
HAL Id: hal-04225785
https://telecom-paris.hal.science/hal-04225785

Submitted on 3 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Line Secure Elements: Deploying High Security
Keystores and Personal HSMs

Pascal Urien

To cite this version:
Pascal Urien. On Line Secure Elements: Deploying High Security Keystores and Personal HSMs.
2023 International Conference on Computing, Networking and Communications (ICNC), Feb 2023,
Honolulu, United States. pp.450-455, �10.1109/ICNC57223.2023.10074066�. �hal-04225785�

https://telecom-paris.hal.science/hal-04225785
https://hal.archives-ouvertes.fr

On Line Secure Elements: Deploying High Security
Keystores and Personal HSMs

Pascal Urien
Telecom Paris

19 Place Marguerite Perey 91120 Palaiseau, France
Pascal.Urien@Telecom-Paris.fr

Abstract—This paper presents innovative approach to deploy
secure elements providing cryptographic resources in TCP/IP
environment. The main idea is to execute in secure element,
TLS1.3 server, secured by 256 bits pre-shared-key. All
cryptographic resources are protected by TLS-PSK sessions. In
the user plane the secure element is a TLS server, what enables to
define uniform resource identifier (URI) for embedded resources.
The user is optionally equipped with access card (TLS identity
module) that stores procedures working with PSK. The security
level may be increased by the use of dedicated terminal, similar
to payment terminal, which protects dual factor authentication.
We present two open platforms: keystore devices hosting
preconfigured TLS-SE secure elements, and personal HSM
supporting on-demand TLS-SE applications. Finally we detail
some performance elements.

Keywords— Secure Element, IOSE, Security, TLS

I. INTRODUCTION
Secure elements [1] are tamper resistant microcontrollers

widely used in services such as payments (EMV card), mobile
subscriber authentication (SIM card), or identity (electronic
passport). Secure elements provide, according to Common
Criteria standards, the highest Evaluation Assurance Level
(EAL), up to EAL6+ the maximum level being EAL7, and the
minimum level being EAL1. On-line secure elements enables
individuals to have their own cost-effective personal on-line
secure storage and computing service with the same trust level
as the smartcards they carry with them. Remote use implies
the establishment of secure channel. The Transport Layer
Security (TLS 1.3, RFC 8446), protocol widely used for
internet security seems a logical choice. In this spirit, secure
element is a TLS server, and depending on the required
security level, TLS credentials are stored in an access card
optionally controlled by terminal similar to payment terminal.

Nevertheless secure element has no TCP/IP stack and
network interface; therefore a front TLS server is needed. A
common technique is to route TLS packets, received by TLS
front server, to backend servers identified by their TLS server
name (SN).

This paper presents on-line secure elements [7] based on
open software and hardware technologies (see figure 1). We
detail front servers based on PC boards, Raspberry Pi, or
Arduino chips. TLS secure element (TLS-SE [3][6]) servers
run TLS stacks written in javacard [2] language. On client
side, standard software applications can be used (for example
OPENSSL); we also introduced TLS Identity Module (TLS-
IM [3][5]), and dedicated terminal (a kind of smartcard reader
with touch screen [4]), based on open hardware (i.e. Arduino).

Fig. 1. Personal HSM architecture.

This paper is organized according to the following outline.
Section 1 introduces the basic technological bricks: TLS1.3
for secure element (TLS-SE), TLS identity module (TLS-IM),
performances for today secure elements, secure element server
name (SEN), and Uniform Resource Identifier (URI) for
embedded TLS-SE resources. Section 2 presents Secure
Element Processor (SEP) required to plug secure elements in
legacy computing systems. Section 3 describes TLS-IM access
card and crypto terminal, similar to payment terminal, which
can be used to increase security level. Section 4 introduces
keystore devices, which enable to deploy TLS-SE secure
elements with cryptographic resources, in TCP/IP
environment. Section 5 describes Personal HSM managing
grid of TLS-SE secure elements, which supports on-demand
applications and parallel cryptographic resources. Finally
section 6 concludes this paper.

II. TLS 1.3 FOR SECURE ELEMENTS

Fig. 2. Grid of secure element from [8]

In previous papers [8][9][10] we introduced the idea of a
grid of secure elements (see figure 2) hosting TLS 1.0 servers.
Nevertheless communication was based on ISO7816 packets;
a front server running RACS (Remote APDU Call Secure)
protocol [9], transports ISO7816 messages sent to EAP-TLS
smartcards [10]. In this work we still use RACS for TLS-SE
application deployment, but communication with TLS-SE
smartcards only relies on TLS1.3.

A. TLS 1.3
TLS 1.3, the last version of the Transport Layer Security

protocol was released in August 2018. It supports three modes
(see figure 3) for key exchange:

- Diffie-Hellman exchange authenticated by asymmetric
signature and X509 certificates (PKI mode).

- Diffie-Hellman exchange authenticated by pre-shared-
key (PSK mode).

- Pre-share-key mode, without Diffie-Hellman exchange.

The secure channel works with Authenticated Encryption
with Associated Data (AEAD) symmetric algorithm. A record
layer packet comprises a five bytes header, which is
authenticated, and a payload, which is encrypted and
authenticated.

Fig. 3. TLS1.3 session establishment

Because our actual research work targets personal assets,
we focus on TLS1.3 pre-shared-key mode, with Diffie-
Hellman exchange.

B. TLS-IM
TLS identity module [3][5][11] computes on client side,

procedures that are required for its authentication.

- For PSK mode two procedures are needed, first (PSK
Binding) is used to authenticate the client hello message
(i.e. it proves that the client knows PSK), second (Derive
Handshake Secret) computes value from the Diffie-
Hellman secret and PSK.

- For PKI mode only, one procedure is needed. An
asymmetric signature (ECDSA) is generated thanks to a
private key stored in the TLS-IM module

C. TLS-SE
TLS for secure element is an implementation of TLS1.3

with PSK mode for javacards [3][6][11]. The number of
deployed javacards [2] is estimated to about 6 billion devices.
Many secure elements embed a Java Virtual Machine (JVM)
and run applications written in javacard (JC), a subset of the
java language. The last javacard version is 3.1, and
commercial versions are JC3.0.4 and JC3.0.5. Typical
microcontrollers have 3KB RAM and 100KB FLASH. They
provide cryptographic resources that are required by TLS 1.3
such as SHA256, public key generation and DH secret
computing over the SECP256r1 elliptic curve, ECDSA
signature, and AES algorithm.

D. TLS-SE Performances
Depending on the type of javacard used, the observed time

required to open a TLS1.3 session ranges between 0,75 and
3,0 second. The AEAD channel, based on AES-CCM (128
bits) performs encryption/decryption of a 128 bytes payload
according to time ranging from 100ms to 350ms.

E. Secure element name (SEN)
According to TLS the first message of a session (i.e.

ClientHello, see figure 3) may comprise a server name (SN).
This attribute is used to route TLS packet, from front server
(server.com:port), to backend server identified by its SN
parameter.

Fig. 4. Reading Secure Element Server Name (SEN) from ATR

When a secure element is reset, thanks to the physical
ISO7816 [12] RESET pin, it returns (see figure 4) a set of
bytes called Answer To Reset (ATR). ATR comprises a field
(up to fifteen bytes) called Historical Bytes, which can be
modified by standard javacard software. Each TLS-SE
application is associated to Secure Element Name (SEN)
found in the ATR. Furthermore TLS-SE is the default
application in the secure element, what means that all
requested information needed for communication is found in
the ATR.

F. Uniform Ressource Identifier (URI)
When TLS-PSK is used, the secure element is identified

by the following URI:

schemeS://sen:psk@server.com:port/?query, in which:

- server.com:port is the TCP/IP socket for TLS front server

- sen is the secure element name

- psk is the pre shared key value

- schemeS (S meaning secure by TLS) identifies the syntax
used by application embedded in the secure element, and
query a request encoded according to this syntax

In our actual work query is an ASCII command line ended
by carriage return (CR) and line feed characters (LF).
Therefore schemeS could be represented as shellS, and
command line as URL-encoded query what leads to the URI:

shellS://sen:psk@server.com:port/?command_line

III. SECURE ELEMENT PROCESSOR
Secure elements physical and logical interfaces are defined

by ISO7816 standards [12][1]. ISO7816 physical interface
(see figure 5) has five wires: ground, power (Vcc), reset, clock
(a typical value is 4 MHz) and Input/Output. In contact mode,
small messages, whose maximum size is about 256 bytes, are
transported over a single IO pin. There are two transport
protocols (noted T=x). The protocol T=0 is organized as byte
stream in which a character comprises 12 bits (start, 8 data
bits, parity, and 2 stop). The protocol T=1 organized with
frames, in which a character comprises 11 bits (start, 8 data
bits, parity, 1 stop), each frame has a three bytes header
(NAD, PCB, LENGTH), a payload, and a trailer (one byte
checksum or two bytes CRC).

Given a clock, with a frequency FCK, the serial time bit,
named ETU, is obtained according to the relation:

ETU = F/D 1/FCK , with default values F=372 and D=1,
what leads with F= 4 MHZ to ETU= 93μs.

Parameter F, D and T=x can be modified thanks to a
procedure called PTS (Protocol Type Selection).

Fig. 5. Secure Element Processor (SEP)

Because ISO7816 legacy interface is not well fitted to
common communication protocols, a Secure Element
Processor (SEP) realizes a logical bridge between ISO7816

and protocols such as UART or I2C (as illustrated by figure 6).
We designed a library for Arduino environment that manages
secure elements. The required functional hardware resources
are the following:

- Clock generation, with Pulse Width Modulation facility.

- Vcc output pin for secure element.

- Reset output pin

- Digital Input/Ouput pin for serial IO operations.

The implementation requires a timer to sample the serial
communication. We notice a limit of about 372x2 processor
cycles, for T=x protocols processing. For example with 16
MHz processor clock, this leads to a limit ETU of about
46,5μs (FCK= 4 MHz, F=372 D=2). SEP provides two host
protocols: UART and I2C. UART is adapted for laptop
(Windows, Linux), and I2C for embedded environment
supporting grid of secure elements.

Fig. 6. Illustration of SEP based on ATMEGA 32U4 (Arduino Leonardo)

A SEP provides three types of command:

- SE-On(): Power on secure element and return SEN found
in ATR.

- Send-APDU(request): Send an ISO7816 request to secure
element an return response. Response may include an error
status, or an indication for End-Of-TLS session

- SE-Off(): Power off secure element.

IV. TLS-IM ACCESS CARD & CRYPTO TERMINAL

A. Access Card
As mentioned before, TLS-IM provides credentials needed

for PSK and PKI mode. As an illustration WolfSSL TLS1.3
library provides a call back for ECDSA signature, and a call
back to read the PSK value. So we need to define two new
callbacks one for the PSK Binding procedure, and another one
for the Derive Handshake Secret procedure. The access card is
protected by a PIN code. In order to increase the security
level, a dedicated terminal (crypto terminal) may be used in
order to enter the PIN.

B. Crypto Terminal
The crypto terminal (see figure 7) is a device designed in

Arduino environment [4][13]. It includes a set of
countermeasures in order to prove the firmware authenticity
(remote attestation) and the hardware integrity (dynamic
PUF). It acts as a firewall between the host, such as laptop or
mobile, and the access card. In a way similar to payment
terminal, the PIN code is typed on touch screen, in order to
avoid Trojan horse attack. TLS-IM procedures may also be
acknowledged by user before execution.

Fig. 7. Crypto Terminal with USB and Bluetooth connectivity.

The crypto terminal works over serial communication,
with command lines. Three commands are used by TLS-IM :

- user, trig the crypto terminal user to type the access card
(TLS-IM) PIN code

- binder 32bytes_hexadecimal_value, return the binder
value

- derive 32bytes_hexadecimal_value, return the TLS1.3
Handshake Secret.

C. TLS-IM with SE050

Fig. 8. SE050 secure element (right), and access card board (left) for
ISO7816 form factor

The SE050 chip [15] is a secure element from NXP,
running the JC3.0.5 javacard API. The SE050 is a turnkey
solution, based on Javacard operating system. It is delivered
with a proprietary applet that implements a cryptographic
library. It is a surface mounted device (see figure 8), whose
dimensions are 3mm x 3mm x 0,32mm. It has an I2C interface
[16] that supports clock frequencies up to 3.4 MHz and uses
T=1 over I2C protocol. SE050 provides secure objects that
work with keys and associated cryptographic algorithms. They
can realize TLS-IM procedures, such as. PSK Binding, Derive
Handshake Secret, and ECDSA signature. For example an
open source implementation is available in [11]; other
cryptographic facilities like random number generator, public
key generation and Diffie-Hellman computing are also
provided. Figure 8 shows an ISO7816 adaptation board that

can be plugged in the crypto terminal; five wires are needed:
ground, Vcc, SDA, SCL, RESET. Thanks to its small size and
low cost (about 1.5$), SE050 could be integrated in many
devices used as TLS1.3 access card.

V. KEYSTORE WITH PRECONFIGURED TLS-SE CARDS
As previously mentioned, TLS-SE is a TLS1.3 stack in

ISO7816 secure element. The SEP enables connectivity to
host system, supporting TCP/IP resources, thanks to protocol
such as UART or I2C. ESP8266 is a low cost Wi-Fi SoC, with
4 MB FLASH, 64KB SRAM, and 80MHz clock, which
provides TCP/IP wireless connectivity. This system is not
suitable for multithreading applications; nevertheless it is an
efficient and cost effective way, to put TLS-SE secure element
on-line. Upon booting, the SoC resets one or several SEPs and
collects SEN values. A TCP front server waits for incoming
connections. Because each TLS packet includes a length field,
it is able to detect message limit, and therefore to forward
them to secure element. The first TLS message (ClientHello)
contains a server name (SN) attribute that must match one of
available SENs. A TLS session implicitly begins by the
reception of a ClientHello message and ends either by specific
responses returned by secure element or TCP/IP socket
closing.

Fig. 9. Single TLS-SE bord (right), and multiple TLS-SE board (left)

A. UART protocol
UART protocol targets board with only one SEP (see

figure 9). Depending on SEP microcontroller, data throughput
ranges between 19200 and 115200 bauds. In embedded
systems serial software is a very common feature; therefore
secure element integration is straightforward.

B. I2C protocol
I2C protocol [15] manages a two wires (SDA, SCL) bus

(see figure 9) comprising a master node, and slave nodes
identified by their address (usually 7 bits). We use frequency
clock of 200 KHz; given 10 bits per character this leads to a
maximum throughput of about 20KB/s. A table establishes the
relation between SEN and I2C address. Nevertheless, due to
single-tasking architecture only one TLS-PSK session is
available at a given time.

ISO7816
Interface

C. Keystore APP
A keystore APP [16] is an application that provides

cryptographic procedures protected by TLS-PSK secure
session, executed in a TLS-SE secure element. A command
line is for example a set of ASCII characters with a prefix (one
character), an index (two hexadecimal digits), and a data
payload (usually hexadecimal digits); it ends by carriage
return (CR) and line feed (LF) characters.

D. OPENSSL Client.
A keystore session can be opened thanks to the popular

OPENSSL software with the following command line:

openssl s_client -tls1_3 -connect server:port -servername
SEN -groups P-256 -cipher DHE -ciphersuites
TLS_AES_128_CCM_SHA256 -no_ticket -psk [PSK-
VALUE]

Thereafter ASCII command lines are used for interactions
with the keystore APP.

VI. PERSONAL HSM

Fig. 10. A personal HSM. Grid of secure element with I2C conectivity (left)
and host system (Raspberry Pi, right)

The goal of personal HSM is to enable on-demand TLS-SE
application, and to efficiently share a grid of secure elements
thanks to multitasking computing environment. Two TCP
daemons are used, one for RACS and another for TLS front
server. The server is powered by processor with rich operating
system, such as LINUX. The open Internet Of Secure Element
project (IOSE [7]) is dedicated to TLS-IM and TLS-SE trusted
applications. The IOSEv5 open software [16] works with
Windows, Ubuntu, and Raspberry Pi platforms. It supports
two communication interfaces for secure element PC/SC
(Personal Computer / Smart Card API) and I2C.

A. RACS protocol
The Remote APDU Call Secure (RACS) protocol works

over TLS (more precisely TLS1.2 with IOSEv5 software).
Client and server are mutually authenticated by X509
certificates and associated private keys. A security policy is
enforced from the client identity, found in its certificate
common name (CN). Secure element are identified by a

Secure Element IDentifier attribute (SEID), for example
deduced from SEP I2C address.

Once the TLS secure channel is opened, the following
commands are available:

- List secure elements that can be managed by client

- Power on secure element

- Send ISO7816 request and return response

- Power off secure element

- Associate a secure element to a SEN parameter

The Global Platform (GP) standards define protocols,
based on ISO7816 APDU transport, for downloading
application in javacards. These procedures require mutual
authentication and used encrypted secure channel.

B. IOSE Server
An IOSE server is made of two electronics parts (see

figure 10): a secure element grid and processor with rich
operating system and internet connectivity.We designed a grid
of 16xSEPs; each of them has five wires interface: Gnd,Vcc,
SDA, SCL and RESET. Reset pins are controlled by 4-to-16
line decoder. Therefore each SEP has a reset address and an
I2C address. The I2C bus is clocked at 200 KHz (i.e. a
bandwidth of about 20KB/s). SEP work with a 6 MHz clock
with F=372 and D=2, what leads to an ISO7816 throughput of
about 2,7 KB/s. The IOSEv5 software runs in raspberry pi.
The grid is controlled by 10 lines: Gnd, Vcc, SDA, SCL plus 6
wires driving reset pin decoder.

An I2C packet are similar to T=1 message. It comprises a 3
bytes header (NAD, PCB, Length), a payload, and a two bytes
CRC. The grid is managed by three main commands

- Power on SEP and return its SEN

- Send ISO7816 request to SEP and return response

- Power off SEP

When the host system boots, it resets SEPs and collects the
list of SEN. Each SEN is associated to a SEID.

The TLS host daemon is the front server. As mentioned
before it routes TLS messages to SEPs acting as TLS back end
server, and identified by the SEN.

C. On-Demand Software & Attestation
The main enhancement between keystore and personal

HSM, is the support off on-demand software service, and the
definition of an attestation procedure that transfers exclusive
secure element content control to user. The attestation
procedure relies on two claims: a secure element cannot be
cloned, and it is only able to manage a single TLS-PSK
session at a given time. These processes are illustrated by
figure 11.

(1) A TLS-SE App (embedding a provider PSK and a
SEN) is downloaded thanks to the RACS protocol, in a secure
element. Upon installation the TLS-SE App generates a pair of
asymmetric public and private key.

(2) The application provider binds SEID to SEN thanks to
a dedicated RACS command. At this step the TLS-SE
application is ready to use.

(3) The provider opens a TLS session with the secure
element, thanks to its knowledge of PSK. It reads the public
key.

(4) The provider generates a certificate for the public key
and writes it in the secure element over a TLS session.

(5) The provider sends SEN and PSK-Provider to user,
who is going to perform attestation procedure.

(6) The user opens a TLS-PSK session with the secure
element.

(7) The user reads the secure element public key

(8) The user reads the certificate, and verifies its signature
with the Certification Authority public key

(9) The user sends a random value to the secure element,
which concatenates this value to the TLS handshake secret
(HS computed from the DH exchange value). The secure
element computes an ECDSA signature with its private key.
We assume that only a genuine secure element can know both
PSK-Provider and private key.

(10) The user modified the PSK value thanks to a
dedicated command. At this step he has an exclusive control
on the secure element application data.

Fig. 11. On-demand TLS-SE App (left), and attestaion procedure (right)

D. Performances
The performances are measured thanks to a TLS-SE

application that performs ECDSA signature over the
SECP256k1 elliptic curve. First a TLS-PSK session is opened
with a secure element, second a command line with an
argument of 32 bytes (the value to be signed) is sent to the
secure element, which returns the signature. Depending on the

javacard, this operation required between two and four
seconds.

According to the Amdahl ‘law, the computing time for n
simultaneous TLS-SE sessions can be written as:

Tn/T1 = 1 + ρ.(n-1), ρ є]0,1]

What leads to a speeding factor (Sf) factor

Sf(n)= nT1/Tn = 1/ (ρ + (1-ρ)/n),

with 1/ρ the limit speed up factor

For IOSEv5 software and Raspberry Pi, we observe 1/ρ
value in the range 50 to 80, what means that the speedup
factor increases quite linearly with the number of used secure
elements (Sf ~ n)

VII. CONCLUSION
In this paper we presented high security keystore and

personal HSM devices. We are currently working on enhanced
versions for open hardware devices and open source software.

REFERENCE
[1] Jurgensen T.M., Guthery, S.B., "Smart Cards: The Developer's Toolkit",

O’Reilly
[2] Chen, Z., "Java Card™ Technology for Smart Cards, Architecture and

Programmer's Guide", ADDISON-WESLEY, 2000
[3] P. Urien, "A New IoT Trust Model Based on TLS-SE and TLS-IM

Secure Elements: A Blockchain Use Case," 2021 IEEE 18th Annual
Consumer Communications & Networking Conference (CCNC), 2021,
pp. 1-2, doi: 10.1109/CCNC49032.2021.9369485

[4] Urien, P., "Innovative Wallet Using Trusted On-Line Keystore," 2021
3rd Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), 2021, pp. 12-14, doi:
10.1109/BRAINS52497.2021.9569783.

[5] IETF Draft, "Identity Module for TLS Version 1.3", draft-urien-tls-im-
06.txt, January 2022

[6] IETF Draft, " Secure Element for TLS Version 1.3", draft-urien-tls-se-
04.txt, March 2022

[7] IETF Draft "Internet of Secure Elements", draft-urien-coinrg-iose-05.txt,
IETF Draft, April 2022

[8] H. Aissaoui-Mehrez, P. Urien and G. Pujolle, "Implementation Software
to Secure Virtual Machines with Remote Grid of Secure Elements,"
2014 IEEE Military Communications Conference, 2014, pp. 282-287,
doi: 10.1109/MILCOM.2014.51.

[9] P. Urien, "RACS: Remote call secure creating trust for the internet,"
2015 International Conference on Collaboration Technologies and
Systems (CTS), 2015, pp. 351-357, doi: 10.1109/CTS.2015.7210448.

[10] Urien, P., Pujolle,G., "Security and privacy for the next wireless
generation". Int. J. Netw. Manag. 18(2): 129-145 (2008)

[11] https://github.com/purien/TLS-SE
[12] ISO7816, "Cards Identification - Integrated Circuit Cards with

Contacts", The International Organization for Standardization (ISO).
[13] P. Urien, "High Security Bare Metal Bluetooth Blockchain Payment

Terminal For Trusted Ethereum Transaction," 2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC), 2020,
pp. 1-2, doi: 10.1109/CCNC46108.2020.9045146.

[14] NXP Semiconductors, I2C-bus specification and user manual,
UM10204, Rev. 7.0 October 2021

[15] NXP Semiconductors,"SE050 Plug & Trust Secure Element", Rev. 3.3,
July 2021

[16] Urien, P., "The IOSE project", https://github.com/purien/IoSE

