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Abstract—A pragmatic successive quantization approach is
applied to a neural network equalizer in a 16-QAM dual-
polarization fiber transmission experiment over a 9x50km TWC
fiber link. Quantization at 5 bits reduces the complexity by 85%,
with a negligible Q-factor penalty.

Index Terms—Optical fiber communication, nonlinearity mit-
igation, neural network equalization, quantization.

I. INTRODUCTION

The capacity of the optical fiber transmission systems is lim-
ited by the interaction between the chromatic dispersion (CD),
Kerr nonlinearity and the amplified spontaneous emission
noise. The advent of the coherent receiver paved the away for
the compensation of the transmission effects in the electrical
domain using the digital signal processing (DSP). In particular,
linear transmission effects such as the CD and polarization
mode dispersion (PMD) can be accurately compensated with
DSP [1]. However, compensation of the nonlinear distortions
is more challenging. A number of algorithms have been
proposed for the nonlinearity mitigation, such as the digital
back-propagation (DBP) [2]. These algorithms are usually
computationally complex due to, e.g., excessive application
of the fast Fourier transforms.

Neural networks (NNs) have recently been considered for
equalization in optical fiber communication [3], [4]. Com-
pared to DBP, NNs do not require the fiber link parameters,
and may mitigate the impairments with lower complexity [3],
[5]. There are two categories of NN equalizers in optical fiber
communication. In model-driven NNs, a discretization of the
channel model is parameterized and learned. For example,
in learned digital back-propagation [4], the parameters of the
split-step Fourier method for the discretization of the nonlinear
Schrödinger equation are optimized using a variant of the
stochastic gradient descent (SGD). In model-agnostic NNs, a
vanilla NN is used independent of the channel model [6].

To implement NNs in practice, it is desirable to reduce
their complexity as much as possible. The computational
complexity and memory requirements of the NNs can often
be drastically reduced using the quantization and pruning

with little impact on the prediction accuracy [7]. Various NN
quantization schemes have been explored in the literature. In
post-training quantization (PTQ), the weights and activations
of the NN are quantized after training in full precision [8]. In
contrast, in training-aware quantization (TAQ), quantization is
integrated in the training algorithm [9]. The best known ex-
ample of TAQ is the straight-through estimator [10], described
in Sec. III-B. The reader is referred to [11], [12] for some
of the recent developments in quantization of NNs. With the
exception of a few papers [13]–[15], quantization of the NNs
for equalization in optical fiber transmission has largely not
been explored.

This paper applies a successive PTQ (SPTQ) approach to
NNs used for the fiber nonlinearity mitigation. The main idea
is to compensate for the “quantization noise” in the training. In
this approach, the parameters (weights and activations) of the
NN are partitioned into several sets and sequentially quantized
based on a PTQ scheme (see Sec. III-B for details) [16]. In
stage i, the parameters in the sets k ≤ i are quantized based
on a PTQ scheme and fixed, while those in the sets k > i
are trained in the full precision in order to compensate for
the quantization noise resulting from the previous stages. This
approach is simple and tends to perform well in practice, with
a good PTQ scheme and hyper-parameter optimization [16].

The paper studies the efficacy of SPTQ compared to PTQ
and TAQ with the straight-through estimator (TAQ-STE),
w/o mixed-precision. Quantization is applied to a NN in
a dual-polarization 34.4 GBaud 16-QAM fiber transmission
experiment over a 9x50km link. The NN is placed after
the linear DSP to compensate for the dual-pol nonlinearities.
The proposed model consists of two parallel convolutional
filters for the compensation of the CD, a small hidden dense
layer for the cross-pol nonlinearities and their interaction
with CD, followed by an output layer with two neurons for
linear regression. The performance of the several quantization
algorithms is evaluated using the Q-factor as a function of the
launch power and quantization rate.

The findings demonstrate that SPTQ at the average rate of
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Fig. 1. The block-diagram of the 9x50 km DP-16QAM experimental transmission setup.

5 bits/weight incurs a minimal drop in the Q-factor, around
0.2 dB, while reducing the computational complexity and the
required memory of the NN by 85%. Further, 5-bit SPTQ
outperforms 6-bit PTQ by 1.4 dB and 6-bit TAQ-STE by
0.7 dB at 2 dBm. Compared to the previously published
result [17], SPTQ improves the quantization rate by 2 bits,
while simultaneously being simpler to implement than the
non-uniform TAQ in [17]. The improvement is due to the
incremental compensation of the quantization noise.

II. TWC TRANSMISSION EXPERIMENT

The fiber-optic transmission experiment considered in this
paper is illustrated in Fig. 1. At the transmitter (TX), two
pseudo-random bit streams (PRBS) for the x and y polar-
izations are generated. They are mapped to two sequences
of symbols taking values in a 16-QAM constellation. The
complex-valued symbols are separated into the real and imag-
inary parts and fed to an arbitrary wave generator (AWG).
The AWG modulates the sequence of symbols using a root
raised-cosine (RRC) filter with the roll-off factor of 0.1 at 34.4
GBaud, and outputs four continuous-time electrical signals
corresponding to the I and Q components of each polarization.
The digital-to-analog converters (DACs) in the AWG operate
at 88 Gsamples/s.

The four electrical signals are converted to optical signals
and polarization multiplexed with a dual-polarization Mach-
Zehnder modulator (MZM), driven by an external cavity laser
(ECL) at wavelength 1.55 µm with the line-width 100 KHz.
The optical signal is transmitted over a Truewave Classic
Fiber (TWC) link, consisting of 9 spans of length 50 km
in a straight line in the lab. At the end of each span, an
Erbium-doped fiber amplifier (EDFA) with 5 dB noise figure
is placed. The fiber has 0.23 dB/km loss, 2.8 ps/(nm-km) CD,
and 2 (Watt · km)−1 nonlinearity parameter. The TWC fiber
is deployed in some commercial systems. This fiber has a low
dispersion and high nonlinearity coefficient, and thus operates
in the nonlinear regime at high powers.

At the receiver, the optical signal undergoes polarization
demultiplexing, and is transformed to four electrical signals
through an integrated coherent receiver. The electrical signals
are converted to the discrete-time signals by a 50-Gsamples/s
oscilloscope, and up-sampled at 2 samples/symbol. The oscil-
loscope includes analogue-to-digital converters (ADCs) that
quantize the signals at the effective number of bits of 5.

The equalization is performed by the conventional dual-
polarization linear DSP [1], followed by a NN. The linear DSP
consists of a cascade of the frequency-domain CD compensa-
tion, multiple-input multiple-output (MIMO) equalization via
the radius directed equalizer (RDE) to compensate for PMD
[18], polarization separation, and the carrier-phase estimation
(CPE) using the two-stage carrier phase estimation algorithm
of Pfau et al. to compensate for the phase offset [19]. Lastly,
the nonlinear equalization is performed by a NN, which takes
the linearly-equalized symbols and mitigates dual-polarization
nonlinearities, as well as the distortions introduced by the
components at TX and RX.

III. QUANTIZATION OF THE NEURAL NETWORKS FOR
NONLINEARITY MITIGATION

A. Neural network equalizers

The architecture of the proposed NN is shown in Fig. 2. The
four real-valued symbols of the x and y polarizations after the
CPE over T time steps are denoted by the vectors ℜ(̃sx),
ℑ(̃sx), ℜ(̃sy) and ℑ(̃sy). The resulting array of shape (T, 4)
is fed to the NN. The corresponding symbols at the output
of the NN are ℜ(̂sx), ℑ(̂sx), ℜ(̂sy) and ℑ(̂sy), respectively.
The NN operates in a sliding-window fashion: as the vector
at the input of the NN is shifted forward two steps in time,
two complex symbols are produced. Thus, T is arbitrary.

Due to the constrains of the practical systems, a low-
complexity architecture is considered. The model consists
of a cascade of three small layers. The first layer includes
two parallel real-valued one-dimensional convolutional filters(
h
(i)
R

)K
i=1

and
(
h
(i)
I

)K
i=1

of length K = 41 with no activation,
for the compensation of CD in the symbols of the x and y
polarizations. Each filter is convolved with each of its input
vectors separately, with stride 1 and the same padding. There
are total 2K = 82 real-valued filter taps, far less than in
generic convolutional layers used in the literature with large
feature maps. The outputs of the convolutional filters are suit-
ably added and subtracted in order to implement 2 complex-
valued convolutions from 8 real-valued ones, resulting in four
vectors.

The four outputs of the convolutional filters are concate-
nated in a vector and passed to a fully-connected (FC) layer
with ND = 100 hidden neurons, and tangent hyperbolic (tanh)
activation. The FC layer processes the two polarizations jointly
in order to compensate the cross-pol nonlinear interactions
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Fig. 2. The architecture of the NN. The input is the linearly-equalized symbols s̃x and s̃y , and the output is the fully-equalized symbols ŝx and ŝy . The
convolutional filter taps are indicated by h

(i)
R and h

(i)
I . The activation is tanh is the dense layer, and does not exist in the convolutional and output layer.
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Fig. 3. Performance of the proposed NN equalizer relative to the linear DSP.

during the propagation. Finally, there is an output layer with
No = 4 neurons, 2 per each polarization symbol, followed by
the nearest-neighbor symbol detection.

The NN performs nonlinear regression by minimizing the
mean-squared error (MSE) between its output and the expected
output (i.e., the transmitted symbols) in a training data set. The
computational complexity of the NN, measured by the number
of the floating-point (FP) real multiplications per complex
symbol per polarization, is

C = 4K + 2ND +
⌈NDNo

2K

⌉
. (1)

Fig. 3 compares the Q-factors of the proposed (unquantized)
NN and linear DSP with respect to the average power of the
transmitted signal. The improvement results from the miti-
gation of the cross-pol nonlinearities, as well as equipment’s
distortions. The Q-factors of the NN is comparable to that of a
DBP with 3 steps/span at 2 dBm on the same experimental data
set [5]. The raw data before the linear DSP was not available
to add the DBP curve to Fig. 3. The quantization approach
proposed in this paper can, however, be applied to any NN
equalizer.

B. Quantization of the neural networks

The real numbers are usually represented in FP32 format
with 32 bits, or in FP64 with 64 bits. To implement the NN

in memory or computationally-constrained environments, it is
desirable to represent the weights, biases, activations and the
input data with fewer bits [14]. To do this, a full-precision real
number w ∈ R is mapped by a quantizer Q(.) to a quantized
value ŵ = Q(w) ∈ W , where W is the quantization codebook

W =
{
0, w(1), · · · , w(N−1)

}
,

in which w(i) are the quantization symbols or levels. The
quantization rate or precision of W is b = log2 N bits.

In uniform quantization, the quantization symbols w(i) are
uniformly placed between a minimum and maximum value.
Let w be a full precision parameter anywhere in the NN, and
(a, c) the clipping range, e.g., the smallest interval containing
the unquantized parameters. The clipping range is often tuned
in a process called calibration, which may use some unlabeled
training data depending on the algorithm. The uniformly
quantized weight is [9]:

ŵ =
⌊c(w, a, c)− a

s(a, c,N)

⌉
s(a, c,N) + a,

where c(w, a, c)=min(max(w, a), c) is the function that clips
w in the interval (a, b), s(a, c,N)=(c− a)/(N − 1), and ⌊.⌉
denotes the nearest integer. The clipping range and bit width
b are hyper-parameters that are optimized. The non-uniform
quantization can be defined via similar relations [11].

PTQ begins with training the model in FP32, and quantizes
the resulting weights, activations and the input tensor [20].
This reduces the computational complexity and storage for
the inference phase [20]. This technique has low overhead,
and is advantageous in applications where the training data
for calibration is unavailable. However, PTQ below 8 bits can
lead to a substantial reduction in the accuracy [21].

In TAQ, the quantization and training algorithms are si-
multaneously developed. This technique usually enhances the
prediction accuracy of the model by accounting for the quan-
tization noise during the training. However, learning via the
backpropagation of errors in SGD is not possible directly,
since the quantizer is a piece-wise flat function with zero
derivative almost everywhere. The straight-through estimator
is an empirical method that addresses the problem of the zero
gradient by modifying the chain rule for differentiation in SGD
to ensure a non-zero approximate gradient [10]. The most
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Fig. 4. The Q-factor versus launch power at several quantization rates, for (a) PTQ, (b) TAQ, and (c) SPTQ at 5 bits.

widely used surrogate for the gradient is the identity function,
in which dŵ/dw

∆
= 1 [22]. Even though one is not a good

approximation of zero, STE works surprisingly well in some
models. TAQ typically provides higher prediction accuracy
than PTQ when quantizing at low number of bits, at the cost of
increased computational and implementation complexity. On
the other hand, if the approximation technique is not carefully
chosen, TAQ may perform even worse than PTQ [23].

SPTQ is a combination of PTQ and TAQ, without the
complexity of TAQ, or having to address the zero gradient
problem [16]. At stage i, the set of weights in the layer ℓ

distinguished by an index set P(ℓ)
i is partitioned into two

subsets P(ℓ)
i,1 and P(ℓ)

i,2 corresponding to the quantized and
unquantized weights respectively, i.e.,

P(ℓ)
i =

{
P(ℓ)
i,1 ,P

(ℓ)
i,2

}
, P(ℓ)

i,1 ∩ P(ℓ)
i,2 = ∅.

The corresponding weights are denoted by W
(ℓ)
i ∈ P(ℓ)

i ,
W

(ℓ)
i,1 ∈ P(ℓ)

i,1 and W
(ℓ)
i,2 ∈ P(ℓ)

i,2 . The model is first trained
over W

(ℓ)
i in FP32. Then, the resulting weights W

(ℓ)
i,1 are

quantized under a suitable PTQ scheme. Next, W (ℓ)
i,1 is fixed,

and the model is retrained by minimizing the loss function with
respect to W

(ℓ)
i,2 , starting from the previously trained values.

The second group is retrained in order to compensate the
quantization noise in the first group, and make up for the loss
in accuracy. In stage i+ 1, the above steps are repeated upon
substitution P(ℓ)

i+1
∆
= P(ℓ)

i,2 . The weight partitioning, group-wise
quantization, and retraining is repeated until the network is
fully quantized.

In another version of this algorithm, the partitioning for all
stages is set initially. That is to say, the weights are partitioned
into a number of groups and successively quantized, such that
at each stage the weights of the previous groups are quantized
and fixed, and those of the remaining groups are retrained.

The hyper-parameters of the SPTQ are the choice of the
quantizer function in PTQ and the partitioning scheme. There
are several choices for the partitioning scheme, such as random
grouping, neuron grouping and local grouping. Research has
demonstrated that models trained with SPTQ provide classi-
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Fig. 5. The Q-factor versus the partition size in SPTQ.

fication accuracies comparable to their baseline counterparts
trained and deployed in 32-bit, with fewer bits [16].

In the mixed-precision quantization, different layers, feature
maps, channels, weight groups or activations are quantized
generally at different rates, depending on the sensitivity of the
loss function. In the NN in Sec. III-A, the convolutional and
dense layers are quantized at b1 and b2 ≤ b1 bits, respectively.

IV. GAINS OF QUANTIZATION

The dataset required for training the NN is obtained from
the TWC transmission experiment described in Sec. II. The
training set contains 600,000 symbols from a 16-QAM con-
stellation. A test set of 100,000 symbols is used to assess
the performance of the NN. Each dataset is measured at a
given power, during which the BER may fluctuate in time due
to the environmental changes. The symbols on the boundary
of the data frame are eliminated to remove the effects of
anomalies. The NN at each power is trained and evaluated
with independent datasets of randomly chosen symbols at the
same power.

The NN model described in Sec. III-A is considered for
nonlinearity mitigation. The hyper-parameters of this model
are the size of the convolutional filters K and the number
of hidden neurons ND. The filters’ length is determined by
the channel memory measured in the number of symbols due
to the residual dispersion left after the CD compensation.
This is estimated to be 40 symbols, through the correlation



function of the received symbols after CPE, or performance
evaluation. The minimum number of hidden units is 100,
below which the performance rapidly drops. The NN is built,
trained and evaluated in the Python’s TensorFlow library.
The loss function is the mean-squared error, and the learning
algorithm is the Adam-Optimizer with the learning rate of
0.001. The quantization is implemented in the open-source
library Larq in Python.

Three quantization algorithms are applied and compared.
First, PTQ is performed on the unquantized FP-trained model,
where all layers are quantized at 6 or 7 bits. Then, QAT is
implemented, where the weights of all layers are randomly
initialized and subsequently quantized with STE at 6 or 7
bits. QAT can also be performed starting with the weights
quantized by PTQ. The resulting PTQ-QAT does not improve
much upon TAQ, and is more complex. Finally, the SPTQ
described in Sec. III-B is applied, by assigning a bit-width of
5 for both weights and activations of the dense layer uniformly.
The convolutional layer is given 8 bits, but in our model this
layer has few weights, and little impact on the complexity; see
(1).

Fig. 4(a) shows the Q-factor of PTQ with b1 = b2. PTQ im-
plemented uniformly with 6 bits leads to a Q-factor drop of 0.7
dB at -2 dBm, and 1.9 dB at 2 dBm. The results demonstrate
that the performance degradation caused by the quantization
grows weakly as the transmission power increases. As depicted
in Fig. 4(b), TAQ-STE improves upon PTQ by reducing the
Q-factor penalty to 0.5 dB at -2 dBm, and to 1.2 dB at 2 dBm,
at 6 bits. SPTQ attains the best results, with a Q-factor drop of
0.2 dB at -2 dBm, and 0.5 dB at 2 dBm when quantizing at as
few as 5 bits. It can be seen in Fig. 4(c) that SPTQ is generally
subject to a smaller Q-factor penalty across the whole range
of power, at even a lower bit-width, than PTQ and TAQ-STE.
The performance rapidly drops below the threshold value of
b1 = b2 = 5 bits. Compared to our previously published
result [17], uniform SPTQ outperforms a more complex non-
uniform TAQ by 2 bits at the same average signal power, in
this experiment.

The impact of the partition size in SPTQ is depicted in
Fig. 5. By increasing the number of partitions in the dense
layer, the Q-factor is enhanced. This is because a larger
partition size reduces the number of the quantized weights
at any given stage. A plateau in performance is observed
after a certain partition size. We have observed that, as
the transmission power increases, the nonlinear effects grow,
making the task more challenging for the NN, and hence,
requiring more partitions to maintain a good performance.

V. CONCLUSIONS

The paper compares post-training, a proposed succes-
sive post-training, and training-aware quantization with the
straight-through estimator, in application to a NN used for
the nonlinearity mitigation in a 16-QAM dual-polarization
TWC fiber transmission experiment. The Q-factor of these
quantization algorithms are compared at several launch powers
and quantization rates. Successive post-training quantization at

5 bits lowers the complexity by 85% with negligible Q-factor
penalty, outperforming the more complex alternatives by 2 bits
at the same launch power.
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