4.9 (Informal). Given ε > 0, there exists
a range of parameter choices for the batch size m s.t.
1 ≤ m ≤ O(ε−2), the step size η s.t. O(ε2) ≤ η ≤
O(1), the number of iterations T and the horizon H
such that the sample complexity of the vanilla PG
(either REINFORCE or GPOMDP) is Tm × H =

Õ
(

1
(1−γ)6ε4

)
to achieve E

[
‖∇J(θU )‖2

]
= O(ε2).

4.2.1 Global optimum convergence of
softmax with log barrier regularization

Leveraging the work of Agarwal et al. (2021) and our
Thm. 3.4, we can establish a global optimum conver-
gence analysis for softmax policies with log barrier reg-
ularization.

Log barrier regularization is often used to prevent the
policy from becoming deterministic. Indeed, when op-
timizing the softmax by PG, policies can rapidly be-
come near deterministic and the optimal policy is usu-
ally obtained by sending some parameters to infinity.
This can result in an extremely slow convergence of
PG. Li et al. (2021) show that PG can even take
exponential time to converge. To prevent the param-
eters from becoming too large and to ensure enough
exploration, an entropy-based regularization term is
commonly used to keep the probabilities from getting
too small (Williams and Peng, 1991; Mnih et al., 2016;
Nachum et al., 2017; Haarnoja et al., 2018; Mei et al.,
2019) . Here we study stochastic gradient ascent on
a relative entropy regularized objective, softmax with
log barrier regularization, which is defined as

Lλ(θ)
def
= J(θ)− λE

s∼UnifS [KL(UnifA, πθ(· | s))]

= J(θ) +
λ

|A||S|
∑
s,a

log πθ(a | s) + λ log |A|,

(28)

where the relative entropy for distributions p and q

is defined as KL(p, q)
def
= Ex∼p

[
− log q(x)

log p(x)

]
, Unifχ de-

notes the uniform distribution over a set χ and λ > 0
determines the strength of the penalty.

Let ∇̂mLλ(θ) be the stochastic gradient estimator of
Lλ(θ) using REINFORCE or GPOMDP with batch

size m. Thus ∇̂mLλ(θ) is an unbiased estimate of the
gradient of the truncated function

Lλ,H(θ)
def
= JH(θ) +

λ

|A||S|
∑
s,a

log πθ(a | s) + λ log |A|.

(29)

4The exact statement is similar to Cor. 4.7. For the
sake of space here we report a more compact statement.

We show in the following that ∇̂mLλ(θ) satisfies
the (ABC).

Lemma 4.10. Consider ∇̂mLλ(θ) by using either
RIENFORCE (4) or GPOMDP (6), Asm. 3.3 holds
with A = 0, B = 1− 1

m and C = ν
m , that is,

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2] ≤ (1− 1

m

)
‖∇Lλ,H(θ)‖2 +

ν

m
,

(30)

where ν = 2
(

1− 1
|A|

)(
HR2

max

(1−γ)2 + λ2

|S|

)
when us-

ing REINFORCE or ν = 2
(

1− 1
|A|

)(
R2

max

(1−γ)3 + λ2

|S|

)
when using GPOMDP.

Similar to the softmax case, we show in App. E.3 that
Lλ(θ) is also smooth and verifies Asm. 3.2. Thus from
Thm. 3.4, we have {θt}t≥0 converges to a FOSP of
Lλ(·). We postpone the formal statement of this result
to App. E.3 for the sake of space.

Besides, thanks to Thm. 5.2 in Agarwal et al. (2021),
the FOSP of Lλ(·) is approximately the global optimal
solution of J(·) when the regularization parameter λ is
is sufficiently small. As a by-product, we can also es-
tablish a high probability global optimum convergence
analysis (App. E.4).

In the following corollary, we show that we can leverage
the versatility of Thm. 3.4 to derive yet another type
of result: a guarantee on the average regret w.r.t. the
global optimum.

Corollary 4.11. Given ε > 0, consider the batch
size m such that 1 ≤ m ≤ 1

(1−γ)6ε3 , the step size

O(ε3) ≤ η = (1−γ)3ε3m
2Lν ≤ O(1) with L, ν in the

setting of Cor. E.4 . If the horizon H = O
(

log(1/ε)
1−γ

)
and the number of iterations T is such that

Tm×H ≥ Õ
(

1

(1− γ)12ε6

)
,

we have

J∗ − 1

T

T−1∑
t=0

E [J(θt)] = O(ε). (31)

This result recovers the sample complexity Õ(ε−6)
of Zhang et al. (2021a). However, Zhang et al. (2021a)
do not study the vanilla policy gradient. Instead, they
add an extra phased learning step to enforce the ex-
ploration of the MDP and use a decreasing step size.
Our result shows that such extra phased learning step
is unnecessary and the step size can be constant. We
also provide a wider range of parameter choices for
the batch size and the step size with the same sample
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complexity.

As Agarwal et al. (2021) mentioned, the regular-
izer (28) is more “aggressive” in penalizing small prob-
abilities than the more commonly utilized entropy reg-
ularizer. We also show that entropy regularized soft-
max satisfies the (ABC) and provide its FOSP analysis
in App. G, again thanks to the versatility of Thm. 3.4.
Notice that for the FOSP convergence, only an asymp-
totic result was established in Lemma 4.4 in Ding et al.
(2021b). Thus all proofs and implications in Fig. 1 are
provided.

4.3 Fisher-non-degenerate parameterization

In this section, we study a general policy class that
satisfies the following assumption.

Assumption 4.12 (Fisher-non-degenerate,
Asm. 2.1 in Ding et al. (2021a)). For all θ ∈ Rd,
there exists µF > 0 s.t. the Fisher information
matrix Fρ(θ) induced by policy πθ and initial state
distribution ρ satisfies

Fρ(θ)
def
= E(s,a)∼vπθρ

[
∇θ log πθ(a | s)∇θ log πθ(a | s)>

]
≥ µF Id, (FI)

where vπθρ is the state-action visitation measure de-
fined as

vπθρ (s, a)
def
= (1−γ)Es0∼ρ

∞∑
t=0

γtP(st = s, at = a|s0, πθ).

This assumption is commonly used in the litera-
tures (Liu et al., 2020; Ding et al., 2021a). Similar con-
ditions of the Fisher-non-degeneracy is also required in
other global optimum convergence framework (Asm.
6.5 in Agarwal et al. (2021) on the relative condition
number). This assumption is satisfied by a wide fami-
lies of policies, including the Gaussian policy (67) and
certain neural policy. We refer to Sec. B.2 in Liu et al.
(2020) and Sec. 8 in Ding et al. (2021a) for more dis-
cussions on the Fisher-non-degenerate setting.

We also need the following compatible function approx-
imation error assumption5.

Assumption 4.13 (Compatible, Asm. 4.6 in Ding
et al. (2021a)). For all θ ∈ Rd, there exists εbias > 0
s.t. the transferred compatible function approxima-
tion error with (s, a) ∼ vπθ∗ρ satisfies

E
[
(Aπθ (s, a)− (1− γ)u∗>∇θπθ(a | s))2

]
≤ εbias,

(compatible)

5We defer the definition of the advantage function Aπθ

in App.F.

where vπθ∗ρ is the state-action distribution induced

by an optimal policy πθ∗ , u
∗ = (Fρ(θ))

†∇J(θ).

This is also a common assumption (Wang et al., 2020;
Agarwal et al., 2021; Liu et al., 2020; Ding et al.,
2021a). In particular, when πθ is a softmax tabular
policy (86), εbias is 0 (Ding et al., 2021a); when πθ is
a rich neural policy, εbias is small (Wang et al., 2020).

Combining Asm. (FI), (compatible) with Asm. E-
LS, by Lemma 4.7 in Ding et al. (2021a), we know
that J(·) satisfies the relaxed weak gradient domina-

tion property (14) with ε′ =
µF
√
εbias

(1−γ)G and µ =
µ2
F

4G2 .

Consequently, we have the following new global opti-
mum convergence result for the Fisher-non-degenerate
parametrized policy.

Corollary 4.14. If the policy πθ satisfies
Asm. 4.1, 4.12 and 4.13, consider the setting

of Cor. 3.7 with ε′ =
µF
√
εbias

(1−γ)G and µ =
µ2
F

4G2 . Then

min
t∈{0,1,··· ,T}

J∗−E [J(θt)] ≤ O(ε)+O(
√
εbias) and the

sample complexity T ×H = Õ(ε−3) when εbias = 0

or T ×H = Õ((εbias · ε)−1) when εbias > 0.

5 Discussion

We believe the generality of Thm. 3.4 opens the pos-
sibility to identify a broader set of configurations (i.e.,
MDP and policy space) for which PG is guaranteed
to converge. In particular, we notice that Asm. 4.1
despite being very common, is somehow restrictive,
as general policy spaces defined by e.g., a multi-layer
neural network, may not satisfy it, unless some restric-
tion on the parameters is imposed. Other interesting
venues of investigation include whether it is possible
to extend the analysis to projected PG, identify coun-
terparts of the ABC assumption for variance-reduced
versions of PG and for the improved analysis of Zhang
et al. (2021b) leveraging composite optimization tools.
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Stochastic quasi-gradient methods: variance reduc-
tion via jacobian sketching. Mathematical Program-
ming, 188(1):135–192, Jul 2021.

Mark Schmidt and Nicolas Le Roux. Fast convergence
of stochastic gradient descent under a strong growth
condition, 2013.

Sharan Vaswani, Francis Bach, and Mark Schmidt.
Fast and faster convergence of sgd for over-
parameterized models and an accelerated percep-
tron. In Proceedings of the Twenty-Second Inter-
national Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine
Learning Research, pages 1195–1204. PMLR, 16–18
Apr 2019.
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Algorithm 1 Vanilla policy gradient

Input: initialized θ0, mini-batch size m, step size η0
for t = 0 to T − 1 do

Sample m trajectories following policy πθt from the MDP

Compute the policy gradient estimator ∇̂mJ(θt)

Update θt+1 = θt + ηt∇̂mJ(θt) and ηt
end for
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Here we provide the related work discussion, the missing proofs from the main paper and some additional
noteworthy observations made in the main paper.

A Related work

We provide an extended discussion for the context of our work, including a discussion comparing the technical
novelty of the paper to the finite sum minimization result in Khaled and Richtárik (2020), a comparison of the
convergence theories of vanilla PG and the problem dependent constants. We refer to Algorithm 1 as the vanilla
PG with ∇̂mJ(θt) defined as either the exact full gradient (3) and (5) or the stochastic PG estimator (4) or (6).
Furthermore, we discuss future work to extend our general sample complexity analysis to other policy gradient
methods and other RL settings.

A.1 Technical contribution and novelty compared to Khaled and Richtárik (2020)

Our technical novelty compared to Khaled and Richtárik (2020) is threefold. First, Theorem 3.4 is not a direct
application of Theorem 2 in Khaled and Richtárik (2020), which requires unbiased estimators of the gradient.
Yet in PG methods, we have to deal with biased estimators due to the truncation of the trajectories. The first
technical challenge was to adapt the proof technique to allow for biased gradients and a truncation error. This
also explains the need of Assumption 3.2. Similarly, we need to handle the same challenge for the proof of
Theorem H.2 when adapting the proof of Theorem 3 in Khaled and Richtárik (2020). Second, when considering
the results we derived in specific cases in Section 4, the difference between our work and Khaled and Richtárik
(2020) is even more significant. All cases studied in Khaled and Richtárik (2020) (e.g., finite-sum structure)
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are not applicable for PG methods and we had to derive specific analysis for our specialized settings (soft-max
with different regularizers, expected Lipschitz and smooth policies, Fisher-non-degenerate parametrized policies).
Furthermore, our focus is on deriving explicit sample complexity, whereas the results in Khaled and Richtárik
(2020) are concerned with convergence rates in terms of number of iterations. These dimensions are where most
of the technical work was done. Without this work of developing sample complexity and studying specific cases
found in PG literatures, it was not clear at all that the (ABC) assumption proposed in Khaled and Richtárik
(2020) would be relevant in RL. Finally, we also consider the setting where the relaxed weak gradient domination
holds (Assumption 3.6 and Theorem C.1). This is an assumption that is unique to PG methods and had not
been considered in Khaled and Richtárik (2020). Technically speaking, the proof of Theorem C.1 is unique and
required a different approach (see the arguments following (53)).

A.2 Sample complexity analysis of the vanilla policy gradient

Despite the success of PG methods in practice, a comprehensive theoretical understanding was lacking until
recently.

Global optimum convergence of vanilla PG with the exact full gradient. We refer to global opti-
mum convergence as an analysis that guarantees that J∗ − J(θT ) ≤ ε after T iterations. The global optimum
convergence results of PG with the exact full gradient have been developed under a number of different specific
settings.

By using a gradient domination property of the expected return, which is also referred to as the Polyak-
Lojasiewicz (PL) condition, Fazel et al. (2018) show that the linear-quadratic regulator (LQR) converges linearly
to the global optimum for PG with the exact full gradient. However, in the LQR setting the function J is not
smooth, and thus does not fit into the general setting we considered in this paper. More recently, Agarwal et al.
(2021) leveraged a weak gradient domination property, also called the weak Polyak-Lojasiewicz condition which
is exactly our condition (14) with ε′ = 0, to show that the projected PG converges to the global optimum with
a O(ε−2) convergence rate in tabular MDPs with tabular policies, also called direct policy parameterization. In
later work, Xiao (2022) improve this result by a factor of ε, i.e., they establish a O(ε−1) convergence rate for
the projected PG in the tabular setting when the exact full gradient is available. At the moment, we could
not adapt our general ABC structure to analyze and derive a sample complexity guarantee for the projected
PG. The same convergence rate O(ε−1) is developed by Zhang et al. (2020a) by leveraging the hidden convex
structure of the cumulative reward and consequently showing that all local optima (i.e., stationary points) are
in fact global optima under certain bijection assumptions based on the occupancy measure space (Assumption
1 in Zhang et al. (2020a)). Notice that the assumptions proposed by Zhang et al. (2020a) are satisfied in the
specific case of the tabular setting. We do not cover this specific assumption in our current analysis.

The global optimum convergence analysis with exact PG is also investigated in the case of softmax tabular
policy with or without regularization. Agarwal et al. (2021) first provide an asymptotic convergence for the
softmax tabular without regularization and a O(ε−2) convergence rate for the softmax tabular with log barrier
regularization. Even though the gradient domination property ((PL) or (14)) is not globally satisfied for the
softmax tabular, Mei et al. (2020) prove that it is available by following the path of the iterations with the exact
full gradient updates. Such a property is called the non-uniform Lojasiewicz inequality. Consequently, Mei et al.
(2020) show a O(ε−1) convergence rate for the softmax tabular without regularization by the weak gradient
domination condition and a linear convergence rate for the softmax tabular with entropy regularization by the
gradient domination condition. Finally, Li et al. (2021) recently showed that the result of Mei et al. (2020) for
softmax tabular policies may actually contain a term that is exponential in the discount factor, thus showing
that exact PG may take an exponential time to converge.

Our Contributions. We provide a general sample complexity analysis which, when instantiated using specific
settings given in the literature, recovers the same or even slightly improved convergence rates. Indeed, from
Corollary E.5 we recover the O(ε−2) convergence rate of Agarwal et al. (2021) for the softmax tabular with log
barrier regularization and improve the rate by a factor of 1 − γ through a better analysis of the smoothness
constant. By leveraging the (relaxed weak) gradient domination properties which hold under the path of the
iterations (Mei et al., 2020), we recover their results. That is, we recover the O(ε−1) convergence rate for the
softmax tabular without regularization in Theorem C.1 and the linear convergence rate for the softmax tabular
with entropy regularization in Theorem H.2.
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Sample complexity for FOSP convergence. The convergence rates derived for exact PG are representa-
tive of the behavior of the algorithm but do not take into account the additional errors due to the stochastic
nature of the actual algorithm used in practice. In this paper we mostly focus on the sample complexity of the
stochastic vanilla PG for FOSP convergence. The well known sample complexity for REINFORCE is Õ(ε−4)

s.t. 1
T

∑T−1
t=0 E

[∥∥∥∇̂mJ(θt)
∥∥∥2] ≤ ε2 after T iterations. However, as Papini (2020) mentioned, “formal proofs of

this result are surprisingly hard to find both in the policy optimization and in the nonconvex optimization litera-
ture.” Papini (2020) give a proof of the result under the expected Lipschitz and smooth policy assumption (E-LS)
in Theorem 7.1. When an estimate of the Q-function is available, Zhang et al. (2020b) also establish the same
dependency on ε for the sample complexity of FOSP convergence for the policy gradient theorem (Sutton et al.,
2000) under more restrictive Lipschitz and smooth policy assumption (LS). By adding an additional uniform
ergodicity assumption (Mitrophanov, 2005), Xiong et al. (2021) improve the sample complexity of (Zhang et al.,
2020b) by some factors of 1− γ but still has the same dependency on ε.

Our Contributions. We establish the sample complexity analysis for the vanilla PG – REINFORCE (4) and
GPOMDP (6). We improve the results of Papini (2020); Zhang et al. (2020b); Xiong et al. (2021) by using
weaker assumptions and allowing much wider range of hyper parameters (the batch size m and the constant step
size η) to achieve the optimal sample complexity. Overall, for both the exact and stochastic PG, our general
sample complexity analysis recovers the state-of-the-art dependency on ε under the ABC assumption.

Sample complexity for global optimum convergence. We refer to sample complexity of global optimum
convergence as an analysis that guarantees that J∗−E [J(θT )] ≤ ε after T iterations. To the best of our knowledge,
there is no existing analysis that considers this type of convergence result for the stochastic vanilla PG. As for
variance-reduced PG, by using Assumption 1 in Zhang et al. (2020a) about occupancy distribution, Zhang et al.

(2021b) establish a Õ(ε−2) sample complexity to achieve the global optimum.

Our Contributions. Under the ABC assumption, the smoothness and an additional gradient domination type
assumptions (14) and (PL), we establish the faster sample complexity analysis for the global optimum convergence
in Section 3.2 and Section H. More precisely, when the relaxed weak gradient domination assumption (14) is

available, we establish Õ(ε−3) sample complexity in Theorem C.1. We also show that one wide family of policies,
the Fisher-non-degenerate parametrized policies, satisfy this relaxed weak gradient domination assumption.
When the gradient domination assumption (PL) is available, we establish Õ(ε−1) sample complexity for the
global optimum in Theorem H.2. It remains an open question whether softmax or softmax with entropy still
satisfy the (weak) gradient domination type of assumptions for the stochastic PG updates based on the exact
PG analysis of Mei et al. (2020).

Sample complexity for the average regret convergence. We refer to the sample complexity for average
regret as an analysis that guarantees that J∗− 1

T

∑T−1
t=0 E [J(θt)] ≤ ε. Zhang et al. (2021a) show that with sample

complexity Õ(ε−6), PG methods can converge to the average regret optimum by using as little as a single sampled
trajectory per iteration (i.e., mini-batch size m = 1) for softmax with log barrier regularization. However, their
setting does not use “vanilla” PG but a modified version with re-projection meant to guarantee a sufficient level of
policy randomization. Liu et al. (2020) obtain faster sample complexity Õ(ε−4) by assuming in addition a Fisher-
non-degenerate parameterization, i.e. the Fisher information matrix is strictly lower bounded (Assumption 2.1
in Liu et al. (2020)), and the compatible function approximation assumption (see Assumption 4.4 in Liu et al.
(2020) on function approximation error). Notice that the softmax with log barrier regularization does not satisfy
all these assumptions and they require large batch sizes per iteration. We have not investigated this setting in
our paper.

Our Contributions. We recover the sample complexity for the average regret convergence Õ(ε−6) of Zhang et al.
(2021a) in the softmax with log barrier regularization with the vanilla PG setting . Compared to their results,
we show that the extra phased learning step is unnecessary and the step size can be constant instead of using
a decreasing step size. We also provide a wider range of parameter choices for the batch size and the step size
with the same sample complexity.
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Table 2: E-LS constantsG,F (Assumption 4.1), smoothness constant L and Lipschitzness constant Γ for Gaussian
and (regularized) Softmax tabular policies, where ϕ is an upper bound on the euclidean norm of the feature
function for the Gaussian policy, Rmax is the maximum absolute-valued reward, γ is the discount factor, σ is the
standard deviation of the Gaussian policy.

Gaussian∗ Softmax Softmax with log barrier

G2 ϕ2

σ2 1− 1
|A| 7∗∗

F ϕ2

σ2 1 7

L 2Rmaxϕ
2

(1−γ)2σ2
Rmax

(1−γ)2

(
2− 1

|A|

)
Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ
|S|

Γ Rmaxϕ
(1−γ)3/2σ

Rmax

(1−γ)3/2

√
1− 1

|A|

√
2
(

1− 1
|A|

)(
R2

max

(1−γ)3 + λ2

|S|

)
∗The (E-LS) constants G2 and F are provided in Lemma 15 in Papini et al. (2019).
∗∗When there is a “7”, it means this is not applicable directly in such setting.

A.3 Better analysis of the problem dependent constants

Throughout the paper, we also provided tighter bounds on the smoothness constants, Lipschitzness constants,
and the variance of the gradient estimators under Assumption (E-LS). Notice that the smoothness and Lipschitz
constants we consider here are properties of the expected return J(·) in (2) or the regularized expected return
Lλ(·) in (28). They depend only on the assumptions and are independent to the specific PG algorithm. For this
reason, below we compare our bounds with work that studies variants of PG other than vanilla PG, where the
bounds on the smoothness and Lipschitz constants are also needed. On the other hand, for the variance of the
gradient estimators, we only consider the vanilla gradient estimators REINFORCE (4) and GPOMDP (6) with
batch size m. A resume of the improved problem dependent constants – smoothness and Lipschitzness constants,
is provided in Table 2.

Smoothness constant. The smoothness constant (19) provided in Lemma 4.4 is novel. It is tighter as com-
pared to Lemma 6 in Papini et al. (2019) under Assumption (E-LS) and Proposition 4.2 (2) in Xu et al. (2020a)
under more restrictive assumptions (LS). Compared to existing bounds, our result shows that when γ is close
to 1, the smoothness constant (19) depends on (1− γ)−2 instead of (1− γ)−3 as derived in Papini et al. (2019)
and Xu et al. (2020a). Consequently, the smoothness constant for softmax derived in Lemma E.1 and E.3 are
also tighter than the one derived in Lemma 7 in Mei et al. (2020) and Lemma D.2 in Agarwal et al. (2021), which
both have the dependency of (1 − γ)−3. Finally, compared to the smoothness constant in Shen et al. (2019)
and Xu et al. (2020b), our result is independent to the horizon H .

Recent works, such as Proposition 1 in Huang et al. (2020), Lemma B.1 in Liu et al. (2020) and equation (17)
in Yuan et al. (2020), have the dependency of (1 − γ)−2 for the smoothness constant under assumptions (LS).
However, this is due to a recurring mistake in a crucial step in bounding the Hessian.6

Lipschitzness constant. The improved Lipschitzness constant under Assumption (E-LS) is provided in
Lemma D.1 (iii) in Section D.5. Compared to the existing bounds, our result shows that when γ is close to
1, the Lipschitzness constant Γ depends on (1 − γ)−3/2 instead of (1 − γ)−2 derived in the proof of Lemma 6
in Papini et al. (2019) under the same Assumption (E-LS).

Upper bound of the variance of the gradient estimators. As for the result in Lemma 4.2, our bounds (18)
on the variance of the gradient estimators REINFORCE and GPOMDP are slightly tighter than the one in Lemma
17 and 18 in Papini et al. (2019), see more details in Section D.1. Shen et al. (2019) and Pham et al. (2020)
also showed that the variance of the vanilla gradient estimator with batch size m = 1 is bounded under more
restrictive assumptions (LS). While their bounded variance depends on (1 − γ)−4 and they only consider the

6In a previous version of the proof in Sect. C, Xu et al. (2020a) rely on the identity ∇2
θJ(θ) = Eτ [∇θg(τ | θ)], which

is incorrect since the operators ∇θ and E [·] are not commutative in this case as the density p(· | θ) of E [·] depends on
θ as well. This error is recently fixed by Xu et al. (2020a) on https://arxiv.org/pdf/1909.08610.pdf in their original
paper.

https://arxiv.org/pdf/1909.08610.pdf
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GPOMDP gradient estimator, ours (18) depends on (1− γ)−3 for GPOMDP or H
(1−γ)2 for REINFORCE which

is tighter in both cases.

A.4 Future work

The main focus of this paper was the theoretical analysis of vanilla variants of the PG method. The results
we have obtained open up several experimental questions related to parameter settings for PG. We leave such
questions as an important future work to further support our theoretical findings.

One natural open question is whether the ABC assumption and the associated analysis can be extended to
the projected PG. If the answer is positive, this might improve the sample complexity analysis of the direct
policy parameterization setting in the stochastic case. Indeed, knowing that the direct policy parameterization
satisfies a variant of (14) condition (Agarwal et al., 2021; Xiao, 2022) under the proximal framework, if the ABC
assumption and the associated analysis can be extended, from Theorem C.1 which also uses the (14) condition,

then it might be possible to establish the Õ(ε−3) sample complexity for the global optimum convergence for the
direct policy parameterization and allow for a wider range of hyperparameter choices.

Similarly, we wonder if the ABC assumption and the associated analysis can be extended to the LQR setting.
The challenge here will be the smoothness assumption and whether the ABC assumption is satisfied by the
LQR when doing the stochastic PG updates. Indeed, the LQR only has an “almost” smoothness property (Fazel
et al., 2018). One needs to investigate how this will affect the current ABC analysis by extending the smoothness
property to the “almost” smoothness property.

Recently, variance reduced methods used to decrease the variance of SGD, such as SVRG (Johnson and Zhang,
2013), SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018), STORM (Cutkosky and Orabona, 2019)
and more (Tran-Dinh et al., 2021), have been applied to PG methods, such as SVRPG (Papini et al., 2018),
SRVR-PG (Xu et al., 2020a), STORM-PG (Yuan et al., 2020), ProxHSPGA (Pham et al., 2020), VRMPO (Yang
et al., 2021) and VR-BGPO (Huang et al., 2022). Leveraging these variance reduction techniques has led to an
overall improved sample complexity of reaching a first-order stationary point (FOSP). However, all these works
require either the exact full gradient updates or large batch sizes per iteration. It is interesting to understand
whether the ABC assumption analysis can be applied to these algorithms and possibly allow for a wider range of
hyperparameter choices, including the batch size. Furthermore, when the gradient domination type assumptions
are available, it will be interesting to see if we can obtain faster sample complexity as we did for the vanilla PG.

Another interesting venue of investigation might be whether the ABC assumption analysis can be extended to
the sample complexity analysis of (natural) actor-critic (Yang et al., 2019; Kumar et al., 2021; Xu et al., 2020c)
or natural policy gradient algorithms (Agarwal et al., 2021; Liu et al., 2020; Wang et al., 2020).

Finally we believe that the generality of Theorem 3.4 opens the possibility to identify a broader set of configu-
rations (i.e., MDP and policy space) for which PG is guaranteed to converge, notably thinking about settings
such that the constant A in Assumption (ABC) is non-zero, using additional assumptions such as the bijection
assumptions based on the occupancy measure space (Zhang et al., 2020a) to not only get improved sample
complexity for the global optimum convergence, but also allow a wider range of hyperparameter choices for the
convergence.

B Auxiliary Lemmas

Lemma B.1. For all γ ∈ [0, 1) and any strictly positive integer H, we have that

H−1∑
t=0

(t+ 1)γt ≤
∞∑
t=0

(t+ 1)γt =
1

(1− γ)2
.

Proof. The first part of the inequality is trivial. We now prove the second part of the inequality. Let

S
def
=

∞∑
t=0

(t+ 1)γt.
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We have

γS =

∞∑
t=0

(t+ 1)γt+1 =

∞∑
t=1

tγt.

Subtracting of the above two equations gives

(1− γ)S =

∞∑
t=0

(t+ 1)γt −
∞∑
t=1

tγt = 1 +

∞∑
t=1

(t+ 1− t)γt =

∞∑
t=0

γt =
1

1− γ
.

Finally, the proof follows by dividing 1− γ on both hand side.

Lemma B.2. For all γ ∈ [0, 1) and any strictly positive integer H, we have that

∞∑
t=0

(t+ 1)2γt ≤ 2

(1− γ)3
.

Proof. Let

S
def
=

∞∑
t=0

(t+ 1)2γt.

We have

γS =

∞∑
t=0

(t+ 1)2γt+1 =

∞∑
t=1

t2γt.

Thus, the subtraction of the above two equations gives

(1− γ)S =

∞∑
t=0

(t+ 1)2γt −
∞∑
t=1

t2γt

= 1 +

∞∑
t=1

((t+ 1)2 − t2)γt

= 1 +

∞∑
t=1

(2t+ 1)γt

=

∞∑
t=0

(2t+ 1)γt

= 2

∞∑
t=0

(t+ 1)γt −
∞∑
t=0

γt

Lemma B.1
=

2

(1− γ)2
− 1

1− γ

≤ 2

(1− γ)2
.

Finally, the proof follows by dividing 1− γ on both hand side.

Lemma B.3. Under Assumption 4.1, for all non negative integer t and any state-action pair (st, at) ∈ S ×A
at time t of a trajectory τ ∼ p(· | θ) sampled under the parametrized policy πθ, we have that

Eτ∼p(·|θ)
[
‖∇θ log πθ(at | st)‖2

]
≤ G2, (32)

Eτ∼p(·|θ)
[∥∥∇2

θ log πθ(at | st)
∥∥] ≤ F. (33)
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Proof. For t > 0 and (st, at) ∈ S ×A, we have

Eτ
[
‖∇θ log πθ(at | st)‖2

]
= Est

[
Eat∼πθ(·|st)

[
‖∇θ log πθ(at | st)‖2

∣∣st]] (15)

≤ G2,

where the first equality is obtained by the Markov property.

Similarly, we have

Eτ
[∥∥∇2

θ log πθ(at | st)
∥∥] = Est

[
Eat∼πθ(·|st)

[∥∥∇2
θ log πθ(at | st)

∥∥ ∣∣st]] (16)

≤ F.

Lemma B.4. For all non negative integers 0 ≤ h < h′, and any state-action pairs (sh, ah), (sh′ , ah′) ∈ S × A
at time h and h′ respectively of the same trajectory τ ∼ p(· | θ) sampled under the parametrized policy πθ, we
have

Eτ
[
(∇θ log πθ(ah | sh))

>∇θ log πθ(ah′ | sh′)
]

= 0. (34)

Proof. For 0 ≤ h < h′, we have

Eτ
[
(∇θ log πθ(ah | sh))

>∇θ log πθ(ah′ | sh′)
]

= Eah,sh,sh′
[
Eah′

[
(∇θ log πθ(ah | sh))

>∇θ log πθ(ah′ | sh′)
∣∣∣∣sh, ah, sh′]]

= Eah,sh,sh′
[
(∇θ log πθ(ah | sh))

> Eah′
[
∇θ log πθ(ah′ | sh′)

∣∣∣∣sh, ah, sh′]]
= Eah,sh,sh′

[
(∇θ log πθ(ah | sh))

>
∫
ah′

πθ(ah′ | sh′)∇θ log πθ(ah′ | sh′)dah′
]

= Eah,sh,sh′

[
(∇θ log πθ(ah | sh))

>
∫
ah′

∇θπθ(ah′ | sh′)dah′
]

= Eah,sh,sh′
[

(∇θ log πθ(ah | sh))
>∇θ

∫
ah′

πθ(ah′ | sh′)dah′︸ ︷︷ ︸
=1

]
= 0,

where the first and second equality is obtained by the Markov property.

Lemma B.5. For all non negative integers 0 ≤ t, and any state-action pairs (sh, ah) ∈ S×A at time 0 ≤ h ≤ t
of the same trajectory τ ∼ p(· | θ) sampled under the parametrized policy πθ, we have

Eτ

∥∥∥∥∥
t∑

h=0

∇θ log πθ(ah | sh)

∥∥∥∥∥
2
 =

t∑
h=0

Eτ
[
‖log πθ(ah | sh)‖2

]
. (35)

Proof. For 0 ≤ t, we have

Eτ

∥∥∥∥∥
t∑

h=0

∇θ log πθ(ah | sh)

∥∥∥∥∥
2
 =

t∑
h=0

Eτ
[
‖log πθ(ah | sh)‖2

]

+ 2

t−1∑
h=0

t∑
h′=h+1

Eτ
[
(∇θ log πθ(ah | θh))

>∇θ log πθ(ah′ | θh′)
]

(34)
=

t∑
h=0

Eτ
[
‖log πθ(ah | sh)‖2

]
.
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C Proof of Section 3

C.1 Proof of Theorem 3.4

Proof. We start with L-smoothness of J from Assumption 3.1, which implies

J(θt+1) ≥ J(θt) + 〈∇J(θt), θt+1 − θt〉 −
L

2
‖θt+1 − θt‖2

= J(θt) + η
〈
∇J(θt), ∇̂mJ(θt)

〉
− Lη2

2

∥∥∥∇̂mJ(θt)
∥∥∥2 . (36)

Taking expectations conditioned on θt, we get

Et [J(θt+1)] ≥ J(θt) + η 〈∇J(θt),∇JH(θt)〉 −
Lη2

2
Et
[∥∥∥∇̂mJ(θt)

∥∥∥2]
(ABC)

≥ J(θt) + η 〈∇JH(θt) + (∇J(θt)−∇JH(θt)) ,∇JH(θt)〉

−Lη
2

2

(
2A(J∗ − J(θt)) +B ‖∇JH(θt)‖2 + C

)
= J(θt) + η

(
1− LBη

2

)
‖∇JH(θt)‖2 − Lη2A(J∗ − J(θt))

−LCη
2

2
+ η 〈∇JH(θt),∇J(θt)−∇JH(θt)〉

(9)

≥ J(θt) + η

(
1− LBη

2

)
‖∇JH(θt)‖2 − Lη2A(J∗ − J(θt))−

LCη2

2
− ηDγH . (37)

Subtracting J∗ from both sides gives

− (J∗ − Et [J(θt+1)]) ≥ −(1 + Lη2A)(J∗ − J(θt)) + η

(
1− LBη

2

)
‖∇JH(θt)‖2 −

LCη2

2
− ηDγH . (38)

Taking the total expectation and rearranging, we get

E [J∗ − J(θt+1)] + η

(
1− LBη

2

)
E
[
‖∇JH(θt)‖2

]
≤ (1 + Lη2A)E [J∗ − J(θt)] +

LCη2

2
+ ηDγH . (39)

Letting δt
def
= E [J∗ − J(θt)] and rt

def
= E

[
‖∇JH(θt)‖2

]
, we can rewrite the last inequality as

η

(
1− LBη

2

)
rt ≤ (1 + Lη2A)δt − δt+1 +

LCη2

2
+ ηDγH . (40)

We now introduce a sequence of weights w−1, w0, w1, · · · , wT−1 based on a technique developed by Stich (2019).

Let w−1 > 0. Define wt
def
= wt−1

1+Lη2A for all t ≥ 0. Notice that if A = 0, we have wt = wt−1 = · · · = w−1.

Multiplying (40) by wt/η,(
1− LBη

2

)
wtrt ≤

wt(1 + Lη2A)

η
δt −

wt
η
δt+1 +

LCη

2
wt +DγHwt

=
wt−1
η

δt −
wt
η
δt+1 +

(
LCη

2
+DγH

)
wt. (41)

Summing up both sides as t = 0, 1, · · · , T − 1 and using telescopic sum, we have,(
1− LBη

2

) T−1∑
t=0

wtrt ≤
w−1
η
δ0 −

wT−1
η

δT +

(
LCη

2
+DγH

) T−1∑
t=0

wt

≤ w−1
η
δ0 +

(
LCη

2
+DγH

) T−1∑
t=0

wt. (42)
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Let WT
def
=
∑T−1
t=0 wt. Dividing both sides by WT , we have,(
1− LBη

2

)
min

0≤t≤T−1
rt ≤

1

WT
·
(

1− LBη

2

) T−1∑
t=0

wtrt ≤
w−1
WT

δ0
η

+
LCη

2
+DγH . (43)

Note that,

WT =

T−1∑
t=0

wt ≥
T−1∑
t=0

min
0≤i≤T−1

wi = TwT−1 =
Tw−1

(1 + Lη2A)T
. (44)

Using this in (43), (
1− LBη

2

)
min

0≤t≤T−1
rt ≤

(1 + Lη2A)T

ηT
δ0 +

LCη

2
+DγH . (45)

However, we have

E
[
‖∇J(θt)‖2

]
= E

[
‖∇J(θt)−∇JH(θt) +∇JH(θt)‖2

]
= E

[
‖∇JH(θt)‖2

]
+ 2E [〈∇JH(θt),∇J(θt)−∇JH(θt)〉] + E

[
‖∇J(θt)−∇JH(θt)‖2

]
(9)+(10)

≤ E
[
‖∇JH(θt)‖2

]
+ 2DγH +D′2γ2H . (46)

Substituting rt in (45) by E
[
‖∇J(θt)‖2

]
and using (46), we get(

1− LBη

2

)
min

0≤t≤T−1
E
[
‖∇J(θt)‖2

]
≤ (1 + Lη2A)T

ηT
δ0 +

LCη

2
+DγH +

(
1− LBη

2

)(
2DγH +D′2γ2H

)
.

Our choice of step size guarantees that no matter B > 0 or B = 0, we have 1− LBη
2 > 0. Dividing both sides by

1− LBη
2 and rearranging yields the theorem’s claim.

If A = 0, we know that {wt}t≥−1 is a constant sequence. In this case, WT = Tw−1. Dividing both sides of (42)
by WT , we have, (

1− LBη

2

)
1

T

T−1∑
t=0

rt ≤
δ0
ηT

+
LCη

2
+DγH . (47)

Similarly, substituting rt in (47) by E
[
‖∇J(θt)‖2

]
and using (46), we get

(
1− LBη

2

)
E
[
‖∇J(θU )‖2

]
=

(
1− LBη

2

)
1

T

T−1∑
t=0

E
[
‖∇J(θt)‖2

]
≤ δ0

ηT
+
LCη

2
+DγH +

(
1− LBη

2

)(
2DγH +D′2γ2H

)
.

Dividing both sides by 1− LBη
2 and rearranging yields the theorem’s claim.

C.2 Proof of Corollary 3.5

Proof. Given ε > 0, from Corollary 1 in Khaled and Richtárik (2020), we know that if η = min
{

1√
LAT

, 1
LB ,

ε
2LC

}
and the number of iterations T satisfies

T ≥ 12δ0L

ε2
max

{
B,

12δ0A

ε2
,

2C

ε2

}
,

we have
2δ0(1 + Lη2A)T

ηT (2− LBη)
+

LCη

2− LBη
≤ ε2.
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It remains to show (
2D(3− LBη)

2− LBη
+D′2γH

)
γH ≤ ε2.

Besides, our choice of the step size η ≤ 1
LB implies that 1

2−LBη ≤ 1, thus(
2D(3− LBη)

2− LBη
+D′2γH

)
γH ≤

(
6D +D′2γH

)
γH .

Finally, it suffices to choose H such that

γH ≤ ε2 ⇐⇒ H ≥ 2 log ε−1

log γ−1
= O(log ε−1),

to guarantee that min0≤t≤T−1 E
[
‖∇J(θt)‖2

]
= O(ε−2), which concludes the proof.

Remark. When γ is close to 1, the horizon has the following property.

H =
2 log ε−1

log γ−1
= O

(
log ε−1

1− γ

)
.

C.3 Global optimum convergence under the relaxed weak gradient domination assumption

In this section, we present the new global optimum convergence theory under the relaxed weak gradient domi-
nation assumption (14).

Theorem C.1. Suppose that Asm. 3.1, 3.2, 3.3 and 3.6 hold. Given ε > 0, define δ s.t. if ε′ = 0, set δ = ε, if
ε′ > 0, set δ = ε′. Suppose that PG defined in (7) is run for T > 0 iterations with step size (ηt)t chosen as

ηt =

{
1
b if T ≤ b

µδ or t ≤ t0
2

2b+µδ(t−t0) if T ≥ b
µδ and t > t0

(48)

with t0 =
[
T
2

]
and b = max{ 2ALµδ , 2BL, µδ}. If J∗ − E [J(θt)] ≥ δ for all t ∈ {0, 1, · · · , T − 1}, then

J∗ − E [J(θT )] ≤ 16 exp

(
−µδ(T − 1)

2b

)
(J∗ − J(θ0)) +

12LC

µ2δ2T
+

26DγH

µδ
+

12(ε′)2(2b− LB)

µ2δ2T
+

2ε′

µ
, (49)

otherwise, we have
min

t∈{0,1,··· ,T−1}
J∗ − E [J(θt)] ≤ δ.

Remark. Similar to the exact full gradient update in Thm. 3.4, notice that for the exact full gradient update,
we have Asm. 3.2 and 3.3 hold with A = C = D = 0 and B = 1. Thus under the smoothness and the weak
gradient domination assumption (i.e., ε′ = 0), we have

J∗ − E [J(θT )] ≤ 16 exp

(
−µε(T − 1)

2b

)
(J∗ − J(θ0)).

With T = 1
ε log

(
1
ε

)
, we have J∗ − E [J(θT )] ≤ ε. Thus we establish Õ(ε−1) convergence rate for the number of

iterations to the global optimal. We recover the same rate for the softmax tabular policy in Theorem 4 in Mei
et al. (2020) where the smoothness assumption holds and the weak gradient domination condition (14) holds on
the path of the iterates in the exact case.

Proof. From (14), we obtain that

(ε′)2 + ‖∇JH(θ)‖2 ≥ (ε′ + ‖∇JH(θ)‖)2

2
≥ 2µ(J∗ − J(θ))2

=⇒ ‖∇JH(θ)‖2 ≥ 2µ(J∗ − J(θ))2 − (ε′)2. (50)
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Let t ∈ {0, 1, · · · , T − 1}. Using the L-smoothness of J from Assumption 3.1,

J∗ − J(θt+1) ≤ J∗ − J(θt)− 〈∇J(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖2

= J∗ − J(θt)− ηt
〈
∇J(θt), ∇̂mJ(θt)

〉
+
Lη2t

2

∥∥∥∇̂mJ(θt)
∥∥∥2 . (51)

Taking expectation conditioned on θt and using Assumption 3.3 and 3.6,

Et [J∗ − J(θt+1)] ≤ J∗ − J(θt)− ηt 〈∇J(θt),∇JH(θt)〉+
Lη2t

2
Et
[∥∥∥∇̂mJ(θt)

∥∥∥2]
(ABC)

≤ J∗ − J(θt)− ηt 〈∇JH(θt) + (∇J(θt)−∇JH(θt)),∇JH(θt)〉+

+
Lη2t

2

(
2A(J∗ − J(θt)) +B ‖∇JH(θt)‖2 + C

)
= (1 + Lη2tA)(J∗ − J(θt))− ηt

(
1− LBηt

2

)
‖∇JH(θt)‖2 +

Lη2tC

2

−ηt 〈∇J(θt)−∇JH(θt),∇JH(θt)〉
(50)

≤
(
1 + Lη2tA

)
(J∗ − J(θt))− µηt (2− LBηt) (J∗ − J(θt))

2 + ηt

(
1− LBηt

2

)
(ε′)2

+
Lη2tC

2
− ηt 〈∇J(θt)−∇JH(θt),∇JH(θt)〉

(9)

≤
(
1 + Lη2tA

)
(J∗ − J(θt))− µηt (2− LBηt) (J∗ − J(θt))

2 + ηt

(
1− LBηt

2

)
(ε′)2

+
Lη2tC

2
+ ηtDγ

H

≤
(
1 + Lη2tA

)
(J∗ − J(θt))−

3µ

2
ηt(J

∗ − J(θt))
2 + ηt

(
1− LBηt

2

)
(ε′)2

+
Lη2tC

2
+ ηtDγ

H , (52)

where the last line is obtained by the choice of the step size ηt ≤ 1
b with b ≥ 2LB.

Taking total expectation and letting rt
def
= E [J∗ − J(θt)] on (52), we have

rt+1 ≤ rt + LAη2t rt −
3µ

2
ηtr

2
t + ηt

(
1− LBηt

2

)
(ε′)2 +

LC

2
η2t + ηtDγ

H . (53)

If there exists t ∈ {0, 1, · · · , T − 1} such that rt < δ, then we are done. Alternatively if rt ≥ δ for all t ∈
{0, 1, · · · , T − 1}, from (53), we have

rt+1 ≤ rt + LAη2t rt −
3µδ

2
ηtrt + ηt

(
1− LBηt

2

)
(ε′)2 +

LC

2
η2t + ηtDγ

H

≤ (1− µδηt)rt + ηt

(
1− LBηt

2

)
(ε′)2 +

LC

2
η2t + ηtDγ

H , (54)

where the last line is obtained by the choice of the step size ηt ≤ 1
b with b ≥ 2LA

µδ . Here 1− µδηt ≥ 0 as ηt ≤ 1
b

with b ≥ µδ. We notice that (54) is similar to (142). The rest of the proof is similar to the one of Theorem H.2.
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If T ≤ b
µδ , ηt = 1

b . From (54), we have

rT ≤
(

1− µδ

b

)
rT−1 +

LC

2b2
+
DγH

b
+

2b− LB
2b2

(ε′)2

(54)

≤
(

1− µδ

b

)T
r0 +

(
LC

2b2
+
DγH

b
+

2b− LB
2b2

(ε′)2
) T−1∑
i=0

(
1− µδ

b

)i
≤ exp

(
−µδT

b

)
r0 +

LC

2µδb
+
DγH

µδ
+

2b− LB
2µδb

(ε′)2 (55)

T≤ b
µδ

≤ exp

(
−µδT

b

)
r0 +

LC

2µ2δ2T
+
DγH

µδ
+

2b− LB
2µ2δ2T

(ε′)2. (56)

If T ≥ b
µδ , as ηt = 1

b when t ≤ t0, from (55), we have

rt0 ≤ exp

(
−µδt0

b

)
r0 +

LC

2µδb
+
DγH

µδ
+

2b− LB
2µδb

(ε′)2

≤ exp

(
−µδ(T − 1)

2b

)
r0 +

LC

2µδb
+
DγH

µδ
+

2b− LB
2µδb

(ε′)2, (57)

where the last line is obtained by t0 =
[
T
2

]
≥ T−1

2 .

For t > t0,

ηt =
2

µδ
(

2b
µδ + t− t0

) .
From (54), we have

rt ≤
2b
µδ + t− t0 − 2

2b
µδ + t− t0

rt−1 +
2LC

µ2δ2
(

2b
µδ + t− t0

)2 +
2DγH

µδ
(

2b
µδ + t− t0

)
+

2(ε′)2

µδ
(

2b
µδ + t− t0

)
1− LB

µδ
(

2b
µδ + t− t0

)
 . (58)

Multiplying both sides by
(

2b
µδ + t− t0

)2
, we have

(
2b

µδ
+ t− t0

)2

rt ≤
(

2b

µδ
+ t− t0

)(
2b

µδ
+ t− t0 − 2

)
rt−1 +

2LC

µ2δ2
+

2DγH

µδ

(
2b

µδ
+ t− t0

)
+

2(ε′)2

µδ

(
2b− LB
µδ

+ t− t0
)

≤
(

2b

µδ
+ t− t0 − 1

)2

rt−1 +
2LC

µ2δ2
+

2DγH

µδ

(
2b

µδ
+ t− t0

)
+

2(ε′)2

µδ

(
2b− LB
µδ

+ t− t0
)
. (59)

Let wt
def
=
(

2b
µε + t− t0

)2
. We have

wtrt ≤ wt−1rt−1 +
2LC

µ2δ2
+

2DγH

µδ

(
2b

µδ
+ t− t0

)
+

2(ε′)2

µδ

(
2b− LB
µδ

+ t− t0
)
. (60)
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Summing up for t = t0 + 1, · · · , T and telescoping, we get,

wT rT ≤ wt0rt0 +
2LC(T − t0)

µ2δ2
+

2DγH

µδ

T∑
t=t0+1

(
2b

µδ
+ t− t0

)
+

2(ε′)2

µδ

T∑
t=t0+1

(
2b− LB
µδ

+ t− t0
)

=
4b2

µ2δ2
rt0 +

2LC(T − t0)

µ2δ2
+

4bD(T − t0)γH

µ2δ2
+
DγH

µδ
(T − t0)(T − t0 + 1)

+
2(ε′)2(2b− LB)(T − t0)

µ2δ2
+

(ε′)2

µδ
(T − t0)(T − t0 + 1). (61)

Dividing both sides by wT and using that since

wT =

(
2b

µδ
+ T − t0

)2

≥ (T − t0)2,

we have

rT ≤ 4b2

µ2δ2wT
rt0 +

2LC(T − t0)

µ2δ2wT
+

4bD(T − t0)γH

µ2δ2wT
+
DγH

µδwT
(T − t0)(T − t0 + 1)

+
2(ε′)2(2b− LB)(T − t0)

µ2δ2wT
+

(ε′)2

µδwT
(T − t0)(T − t0 + 1)

≤ 4b2

µ2δ2(T − t0)2
rt0 +

2LC

µ2δ2(T − t0)
+

4bDγH

µ2δ2(T − t0)
+

2DγH

µδ
+

2(ε′)2(2b− LB)

µ2δ2(T − t0)
+

2(ε′)2

µδ
. (62)

By the definition of t0, we have T − t0 ≥ T
2 . Plugging this estimate and notice that (ε′)2

δ = ε′ by the definition
of δ, we have

rT ≤ 16b2

µ2δ2T 2
rt0 +

4LC + 8bDγH

µ2δ2T
+

2DγH

µδ
+

4(ε′)2(2b− LB)

µ2δ2T
+

2ε′

µ

T≥ b
µδ

≤ 16b2

µ2δ2T 2
rt0 +

4LC

µ2δ2T
+

10DγH

µδ
+

4(ε′)2(2b− LB)

µ2δ2T
+

2ε′

µ
(57)

≤ 16b2

µ2δ2T 2

(
exp

(
−µδ(T − 1)

2b

)
r0 +

LC

2µδb
+
DγH

µδ
+

(ε′)2(2b− LB)

2µδb

)
+

4LC

µ2δ2T
+

10DγH

µδ
+

4(ε′)2(2b− LB)

µ2δ2T
+

2ε′

µ

T≥ b
µδ

≤ 16 exp

(
−µδ(T − 1)

2b

)
r0 +

8LC

µ2δ2T
+

16DγH

µδ
+

8(ε′)2(2b− LB)

µ2δ2T

+
4LC

µ2δ2T
+

10DγH

µδ
+

4(ε′)2(2b− LB)

µ2δ2T
+

2ε′

µ

= 16 exp

(
−µδ(T − 1)

2b

)
r0 +

12LC

µ2δ2T
+

26DγH

µδ
+

12(ε′)2(2b− LB)

µ2δ2T
+

2ε′

µ
. (63)

It remains to take the maximum of the two bounds (56) and (63) with b = max{ 2ALµδ , 2BL, µδ}.

C.4 Proof of Corollary 3.7

Proof. From Theorem C.1, when H = O(log ε−1), the dominant terms in (49) are 12LC
µ2δ2T and 2ε′

µ . To guarantee
that

min
t∈{0,1,··· ,T}

J∗ − E [J(θt)] ≤ O(ε) +O(ε′),

it suffices to choose T = O(δ−2ε−1) such that 12LC
µ2δ2T = O(ε). Thus, by the definition of δ, when ε′ = 0, we have

T = O(ε−3); when ε′ > 0, we have T = O((ε′)−2ε−1). Otherwise, from Theorem C.1, notice that δ ≤ ε+ ε′, we
have min

t∈{0,1,··· ,T−1}
J∗ − E [J(θt)] ≤ O(ε) +O(ε′), which concludes the proof.
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D Proof of Section 4.1

D.1 Proof of Lemma 4.2

Note that a similar result to Lemma 4.2 is given as Lemma 17 and 18 in (Papini et al., 2019). More precisely,
Lemma 17 and 18 in (Papini et al., 2019) provide an upper bound of the variance of the PG estimator similar
to the following result

Var
[
∇̂mJ(θ)

]
≤ ν

m
.

We derive a slightly tighter bound

Var
[
∇̂mJ(θ)

]
≤ ν − ‖∇JH(θ)‖

m
.

This tighter bound is crucial for our work since it results in a tighter bound on E
[∥∥∥∇̂mJ(θ)

∥∥∥2] which still fits

the format of (ABC). Here is the proof for Lemma 4.2.

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus ∇̂mJ(θ) =
1
m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of JH(θ). We have

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] = E

∥∥∥∥∥ 1

m

m−1∑
i=0

g(τi | θ)

∥∥∥∥∥
2


= E

∥∥∥∥∥ 1

m

m−1∑
i=0

g(τi | θ)−∇JH(θ) +∇JH(θ)

∥∥∥∥∥
2


= ‖∇JH(θ)‖2 + E

∥∥∥∥∥ 1

m

m−1∑
i=0

(g(τi | θ)−∇JH(θ))

∥∥∥∥∥
2


= ‖∇JH(θ)‖2 +
1

m2

m−1∑
i=0

E
[
‖g(τi | θ)−∇JH(θ)‖2

]
= ‖∇JH(θ)‖2 +

1

m
E
[
‖g(τ1 | θ)−∇JH(θ)‖2

]
= ‖∇JH(θ)‖2 +

E
[
‖g(τ1 | θ)‖2 − ‖∇JH(θ)‖2

]
m

, (64)

where the third, the fourth and the fifth lines are all obtained by using ∇JH(θ) = E [g(τi | θ)]. It remains to

show Eτ
[
‖g(τ | θ)‖2

]
is bounded under Assumption 4.1.

If ∇̂mJ(θ) is a REINFORCE gradient estimator, then

Eτ
[
‖g(τ | θ)‖2

]
(4)
= Eτ

∥∥∥∥∥
H−1∑
t′=0

γt
′
R(st′ , at′) ·

H−1∑
t=0

∇θ log πθ(at | st)

∥∥∥∥∥
2


≤ R2
max

(1− γ)2
Eτ

∥∥∥∥∥
H−1∑
t=0

∇θ log πθ(at | st)

∥∥∥∥∥
2


(35)
=

R2
max

(1− γ)2

H−1∑
t=0

Eτ
[
‖∇θ log πθ(at | st)‖2

]
(32)

≤ HG2R2
max

(1− γ)2
, (65)
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where the second line is obtained by using |R(st′ , at′)| ≤ Rmax.

Finally, the ABC assumption holds with

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] (64)+(65)

≤
(

1− 1

m

)
‖∇JH(θ)‖2 +

HG2R2
max

m(1− γ)2
.

If ∇̂mJ(θ) is a GPOMDP gradient estimator, then

Eτ
[
‖g(τ | θ)‖2

]
(6)
= Eτ

∥∥∥∥∥
H−1∑
t=0

γt/2R(st, at)γ
t/2

(
t∑

k=0

∇θ log πθ(ak | sk)

)∥∥∥∥∥
2


≤ Eτ

(H−1∑
t=0

γtR(st, at)
2

)H−1∑
k=0

γk

∥∥∥∥∥
k∑

k′=0

∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2


≤ R2
max

1− γ
·
H−1∑
k=0

γkEτ

∥∥∥∥∥
k∑

k′=0

∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2


(35)
=

R2
max

1− γ
·
H−1∑
k=0

γk
k∑

k′=0

Eτ
[
‖∇θ log πθ(ak′ | sk′)‖2

]
(32)

≤ G2R2
max

1− γ
·
H−1∑
k=0

γk(k + 1)

≤ G2R2
max

(1− γ)3
, (66)

where the second line is from the Cauchy-Schwarz inequality, the third line is obtained by using |R(st, at)| ≤ Rmax

and the last line is obtained by Lemma B.1.

The above together with (64) imply that ABC assumption holds with

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] (64)+(66)

≤
(

1− 1

m

)
‖∇JH(θ)‖2 +

G2R2
max

m(1− γ)3
.

D.2 Proof of Corollary 4.3

Proof. It is trivial that Assumption (LS) implies (E-LS). Now we show that (E-LS) is strictly weaker than (LS).

Consider a scalar-action, fixed-variance, Gaussian policy:

πθ(a | s) = N
(
a | θ>φ(s), σ2

)
=

1

σ
√

2π
exp

{
−1

2

(
a− θ>φ(s)

σ

)2
}
, (67)

where θ ∈ Rd, σ > 0 is the standard deviation, and φ : S → Rd is a mapping from the state space to the feature
space.

From Lemma 15 in Papini et al. (2019), the Gaussian policy (67) under the condition that the state feature vectors
are bounded satisfies (E-LS). That is, under the condition that there exists ϕ ≥ 0 such that sups∈S φ(s) ≤ ϕ.
One does not require that the actions are bounded for the Gaussian policy. This is not the case in Xu et al.
(2020a) in Section D under assumptions (LS).

Besides, from Lemma 4.2, we know that Assumption (E-LS) implies (ABC). This concludes the claim of the
corollary.
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D.3 Proof of Lemma 4.4

Proof. We know that

∇2J(θ)
(5)
= ∇θEτ

[ ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)]

= ∇θ
∫
p(τ | θ)

∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)
dτ

=

∫
∇θp(τ | θ)

( ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

))>
dτ

+

∫
p(τ | θ)

∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇2
θ log πθ(ak | sk)

)
dτ

=

∫
p(τ | θ)∇θ log p(τ | θ)

( ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

))>
dτ

+

∫
p(τ | θ)

∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇2
θ log πθ(ak | sk)

)
dτ

= Eτ

∇θ log p(τ | θ)

( ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

))>
+Eτ

[ ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇2
θ log πθ(ak | sk)

)]

(1)
= Eτ

 ∞∑
t′=0

∇θ log πθ(at′ | θt′)

( ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

))>
︸ ︷︷ ︸

1

+Eτ

[ ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇2
θ log πθ(ak | sk)

)]
︸ ︷︷ ︸

2

. (68)

We now bound the above two terms separately. The second term can be bounded easily. That is,

∥∥ 2
∥∥ ≤ Eτ

[ ∞∑
t=0

γt |R(st, at)|

(
t∑

k=0

∥∥∇2
θ log πθ(ak | sk)

∥∥)]

≤ Rmax

∞∑
t=0

γt

(
t∑

k=0

Eτ
[∥∥∇2

θ log πθ(ak | sk)
∥∥])

(33)

≤ FRmax

∞∑
t=0

γt(t+ 1)

=
FRmax

(1− γ)2
, (69)

where the second line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained by Lemma B.1.

To bound the first term, we use the following notation x0:t
def
= (x0, x1, · · · , xt) with {xt}t≥0 a sequence of random

variables. Similar to the derivation of GPOMDP, we notice that future actions do not depend on past rewards
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and past actions. That is, for 0 ≤ t < t′ among terms of the two sums in 1 , we have

Eτ

∇θ log πθ(at′ | st′) · γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)>
= Es0:t′ ,a0:t′

∇θ log πθ(at′ | st′) · γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)>
= Es0:t′ ,a0:(t′−1)

Eat′
∇θ log πθ(at′ | st′) · γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)> ∣∣∣∣ s0:t′ , a0:(t′−1)


= Es0:t′ ,a0:(t′−1)

Eat′ [∇θ log πθ(at′ | st′)
∣∣∣∣ st′] · γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)>
= Es0:t′ ,a0:(t′−1)

∫ πθ(at′ | st′)∇θ log πθ(at′ | st′)dat′ · γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)>
= Es0:t′ ,a0:(t′−1)

∫ ∇θπθ(at′ | st′)dat′ · γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)>

= Es0:t′ ,a0:(t′−1)

∇θ ∫ πθ(at′ | st′)dat′︸ ︷︷ ︸
=1

·γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)>
= 0, (70)

where the third equality is obtained by the Markov property. Thus, 1 can be simplified. We have

1
(70)
= Eτ

 t∑
t′=0

∇θ log πθ(at′ | θt′)

( ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

))>
= Eτ

 ∞∑
t=0

γtR(st, at)

(
t∑

t′=0

∇θ log πθ(at′ | θt′)

)(
t∑

k=0

∇θ log πθ(ak | sk)

)> . (71)

Now we can bound 1 easily. That is,

∥∥ 1
∥∥ (71)

≤ Eτ

 ∞∑
t=0

γt |R(st, at)|

∥∥∥∥∥
t∑

t′=0

∇θ log πθ(at′ | θt′)

∥∥∥∥∥
2


≤ Rmax

∞∑
t=0

γtEτ

∥∥∥∥∥
t∑

t′=0

∇θ log πθ(at′ | θt′)

∥∥∥∥∥
2


(35)
= Rmax

∞∑
t=0

γt
t∑

t′=0

Eτ
[
‖∇θ log πθ(at′ | θt′)‖2

]
(32)

≤ G2Rmax

∞∑
t=0

γt(t+ 1)

=
G2Rmax

(1− γ)2
, (72)

where the second line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained by Lemma B.1.
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Finally,

∥∥∇2J(θ)
∥∥ (68)+(72)+(69)

≤ Rmax

(1− γ)2
(G2 + F ).

D.4 Proof of Lemma 4.5

Proof. From (5), we have

‖∇J(θ)−∇JH(θ)‖2 =

∥∥∥∥∥Eτ
[ ∞∑
t=H

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)]∥∥∥∥∥
2

≤ Eτ

∥∥∥∥∥
∞∑
t=H

γt/2R(st, at)γ
t/2

(
t∑

k=0

∇θ log πθ(ak | sk)

)∥∥∥∥∥
2


≤ Eτ

( ∞∑
t=H

γtR(st, at)
2

) ∞∑
k=H

γk

∥∥∥∥∥
k∑

k′=0

∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2


≤ R2
maxγ

H

1− γ
Eτ

 ∞∑
k=H

γk

∥∥∥∥∥
k∑

k′=0

∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2


(35)
=

R2
maxγ

H

1− γ

∞∑
k=H

γk
k∑

k′=0

Eτ
[
‖∇θ log πθ(ak′ | sk′)‖2

]
(32)

≤ G2R2
maxγ

H

1− γ

∞∑
k=H

γk(k + 1)

=
G2R2

maxγ
2H

1− γ

∞∑
k=0

γk(k + 1 +H)

=

(
1

1− γ
+H

)
G2R2

maxγ
2H

(1− γ)2
, (73)

where the second and third lines are obtained by Jensen and Cauchy-Schwarz inequality respectively, the fourth
line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained by Lemma B.1.

Thus

D′
(73)
=

GRmax

1− γ

√
1

1− γ
+H.

Next, by inequality of Cauchy-Swartz we have

|〈∇JH(θ),∇JH(θ)−∇J(θ)〉| ≤ ‖∇JH(θ)‖ ‖∇JH(θ)−∇J(θ)‖
(10)

≤ ‖∇JH(θ)‖ ·D′γH

≤ D′GRmax

(1− γ)3/2
γH , (74)

where the last line is obtained by Lemma D.1 (iii). Thus

D
(74)
=

D′GRmax

(1− γ)3/2
.
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D.5 Lipschitz continuity of J(·)

In this section, we show that J(·) is Lipschitz-continuous under Assumption 4.1.

Lemma D.1. If Assumption 4.1 holds, for any m trajectories τi and θ ∈ Rd, we have

(i) ∇̂mJ(θ) is Lg-Lipschitz continuous if conditions (LS) hold;

(ii) The norm of the gradient estimator squared in expectation is bounded, i.e. E
[∥∥∥∇̂mJ(θ)

∥∥∥2] ≤ Γ2
g.

(iii) J(·) is Γ-Lipschitz, namely ‖∇J(θ)‖ ≤ Γ with Γ = GRmax

(1−γ)3/2 . Similarly, we have ‖∇JH(θ)‖ ≤ Γ for the

exact policy gradient of the truncated function JH(·) for any horizon H.

Furthermore, if ∇̂mJ(θ) is a REINFORCE gradient estimator, then Lg = HFRmax

1−γ and Γg =
√
HGRmax

1−γ ; if

∇̂mJ(θ) is a GPOMDP gradient estimator, then Lg = FRmax

(1−γ)2 and Γg = Γ.

Remark. The Lipschitzness constant proposed in Lemma D.1 (iii) is novel. See Section A.3 for more details.

The results in Lemma D.1 (ii) match the special case of Lemma 4.2 when the mini-batch size m = 1. It also
implies Assumption (ABC) but with a looser upper bound, which is independent to the batch size m. We include
a proof for completeness of the properties of a general vanilla policy gradient estimator. Notice that the bound of

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] with GPOMDP gradient estimator is a factor of 1−γ tighter as compared to Proposition 4.2 (3)

in (Xu et al., 2020a) and equation (17) in (Yuan et al., 2020) under more restrictive assumptions (LS).

The result with GPOMDP gradient estimator in Lemma D.1 (i) was already proposed in Proposition 4.2 in (Xu
et al., 2020a), but not with REINFORCE gradient estimator. We include a proof for both gradient estimators
for the completeness.

Proof. To prove (i), let ∇̂mJ(θ) be a REINFORCE gradient estimator. From (4), we have

∥∥∥∇(∇̂mJ(θ)
)∥∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

H−1∑
t=0

(
H−1∑
t′=0

γt
′
R(sit′ , a

i
t′)

)
∇2
θ log πθ(a

i
t | sit)

∥∥∥∥∥
≤ 1

m

m∑
i=1

(
H−1∑
t′=0

γt
′ ∣∣R(sit′ , a

i
t′)
∣∣)H−1∑

t=0

∥∥∇2
θ log πθ(a

i
t | sit)

∥∥
≤ Rmax

1− γ
· 1

m

m∑
i=1

H−1∑
t=0

∥∥∇2
θ log πθ(a

i
t | sit)

∥∥
(LS)

≤ HFRmax

1− γ
, (75)

where the third line is obtained by using
∣∣R(sit′ , a

i
t′)
∣∣ ≤ Rmax. In this case, Lg = HFRmax

1−γ .
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Let ∇̂mJ(θ) be a GPOMDP gradient estimator. From (6), we have∥∥∥∇(∇̂mJ(θ)
)∥∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

H−1∑
t=0

γtR(sit, a
i
t)

(
t∑

k=0

∇2
θ log πθ(a

i
k | sik)

)∥∥∥∥∥
≤ 1

m

m∑
i=1

H−1∑
t=0

γt
∣∣R(sit, a

i
t)
∣∣( t∑

k=0

∥∥∇2
θ log πθ(a

i
k | sik)

∥∥)

≤ Rmax

m

m∑
i=1

H−1∑
t=0

γt

(
t∑

k=0

∥∥∇2
θ log πθ(a

i
k | sik)

∥∥)
(LS)

≤ FRmax

H−1∑
t=0

γt(t+ 1)

Lemma B.1
≤ FRmax

(1− γ)2
, (76)

where similarly, the third line is obtained by using
∣∣R(sit, a

i
t)
∣∣ ≤ Rmax. In this case, Lg = FRmax

(1−γ)2 .

To prove (ii), let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus ∇̂mJ(θ) =
1
m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of JH(θ). We have

E
[∥∥∥∇̂mJ(θ)

∥∥∥2] ≤ Eτ
[
‖g(τ | θ)‖2

]
.

If ∇̂mJ(θ) is a REINFORCE gradient estimator, from (65), we have Γg =
√
HGRmax

1−γ . If ∇̂mJ(θ) is a GPOMDP

gradient estimator, from (66), we have Γg = GRmax

(1−γ)3/2 .

To prove (iii), we have

‖∇J(θ)‖2 (5)
=

∥∥∥∥∥Eτ
[ ∞∑
t=0

γtR(st, at)

(
t∑

k=0

∇θ log πθ(ak | sk)

)]∥∥∥∥∥
2

≤ Eτ

∥∥∥∥∥
∞∑
t=0

γt/2R(st, at)γ
t/2

(
t∑

k=0

∇θ log πθ(ak | sk)

)∥∥∥∥∥
2


≤ Eτ

( ∞∑
t=0

γtR(st, at)
2

) ∞∑
k=0

γk

∥∥∥∥∥
k∑

k′=0

∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2


≤ R2
max

1− γ
Eτ

 ∞∑
k=0

γk

∥∥∥∥∥
k∑

k′=0

∇θ log πθ(ak′ | sk′)

∥∥∥∥∥
2


(35)
=

R2
max

1− γ

∞∑
k=0

γk
k∑

k′=0

Eτ
[
‖∇θ log πθ(ak′ | sk′)‖2

]
(32)

≤ G2R2
max

1− γ

∞∑
k=0

γk(k + 1)

=
G2R2

max

(1− γ)3
, (77)

where the second and third lines are obtained by Jensen and Cauchy-Schwarz inequality respectively, the fourth
line is obtained by using |R(st, at)| ≤ Rmax and the last line is obtained by Lemma B.1.

Thus,

‖∇J(θ)‖ ≤ Γ with Γ =
GRmax

(1− γ)3/2
.
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Similarly, we also have

‖∇JH(θ)‖ ≤ Γ with Γ =
GRmax

(1− γ)3/2

for the exact policy gradient of the truncated function J(·) for any horizon H.

D.6 Proof of Corollary 4.6

Proof. From Lemma 4.4, we know that J is L-smooth. Consider policy gradient with a mini-batch sampling of
size m. From Lemma 4.2, we have Assumption 3.3 holds with A = 0, B = 1− 1

m and C = ν/m. Assumption 3.2
is verified as well by Lemma 4.5 with appropriate D and D′. By Theorem 3.4, plugging A = 0, B = 1− 1

m and

C = ν/m in (12) yields the corollary’s claim with step size η ∈
(

0, 2

L(1− 1
m )

)
.

D.7 Proof of Corollary 4.7

Proof. Consider vanilla policy gradient with step size η ∈
(

0, 1

L(1− 1
m )

)
and a mini-batch sampling of size m.

We have

E
[
‖∇J(θU )‖2

] (23)

≤ 2δ0

ηT
(
2− Lη

(
1− 1

m

)) +
Lνη

m
(
2− Lη

(
1− 1

m

))
+

(
2D
(
3− Lη

(
1− 1

m

))
2− Lη

(
1− 1

m

) +D′2γH

)
γH

≤ 2δ0
ηT

+
Lνη

m
+
(
6D +D′2γH

)
γH ,

where the second inequality is obtained by 1

2−Lη(1− 1
m )
≤ 1 with η ∈

(
0, 1

L(1− 1
m )

)
.

To get E
[
‖∇J(θU )‖2

]
= O(ε2), it suffices to have

O(ε2) ≥ 2δ0
ηT

+
Lνη

m
(78)

and

O(ε2) ≥
(
6D +D′2γH

)
γH (79)

respectively. To make the right hand side of (79) smaller than ε2, we need HγH = O(ε2). Thus, we require

H = O
(

log

(
1

ε

)
/ log

(
1

γ

))
.

To make the right hand side of (78) smaller than ε2, we require

Lνη

m
≤ ε2

2
⇐⇒ η ≤ ε2m

2Lν
. (80)

Similarly, for the first term of the right hand side of (78), we require

2δ0
ηT
≤ ε2

2
⇐⇒ 4δ0

ε2T
≤ η. (81)

Combining the above two inequalities gives

4δ0
ε2T

≤ η ≤ ε2m

2Lν
. (82)
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This implies

Tm ≥ 8δ0Lν

ε4
. (83)

The condition on the step size η ∈
(

0, 1

L(1− 1
m )

)
requires that the mini-batch size satisfies

ε2m

2Lν
≤ 1

L
(
1− 1

m

) =⇒ m ≤ 2ν

ε2
.

To conclude, it suffices to choose the step size η = 4δ0
ε2T = ε2m

2Lν , a mini-batch size m between 1 and 2ν
ε2 ,

the number of iterations T = 8δ0Lν
mε4 and the fixed Horizon H = O

(
log
(
1
ε

)
/ log

(
1
γ

))
so that the inequali-

ties (79), (80), (81), (82) and (83) hold, which guarantee E
[
‖∇J(θU )‖2

]
= O(ε2).

Thus, the total sample complexity is

Tm×H =
8δ0Lν log

(
1
ε

)
log
(

1
γ

)
ε4

= Õ(ε−4).

More precisely, from Lemma 4.4, L = Rmax

(1−γ)2 (G2 + F ). When using REINFORCE gradient estimator (4), from

Lemma 4.2, ν =
HG2R2

max

(1−γ)2 . Thus, when γ is close to 1, the sample complexity is

8δ0H
2G2R3

max(G2 + F )

(1− γ)4ε4
=

8δ0G
2R3

max(G2 + F )
(
log
(
1
ε

))2(
log
(

1
γ

))2
(1− γ)4ε4

= O

((
log

(
1

ε

))2

(1− γ)−6ε−4

)
. (84)

In this case, we can choose the mini-batch size m ∈
[
1; 2ν

ε2

]
, i.e. from 1 to O

(
H(1− γ)−2ε−2

)
and the constant

step size η = ε2m
2Lν varies from O

(
(1− γ)2

)
to O

(
H−1(1− γ)4ε2

)
accordingly.

When using GPOMDP gradient estimator (6), from Lemma 4.2, ν =
G2R2

max

(1−γ)3 . Thus, when γ is close to 1, the

sample complexity is

8δ0HG
2R3

max(G2 + F )

(1− γ)5ε4
=

8δ0G
2R3

max(G2 + F ) log
(
1
ε

)
log
(

1
γ

)
(1− γ)5ε4

= O
(

log

(
1

ε

)
(1− γ)−6ε−4

)
. (85)

In this case, we can choose the mini-batch size m ∈
[
1; 2ν

ε2

]
, i.e. from 1 to O

(
(1− γ)−3ε−2

)
and the constant

step size η = ε2m
2Lν varies from O

(
(1− γ)2

)
to O

(
(1− γ)5ε2

)
accordingly.

Remark. Comparing (85) to (84), we have that the sample complexity of GPOMDP is a factor of log (1/ε)
smaller than that of REINFORCE.

E Proof of Section 4.2

In this section, θ ∈ R|S||A| and denote θs ≡ (θs,a)a∈A ∈ R|A|. We also use the following notations

πs,a(θ)
def
= πθ(a | s) and πs(θ)

def
= πθ(· | s) ∈ ∆(A) ∈ R|A|.

E.1 Preliminaries for the softmax tabular policy

Recall the softmax tabular policy given by

πs,a(θ)
def
=

exp(θs,a)∑
a′∈A exp(θs,a′)

. (86)
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From (86), for any (s, a, a′) ∈ S × A×A with a′ 6= a, we have immediately the following partial derivatives for
the softmax tabular policy

∂πs,a(θ)

∂θs,a
= πs,a(θ)(1− πs,a(θ)), (87)

∂πs,a(θ)

∂θs,a′
= −πs,a(θ)πs,a′(θ). (88)

Notice that for s′ ∈ S with s′ 6= s, we have
∂πs,a(θ)
∂θs′,a

= 0. From (87) and (88), we obtain respectively the gradient

of πs,a(θ) and the Jacobian of πs(θ) w.r.t. θs

∂πs,a(θ)

∂θs
=

(
∂πs(θ)

∂θs,a

)>
= πs,a(θ)(1a − πs(θ)), (89)

∂πs(θ)

∂θs
= Diag (πs(θ))− πs(θ)πs(θ)>

def
= H(πs(θ)), (90)

where 1a ∈ R|A| is a vector with zero entries except one non-zero entry 1 corresponding to the action a. Now
from (89) and (90), we obtain respectively the gradient and the Hessian of log πs,a(θ) w.r.t. θs given by

∂ log πs,a(θ)

∂θs
= 1a − πs(θ), (91)

∂2 log πs,a(θ)

∂θ2s
= −H(πs(θ)). (92)

E.2 Stationary point convergence of the softmax tabular policy

First we provide the proof of Lemma 4.8.

Proof. For any state s ∈ S and any θ ∈ R|S||A|, from (91), we have

Ea∼πθ(·|s)
[
‖∇θ log πθ(a | s)‖2

]
= Ea∼πθ(·|s)

[
1 + ‖πs(θ)‖2 − 2πs,a(θ)

]
= 1 + ‖πs(θ)‖2 − 2

∑
a∈A

πs,a(θ)2

= 1− ‖πs(θ)‖2

≤ 1− 1

|A|
, (93)

where the last line is obtained by using Cauchy-Schwarz inequality in the following

‖πs(θ)‖2 =
∑
a∈A

πs,a(θ)2 ≥ 1

|A|

(∑
a∈A

πs,a(θ)

)2

=
1

|A|
.

Thus we have G2 = 1− 1
|A| .

Besides, from Lemma 22 in Mei et al. (2020), we have ‖H(πs(θ))‖ ≤ 1. Thus from (92), we have∥∥∇2
θ log πθ(a | s)

∥∥ ≤ 1. Taking expectation over action, we have

Ea∼πθ(·|s)
[∥∥∇2

θ log πθ(a | s)
∥∥] ≤ 1.

Thus we have F = 1.

Remark. Without expectation, for any (s, a) ∈ S ×A, (93) becomes

‖∇θ log πθ(a | s)‖2 = 1 + ‖πs(θ)‖2 − 2πs,a(θ) ≤ 2, (94)



A general sample complexity analysis of vanilla policy gradient

where the inequality is obtained by

‖πs(θ)‖2 =
∑
a∈A

πs,a(θ)2 ≤
∑
a∈A

πs,a(θ) = 1 (95)

with πs,a(θ) ∈ [0, 1]. This means, the softmax tabular policy satisfies (LS) condition with a bigger constant
G2 = 2 instead of 1− 1

|A| and F = 1.

Lemma 4.8 immediately implies that J(·) with the softmax tabular policy is smooth and Lipschitz as following.

Lemma E.1. J(·) with the softmax tabular policy is Rmax

(1−γ)2

(
2− 1

|A|

)
-smooth and Rmax

(1−γ)3/2

√
1− 1

|A| -Lipschitz.

Proof. From Lemma 4.8, we know that Assumption 4.1 is satisfied with G2 = 1 − 1
|A| and F = 1. Thus, J(·)

with the softmax tabular policy is smooth and Lipschitz.

Indeed, from Lemma 4.4, we obtain the smoothness constant Rmax

(1−γ)2

(
2− 1

|A|

)
for J(·); and from Lemma D.1 (iii),

we obtain the Lipschitzness constant Rmax

(1−γ)3/2

√
1− 1

|A| for J(·).

Now we can provide the formal statement of Corollary 4.9.

Corollary E.2 (Formal). For any accuracy level ε, if we choose the mini-batch size m such that 1 ≤ m ≤ 2ν
ε2 ,

the step size η = ε2m
2Lν with L = Rmax

(1−γ)2

(
2− 1

|A|

)
and

ν =


H(1− 1

|A| )R
2
max

(1−γ)2 for REINFORCE

(1− 1
|A| )R

2
max

(1−γ)3 for GPOMDP
,

the number of iterations T such that

Tm ≥


8δ0R3

max(1− 1
|A| )(2−

1
|A| )

(1−γ)4ε4 ·H for REINFORCE
8δ0R3

max(1− 1
|A| )(2−

1
|A| )

(1−γ)5ε4 for GPOMDP
, (96)

and the horizon H = O
(
(1− γ)−1 log (1/ε)

)
, then E

[
‖∇J(θU )‖2

]
= O(ε2).

Proof. From Lemma E.1, we know that L = Rmax

(1−γ2)

(
2− 1

|A|

)
.

From Lemma 4.2 and 4.8, we know that

ν =


H(1− 1

|A| )R
2
max

(1−γ)2 for REINFORCE

(1− 1
|A| )R

2
max

(1−γ)3 for GPOMDP
.

Plugging in L and ν in Corollary 4.7 yields the corollary’s claim.

E.3 Stationary point convergence of the softmax tabular policy with log barrier regularization

First we provide the proof of Lemma 4.10.

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus ∇̂mJ(θ) =
1
m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of JH(θ).

From (29), we have the following gradient estimator

∇̂mLλ(θ) = ∇̂mJ(θ) +
λ

|A||S|
∑
s,a

∇θ log πs,a(θ). (97)
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For a state s ∈ S, from (91), we have

λ

|A||S|
∑
a∈A

∂ log πs,a(θ)

∂θs
=

λ

|A||S|
∑
a∈A

(1a − πs(θ))

=
λ1|A|

|A||S|
− λπs(θ)

|S|

=
λ

|S|

(
1|A|

|A|
− πs(θ)

)
, (98)

where 1|A| ∈ R|A| is a vector of all ones. Thus we have

∇̂mLλ(θ)
(97)+(98)

= ∇̂mJ(θ) +
λ

|S|

(
1

|A|
−
[
πs(θ)

]
s∈S

)
, (99)

where 1 ∈ R|S||A| and [
πs(θ)

]
s∈S =

[
πs1(θ) ; · · · ; πs|S|(θ)

]
∈ R|S||A|

is the stacking7 of the vectors πsi(θ).

Next, taking expectation on the trajectories, we have

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2] (99)
= E

[∥∥∥∥∇̂mJ(θ) +
λ

|S|

(
1

|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2
]

= E

[∥∥∥∥∇JH(θ) +
λ

|S|

(
1

|A|
−
[
πs(θ)

]
s∈S

)
+ ∇̂mJ(θ)−∇JH(θ)

∥∥∥∥2
]

= ‖∇Lλ,H(θ)‖2 + E
[∥∥∥∇̂mJ(θ)−∇JH(θ)

∥∥∥2]
(64)
= ‖∇Lλ,H(θ)‖2 +

E
[
‖g(τ1 | θ)−∇JH(θ)‖2

]
m

= ‖∇Lλ,H(θ)‖2

+

E
[∥∥∥g(τ1 | θ) + λ

|S|

(
1
|A| −

[
πs(θ)

]
s∈S

)
−∇JH(θ)− λ

|S|

(
1
|A| −

[
πs(θ)

]
s∈S

)∥∥∥2]
m

=

(
1− 1

m

)
‖∇Lλ,H(θ)‖2 +

E
[∥∥∥g(τ1 | θ) + λ

|S|

(
1
|A| −

[
πs(θ)

]
s∈S

)∥∥∥2]
m

≤
(

1− 1

m

)
‖∇Lλ,H(θ)‖2 +

2E
[
‖g(τ1 | θ)‖2

]
+ 2

∥∥∥ λ
|S|

(
1
|A| −

[
πs(θ)

]
s∈S

)∥∥∥2
m

. (100)

In particular, we have∥∥∥∥ λ|S|
(

1

|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2 ≤ λ2

|S|2

(
|S||A|
|A|2

− 2
|S|
|A|

+ |S|
)

=
λ2

|S|

(
1− 1

|A|

)
, (101)

where the inequality is obtained by using ‖πs(θ)‖2 ≤ 1 in (95).

As for E
[
‖g(τ1 | θ)‖2

]
, if ∇̂mJ(θ) is a REINFORCE gradient estimator, from (65), we have

E
[
‖g(τ1 | θ)‖2

]
≤ HG2R2

max

(1− γ)2
=

HR2
max

(
1− 1

|A|

)
(1− γ)2

, (102)

7Here vectors are columns by default, and given x1, · · · , x|S| ∈ R|A| we note [x1 ; . . . ; x|S|] ∈ R|S||A| the (column)
vector stacking the xi’s on top of each other.
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where the equality is obtained by Lemma 4.8 with G2 =
(

1− 1
|A|

)
.

Combining (100), (101) and (102), we have that the REINFORCE gradient estimator ∇̂mLλ(θ) satisfies (ABC)
assumption with

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2] ≤ (
1− 1

m

)
‖∇Lλ,H(θ)‖2 +

2

m

(
1− 1

|A|

)(
HR2

max

(1− γ)2
+
λ2

|S|

)
.

If ∇̂mJ(θ) is a GPOMDP gradient estimator, from (66), we have

E
[
‖g(τ1 | θ)‖2

]
≤ G2R2

max

(1− γ)3
=
R2

max

(
1− 1

|A|

)
(1− γ)3

. (103)

Combining (100), (101) and (103), we have that the GPOMDP gradient estimator ∇̂mLλ(θ) satisfies (ABC)
assumption with

E
[∥∥∥∇̂mLλ(θ)

∥∥∥2] ≤ (
1− 1

m

)
‖∇Lλ,H(θ)‖2 +

2

m

(
1− 1

|A|

)(
R2

max

(1− γ)3
+
λ2

|S|

)
.

Thus ∇̂mLλ(θ) satisfies the (ABC) assumption for both REINFORCE and GPOMDP gradient estimators, which
concludes the proof.

We also verify that Lλ(·) is smooth and Lipschitz in the following lemma.

Lemma E.3. Lλ(·) is
(
Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ
|S|

)
-smooth and

√
2
(

1− 1
|A|

)(
R2

max

(1−γ)3 + λ2

|S|

)
-Lipschitz.

Proof. For the smoothness constant, first, from Lemma E.1, we know that J(·) is Rmax

(1−γ)2

(
2− 1

|A|

)
-smooth.

It remains to show the regularizer R(θ)
def
= λ
|A||S|

∑
s,a log πθ(a | s) is λ

|S| -smooth. From (99), we have

∇R(θ) =
λ

|S|

(
1

|A|
−
[
πs(θ)

]
s∈S

)
.

From (90), we have ∥∥∥∥∂2R(θ)

∂θ2s

∥∥∥∥ =

∥∥∥∥− λ

|S|
H(πs(θ))

∥∥∥∥ ≤ λ

|S|
,

where the inequality is obtained by using ‖H(πs(θ))‖ ≤ 1 from Lemma 22 in Mei et al. (2020).

Since ∂2R(θ)
∂θs∂θs′

= 0 for s 6= s′, we have that
∥∥∇2R(θ)

∥∥ ≤ λ
|S| , which yields the smoothness constant of Lλ(·).

For the Lipschitzness constant, from (99), we know that

‖∇Lλ(θ)‖2 =

∥∥∥∥∇J(θ) +
λ

|S|

(
1

|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2
≤ 2 ‖∇J(θ)‖2 + 2

∥∥∥∥ λ|S|
(

1

|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2
Lemma E.1

≤ 2

(
1− 1

|A|

)
R2

max

(1− γ)3
+ 2

∥∥∥∥ λ|S|
(

1

|A|
−
[
πs(θ)

]
s∈S

)∥∥∥∥2
(101)

≤ 2

(
1− 1

|A|

)
R2

max

(1− γ)3
+

2λ2

|S|

(
1− 1

|A|

)
= 2

(
1− 1

|A|

)(
R2

max

(1− γ)3
+
λ2

|S|

)
. (104)
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Thus,

‖∇Lλ(θ)‖ ≤

√
2

(
1− 1

|A|

)(
R2

max

(1− γ)3
+
λ2

|S|

)
.

The truncated gradient assumption in the case of Lλ,H(·). As Lλ(θ) and Lλ,H(θ) use the same regular-
izer, the bias due to the truncation does not affect the regularization. Besides, from Lemma 4.8, we have that
Assumption (E-LS) holds. Thus, from Lemma 4.5, Assumption 3.2 holds for Lλ(θ) and Lλ,H(θ) with the same
constant D and D′ in Lemma 4.5 and the constant G in Lemma 4.8. That is,

|〈∇Lλ,H(θ), Lλ,H(θ)− Lλ(θ)〉| ≤ DγH , (105)

‖∇Lλ,H(θ)− Lλ(θ)‖ ≤ D′γH , (106)

with

D =
D′Rmax

(1− γ)3/2

√
1− 1

|A|
, (107)

D′ =
Rmax

1− γ

√(
1

1− γ
+H

)(
1− 1

|A|

)
. (108)

Similar to Corollary E.2, now we can provide the FOSP convergence of Lλ(θ).

Corollary E.4. Consider the vanilla PG (either REINFORCE or GPOMDP) applied in Lλ(·). Let δ0
def
=

L∗λ−Lλ(θ0) with L∗λ
def
= maxθ∈Rd Lλ(θ). For any accuracy level ε, if we choose the mini-batch size m such that

1 ≤ m ≤ 2ν
ε2 , the step size η = ε2m

2Lν with L = Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ
|S| and

ν =

2
(

1− 1
|A|

)(
HR2

max

(1−γ)2 + λ2

|S|

)
when using REINFORCE

2
(

1− 1
|A|

)(
R2

max

(1−γ)3 + λ2

|S|

)
when using GPOMDP

, (109)

the number of iterations T such that

Tm ≥ 8δ0Lν

ε4
= O((1− γ)−5ε−4), (110)

and the horizon H = O
(
(1− γ)−1 log (1/ε)

)
, then E

[
‖∇Lλ(θU )‖2

]
= O(ε2).

Proof. From Lemma E.3, we know that L = Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ
|S| .

From Lemma 4.10, we know that

ν =

2
(

1− 1
|A|

)(
HR2

max

(1−γ)2 + λ2

|S|

)
when using REINFORCE

2
(

1− 1
|A|

)(
R2

max

(1−γ)3 + λ2

|S|

)
when using GPOMDP

.

Plugging in L and ν in Corollary 4.7 yields the corollary’s claim.

E.4 Sample complexity for high probability global optimum convergence

In this section, we provide the sample complexity to reach a global optimum convergence of the expected return
J(·) in high probability for the softmax tabular policy with log barrier regularization.

Before the results, we introduce the stationary distribution

dρ,s(π
∗)

def
= Es0∼ρ(·),τ∼p(·|π∗)

[
(1− γ)

∞∑
t=0

γtP (st = s)

]
,
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where π∗ is the optimal policy. We refer to
∥∥∥dρ(π∗)ρ

∥∥∥
∞

def
= maxs∈S

dρ,s(π
∗)

ρ(s) as the distribution mismatch coefficient

of π under ρ (Agarwal et al., 2021)8. We assume that the initial state distribution ρ satisfies mins ρ(s) > 0. This
assumption was adapted by Agarwal et al. (2021) to ensure that the distribution mismatch coefficient is finite.

Corollary E.5. For any accuracy level ε > 0, any probability accuracy level δ ∈ (0, 1) and any starting state
distribution ρ, consider the vanilla PG (either REINFORCE or GPOMDP) applied to Lλ(·). If we chose the
horizon H = O

(
(1− γ)−1 log (1/εopt) log (1/δ)

)
, the batch size 1 ≤ m ≤ 2ν

δε2opt
and the number of iterations T

such that Tm ≥ 8(L∗λ−Lλ(θ0))Lν
δ2ε4opt

, the regularization parameter λ = (1−γ)ε
2
∥∥∥ dρ(π∗)ρ

∥∥∥
∞

and

εopt =
λ

2|S||A|
=

(1− γ)ε

4|S||A|
∥∥∥dρ(θ∗)ρ

∥∥∥
∞

(111)

with L, ν in the setting of Corollary E.4, then we have an upper bound of the sample complexity

Tm×H = O

 |S|4|A|4
∥∥∥dρ(θ∗)ρ

∥∥∥4
∞

δ2ε4(1− γ)10
· log (1/ε) log (1/δ)

 (112)

guarantees that J∗ − J(θT ) ≤ ε with probability at least 1− δ.

The above high probability global optimum sample complexity holds with a wide range of parameters (e.g. batch
size m and step size η) thanks to Corollary E.4.

We need the following result to link the stationary point convergence of Lλ(·) to the suboptimality gap con-
vergence J∗ − J(·) when the norm of the gradient of a stationary point and the regularization parameter λ are
sufficiently small.

Proposition E.6 (Theorem 5.2 in Agarwal et al. (2021)). Suppose θ is such that ‖∇Lλ(θ)‖ ≤ λ
2|S||A| , then

for every initial distribution ρ, we have

J∗ − J(θ) ≤ 2λ

1− γ

∥∥∥∥dρ(θ∗)ρ

∥∥∥∥
∞
. (113)

By leveraging Proposition E.6, we now derive the proof for Corollary E.5.

Proof. From Corollary E.4 we have that E
[
‖∇Lλ(θU )‖2

]
≤ δε2opt,

Thus, there exists t0 ∈ {0, · · · , T − 1} s.t. E
[
‖∇Lλ(θto)‖

2
]
≤ E

[
‖∇Lλ(θU )‖2

]
≤ δε2opt.

From Proposition E.6, we know that if ‖∇Lλ(θto)‖ ≤ εopt, we have

J∗ − J(θt0) ≤ 2λ

1− γ

∥∥∥∥dρ(θ∗)ρ

∥∥∥∥
∞

= ε.

Thus, we have

P(J∗ − J(θt0) ≤ ε) ≥ P (‖∇Lλ(θto)‖ ≤ εopt) . (114)

8For simplicity, we assume that the sampling for the initial state distribution is the same as the initial state distribution
appeared in the expected return J(·). There is no difference, compared to our results, to impose a different initial state

distribution µ 6= ρ for the stochastic vanilla PG. In this case, the distribution mismatch coefficient will be
∥∥∥ dρ(π∗)µ

∥∥∥
∞

.
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Consequently, we have

P(J∗ − J(θt0) ≥ ε) = 1− P(J∗ − J(θt0) ≤ ε)
(114)

≤ 1− P (‖∇Lλ(θto)‖ ≤ εopt)
= P (‖∇Lλ(θto)‖ ≥ εopt)

= P
(
‖∇Lλ(θto)‖

2 ≥ ε2opt
)

≤
E
[
‖∇Lλ(θto)‖

2
]

ε2opt
(by Markov’s inequality)

≤ δ. (115)

Since t0m ≤ Tm, we conclude that the upper bound of the sample complexity is

Tm×H ≥ 8(J∗ − J(θ0))Lν

δ2ε4opt
×H = O

 |S|4|A|4
∥∥∥dρ(θ∗)ρ

∥∥∥4
∞

δ2ε4(1− γ)10
· log (1/ε) log (1/δ)

 .

Remark. Following the proof of Corollary E.5, we can also deduce the iteration complexity of the exact full
gradient updates for the global optimum convergence.

Indeed, from Lemma E.3, Lλ(·) is smooth. From Theorem 3.4, we know that with the number of iterations

T ≥ 12δ0L

ε2opt
= O

(
δ0

(1− γ)4ε2

)
, (116)

we have min0≤t≤T−1 ‖∇Lλ(θt)‖2 ≤ ε2opt for the exact full gradient updates.

From Proposition E.6, we have min0≤t≤T−1 J
∗ − J(θt) ≤ ε.

Compared to the iteration complexity in Corollary 5.1 in Agarwal et al. (2021), ours (116) is improved by a
factor of 1− γ thanks to an improved analysis of the smoothness constant in Lemma E.3.

E.5 Sample complexity for the average regret convergence

By leveraging Proposition E.6, we now derive the proof for Corollary 4.11.

Proof. We define the following set of ”bad” iterates based on a technique developed by Zhang et al. (2021a)

I+
def
=

{
t ∈ {0, · · · , T − 1}

∣∣∣∣ ‖∇Lλ(θt)‖ ≥
λ

2|S||A|

}
(117)

with

λ =
(1− γ)ε

2
∥∥∥dρ(θ∗)µ

∥∥∥
∞

. (118)
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We have

J∗ − 1

T

T−1∑
t=0

J(θt) =
1

T

∑
t∈I+

J∗ − J(θt) +
1

T

∑
t/∈I+

J∗ − J(θt)

≤ |I+|
T
· 2Rmax

1− γ
+

1

T

∑
t/∈I+

J∗ − J(θt)

≤ |I+|
T
· 2Rmax

1− γ
+
T − |I+|

T
· 2λ

1− γ

∥∥∥∥dρ(θ∗)ρ

∥∥∥∥
∞

≤ |I+|
T
· 2Rmax

1− γ
+

2λ

1− γ

∥∥∥∥dρ(θ∗)ρ

∥∥∥∥
∞

(118)
=

|I+|
T
· 2Rmax

1− γ
+ ε. (119)

where the second line is obtained as |J(·)| ≤ Rmax

1−γ and the third line is obtained by Proposition E.6.

It remains to bound |I+|. In fact,

T−1∑
t=0

‖∇Lλ(θt)‖2 ≥
∑
t∈I+
‖∇Lλ(θt)‖2

≥ |I+|λ2

4|S|2|A|2
. (120)

Thus, we have

|I+|
T

≤ 4|S|2|A|2

λ2
· 1

T

T−1∑
t=0

‖∇Lλ(θt)‖2

(118)
=

16
∥∥∥dρ(θ∗)µ

∥∥∥2
∞
|S|2|A|2

(1− γ)2ε2
· 1

T

T−1∑
t=0

‖∇Lλ(θt)‖2 . (121)

Thus, we have

J∗ − 1

T

T−1∑
t=0

J(θt)
(119)+(121)

≤
32Rmax

∥∥∥dρ(θ∗)ρ

∥∥∥2
∞
|S|2|A|2

(1− γ)3ε2
· 1

T

T−1∑
t=0

‖∇Lλ(θt)‖2 + ε. (122)

Taking expectation over the iterations on both side, we have

J∗ − 1

T

T−1∑
t=0

E [J(θt)]
(119)+(121)

≤
32Rmax

∥∥∥dρ(θ∗)ρ

∥∥∥2
∞
|S|2|A|2

(1− γ)3ε2
· 1

T

T−1∑
t=0

E
[
‖∇Lλ(θt)‖2

]
+ ε. (123)

It suffices to have 1
T

∑T−1
t=0 E

[
‖∇Lλ(θt)‖2

]
≤ (1− γ)3ε3 to guarantee that J∗ − 1

T

∑T−1
t=0 E [J(θt)] ≤ O(ε).

From Corollary 4.7, consider the batch size m such that 1 ≤ m ≤ 2ν
(1−γ)3ε3 = O

(
1

(1−γ)6ε3

)
, the step size

O(ε3) ≤ η = (1−γ)3ε3m
2Lν ≤ O(1) with L, ν in the setting of Corollary E.4 . If the horizon H = O

(
log(1/ε)
1−γ

)
and

the number of iterations T is such that

Tm×H ≥ 8(J∗ − J(θ0))Lν

(1− γ)6ε6
×H = Õ

(
1

(1− γ)12ε6

)
,

we have 1
T

∑T−1
t=0 E

[
‖∇Lλ(θt)‖2

]
≤ (1− γ)3ε3, which conclude the proof.
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F Proof of Section 4.3

First, we give the definition of the advantage function Aπθ induced by the policy πθ appeared in the transferred
compatible function approximation error in Assumption 4.13. To do this, given a policy π, we define the state-
action value function Qπ : S ×A → R as

Qπ(s, a)
def
= Eat∼π(·|st),st+1∼P(·|st,at)

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣ s0 = s, a0 = a

]
.

From this, the state-value function V π : S → R and the advantage function Aπ : S × A → R, under the policy
π, can be defined as

V π(s)
def
= Ea∼π(·|s) [Qπ(s, a)] ,

Aπ(s, a)
def
= Qπ(s, a)− V π(s).

Before presenting the proof of Corollary 4.14, we need the following result to show that Fisher-non-degenerate
parametrized policy satisfies the relaxed weak gradient domination assumption.

Proposition F.1 (Lemma 4.7 in Ding et al. (2021a)). If the policy πθ satisfies Assumption 4.1, 4.12 and 4.13,
then

µF
√
εbias

(1− γ)G
+ ‖∇JH(θ)‖ ≥ µF

G
(J∗ − J(θ)). (124)

Remark. Here we use the weaker assumption (E-LS) instead of (LS) compared to the original Lemma 4.7
in Ding et al. (2021a). The relaxed weak gradient domination property still holds. The proof essentially follows
the same arguments and thus is omitted here.

Now we provide the proof of Corollary 4.14.

Proof. From Proposition F.1, we have that Assumption 3.6 holds. Also because of Assumption (E-LS), we have
Lemmas 4.2, 4.4 and 4.5 hold. Finally, by Corollary 3.7, this directly concludes the proof.

G FOSP convergence analysis for the softmax with entropy regularization.

In this section, we study stochastic gradient ascent on the softmax tabular policy with entropy regularization,
which is

J̃(θ)
def
= J(θ) + H(θ) (125)

where H(θ) is the “discounted entropy” defined as

H(θ)
def
= Eτ∼p(·|θ)

[ ∞∑
t=0

−γtλ log πst,at(θ)

]
.

Using the same technique to derive the full gradient of the expected return (3), we have

∇J̃(θ) = ∇J(θ)− λEτ

[
∇ log p(τ | θ)

∞∑
t=0

γt log πst,at(θ)

]
− λEτ

[ ∞∑
t=0

γt∇θ log πst,at(θ)

]
(1)
= ∇J(θ)− λEτ

[ ∞∑
k=0

∇θ log πsk,ak(θ)

∞∑
t=0

γt log πst,at(θ)

]
− λEτ

[ ∞∑
t=0

γt∇θ log πst,at(θ)

]

= ∇J(θ)− λEτ

[ ∞∑
t=0

γt log πst,at(θ)

(
t∑

k=0

∇θ log πsk,ak(θ)

)]
− λEτ

[ ∞∑
t=0

γt∇θ log πst,at(θ)

]
(5)
= Eτ

[ ∞∑
t=0

γt

(
(R(st, at)− λ log πst,at(θ))

(
t∑

k=0

∇θ log πsk,ak(θ)

)
− λ∇θ log πst,at(θ)

)]
, (126)
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where the third line is obtained by using the fact that for any 0 ≤ t < k, we have

Eτ [log πst,at(θ)∇θ log π(sk, ak)(θ)] = 0. (127)

Equation (127) is derived by following the same proof technique of Lemma B.4.

Thus, the stochastic gradient estimator of ∇J̃(θ) with mini-batch size m is

∇̂mJ̃(θ)
def
= ∇̂mJ(θ)− λ

m

m∑
i=1

H−1∑
t=0

γt

(
log πsit,ait(θ)

(
t∑

k=0

∇θ log πsik,aik(θ)

)
+∇θ log πsit,ait(θ)

)
. (128)

Notice that ∇̂mJ̃(·) is the unbiased gradient estimator of the truncated function

J̃H(θ)
def
= Eτ

[
H−1∑
t=0

γt (R(st, at)− λ log πst,at(θ))

]
. (129)

We show that ∇̂mJ̃(·) satisfies the (ABC) assumption as following.

Lemma G.1. The stochastic gradient estimator (128) satisfies Assumption (ABC) with

E
[∥∥∥∇̂mJ̃(θ)

∥∥∥2] ≤ (
1− 1

m

)∥∥∥∇J̃(θ)
∥∥∥2 +

2
(

1− 1
|A|

)
R2

max

m(1− γ)3
+

2λ2

m(1− γ2)

(
1− 1

|A|

)
+

8H|A|λ2

m(1− γ)3
. (130)

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ of ∇JH(θ). Thus

∇̂mJ(θ) = 1
m

∑m
i=1 g(τi | θ). Both ∇̂mJ(θ) and g(τ | θ) are unbiased estimators of JH(θ).

Similarly, let g̃(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ of ∇J̃H(θ). Thus

∇̂mJ̃(θ) = 1
m

∑m
i=1 g̃(τi | θ), and ∇̂mJ̃(θ) and g̃(τ | θ) are unbiased estimators of J̃H(θ).

Similar to (64), from (128) we have

E
[∥∥∥∇̂mJ̃(θ)

∥∥∥2] = E
[∥∥∥∇̂mJ̃(θ) +∇J̃H(θ)−∇J̃H(θ)

∥∥∥2]
=
∥∥∥∇J̃H(θ)

∥∥∥2 + E
[∥∥∥∇̂mJ̃(θ)−∇J̃H(θ)

∥∥∥2]

=
∥∥∥∇J̃H(θ)

∥∥∥2 + E

∥∥∥∥∥ 1

m

m∑
i=1

(g̃(τi | θ)−∇J̃H(θ))

∥∥∥∥∥
2


=
∥∥∥∇J̃H(θ)

∥∥∥2 +
1

m
E
[∥∥∥g̃(τ1 | θ)−∇J̃H(θ)

∥∥∥2]
=

(
1− 1

m

)∥∥∥∇J̃(θ)
∥∥∥2 +

1

m
E
[
‖g̃(τ1 | θ)‖2

]
. (131)

It remains to show Eτ
[
‖g̃(τ | θ)‖2

]
is bounded. From (128) we have
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E
[
‖g̃(τ | θ)‖2

]
= Eτ

∥∥∥∥∥g(τ | θ)− λ
H−1∑
t=0

γt log πst,at(θ)

(
t∑

k=0

∇θ log πsk,ak(θ)

)
− λ

H−1∑
t=0

γt∇θ log πst,at(θ)

∥∥∥∥∥
2


≤ 2E
[
‖g(τ | θ)‖2

]
+ 2λ2E

∥∥∥∥∥
H−1∑
t=0

γt log πst,at(θ)

(
t∑

k=0

∇θ log πsk,ak(θ)

)∥∥∥∥∥
2


+ 2λ2E

∥∥∥∥∥
H−1∑
t=0

γt∇θ log πst,at(θ)

∥∥∥∥∥
2


≤
2
(

1− 1
|A|

)
R2

max

(1− γ)3
+ 2λ2 E

∥∥∥∥∥
H−1∑
t=0

γt log πst,at(θ)

(
t∑

k=0

∇θ log πsk,ak(θ)

)∥∥∥∥∥
2


︸ ︷︷ ︸
1

+ 2λ2 E

∥∥∥∥∥
H−1∑
t=0

γt∇θ log πst,at(θ)

∥∥∥∥∥
2


︸ ︷︷ ︸
2

, (132)

where the last inequality is obtained by Lemma 4.2 with GPOMDP estimator and the constant G2 = 1 − 1
|A|

provided from Lemma 4.8.

Now we will bound 1 and 2 separately.

From Lemma B.5, we know that

2 =

H−1∑
t=0

γ2tE
[
‖∇θ log πst,at(θ)‖

2
]

Lemma 4.8
≤

(
1− 1

|A|

)H−1∑
t=0

γ2t

≤ 1

1− γ2

(
1− 1

|A|

)
. (133)

As for 1 , we have

1 ≤ H

H−1∑
t=0

γ2tE

(log πst,at(θ))
2

∥∥∥∥∥
t∑

k=0

∇θ log πsk,ak(θ)

∥∥∥∥∥
2


≤ H

H−1∑
t=0

γ2tE

(log πst,at(θ))
2

∥∥∥∥∥
t∑

k=0

∇θ log πsk,ak(θ)

∥∥∥∥∥
2


≤ H

H−1∑
t=0

γ2tE

[
(log πst,at(θ))

2
(t+ 1)

t∑
k=0

‖∇θ log πsk,ak(θ)‖2
]

(94)

≤ 2H

H−1∑
t=0

γ2t(t+ 1)2E
[
(log πst,at(θ))

2
]

≤ 2H|A|
H−1∑
t=0

γ2t(t+ 1)2 (134)

≤ 4H|A|
(1− γ)3

, (135)
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where (134) is obtained by using

E
[
(log πst,at(θ))

2
]

= Est

[∑
a∈A

πst,a(θ) (log πst,a(θ))
2

]
≤ |A|,

and the last line is obtained by γ2t ≤ γt and Lemma B.2.

Combining (131), (132), (133) and (135) yields the claim of the lemma.

By adopting Lemma 14 in Mei et al. (2020), we show that J̃(·) is smooth as following.

Lemma G.2. J̃(·) is
(
Rmax

(1−γ)2

(
2− 1

|A|

)
+ λ(4+8 log |A|)

(1−γ)3

)
-smooth.

Proof. From (125), we have

J̃(θ) = J(θ)− λEτ

[ ∞∑
t=0

γt log πst,at(θ)

]
.

From Lemma E.1, we know that J(·) is
(
Rmax

(1−γ)2

(
2− 1

|A|

))
-smooth.

From Lemma 14 in Mei et al. (2020), we know that Eτ [
∑∞
t=0 γ

t log πst,at(θ)] is
(
λ(4+8 log |A|)

(1−γ)3

)
)-smooth.

Combining the two smoothness constants yields the claim of the lemma.

From Lemma G.1 and Lemma G.2 we can also establish a similar FOSP convergence as for Corollary 4.7.

Corollary G.3. Consider the vanilla PG updates (128) for the softmax with entropy regularization (125) .

For a given ε > 0, by choosing the mini-batch size m such that 1 ≤ m ≤ 2ν
ε2 , the step size η = ε2m

2Lν , the horizon
H = O

(
(1− γ)−1 log (1/ε)

)
and the number of iterations T such that

Tm ≥ 8δ0Lν

ε4
= O((1− γ)−6ε−4) (136)

with

L =

(
Rmax

(1− γ)2

(
2− 1

|A|

)
+
λ(4 + 8 log |A|)

(1− γ)3

)
and

ν =
2
(

1− 1
|A|

)
R2

max

(1− γ)3
+

2λ2

(1− γ2)

(
1− 1

|A|

)
+

8H|A|λ2

(1− γ)3
,

then E
[∥∥∥∇J̃(θU )

∥∥∥2] = O(ε2).

Remark. The sample complexity Tm×H is O((1− γ)−8ε−4) instead of O((1− γ)−6ε−4) as in Corollary 4.7
due to the (1− γ)−3 dependency on the smoothness constant L and the (1− γ)−4 dependency on the bounded
variance constant ν.

Proof. From Lemma G.2, we know that

L =

(
Rmax

(1− γ)2

(
2− 1

|A|

)
+
λ(4 + 8 log |A|)

(1− γ)3

)
.

From Lemma G.1, we know that

ν =
2
(

1− 1
|A|

)
R2

max

(1− γ)3
+

2λ2

(1− γ2)

(
1− 1

|A|

)
+

8H|A|λ2

(1− γ)3
.

Plugging in L and ν in Corollary 4.7 yields the corollary’s claim.
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H Global optimum convergence under the gradient domination assumption

As Fazel et al. (2018); Mei et al. (2020) did for the exact policy gradient update, relying on the following gradient
domination assumption, we establish a global optimum convergence guarantee and the sample complexity analysis
for the stochastic vanilla PG.

Assumption H.1 (Gradient domination). We say that a differentiable function J satisfies the gradient dom-
ination condition if for all θ ∈ Rd, there exists µ > 0 such that

1

2
‖∇JH(θ)‖2 ≥ µ (J∗ − J(θ)) . (PL)

The gradient domination condition is also known as the Polyak-Lojasiewicz (PL) condition ( Lojasiewicz, 1963).
Equipped with this additional assumption, we can adapt Theorem 3 in Khaled and Richtárik (2020) and obtain
the following global optimum convergence guarantee.

Theorem H.2. Suppose that Assumptions 3.1, 3.2, 3.3 and H.1 hold. Suppose that PG defined in (7) (Alg. 1)
is run for T > 0 iterations with step size (ηt)t chosen as

ηt =

{
1
b if T ≤ b

µ or t ≤ t0
2

2b+µ(t−t0) if T ≥ b
µ and t > t0

(137)

with t0 =
[
T
2

]
and b = max{2AL/µ, 2BL, µ}. Then

J∗ − E [J(θT )] ≤ 16 exp

(
− µ(T − 1)

2 max{ 2ALµ , 2BL, µ}

)
(J∗ − J(θ0)) +

12LC

µ2T
+

26DγH

µ
. (138)

Remark. Notice that for the exact full gradient update, we have Assumption 3.2 and 3.3 hold with A = C =
D = 0 and B = 1. Thus under the smoothness assumption and the (PL) condition , we establish a linear
convergence rate for the number of iterations to the global optimal. We recover the linear convergence rate for
the softmax with entropy regularization in Theorem 6 in Mei et al. (2020) where the smoothness assumption
holds and the (PL) condition holds under the path of the iterations in the exact case.

As for the stochastic vanilla PG, the dominant term in (138) is 12LC
µ2T . This implies that the sample complexity

is T ×H = Õ(ε−1) with T = O(ε−1) and H = log ε−1.

Proof. Using the L-smoothness of J from Assumption 3.1,

J∗ − J(θt+1) ≤ J∗ − J(θt)− 〈∇J(θt), θt+1 − θt〉+
L

2
‖θt+1 − θt‖2

= J∗ − J(θt)− ηt
〈
∇J(θt), ∇̂mJ(θt)

〉
+
Lη2t

2

∥∥∥∇̂mJ(θt)
∥∥∥2 . (139)
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Taking expectation conditioned on θt and using Assumption 3.3 and H.1,

Et [J∗ − J(θt+1)] ≤ J∗ − J(θt)− ηt 〈∇J(θt),∇JH(θt)〉+
Lη2t

2
Et
[∥∥∥∇̂mJ(θt)

∥∥∥2]
(ABC)

≤ J∗ − J(θt)− ηt 〈∇JH(θt) + (∇J(θt)−∇JH(θt)),∇JH(θt)〉+

+
Lη2t

2

(
2A(J∗ − J(θt)) +B ‖∇JH(θt)‖2 + C

)
= (1 + Lη2tA)(J∗ − J(θt))− ηt

(
1− LBηt

2

)
‖∇JH(θt)‖2 +

Lη2tC

2

−ηt 〈∇J(θt)−∇JH(θt),∇JH(θt)〉
(PL)

≤
(

1− 2ηtµ

(
1− LBηt

2

)
+ Lη2tA

)
(J∗ − J(θt)) +

Lη2tC

2

−ηt 〈∇J(θt)−∇JH(θt),∇JH(θt)〉

≤
(

1− 3ηtµ

2
+ Lη2tA

)
(J∗ − J(θt)) +

Lη2tC

2

−ηt 〈∇J(θt)−∇JH(θt),∇JH(θt)〉 (140)

(9)

≤
(

1− 3ηtµ

2
+ Lη2tA

)
(J∗ − J(θt)) +

Lη2tC

2
+ ηtDγ

H

≤ (1− ηtµ)(J∗ − J(θt)) +
Lη2tC

2
+ ηtDγ

H , (141)

where (140) is obtained by the inequality 1− LBηt
2 ≥ 3

4 , and (141) is obtained by the inequality LηtA ≤ µ
2 , due

to the choice of step size ηt ≤ 1
b for all t ≥ 0 with b ≥ 2BL, 2AL/µ, respectively. Here, 1 − ηtµ ≥ 0 as ηt ≤ 1

b
and b ≥ µ.

Taking total expectation and letting rt
def
= E [J∗ − J(θt)] on (141), we have

rt+1 ≤ (1− ηtµ)rt +
Lη2tC

2
+ ηtDγ

H . (142)

If T ≤ b
µ , we have ηt = 1

b . Recursing the above inequality, we get

rT ≤
(

1− µ

b

)
rT−1 +

LC

2b2
+
DγH

b

(142)

≤
(

1− µ

b

)T
r0 +

(
LC

2b2
+
DγH

b

) T−1∑
i=0

(
1− µ

b

)i
≤ exp

(
−µT

b

)
r0 +

LC

2µb
+
DγH

µ
(143)

T≤ b
µ

≤ exp

(
−µT

b

)
r0 +

LC

2µ2T
+
DγH

µ
. (144)

If T ≥ b
µ , as ηt = 1

b when t ≤ t0, from (143), we have

rt0 ≤ exp

(
−µt0

b

)
r0 +

LC

2µb
+
DγH

µ

≤ exp

(
−µ(T − 1)

2b

)
r0 +

LC

2µb
+
DγH

µ
, (145)

where the last line is obtained by t0 =
[
T
2

]
≥ T−1

2 .

For t > t0,

ηt =
2

µ
(

2b
µ + t− t0

) .
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From (142), we have

rt ≤ (1− ηtµ)rt−1 +
Lη2tC

2
+ ηtDγ

H

=

2b
µ + t− t0 − 2

2b
µ + t− t0

rt−1 +
2LC

µ2
(

2b
µ + t− t0

)2 +
2DγH

µ
(

2b
µ + t− t0

) . (146)

Multiplying both sides by
(

2b
µ + t− t0

)2
, we have(

2b

µ
+ t− t0

)2

rt ≤
(

2b

µ
+ t− t0

)(
2b

µ
+ t− t0 − 2

)
rt−1 +

2LC

µ2
+

2DγH

µ

(
2b

µ
+ t− t0

)
≤
(

2b

µ
+ t− t0 − 1

)2

rt−1 +
2LC

µ2
+

2DγH

µ

(
2b

µ
+ t− t0

)
. (147)

Let wt
def
=
(

2b
µ + t− t0

)2
. Then,

wtrt ≤ wt−1rt−1 +
2LC

µ2
+

2DγH

µ

(
2b

µ
+ t− t0

)
. (148)

Summing up for t = t0 + 1, · · · , T and telescoping, we get,

wT rT ≤ wt0rt0 +
2LC(T − t0)

µ2
+

2DγH

µ

T∑
t=t0+1

(
2b

µ
+ t− t0

)

=
4b2

µ2
rt0 +

2LC(T − t0)

µ2
+

4bD(T − t0)γH

µ2
+
DγH

µ
(T − t0)(T − t0 + 1). (149)

Dividing both sides by wT and using that since

wT =

(
2b

µ
+ T − t0

)2

≥ (T − t0)2,

we have

rT ≤ 4b2

µ2wT
rt0 +

2LC(T − t0)

µ2wT
+

4bD(T − t0)γH

µ2wT
+
DγH

µwT
(T − t0)(T − t0 + 1)

≤ 4b2

µ2(T − t0)2
rt0 +

2LC

µ2(T − t0)
+

4bDγH

µ2(T − t0)
+

2DγH

µ
. (150)

By the definition of t0, we have T − t0 ≥ T
2 . Plugging this estimate, we have

rT ≤ 16b2

µ2T 2
rt0 +

4LC + 8bDγH

µ2T
+

2DγH

µ

T≥ b
µ

≤ 16b2

µ2T 2
rt0 +

4LC

µ2T
+

10DγH

µ
(145)

≤ 16b2

µ2T 2

(
exp

(
−µ(T − 1)

2b

)
r0 +

LC

2µb
+
DγH

µ

)
+

4LC

µ2T
+

10DγH

µ

T≥ b
µ

≤ 16 exp

(
−µ(T − 1)

2b

)
r0 +

8LC

µ2T
+

16DγH

µ
+

4LC

µ2T
+

10DγH

µ

= 16 exp

(
−µ(T − 1)

2b

)
r0 +

12LC

µ2T
+

26DγH

µ
. (151)

It remains to take the maximum of the two bounds (144) and (151) with b = max{2AL/µ, 2BL, µ}.
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