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Abstract

Due to the wide variety of sensors, with different spatial resolutions, operating frequency bands, as well as acquisition
modes (Stripmap, Spotlight, TOPS...), despeckling neural networks trained on a given type of SAR images do not perform
well on other kinds of images. By considerably simplifying the building of training sets and directly including images
from the sensor and acquisition mode of interest, self-supervised learning is a very appealing solution. This paper analyses
the preprocessing requirements of the MERLIN strategy that assumes statistical independence of the real and imaginary
parts of single look complex SAR images to perform the self-supervised training.

1 Introduction

Deep neural networks lead to unprecedented quality in sev-
eral image restoration tasks (see for example the recent
transformer-based methods [1, 2]). In the context of SAR
despeckling, two difficulties impede the direct application
of these techniques: the lack of speckle-free images (which
can be only partially overcome by either averaging long
time series or degrading the spatial resolution) and the poor
generalization performance when moving from a training
scenario in which spatially-uncorrelated synthetic speckle
is considered to actual SAR images with correlations due
to the system response [3]. Ideally, networks should be
trained directly from SAR images corrupted by speckle,
without requiring additional data to provide a ground truth.
Several self-supervised learning strategies have been pro-
posed these last years to overcome these limitations [4].
MERLIN [5] (coMplex sElf-supeRvised despeckLINg) is
a self-supervised approach that requires only single look
complex (SLC) images and that is robust to the spatial cor-
relations of speckle. It therefore possesses attractive practi-
cal advantages to train networks tailored to specific sensors
and/or acquisition modes. Yet, a key element for the appli-
cation of MERLIN is the statistical independence of the
real and imaginary parts of SLC images. While this inde-
pendence condition is quite straightforward to obtain from
satellite images captured in Stripmap mode, handling other
SAR systems is more challenging.
This paper provides an in-depth analysis of the impact of a
zero Doppler shift and describes pre-processing steps that
make MERLIN applicable to Sentinel-1 images acquired
with TOPS mode or airborne images with asymmetrical
power spectral densities.

2 Learning to despeckle in a fully
unspervised way: MERLIN

In this section, we first recall the self-supervised strategy
MERLIN introduced in [5], then we analyze the impact
of the SAR system response. In particular, we derive an
analytical model that explains why a zero Doppler shift is
detrimental to the despeckling process. In section 3, we
then describe pre-processing strategies that are required for
two specific SAR systems: Sentinel-1 with TOPS scanning
mode and airborne SAR such as drones.

2.1 Recall of the self-supervised training
strategy in MERLIN

Training a despeckling network in the absence of ground
truth is possible using the self-supervised training strategy
MERLIN [5, 6] that separates the real and imaginary parts
of an SLC image and then trains a network fed with ei-
ther the real part or the imaginary part to predict values as
close as possible (in a statistical sense) to the imaginary or
real parts, respectively. Under the assumption of fully de-
veloped speckle, the real part a ∈ RN and the imaginary
part b ∈ RN of the complex amplitudes z ∈ CN are in-
deed statistically independent. Accessing only the real or
imaginary component is not sufficient to be able to predict
the fluctuations due to speckle in the other component and
only the deterministic component of the signal is extracted:
the scene reflectivity. It is proved in [6] that estimators of
the reflectivity r̂(·) that maximize, on average, the likeli-
hoods p(b|r̂(a)) and p(a|r̂(b)) can recover the actual re-
flectivity, even though this reflectivity is not available for
training, and that, in the presence of strong scatterers, the
network recovers the sum of the intensity of the scatterer



Figure 1 A simple model of the transfer function of a
SAR system with a zero Doppler shift δ.

and of the reflectivity of the background.

2.2 Statistical independence of real and
imaginary parts and the impact of the
SAR system response

The statistical independence of the real and imaginary
parts of the SLC images used to train the despeckling net-
work is essential. The likelihood p(b|r) is, indeed, maxi-
mal for r = b. If a and b were statistically dependent, the
network would learn a mapping r̂(a) that recovers at best
b, thereby keeping most of the speckle fluctuations.
Let r ∈ RN

+ be the vector containing the reflectivities of
the N pixels of the scene. Under Goodman’s fully devel-
oped speckle model, the real part a ∈ RN and the imag-
inary part b ∈ RN of the vector of complex amplitudes
z ∈ CN are jointly Gaussian, centered, and have the fol-
lowing covariance matrix:

Cov
[(

a
b

)]
=

(
1
2diag(r) 0

0 1
2diag(r)

)
. (1)

Under this simple modeling, the real and imaginary parts
of the complex amplitude are not only statistically inde-
pendent but also spatially uncorrelated. In practice, the re-
sponse of the SAR system is not perfect but involves some
amount of smoothing, i.e., the complex amplitudes after
the SAR synthesis z̃ are related to the ideal complex ampli-
tudes z through the spatial-domain SAR system response
H ∈ CN×N : z̃ = Hz. The decomposition H = M+ jN
of the SAR system response into real and imaginary com-
ponents leads to the expression of the covariance matrix of

Figure 2 The cross spectral density between the real and
imaginary parts of speckle-corrupted complex amplitudes
induced by the transfer function shown in Figure 1. The
blue rectangle is positive while the red rectangle is nega-
tive.

the real and imaginary parts ã and b̃ of the SLC image z̃:

Cov
[(

ã

b̃

)]
=(

M −N
N M

)(
1
2diag(r) 0

0 1
2diag(r)

)(
Mt Nt

−Nt Mt

)
, (2)

which gives:

Cov
[
ã
]
= Cov

[
b̃
]
= 1

2Mdiag(r)Mt + 1
2Ndiag(r)Nt (3)

and

Cov
[
ã, b̃

]
= 1

2Mdiag(r)Nt − 1
2Ndiag(r)Mt. (4)

This shows that the SAR system response not only intro-
duces spatial correlations in ã and b̃ (equation (3)) but can
also break the initial statistical independence between real
and imaginary parts (equation (4) when Mdiag(r)Nt ̸=
1
2Ndiag(r)Mt). In the next paragraph we show that this
is in particular the case of SAR systems with zero Doppler
shifts.

2.3 A model of the impact of zero Doppler
shifts

When considering sufficiently small areas, the SAR sys-
tem can be considered shift-invariant (similarly to the iso-
planatism domain of optical systems) and characterized by
a transfer function in Fourier domain. In order to derive
closed-form expressions of the correlations between the
real and imaginary parts of a SAR image, we consider the
following simplifying assumptions: (i) the area is homoge-
neous (and r = 1 to shorten the notations), (ii) the SAR



Figure 3 Numerical experiment illustrating the theoretical derivation of the covariance of real and imaginary compo-
nents of an SLC image in case of a zero-Doppler shift: in the absence of zero-Doppler shift (left-hand side), there are
spatial correlations among the real and imaginary parts but the imaginary part is independent from the real part. This is
no longer the case when a zero-Doppler shift is present (right-hand side of the figure).

system is shift-invariant and its transfer function is a rect-
angular function in the range and azimuth frequency direc-
tions (see Figure 1). The continuous-domain expression of
the transfer function of such system is:

t(νrg, νaz) = Π
[−Brg

2 ,
Brg
2 ]

(νrg) ·Π[−Baz
2 +δ,Baz

2 +δ](νaz), (5)

with Π[a,b](ν) the rectangular function such that
Π[a,b](ν) = 1 for all ν such that ν ∈ [a, b] and
Π[a,b](ν) = 0 otherwise. In space-domain, the impulse
response of the SAR system is:

h(x, y) = Brgsinc(πxBrg)Bazsinc(πyBaz) exp(−2jπyδ),
(6)

with sinc(u) = (sinu)/u for u ̸= 0 and sinc(0) = 1 the
cardinal sine function, and x and y the range and azimuth
coordinates, respectively.
Owing to the shift-invariance property of the SAR sys-
tem, the spatial-domain response is convolutive and writes:
H = conv(h), where conv() builds a convolution matrix
and h is the sampled impulse response. Note that the real
part of h is even in both variables x and y while the imag-
inary part of h is even with respect to x and odd with re-
spect to y. The operator M thus corresponds to the con-
volution with an even kernel and Mt = M, while N is
a convolution with an odd kernel and Nt = −N. Since
we assumed that diag(r) corresponds to the identity ma-
trix, we get that Cov

[
ã, b̃

]
= −MN (equation (4) gives

−1
2 (MN +NM) and operators M and N being discrete

convolutions, they commute). The composition of convo-
lution operators M and N corresponds to a single convolu-
tion that we characterize in Fourier domain in the follow-
ing. Since M and N are the real and imaginary part of H,
their transfer function are given by the decomposition of
H into a symmetrical and an anti-symmetrical component.
Under our continuous-domain modeling, we can decom-

pose:

t(νrg, νaz) =
t(νrg, νaz) + t(νrg,−νaz)

2︸ ︷︷ ︸
even

+
t(νrg, νaz)− t(νrg,−νaz)

2︸ ︷︷ ︸
odd

, (7)

where the even component gives the real part of h in the
spatial domain and the odd component gives j times its
imaginary part. We represent in Figure 2 the product
of these transfer functions, i.e., the cross spectral density
(CSD) of the real and imaginary parts of z̃:

Sãb̃ =
−1
4j Π[−Brg

2 ,
Brg
2 ]

(νrg) ·
(
Π[Baz

2 −δ,Baz
2 +δ](νaz)

−Π[−Baz
2 −δ,−Baz

2 +δ](νaz)

)
. (8)

The inverse Fourier transform of this CSD finally gives the
cross-correlation function:

[ã ⋆ b̃](x, y) = Brgsinc(πxBrg)δsinc(2πyδ) sin(πyBaz)

=
BrgBaz

2
sinc(πxBrg)sinc(πyBaz) sin(2πyδ)

(9)

which is the continuous-domain version of the covari-
ance Cov

[
ã, b̃

]
. The expression (9) shows that the cross-

correlation (and the covariance) between the real and imag-
inary parts is zero when δ = 0, which was expected since
h is then real-valued (i.e., N = 0). When δ ̸= 0, the
cross-correlation is still zero for y = 0. This indicates that,
under our model of a SAR system with a rectangular trans-
fer function and a zero Doppler shift, the real and imagi-
nary parts of the complex amplitudes at any given pixel are
statistically independent. Yet, there are statistical depen-
dencies between the real part at a pixel and the imaginary
parts of the pixels with neighboring azimuth coordinates.



This precludes the use of the real and imaginary parts of an
SLC image with a zero Doppler shift to train a neural net-
work with MERLIN: the network would then exploit the
statistical dependency of neighboring azimuth locations to
recover the speckle in the other component, leaving a sig-
nificant amount of speckle in its output.

Figure 3 illustrates on a small numerical experiment these
results. Images with constant reflectivities and fully-
developed speckle were simulated. A different SAR trans-
fer function has been applied to the images: on the left-
hand side of the figure the rectangular transfer function has
no zero-Doppler shift, while on the right-hand side there is
a zero-Doppler shift. The bottom part of the figure displays
the covariance matrix of the vector formed by concatenat-
ing all values of the real part and of the imaginary part of
an image, as defined in equation (2). This 2× 2 block ma-
trix is block-diagonal in the absence of zero-Doppler shift,
which indicates the independence1 of the real and imagi-
nary parts. There are some correlations between the real
part values of neighboring pixels due to the low-pass filter-
ing effect of the SAR system (and, similarly, correlations
between imaginary part values): the blocks on the diag-
onal are full2. When a zero-Doppler shift is introduced,
correlations between the real and imaginary parts appear
(see bottom-right of the figure). A bi-dimensional repre-
sentation of the spatial structure of this covariance shows
the expected shape derived in equation (9) with a positive
correlation and a negative correlation due to the sine func-
tion. This theoretical analysis and numerical experiments
indicate that special care must be taken to ensure that the
real and imaginary parts of the SLC image are actually in-
dependent by applying an adequate pre-processing step.

3 Experimental results

3.1 SAR-Light drone data
3.1.1 Data pre-processing
Drone data has been acquired by the ONERA SAR drone
SAR-Light [7] in X-band at high resolution (over a fre-
quency bandwidth of 720MHz) and in stripmap config-
uration. Azimuth resolution is achieved with a constant
integration angle for the central frequency of the emitted
signal. The spectral support of the SLC image is then
larger for high frequencies and smaller for small frequen-
cies. This yields to a transfer function with a trapezoidal
support which cannot be made symmetric without modify-
ing its shape. To do so, the support of the transfer function
t is first defined by the binary mask w(νrg, νaz):

w(νrg, νaz) =

{
1 if |t(νrg, νaz)| > λ

0 otherwise
(10)

where the threshold λ has been chosen empirically. When
estimating the mask w from the power spectral density of

1note that since the real and imaginary parts of SLC images are jointly
Gaussian, decorrelation and statistical independence are equivalent

2since the SAR system is shift-invariant, these covariance blocks have
a special structure: Block Toeplitz Matrix with Toeplitz Blocks (BTTB),
i.e., it corresponds to a 2D convolution matrix

Table 1 Description of the hyperparameters used to train
a residual U-Net with MERLIN.

SAR-light Sentinel-1 TOPS

# images 1 10
patch size 256× 256 256× 256
batch size 12 12
stride size 32 128
# batches 101 1365
# epochs 30 30
gradient norm 2.0 1.0

learning rate

{
10−2 10−2

10−3 after 4 epochs 10−3 after 4 epochs
10−4 after 20 epochs 10−4 after 20 epochs

an SLC image, mathematical morphology operations are
generally necessary to fill small holes and obtain a regular
support. This support can be made fuzzy by additionally
performing a convolution with a Gaussian kernel. Assum-
ing that the azimuth spectrum has been centered on 0Hz, a
symmetrical support wsym is obtained by performing hori-
zontal and vertical symmetries:

wsym(νrg, νaz) = w(νrg, νaz) · w(−νrg, νaz)

· w(νrg,−νaz) · w(−νrg,−νaz). (11)

The pre-processed image is obtained by applying a fil-
ter with a transfer function corresponding to the product
of the symmetric mask wsym and a spectral apodization
(introduced to reduce the sidelobes associated to the re-
sponse of bright targets). The apodization function that is
applied is a 2D separable Hamming function, see Figure
4. The transfer function of the pre-processed data has the
Hermitian symmetry, implying the independence between
real and imaginary parts of the pre-processed SLC image.
Moreover, the apodization function reduces the smearing
of strong point-like scatterers, making the image easier to
interpret.

3.1.2 Results
MERLIN has been trained on a single image acquired by
the drone system SAR-light operated by the ONERA. Im-
age size is 931 × 2000 pixels and it has been cropped
into overlapping patches as described in Table 1. Figure
5 shows the result on a crop of size 500 × 500 pixels. It
can be observed that the reflectivity of the strong scatterer
in the middle of the scene is well restored by MERLIN.
Compared to MuLoG+BM3D, MERLIN can handle spa-
tial correlations in the speckle, thus preserving the origi-
nal image resolution. As a consequence, MuLoG+BM3D
has failed to reconstruct the dark and low-contrasted linear
structure in the top left of the image, while MERLIN has
effectively preserved it. Moreover, fine textures character-
izing the agricultural field are well restored by MERLIN,
while MuLoG+BM3D has oversmoothed such areas.

3.2 Sentinel-1 TOPS data
3.2.1 Data pre-processing
Bursts composing TOPS SLC products present a linearly
varying Doppler frequency in the azimuth direction, which
is due to the steering of the antenna [8]. Inverting such lin-



Figure 4 Pre-processing of drone SLC data to make its spectrum symmetrical.

Figure 5 Results on SAR-light data. Left: the speckle corrupted amplitude image. Center: the image filtered with Mu-
LoG+BM3D. Right: estimation produced with MERLIN.

ear frequency modulation is necessary to ensure symmetry
of the spectrum. This operation is referred to as deramp-
ing. Depending on the acquisition process, even after de-
ramping the azimuth spectrum might not be centered on
0Hz. The operation consisting in estimating the Doppler
centroid frequency and applying a global shift to the com-
plex spectrum is called demodulation. Retrieving the de-
ramped and demodulated SLC image z̄ from the original
TOPS SLC image z̃ can be done in a single step as follows
[9]:

z̄ = diag (Φ) · diag (Ψ) · z̃ , (12)

where Φ and Ψ correspond respectively to the vectors of
deramping and demodulation values, as provided by the
SLC product metadata, see [8].

3.2.2 Results
To train a residual U-Net with MERLIN we applied
the pre-processing described above to a set of 10 TOPS
Sentinel-1 bursts and used them as training data, with
the hyperparameters set as indicated in Table 1. Results
obtained with MERLIN are compared to those produced
by SAR2SAR [10], which is a semi-supervised despeck-
ling algorithm that exploits temporal acquisitions to fine-
tune a pre-trained model on real SAR intensities. Thus,
both MERLIN and SAR2SAR handle spatially correlated
speckle. MERLIN is very effective at filtering out the

speckle. The complex scene of Figure 6 demonstrates
that field frontiers are well respected, linear structures and
bright targets are preserved and no residual speckle fluctu-
ations seem to affect the filtered image. In terms of quality
of the results, SAR2SAR and MERLIN are comparable.
What makes MERLIN advantageous is the simplicity to
set up a training.

4 Conclusion

The application of the self-supervised training strategy
MERLIN requires the statistical independence of the real
and imaginary parts of the SLC images. A theoretical anal-
ysis of the effect of an asymmetry of the power spectral
density of the SLC image due to the presence of a zero
Doppler shift shows that correlations appear between the
real and imaginary parts. Interestingly, these correlations
do not show up when computing the correlation between
the real and imaginary values at a given pixel but rather be-
tween real and imaginary values of pixels with nearby az-
imuth coordinates. Compensating this zero Doppler shift
requires deramping Sentinel-1 images acquired in TOPS
mode. Beyond shifts of the spectrum, other asymmetries
must also be suppressed. This is especially the case of
airborne images where variations of the size of the syn-
thetic antenna between near range and far range lead to



Figure 6 Results on Sentinel-1 TOPS data. Left: the speckle corrupted amplitude image. Center: the image filtered
with SAR2SAR. Right: estimation produced with MERLIN.

Figure 7 Effect of deramping and demodulation on a
TOPS Sentinel-1 SLC product. (a) the amplitude of the
SLC image; (b) the complex Fourier spectrum; (c) the
deramped spectrum; (d) the deramped and demodulated
spectrum

a trapezoidal transfer function. We proposed a dedicated
preprocessing to enforce the symmetry of spectra and have
shown that the self-supervised MERLIN training strategy
then performs satisfyingly on these images. The wide ap-
plicability of self-supervised learning strategies is promis-
ing to learn rich models directly from SAR data.
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