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Abstract

Renal tubular structures, such as ureters, arteries and veins, are very important for building a complete digital

3D anatomical model of a patient. However, they can be challenging to segment from ceCT images due to

their elongated shape, diameter variation and intra- and inter-patient contrast hetereogenity. This task is

even more difficult in pediatric and pathological subjects, due to high inter-subject anatomical variations,

potential presence of tumors, small volume of these structures compared to the surrounding, and small

available labeled datasets.

Given the limited literature on methods dedicated to children, and in order to find inspirational ap-

proaches, a complete assessment of state-of-the-art methods for the segmentation of renal tubular structures

on ceCT images on adults is presented. Then, these methods are tested and compared on a private pediatric

and pathological dataset of 79 abdominal-visceral ceCT images with arteriovenous phase acquisitions. To

the best of our knowledge, both assessment and comparison in this specific case are novel.

Eventually, we also propose a new loss function which leverages for the first time the use of vesselness

functions on the predicted segmentation. We show that the combination of this loss function with state-of-

the-art methods improves the topological coherence of the segmentated tubular structures 1.
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1. Introduction

Building a 3D model of renal tumor anatomy based on image segmentation of contrast-enhanced Com-

puted Tomography (ceCT) images is now becoming popular (Fan et al., 2018; Hyde et al., 2019; Porpiglia

et al., 2020). In particular, the usefulness of such 3D individual models lies in facilitating pre-operative plan-

ning and per-operative guidance for nephron-sparing surgery (NSS, partial removal of the kidney) in patients

affected by nephroblastoma, also called Wilms’ tumors. An abdomino-visceral anatomical 3D model should

include kidneys, vertebrae, ribs, arteries, veins and tumors; ureters are included if the injection makes them

visible, and spleen and liver if the tumor is in contact with them. An example is shown in Figure 1.

Figure 1: Example of a partial 3D model of a pediatric patient affected by nephroblastoma with several tumors. The structures

represented are kidneys (in brown), arteries (red), veins (blue), ureters (gray), spleen (dark blue), vertebrae and ribs (light gray),

tumors (other colors). Left: Anterior view. Right: Posterior view without ribs.

1.1. Medical motivation

In order to build a renal 3D digital twin of a patient that is as complete as possible, the segmentation of

tubular structures, such as ureters, arteries and veins of the renal area, should also be considered.

1The code is available at: https://github.com/Giammarco07/DeePRAC_project
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Automatic segmentation methods reduce the model creation time and the inter-subject variability in

comparison to manual segmentation. While such methods are highly developed and perform well for dense

structures, such as kidneys and tumors for adults (Marie et al., 2019; Heller et al., 2021, 2022) and for

pediatric subjects (La Barbera et al., 2021), this is not true for renal tubular structures. These structures raise

several challenges, such as (i) elongated shape (few pixels in a 2D cross section), (ii) intra- and inter-patient

contrast heterogeneity, and (iii) intra-scale changes (i.e., diameter variation across the vascular structure).

Some authors (Taha et al., 2018; Li et al., 2018; He et al., 2020) have tried to solve these issues on adults

ceCT images without great improvements or limited to specific acquisition CT modalities.

Pediatric pathological patients. The difficulties of segmenting such tubular structures increase in pediatric

subjects, due to several factors:

• Inter-anatomy variation. Pediatric databases include subjects with ages from 1 day to 16 years, thus

the size and position of the vessels vary widely among subjects. Moreover, in case of pathology (e.g.

renal tumor) the shape and direction of the vessels may also vary (difficult to choose a 2D cross section

to work on).

• Small volumes. Pediatric tubular structures can be very small compared to the background, namely

everything that is not the structures of interest. In the abdominal-visceral region of children, for

example, the diameter of the aorta is in [10,30] mm range, [8,25] mm for cava vein major axis and

[3,18] mm for its minor axis, while the renal vessels and ureters are in [3,5] mm range (Amir-Khalili

et al., 2014). Even using patches, i.e. smaller 3D images extracted from the entire volume, these

structures will represent a small number of voxels compared to the surrounding tissues and organs.

• Small available labeled dataset. Pediatric databases are limited in number of images (Jia et al., 2017)

and therefore usual deep learning strategies might fail or might not give good results (Sun et al., 2017).

Moreover, such limited datasets usually do not represent the large variability encountered in clinical

practice (age, morphology, pathologies...).

1.2. Contributions

This article proposes three main contributions. First, a complete assessment of state-of-the-art methods

for the segmentation of renal tubular structures on ceCT images of adults is presented in Section 2. Secondly,

a fair comparison of these methods is performed when applied on pathological and pediatric ceCT images
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in Section 3. To the best of our knowledge, both assessment and comparison in this specific case are novel.

Eventually, the best identified technique is merged with a proposed oversampling method and improved with

the use of the proposed tubular structures loss function based on vesselness. This is the first time that an au-

tomatic segmentation approach based on Convolutional Neural Network (CNN) for renal tubular structures

is presented for pediatric and pathological patients. The main features of our loss function are: comparing

the eigenvalues of the Hessian matrix of the predicted and reference segmentations to force the network to

learn the morphology of the target structure, and combining the deep supervision technique with the use of

Gaussian filters with various standard deviations to cope with patches including vessels of different diame-

ters. To the best of our knowledge, this is the first time that the calculation of eigenvalues (and eigenvectors)

of the Hessian matrix is used on segmentation masks (i.e. predicted and reference segmentation) in a loss

function. For this reason, and in order to make all the steps of the vesselness function differentiable, some

modifications to this function are applied. A comprehensive study is detailed in Section 4.

In Section 5 our pediatric database of patients affected by renal tumors is presented as well as the im-

plementation of the experiments performed. Then, in Section 6 the results on both the state-of-the-art com-

parison and the proposed method are presented and discussed. Finally, in Section 7 our conclusion are

drawn.

2. Related Work

Most of the studies on vessel segmentation that are applied to 3D contrast-enhanced imaging modalities

(for both CT and MRI) on adults are extensively described by Lesage et al. (2009) for non-machine learning-

based methods (which we will refer to as “rule-based” for simplicity) and by Moccia et al. (2018) for machine

learning methods, in particular deep learning. In these reviews, it appears that a popular approach is the use

of second-order derivative information, captured via Hessian-based filters, to characterize the local image

geometry. These techniques can be summarized under the name “vesselness filters” (as done by Lamy et al.

(2022)) and because of their importance, as well as inspiration for our proposed method, the first part of this

section is dedicated to them. It is important to emphasize that in this work we mainly focus on methods

specifically applied to renal tubular structures segmentation on ceCT, although some relevant works from

other domains are also introduced.
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2.1. Vesselness filters

Vessels in contrast-enhanced medical images are characterized by hyper-intensity and specific geometric

features. Therefore, they can be seen as bright tubular structures on a dark background, and consequently,

for a given function that analyzes these properties, the voxels of the vessels will have a higher score, namely

vesselness. A fair amount of work was dedicated to the proposition of such a function (see Lesage et al.

(2009) and Lamy et al. (2022) for reviews), most of them arising from the analysis by Lorenz et al. (1997).

This states that a voxel can be considered belonging to a vessel if the Hessian matrix, computed at each voxel,

has a small eigenvalue of either sign (insignificant second derivative along one dimension, grey-values do

not vary much along the structure) and the other two eigenvalues are large and negative (significant second

derivatives across the structure, grey-value increases rapidly from the structure border to the centerline and

decreases again to the opposite border). Let (x, y, z) be the space coordinates and f the intensity function of

the image. The Hessian matrix H is defined as:

H( f ) =


hxx hxy hxz
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 (1)

and is calculated at each voxel. Let W1, W2 and W3 be the three normalized eigenvectors of H( f ), associated

with the eigenvalues λ1, λ2 and λ3, respectively, with |λ1| < |λ2| < |λ3|. The vesselness is respected if:

|λ1| ≈ 0 (namely small)

λ2 ≪ 0

λ3 ≪ 0

(2)

In order to deal with the non-continuity of the digital medical images and with the high sensitivity to noise

of second order derivatives, the Hessian matrix is computed on the image convolved with a Gaussian kernel

gσ with standard deviation σ. Moreover, in presence of a vessel, W1 associated to λ1 corresponds to the

direction of the putative vessel, while W2 and W3 form a basis of the vessel cross section where |λ2| and |λ3|

are correlated to the sizes of the cross section. The most popular function to score the so-called vesselness is

the one proposed by Frangi et al. (1998). Aiming to build a method suited for medical images, these authors

developed a filter F based on three measures and three parameters:

F = (1 − exp (
−R2

a

2α2 )) exp (
−R2

b

2β2 )(1 − exp (
−S 2

2γ2 )) (3)
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if λ2, λ3 < 0 and F = 0 otherwise, with:

Rb = |λ1|/
√
|λ2λ3|

Ra = |λ2|/|λ3|

S =
√
λ2

1 + λ
2
2 + λ

2
3

(4)

in which Rb discriminates blobs, Ra distinguishes plate and line structures, S measures the norm of the

Hessian matrix to avoid enhancing low contrast structures, and α, β and γ control the importance of each

measure. Moreover, to cope with different vessel sizes, the vesselness measure is analyzed at different stan-

dard deviations and then the maximum response, i.e. the maximum F, is kept. As stated by Lesage et al.

(2009), Hessian-based filters may suffer from sensitivity to local deformations (bifurcations, thrombus or

flattened vessels). Moreover, a parameter search is required for both the scale-space parameters (e.g. σ of

the Gaussian gσ) and the intrinsic parameters of the methods (e.g. α, β and γ in Frangi’s vesselness). In

addition, the extraction of large vessels requires large standard deviations of gσ that can result in perturbation

of the response due to other bright structures in the immediate vicinity of the target vessel. These limitations

are confirmed by the study presented by Lamy et al. (2022), where acceptable segmentation results using

vesselness filters are obtained only for synthetic images that present no structures other than vessels. How-

ever, they can be useful as a first step for segmenting ceCT images, in particular for intra-organ vessels where

the neighborhood is more homogeneous (see further details in Section 2.2). Some interesting alternatives to

multiscale Hessian-based filters have been developed, such as the optimally oriented flux (OOF) of Law and

Chung (2008), the ranking of the orientation responses of path operators (RORPO) of Merveille et al. (2018)

and the work of Bauer and Bischof (2008), where the Frangi’s vesselness is applied on the local Jacobian of

the gradient vector flow (GVF) field. However, OOF and RORPO are also analyzed by Lamy et al. (2022)

and no improvement in performance over Hessian-based filters was observed, while the method by Bauer

and Bischof (2008) has a high computational cost, also in GPU, due to GVF diffusion calculation.

In the literature, besides segmentation purpose, vesselness functions have also been used as a cost func-

tion in lung vessel-tree registration algorithm for ceCT images (Cao et al., 2010; Chen et al., 2012; Du

et al., 2013). Small vessels give almost no contribution to intensity-based similarity, thus to further im-

prove the registration accuracy, the sum of squared vesselness measure difference (SSVMD) is employed

as geometric-feature similarity. In such applications, the lung region-of-interest (ROI) in ceCTs perfectly

fits the idea of bright tubular structures in dark background (i.e. air is black in ceCTs), overcoming some

weakness of Hessian-based filters previously exposed. With the same goal, very recently Wang et al. (2022)
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proposed the use of vesselness as a loss function in a CNN for the first time. In particular they use a normal-

ized vesselness Jerman’s filter (Jerman et al., 2016), that is more robust to weakly constrasted regions than

Frangi’s one.

Figure 2: Exemplary timestamp of each phase acquisition in relation to the contrast agent injection. Adapted from (Heryan et al., 2018)

using volume-rendered images from Necker hospital dataset (see Section 5.1).

2.2. Rule-based methods for tubular structures segmentation

Works that do not use neural networks (Lesage et al., 2009) usually rely on the fact that vessels are

contrasted with respect to other structures, i.e. a bright (resp. dark) structure in a dark (resp. bright)

background, as the previously presented vesselness filters. On abdominal-visceral ceCT images, this case

is restricted to early arterial phase acquisition for having high contrasted arteries, or to late delayed phase

acquisition for having high contrasted excretory pathways (i.e. ureters). Examples of each phase acquisition

time in relation to contrast agent injection in CT are displayed in Figure 2.

Nevertheless, due to the very rapid occurrence of the arterial phase (in particular on children) or due to

medical choice in order to have both arteries and veins with higher intensity, very often ceCT images are

acquired in a late arterial phase, also known as arteriovenous phase (Heryan et al., 2018). Here, both types

of vessels are contrasted but the presence of less contrast medium in each one results in lower intensity (and

thus less difference with other structures) as well as greater heterogeneity (which may be accentuated by the
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presence of tumor or thrombus). Some examples are shown in Figure 3.

Figure 3: Some examples of arteriovenous phase ceCT images from the pediatric and pathological dataset of Necker hospital. Left

figure: low contrast in both veins (left arrow) and arteries (right arrow). Central figure: heterogeneity zone in veins (left arrow) caused

by the tumor, and high intensity in arteries (right arrow). Right figure: kidney (left arrow) and blood vessels (right arrow) have very

similar intensities, difficult to distinguish by non-medical experts. Color code for contours: kidneys in brown, tumor in green, arteries

in red, veins in blue.

To tackle this problem, Bugajska et al. (2015) proposed a semi-automatic approach based on three steps

for the segmentation of renal tubular structures in ceCT composed of: (i) a first binarization and erosion, in

which the threshold is derived from a ROI (derived by points defined by the user); (ii) a subsequent Locally

Adaptive Region Growing (LARG) technique to deal with the lack of homogeneity of voxel intensity values

due to an improper contrast propagation; (iii) a final level set method which uses the result of LARG as

initialization. Results on 10 patients show that the first two steps are already sufficient to obtain good results

for the segmentation of the main and larger abdominal-visceral arteries, while only after the third step the

small renal vessels reach 80% of the Dice score. However, the method still works better on ceCT with

non-late arterial phase, otherwise there is a high demand of user-interaction. The method does not allow for

the segmentation of veins, in which the contrast is still too low. A similar approach was used by Heryan

et al. (2018), in which the authors point out the difficulties of dealing with a combined arteriovenous phase

in ceCT images, and for this reason the main threshold is determined by analyzing different points defined

by the user. Then they focus on intra-renal vessels segmentation using a LARG on a manually-delineated
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ROI around each kidney in which a vessel enhancement through multiscale vesselness Frangi’s filter (Frangi

et al., 1998) was first applied. Among unsupervised methods not based on deep learning, it is also important

to mention Tensor-cut by Wang et al. (2019b), a novel tensor-based graph-cut method based on the local

neighboring Markov random field model. The limitations of these methods lie in the user interaction and

in the setting of different initialization parameters, required according to the input image and to the specific

tubular structure to be segmented.

2.3. Deep learning-based methods for tubular structures segmentation

Moving on to methods based on deep learning for tubular structures segmentation, we first focus on

the method of Virzi et al. (2018) which is not applied to renal ceCT images, but still dedicated to tubular

structures segmentation. The authors proposed a semi-automatic patch-based deep learning approach to

segment pelvic vessels in 3D MR images of pediatric patients. To consider only relevant patches, the skeleton

of the vascular tree is obtained by combining user-selected landmarks and shape-appearance information,

and then patches are extracted along this skeleton. This method also allows dealing with small structures,

since it can use smaller patches without losing information, and therefore at the same time also decreasing

the training time and memory required by the CNN. The method of Virzi et al. (2018) works well for pelvic

vessels whose branching is fairly simple and constant, although it always requires some user’s interaction.

In the case of renal structures, while the ureters tree is quite simple, this is not true for arteries and veins

trees, as we can see in the example in Figure 4.

With the same purpose of working with only small and relevant patches, while overcoming the prob-

lem given by the skeleton creation via user-selected landmarks, Dang et al. (2022) proposed the use of a

PNet-based (Wang et al., 2017) patch classifier called Vessel-CAPTCHA. The difficulty of this method lies

precisely in the training of the classifier, which requires a large number of patches to achieve good perfor-

mance. For these reasons, the authors decided to work in 2D, losing the volumetric information, and to create

a user-friendly annotation system on a large unlabeled training set. Although the method seems to work bet-

ter than the 2D state-of-the-art networks presented in the paper, its application for pediatric and pathological

datasets is limited by the small number of available images, even unlabeled ones. Moreover, user inter-

action can be tedious and difficult, especially for subjects with abnormalities, such as tumors/lesions. For

this reason, many authors have proposed fully-automated algorithms. In the following we focus on these

methods.
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Figure 4: Ureters on the left in pink and renal blood vessels tree on the right with arteries in red and veins in blue. While the ureters

tree is quite simple, the arteries and veins trees are very irregular. Building a skeleton of a vascular tree from user-selected landmarks

is very complicated.

Fully-automated algorithms. A first fully-automated algorithm is Kid-Net of Taha et al. (2018). It is a

method to segment renal arteries, veins and collecting system via CNN on ceCT. The authors point out

the importance of using 3D patches instead of 2D slices, because the latter do not have enough information.

Moreover, instead of training for individual classes of interest independently, they train the network to detect

the three classes together. The first advantage of this approach relies on the use of a single network decision

per voxel with a Softmax activation function, where the classes are considered mutually exclusive (useful for

facilitating the choice in common edge voxels among multiple structures). Secondly, this approach aligns

with Kaiser et al. (2017)’s recommendation that learning tasks with less data benefit largely from joint

training on other tasks. Kid-Net is a 3D U-Net and its major contributions rely on the use of a so-called deep

supervision, a patch selection method that handles unbalanced data through the use of random sampling and

a dynamic weighting based on volume to background ratio. They use cross-entropy (CE) as loss function.

Results on a private dataset of arterial phase ceCTs are above 85% of Dice score only for large arteries,

degrading to around 60% for small ones, veins and ureters.

For the sake of completeness, the deep supervision is a technique proposed by Dou et al. (2016) in which

additional outputs are added in the decoder to all but the lowest two resolutions. This allows the gradient

to be further injected into the architecture, facilitating the training of all layers and reducing the vanishing

gradient problem (common with restricted datasets). The final loss function L is the sum of the loss functions
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Lk computed at different levels k of resolution:

L =
Q∑

k=0

wk · Lk (5)

with:

wk =
1
2k

1∑Q
q=0

1
2q

(6)

where Q + 1 is the number of resolution levels taken into account, starting from 0 as the last output level

(e.g. with input image size).

To tackle the difficulties of fine vessels segmentation and of having a small dataset, He et al. (2020)

proposed DPA-HRA-DenseBiasNet. The DenseBiasNet takes the standard 3D U-Net as the basic structure,

but it compresses and transmits all feature maps in each layer to every forward layer. Moreover, the authors

proposed what they call “the deep prior anatomy (DPA) strategy”: an autoencoder (AE) is trained in an

unsupervised manner with numerous unlabeled data in which noise is added and the AE is optimized to

reconstruct the original image. Once the AE is trained, the features are embedded in the supervised model

to guide it. Finally, the authors proposed a hard region adaptation (HRA) loss function that samples the

loss dynamically according to the segmentation quality of each pixel. They achieved for the first time fine

renal artery segmentation with Dice score equal to 88%, showing better results than Kid-Net and 3D U-Net

trained and tested on the same database. It is important to underline that with the only use of the Dense

3D U-Net a Dice Score of 86% is already achieved, and the use of HRA and then HRA+DPA both add

1%. We would like to emphasize that no reason is shown why the use of the autoencoder for DPA leads

to a priori anatomy modeling. The weakness of this method lies in the computing process that requires a

lot of memory and time, due to the dense connections of the network and the additional parameters of DPA

strategy. Furthermore, this work has been tested only on arteries, experiments with veins and ureters still

need to be done.

A faster method is presented by Li et al. (2018), in which the authors try to segment not only all tubular

structures but also renal parenchyma and tumors with a single network. They used a Residual U-Net with a

multi-scale weighted cross-entropy loss function that gives greater importance to foreground voxels, edges,

and complicated and small structures. Tests confirmed the analysis by other authors with high Dice score

for arteries and parenchyma, but a higher difficulty in segmenting veins, ureters and tumors.

Focusing now on methods not developed for the renal area but still applied on ceCT images, special atten-

tion should be paid to the well-known nnU-Net (Isensee et al., 2021). This network was tested on 49 segmen-

tation tasks, reaching state-of-art results in 29 of them, otherwise achieving performances on par to the top
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leader-board entries, as in the case of aorta, cava vein and celiac artery in abdominal-visceral ceCTs (Isensee

et al., 2021). Among the various proposed contributions, similar to the Kid-Net approach (Taha et al., 2018),

the authors also proposed the training of multiple “foreground” classes, the use of deep supervision and an

oversampling technique. However this is different from Kid-Net’s one, here it ensures that one of the classes

of interest is contained in at least 33.3% of patches in every mini-batch. The other 66.7% of patches are ran-

domly selected from the entire training set. Another difference with Kid-Net lies in the final loss function,

which is a combination of Soft Dice loss and cross-entropy.

Other methods applied on ceCT images exploit distance map to improve performance. Distance maps

are generated by computing the distance transform on the segmentation masks. Some authors (Moccia et al.,

2018) proposed to use it to leverage the differences in diameter of the vessels. Wang et al. (2019a) used the

inverse of the normalized distance map to weight the voxel of the reference segmentation in the Dice loss

calculation. Their proposed loss function is called Radial Distance loss, RDloss, and successfully improves

lung tree segmentation performances of both smaller vessels and voxels at the boundary of thicker ones. A

similar approach was proposed by Caliva et al. (2019) to segment tubular bones, such as femur and tibia, but

the inverse distance map was applied using cross-entropy calculation. However, in addition to the difficulty

in calculating the distance map using GPU, such methods do not deal well with the high inter-anatomy

variation present in pediatric databases.

The idea of exploiting the geometry of the vessels was also used by Wang et al. (2020), who proposed

to include the tubular geometry information directly in the training of a CNN. The distance map is created

for every manual segmentation, and used as reference for a loss function with the second output channel of

the network (where the first output channel is the segmentation mask). During inference, the segmentation

mask is refined by leveraging the shape prior reconstructed from the distance map (named Geometry-Aware

Refinement, GAR). One important proposition is that the distance map D is quantized on values from 0 to

K (calculated as the maximum possible distance) and the cross-entropy is calculated between the discrete

distance map D and the probability that a voxel belongs the k-th class (softmax of the second output with

K+1 channels). In this way, Wang et al. (2020) formulate the distance prediction problem as a classification

problem. The authors explain that the use of distance map without quantization can make the training

difficult because outliers can cause large errors and lead to unstable predictions (resulting in difficulty for the

network to converge). Experiments showed better performances compared to the previous state-of-the-art

methods on aorta, cava vein and hepatic vessels segmentation in ceCT scans, automatically providing also the

distance map for a geometrical measurement of the tubular structures, at the expense of high computational
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time and memory. The limitation of this method also lies in the possibility of segmenting one structure per

network.

Another method worth mentioning is TopNet by Keshwani et al. (2020), where the authors propose one

of the few approaches in the literature for multi-label vascular tree segmentation via deep learning. They

present a 3D network architecture that solves three tasks simultaneously using three decoders, which are

respectively trained by optimizing the Dice score of the segmented vessels, a centerness score based on the

distance of each voxel in the vessel mask to the centerline of the vessel, and a similarity of the learned

features of voxels belonging to the same vessel. The results of the segmentation of the whole portal and

hepatic vein trees inside the liver from abdominal ceCTs are considerably better than classical segmentation

techniques both in quantitative measures (e.g. Dice score) and qualitative results (e.g. topology), even if

they lack comparisons with some recent methods, previously detailed in this section. The time and memory

required by this approach are acceptable, however an additional network which outputs the location of portal

and hepatic vein source (or a user’s interaction) is required as well as a post-processing where a Dijkstra’s

multi-source shortest path tree algorithm is applied (which in addition is very sensitive to misdetection of

vascular center-voxels).

Recently some authors are beginning to combine CNN with Graph Neural Network (GNN) with satisfac-

tory results for tasks such as lung vessel-tree semantic segmentation in ceCT images (Garcia-Uceda Juarez

et al., 2019; Tan et al., 2021) and head and neck artery semantic segmentation in angiographic ceCT im-

ages (Yao et al., 2021). The CNN gives a rough estimate of branch endpoint landmarks and binary branch

segmentation locations, and then the GNN refines these rough estimations to produce the final semantic

segmentation. However, their utility lies in being able to do semantic segmentation from binary labels, i.e.

segmenting lung vessel-tree branches to fine categories of n segments while training the network with the

entire lung vessel-tree, which is not our purpose. Moreover, CNN-GNN networks have a very high compu-

tational cost and require a high amount of input images to converge.

The same problems affect the transposition for 3D images of methods that focus on the simultaneous

optimization of segmentation accuracy and topology coherence developed for 2D imaging of neurons and

retinal vessels (Moccia et al., 2018). Some of the most recent methods propose for example the use of

a loss function to force the predicted segmentation to have the same Betti number (number of connected

components and handles) as the reference one (Hu et al., 2019), or the use of a VAE that learns recurrent

patterns to refine the output of the segmentation network (Araujo et al., 2019). However, these datasets

have big differences with ours, such as: a high amount of images in the database; the vessels are spread
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over the entire image (with very few patches without the structures of interest) with a lot of connected

components and handles in recurring patterns; the vessels are always parallel to the acquisition plane; and a

single structure has to be segmented. This makes it possible to work with a high number of small 2D patches

(instead of small number of large 3D ones) in order to efficiently extract topological information, usually

computationally complex, memory- and time-demanding.

2.4. Assessment discussion

According to the analyzed literature, to date, there is no method capable of segmenting all renal tubu-

lar structures in arteriovenous ceCT images with high performance. In addition, none of the presented

approaches were applied to pediatric ceCT images, which present further difficulties. However, various

techniques presented in this section, such as the use of a single network to detect multiple adjacent struc-

tures, the deep supervision, and the oversampling and patch selection method, may allow overcoming some

limitations related to the segmentation of tubular structures, including the small available labeled dataset, the

intra-scale changes, and the small volume to background ratio. The main limitation still seems to be related

to the loss functions used. In fact, voxel-wise functions are not sufficient for tubular structures segmentation,

and the combined use of distance map does not seem to be effective, inducing instead a redundancy of in-

formation for the network. The use of topological measurements seems to lead to good results, however the

methods proposed so far are suitable only for specific cases, that do not correspond to the problem addressed

here.

Taking inspiration from non-machine learning methods, and in particular from vesselness filters, we

propose instead to combine the voxel-wise loss functions with a new function based on the eigenvalues of

the Hessian matrix and on the vesselness function itself. Our idea is to exploit both the a priori structural

morphological knowledge of tubular structures and the information about their neighborhood.

3. Methods selected for comparison

In this section, we first present the approaches for selecting and implementing the methods we will

compare. We focus on deep learning-based methods due to the difficulties of applying rule-based methods

related to heterogeneity of image intensity in arteriovenous ceCTs, as shown in Section 2.2.

3.1. Methods selection

We decided to compare some of the methods presented in Section 2.3, summarized in Table 1. Our

selection criteria are:
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(i) fully-automated algorithm,

(ii) presence of a distinctive technique,

(iii) code available or easily reproducible.

The first criterion was chosen as a result of the problems set out for semi-automated algorithms in Sec-

tion 2.3, related to the high-demand of user-interaction and the restricted database. For the second criterion,

we have identified four distinctive techniques: the optimization of topology coherence, the use of the dis-

tance transform as a second loss term, the dense connection method useful for segmenting fine structures,

and the deep supervision for the loss calculation. Among the methods based on these techniques, almost

none has available online code but some are easily reproducible, based on details provided by the authors.

We selected TopNet of Keshwani et al. (2020) for topology optimization (noted M1), the method proposed

by Wang et al. (2020) for distance transform (M2), the method of He et al. (2020) for the dense connections

(M4), and Kid-Net of Taha et al. (2018) for the use of deep supervision (M5). A variant of the Deep Distance

Transform method presented by Ma et al. (2020), whose code is available online, has also been analyzed

(M3). Lastly we selected the nnU-Net (Isensee et al., 2021), as it is a high performing method in general for

the segmentation of medical images with its deep supervision method (such as Kid-Net) optimizing CE com-

bined with Dice score (M6). Moreover, nnU-Net code is available online for the purpose of benchmarking,

in contrast to the similar Kid-Net algorithm.

Table 1: 3D fully-automated supervised methods to compare.

N° Method Backbone Outputs Loss functions

M1 TopNet (Keshwani et al., 2020) U-Net (depth 5)

1: Segmentation

2: CenternessScoreMap

3: Topological Distance

1: Dice

2: Mean of SmoothL1

3: TopLoss

M2 Deep Distance Transform (Wang et al., 2020) U-Net (depth 5)
1: Segmentation

2: DistanceMap One-Hot Encoder

1: SoftmaxCE

2: SoftmaxCE

M3
Deep Distance Transform

(Wang et al., 2020; Ma et al., 2020)
U-Net (depth 5)

1: Segmentation

2: DistanceMap

1: SoftmaxCE

2: Mean of L1

M4 DenseBiasedU-Net (He et al., 2020) DenseU-Net (depth 4) 1: Segmentation 1: SoftmaxCE+Dice

M5 Kid-Net (Taha et al., 2018) U-Net (depth 5) 1: Segmentation
1: SoftmaxCE

w/ deep supervision

M6 nnU-Net (Isensee et al., 2021) U-Net (depth 5) 1: Segmentation
1: SoftmaxCE+Dice

w/ deep supervision
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3.2. Methods implementation

We implemented the selected methods (summarized in Table 1) as follows:

M1. The code of TopNet by Keshwani et al. (2020) is not publicly available. We implemented it from

scratch, thanks to the kind help of the authors and to the supplementary material of the original paper.

To obtain the full segmentation, we assign a label (arteries or veins) to each voxel of the vessel mask

based on the label of nearest “center voxel” (calculated with the Dijkstra’s multi-source shortest path

tree algorithm). The code would need an additional network for locating the sources for the application

of the Dijkstra’s algorithm. However, due to the few details provided in the original article (Keshwani

et al., 2020) on this part, we decided to proceed as if this localization network was perfect, i.e. using

sources points pre-determined by us. In this way, we only evaluate the ability of the TopNet method

to provide a good segmentation and a correct topology, which is indeed our final goal.

M2. We implemented this code starting from the available code of M3 which can be seen as a variant

of M2. To be able to apply the idea of Deep Distance Transform method of Wang et al. (2020) to

formulate the distance prediction problem as a classification problem (as explained in Section 2.3) to

two structures (i.e. arteries and vein), we propose that the discrete distance map of veins is added to

the discrete distance map of arteries. We add KA (maximum possible distance of the distance map

of arteries) to all values of the distance map of veins where it is different from 0 (the distance map

is 0 where the reference segmentation is 0 so this idea cannot produce errors). In this way the final

distance map Dmap values range from 0 to KA + KV , where KV is the maximum possible distance of

the distance map of veins. By doing so, after quantization, the final distance map Dmap as well as

the second output will have KA + KV + 1 channels. We coded also the Geometry-Aware Refinement

(GAR) of Wang et al. (2020), in order to refine the segmentation output with the quantized distance

map output.

M3. This is a variant of the Deep Distance Transform method of Wang et al. (2020) (M2) that was

implemented by Ma et al. (2020): here the second channel, i.e. the distance map, is not one-

hot encoded. Ma et al. (2020) used an L1 norm as loss function between the reference distance

map Dmap and the second output of the network (Conv3D 1×1×1 with no activation function). This

implementation makes it easier to use the distance map for multiple structures but does not respect

the idea of the original paper of Wang et al. (2020) (M1). The code is available online: https:

//github.com/JunMa11/SegWithDistMap.

16

https://github.com/JunMa11/SegWithDistMap
https://github.com/JunMa11/SegWithDistMap


M4. We implemented the DenseBiasedU-Net of He et al. (2020) as in the original paper from scratch. Each

dense biased connection compresses, via a convolutional layer, the feature maps in each layer of the

U-Net to only four feature maps. Then, these feature maps are transmitted and concatenated to every

forward layer. The reduction is done in order to reduce feature redundancy while keeping the integrity

of information flow and gradient flow, allowing also fusing multi-scale features. In order to fit the

network in a 16 GB GPU, the 3D U-Net has depth of one layer less than the other methods. The HRA

and DPA techniques were not implemented due to their low contribution in improving performance

(see Section 2.3) and the limited database at our disposal (see Section 5.1).

M5. We implemented this code starting from the avaiable code of M6, using only CE in the loss function

and with the different oversampling method presented in Section 2.3.

M6. The original implementation is available online for nnU-Net of Isensee et al. (2021): https://

github.com/MIC-DKFZ/nnUNet.

4. Proposed Tubular structures Loss Function

In this section, we propose a new loss function based on the vesselness.

4.1. Motivation

The use of Dice score and cross-entropy revealed to be not enough to evaluate the segmentation perfor-

mance on fine tubular structures. Both are very sensitive to small structures, i.e. changing a few voxels can

change the score significantly, in particular the Dice score. This can also affect the training process with

patches: we can have high gradient even when the number of wrong pixels is small, and additionally we can

have fluctuations due to very different batches. Furthermore, when large and small blood vessels are present

in the same patch (e.g. aorta or cava vein and very tiny renal vessels), we will have a good Dice score but

the algorithm only segments the aorta or cava vein, while it completely misses the small renal vessels which

represent a lower percentage of the foreground voxels in the patch. Eventually, due to the heterogeneity of

the vessels, there is a strong uncertainty about some vessels segmentation which may result in prediction of

vessels with interruptions.

However, voxel-wise information is necessary to perform voxel classification, such as segmentation.

Moreover, for medical image segmentation, cross-entropy proved not to be enough to reach high perfor-

mance (Isensee et al., 2021), due to the extreme scarcity of foreground voxels in a patch, that will force the
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network to have a strong bias to the background (Zhao et al., 2020). The use of the Dice score in the loss

function tackles this problem, carrying with it the limitations outlined earlier.

In order to introduce information that is exempt from the number of pixels of the reference segmentation,

and that also is not voxel-wise but takes the neighborhood into account, we propose to leverage the use of the

eigenvalues of the Hessian matrix and the vesselness function, described in Section 2.1, as a loss function

for the segmentation masks. In fact, on the one hand, the eigenvalues allow us to verify that the structural

morphology of the predicted segmentation is similar to that of target structure. On the other hand, the

vesselness allows us to enhance the segmentation of elongated structures without interruptions. Finally, the

different sizes of vessels in a patch can be taken into account by using such loss functions in a multi-scale

manner via deep supervision.

Due to the different images, namely the segmentation masks, to which these functions are applied, a new

formulation of the steps for calculating eigenvalues and the resulting vesselness score is presented in the

next section.

4.2. Formulation

As presented in Sections 2.1 and 2.2, the application of vesselness functions on abdominal ceCT images

with arteriovenous phase leads to unsatisfactory results. Taking inspiration from the use of vesselness for

registration presented in Section 2.1, we propose for the first time to translate the use of vesselness as

loss function for segmentation purpose. Therefore, our proposed vesselness function is not applied on the

abdominal ceCT input image but on its segmentation mask and on the predicted one. These images in fact

exhibit the sought-after characteristics for a satisfactory vesselness application, similar to those of the lung

ROI (bright tubular structures in dark background) used by Cao et al. (2010) and Wang et al. (2022).

One might argue that using such a function on the product between input and segmentation mask would

be more appropriate, however; the heterogeneity of ceCT images, particularly of the pediatric ones, makes

it complicated to find vesselness parameters that are appropriate for all the structures present in the patch.

Furthermore, since the probability map at the output of the network is not a binary object, an approach

directly adapted to binary objects (e.g. moments comparison) would not be appropriate.

Our idea stems from the analysis of probability maps at the network output of a classic 3D U-Net: in

these maps, tubular structures were found, but because of the problems exposed in the previous paragraph, a

low probability to the correct class was assigned to contour voxels or to the ones belonging to finer portions

of the vessel. We noticed that the use of Frangi’s vesselness increases the probability assigned to the voxels
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of each class that most respect the vesselness. Figure 5 illustrates this observation.

Figure 5: First row: map of probability by class as output of the network after using a Softmax function. Second row: Application of

Frangi’s vesselness filter. The gray scale corresponds to the probability of a voxel to belong to the considered class, ranging from 0

(black) to 1 (white).

However, applying it as post-processing on probability maps may greatly increase false positives. For

this reason, we incorporated this idea directly into the training of the neural network as a loss function. In

order to do so, we need to transform the reference segmentation, which is instead a binary object, since

applying the Hessian matrix on this will result on a non-zero gradient only on the edges. The proposed

pipeline for our Hessian-based vesselness is as follows:

1. Gaussian kernel application. We smooth both the binary segmentation of the reference and the

probability map of the prediction by applying a Gaussian kernel strong enough to have zero-gradient

only in the principal dimension. Nevertheless, a high standard deviation σ might make the small

blood vessels completely disappear. As a compromise, we apply five different Gaussian kernels with

σi, i ∈ [1, 5], ranging from 1 to σmax+1 with a step of σmax
4 , as in (Frangi et al., 1998). The value

of σmax is found empirically, in relation to the size of both the selected patch and the structures to
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be segmented. The final smoothed predicted Pgσ (or reference Rgσ ) segmentation is computed as:

Pgσ =
∑5

i=1(gσi ∗ P), where P is the predicted segmentation. This way we ensure that we only have

zero gradient along the main direction.

2. Hessian matrix calculation. We calculate the Hessian matrix as in Equation 1 for every voxel of

the filtered segmentation Pgσ , as H(
∑5

i=1(gσi ∗ P)). It is important to emphasize that thanks to the

convolution with the Gaussian kernel presented in the previous step, we ensure that the second partial

derivatives for each voxel of the segmentation masks are all continuous and that each Hessian matrix

is a symmetric matrix by Schwarz’ theorem. This is fundamental because the eigenvalues of a real

symmetric matrix are always real and its eigenvectors can always be taken to be real. Moreover

the computation of eigenvalues is always differentiable for real symmetric matrices (Magnus, 1985).

Further details on the differentiability are provided in Appendix A.

3. Ordering of eigenvalues. Due to the fact that in the case of predictions which include initially no

structure or structures with different shapes and directions, using directly the vesselness function

could result in a training slowdown or even in worse segmentation performance. This is because

such vesselness functions require to sort the eigenvalues by magnitude, that in our case could end in

prediction P and reference R having for the same voxel v a very similar vesselness score for structures

with different preferential directions. In order to overcome this issue, we order the eigenvalues of

predicted and reference voxels (resp. P(v) and R(v)) via their associated normalized eigenvectors W.

In particular we match the eigenvectors with the smallest angle between them, namely the minimum

rotation required to overlap them, finding arg min
P

∑3
i=1 ||(WP(v)P)i − (WR(v))i||2, where i is the index of

the column representing the associated normalized eigenvector and P is a permutation matrix, ranging

over all the possible permutation matrices. Figure 6 illustrates this ordering.

4. Multi-scale supervision. In order to inject as much information as possible to the network, we do the

same for the subsequent three output levels of resolution using the above mentioned Deep Supervision

technique in Equation 5. However, given the lower spatial definition of these outputs, the number of

σ values used for the Gaussian kernel is set to 5 − q, i.e. σi, i ∈ [1, 5 − q], where q is the resolution

level as in Equation 6 (0 as first level).

As motivated in the previous paragraph, our vesselness loss function, named tubular structures loss

function and denoted by T sLoss, is composed of two parts: a first loss function to check the morphology

of the structures, named morphological similarity loss function and denoted by MsLoss, by comparing the

eigenvalues ordered by the eigenvectors matrix as presented above; a second loss function to force prediction

20



Figure 6: Ordering of eigenvalue values Λ of the same voxel v in order to allow for a fair comparison between them. Using SSVMD

to compare vesselness score F results in a very low value even if prediction P (yellow) and reference R (light blue) have different

main directions. Moreover, a comparison of eigenvalues ordered by magnitude does not reflect the real dissimilarity between the two

segmentations (top box on the right). In order to overcome this issue, we order the eigenvalues of predicted and reference voxels via

their associated normalized eigenvectors W, matching the W with smaller angle between them (bottom box on the right). This matching

is important in this case, where a voxel-wise loss function would fail to correctly assess this error due to the fineness of the portion of

the vessel.

of elongated structures as in Frangi’s vesselness function, and thus named Frangi’s vesselness loss function

FvLoss.

The Morphological similarity loss function is defined for a single image and a single target structure at
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Figure 7: Tubular structures loss function (T sLoss) pipeline. The function is composed of two loss terms, one based on the eigenvalues

Λ of the Hessian matrix calculated for every voxel of the filtered segmentation masks, and another based on the F Frangi’s vesselness

function (Frangi et al., 1998) calculated from these eigenvalues. The T sLoss term is applied in deep supervision for the first 4 resolution

levels, together with voxel-wise loss functions. See text for details.

resolution level q as:

MsLossq(Pq,R) =
1

3MR̃

MR̃∑
m=1

3∑
o=1

(Λo(H(
5−q∑
i=1

(gσi ∗ pm)) − Λo(H(
5−q∑
i=1

(gσi ∗ rm)))2 (7)

where gσi are the 5−q different Gaussian filters applied to the segmentation masks, with standard deviations

σi (as explained before in step 1), H is the Hessian matrix (step 2), Λ is the array containing the three eigen-

values of H ordered by the associated normalized eigenvectors (via the smallest angle as explained before

in step 3 and Figure 6), pm is the probability of a voxel m of the predicted segmentation P (i.e. the output

probability map) at resolution q and rm is the corresponding target sample of the reference segmentation R,

while MR̃ is the number of voxels of the dilation of R with a square structuring element of size 3 × 3 × 3

(calculating eigenvalues over the entire image is expensive in terms of computational time, and the use of

dilation revealed to be sufficient for our purpose thanks also to the combined use of voxel-wise loss func-

tions). Moreover, this loss function allows us to take into consideration also flattened and deformed vessels

(due to the presence of the tumor), in which instead the direct use of Frangi’s vesselness may not be useful

due to vesselness scores that can be very close to 0 and thus too similar to the score of non-found vessels.

The Frangi’s vesselness loss function is designed in a non-supervised way for a single image and a
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single target structure at resolution level q as:

FvLossq(Pq,R) =
1

MR̂

MR̂∑
m=1

(1 −
F(H(

∑5−q
i=1 (gσi ∗ pm)))
Fmax

) (8)

where MR̂ is the number of foreground voxels of R, F is the Frangi’s vesselness presented in Equation 3,

Fmax is the maximum among the MR̂ Frangi’s vesselness values. Due to the normalization via Fmax, this

loss function has values ranging between 0 to 1. This loss function forces voxels corresponding to the target

structure to have a high vesselness value, avoiding the vanishing gradient problem. The use of the former

MsLoss function allows forcing the correct direction of the predicted vessels and thus enables the possibility

of using Frangi’s method without favoring incorrect predictions.

Finally, the complete Tubular structures loss function is:

T sLoss =
1
N

N∑
n=1

Q∑
q=0

wq ·
1
N

C∑
c=1

(wmsMsLossq(Pn,q,c,Rn,c) + FvLossq(Pn,q,c,Rn,c)) (9)

where N is the batch size, C the number of structures to be segmented (not counting the background), Pn,q,c is

the prediction Pq for the class c of the image n of the batch, Rn,c is the corresponding reference segmentation,

and Q + 1 the number of output resolution levels taken into account (as explained before in step 4) with wq

as in Equation 6. This loss function is combined with the voxel-wise functions, such as cross-entropy and

Soft Dice loss terms. All loss terms have a similar magnitude, except for the MsLoss. For this reason, we

multiply the MsLoss term by a scalar factor wms in the global loss function.

Figure 7 shows the complete pipeline for the proposed tubular structures loss function.

5. Experiments

5.1. Database

We worked on a private pediatric dataset of abdominal-visceral ceCT images gathered at Necker hospital

of Paris. Scanners from 79 patients, with different modalities of contrast injection were available. All

patients had a renal tumor, and images were acquired pre-operatively. The age ranges from 3 years old

to 16, with an average of 2 years old. These exams were performed from 2007 to 2021 in the course of

the normal care pathway of the patient and were studied retrospectively after anonymization. Images were

acquired using four scanners from three different manufacturers: Siemens (SOMATOM Definition AS),

Toshiba (Aquilion PRIME) and GE Medical Systems (LightSpeed and Revolution H).

Reference segmentations were performed by manual annotation under the supervision of medical ex-

perts. In particular we labeled:
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• arteries and veins on 63 ceCT scanners with vascular/early phase of mono-phasic injection (see Fig-

ure 2);

• ureters on 13 ceCT scanners with excretory/delayed phase of mono-phasic injection (see Figure 2);

• arteries, veins and ureters on 3 ceCT scanners of bi-phasic injection (same acquisition with two injec-

tions done at different times, in order to have both arteriovenous and delayed phases, see Figure 8).

Figure 8: Volume-rendered example of single ceCT acquisition with bi-phasic injection in order to have both arteriovenous and delayed

phases.

Examples of ceCT images with vascular phase, excretory phase and bi-phasic injection with respectively

blood vessels, ureters and all structures labeled are shown in Figure 9.

All images are pre-processed as for the nnU-Net (Isensee et al., 2021), i.e. (i) a non-zero region cropping,

(ii) a resampling of the images to have the same voxel size (0.89×0.46×0.46 mm3), (iii) a clipping of the

intensity values to the 0.5 and 99.5 percentiles of the foreground voxels, and (iv) a Z-scoring normalization.

Then, all images are pre-cropped in the abdominal region of interest (ROI) as done in a previous work of

ours (La Barbera et al., 2022) where we developed a simple, automatic and on-line method to select the

first slice of the lungs and the last slice of the intestinal area as upper and lower landmarks (with number

of slices increasing from lower to upper body), which is easy due to the strong presence of black pixels in

ceCT acquisitions, as opposed to almost none in the liver-kidney portion. Please refer to the original article

and its supplementary material for further details. Eventually, images are divided into 3D patches of size of

96 × 160 × 160.
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Figure 9: From top to bottom: ceCT images with vascular/early phase of mono-phasic injection, with excretory/delayed phase of

mono-phasic injection and with bi-phasic injection. Left: original images. Right: labeled images, with arteries in red, veins in blue and

ureters in pink.

5.2. Experiment protocols

In this work we present two sets of experiments, in each of which all methods are tested for a different

application case.

The first one aims to segment arteries and veins with a single network for the reasons presented in

Section 2.3, i.e. facilitating the choice in common edge voxels among multiple structures and improving

learning tasks with less data using joint training. We used 46 vascular/early phase ceCTs for training and

5 for validation. For testing we used the images of 15 patients: 12 with mono-phasic injection and 3 with

bi-phasic injection.

The second set of tests aims to train a network dedicated to ureters segmentation using the excre-

tory/delayed phase ceCT of 10 patients, keeping 1 for validation. For inference we used the data from 5

patients: 2 with mono injection and the 3 with bi-phasic injection.

Unfortunately, it is not possible to train a single network capable of segmenting all three structures
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because the ureters are not manually segmentable in arteriovenous ceCT nor the blood vessels in delayed

ceCT. In addition, a training using both types of ceCT acquisition modalities would be difficult for the

network due to the high inter-subject heterogeneity of the surrounding tissues, even after pixel intensities

normalization.

5.3. Training implementation details

The number of training epochs is fixed at 1000 with 500 patches seen at each epoch, randomly chosen

from the training set. The number of iterations at each epoch depends on the mini-batch size, specifically

set to 4 in our experiments. All trainings and tests were run on a GPU NVIDIA® Tesla® P100 with 16 GB of

VRAM. Patches are randomly extracted from the abdominal ROI for training and validation images. During

inference we used a sliding window to extract patches from the abdominal ROI with overlapping of half of

the size of the patch. In addition, to reduce artifacts and reduce the influence of position of patches close to

the image borders, a Gaussian importance weighting is applied to the window, slightly increasing the weight

of the center voxels in the softmax aggregation, as done in nnU-Net (Isensee et al., 2021).

An on-the-fly data augmentation is applied at each iteration and includes the following transformations,

sequentially and with a given probability of application: rotation and scaling, Gaussian noise and Gaussian

blur, change of brightness and contrast, simulation of low resolution images, gamma augmentation and

mirroring. The data augmentation is implemented with the batchgenerators framework (Isensee et al., 2020)

and applied to both the entire input images and the target structures alone (only the iconographic changes),

in order to better manage heterogeneity of image intensity. This step is critically important in order to make

up for the problems associated with a limited database such as our pediatric one.

Stochastic Gradient Descent (SGD) with a Nesterov momentum of 0.99 is used as optimizer for all tests.

The initial learning rate lr of 0.01 is reduced following the poly learning rate policy (Cehn et al., 2018),

decaying at each epoch e by multiplication of the initial lr by a factor of (1 − e
E )0.9 where E is the total

number of epochs. In our proposed method, we also assessed the performance of Adam (Kingma and Ba,

2015) and Adagrad (Duchi et al., 2011) optimizers with initial lr of 10−3, taking inspiration from the work

by Lahlouh et al. (2022). This study is shown in Appendix B.

We empirically found the best value of weight wms of MsLoss in Equation 9 as 0.05 for arteries and

veins, and 0.01 for ureters, and the weights of F (Equation 3) for FvLoss (Equation 8) as α = 0.1, β = 0.1

and γ = 2. We also found the best σmax to ensure zero gradient only in the main direction equal to 25. The

search of these parameters is shown in Appendix C.
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In addition to T sLoss, cross-entropy (CE) and Soft Dice score (to which we will refer simply as Dice in

tables and figures) were used in the loss function for trainings.

Proposed oversampling method. Due to the strong imbalance between patches with only background

and patches with structures, an oversampling technique for selecting at least 50% of patches with a minimal

number of voxels per structure, MinPix, was adopted for all methods in Table 1 for which no oversampling

was done (M1 - M4). This choice was made because early results without such a technique had very poor

performance for veins and ureters. Moreover, for networks that segment arteries and veins, an additional

oversampling on patches with structures is done due to the lower presence of the latter, ensuring that the

previous 50% are equally distributed. A sufficient MinPix was empirically found as 1000 voxels for all the

structures. For Kid-Net (M5) and nnU-Net (M6) we used the oversampling technique of these methods,

previously presented.

5.4. Evaluation measures

For the quantitative evaluation of the segmentation results, we compute three different categories of

measures. The first category includes spatial overlap based measures: Dice score, precision and recall. The

second category comprises spatial distances, and the 95th percentile of Hausdorff distance (95HD) is used.

Further details on these measures can be found in the work of Taha and Hanbury (2015). However, these

measures carry with them the limitations presented in the previous sections, and for this reason, alone they

are not sufficient for a proper evaluation of the segmentation results. To overcome these limitations, we

decided to use, as a third category, our proposed morphological similarity loss (MsLoss in Equation 7) for

the motivations discussed in Section 4.1. In the result tables we refer to this measure as ∆Λ.

Moreover, we perform a further analysis for arteries and veins, which we refer to as Recall analysis. In

this study, arteries and veins of the reference segmentation are semantically segmented into substructures

that differ in diameters and directions. Arteries are divided into aorta, renal arteries and celiac artery, and

veins into cava vein and renal veins. Aorta and cava vein are larger and follow approximately a constant

direction, renal arteries and veins are very tiny vessels with irregular directions, while the celiac artery has a

medium diameter between the previous structures and has a T-shape that branches perpendicularly from the

aorta on the coronal plane. An example of this sub-division is shown in Figure 10. The more a vessel is fine

and irregular, the more the difficulty in manual segmentation increases. For this reason, the recall measure

between the prediction and each of these parts of the vessel tree is calculated. Indeed, from our manual

segmentation and correction experience, we believe that having fewer false negatives is really important to
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speed up the 3D anatomical modeling process. Moreover, in case of major errors, manual segmentation of

missing parts takes longer than false positive removal. These errors can be identified as false negatives on

the one hand in a non-segmented branch, a missing portion of branches or even a branch broken into many

small portions, and as false positives on the other hand in an additional false branch, blobs in areas not close

to the vessel tree or small connected components in a non-debranching area. In this case, such false positives

are easily identified and removed thanks to the manual segmentation tools provided by software tools such

as Slicer3D (Fedorov et al., 2012), while false negatives require more careful and time-demanding manual

segmentation. This is also due to the proximity of arteries and veins and the fineness of the tubular structures

being segmented.

Figure 10: Examples of subdivision of the reference segmentation for the Recall analysis. Arteries are divided into aorta (in red), renal

arteries (fuchsia) and celiac artery (purple), while veins are divided into cava vein (blue) and renal veins (light blue). Left: lateral view.

Right: front view.
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6. Results and Discussion

In this section we show and discuss the results obtained with the methods in Table 1 and with our

proposed method. A further study on different implementations of the proposed vesselness loss functions in

both the best method found in the comparison and the proposed method is detailed in Appendix D.

Figure 11: Recall analysis on the last three rows of experiments in Table D.6 for the different structures. Arteries are divided into aorta,

renal arteries and celiac artery, while veins are divided into cava vein and renal veins.

6.1. Arteries and veins segmentation

Table 2 shows the quantitative results for the comparison of state-of-the-art methods for arteries and

veins using the evaluation measures presented in the previous section. The Deep Distance Transform method

of Wang et al. (2020) (M2) outperforms the other state-of-the-art methods in all the measures (precision and

recall need to be read together). Nevertheless, once the GAR post-processing is removed (which takes a

long time in inference), the performances drop. The DenseBiasedU-Net of He et al. (2020) (M4) reduces

false positives, as we can see from the values of precision and 95th of Hausdorff Distance (95HD). The

problem with this technique lies in the lower depth of U-Net, due to the large amount of memory required

by dense connections, which limits the capability of the network to extract information. Regarding Kid-Net

method of Taha et al. (2018) (M5), we cannot say if the worse results are due to the oversampling technique
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Table 2: Results on 15 patients using patches of size 96×160×160 obtained with the methods in Table 1 and with our proposed method

for arteries (A) and veins (V) segmentation. *pre-selected location sources. **without GAR. ***without HRA and DPA. Mean and

standard deviation of the results are given. Other quantitative results on arteries and veins segmentation using patches of smaller size

and different loss function implementations are shown in Appendix D.

Method Oversampling S Dice Score [%] (↑) Precision [%] (↑) Recall [%] (↑) 95HD [mm] (↓) ∆Λ (↓)

M1 - TopNet* Proposed A 50.23 (19.46) 80.13 (23.31) 38.27 (18.06) 23.98 (8.63) 22.22 (2.27)

(Keshwani et al., 2020) MinPix V 46.05 (30.64) 64.07 (28.88) 41.10 (29.72) 22.48 (13.27) 20.34 (3.59)

M2 - Deep Distance Transform** Proposed A 69.99 (3.44) 85.08 (10.63) 60.42 (5.28) 16.65 (13.29) 21.62 (1.99)

(Wang et al., 2020) MinPix V 37.29 (23.06) 82.59 (19.62) 26.77 (19.69) 27.28 (26.41) 22.51 (3.11)

M2 - Deep Distance Transform Proposed A 71.91 (3.85) 81.39 (10.44) 65.47 (5.42) 16.40 (13.45) 20.19 (1.95)

(Wang et al., 2020) MinPix V 41.98 (23.76) 78.55 (18.95) 32.32 (22.41) 27.57 (29.59) 21.78 (2.95)

M3 - Deep Distance Transform Proposed A 63.73 (5.63) 78.52 (13.59) 54.56 (4.75) 22.75 (13.95) 22.44 (1.79)

(Ma et al., 2020; Wang et al., 2020) MinPix V 32.26 (22.60) 82.26 (26.92) 22.21 (16.81) 36.29 (20.49) 22.28 (3.25)

M4 - DenseBiasedU-Net*** Proposed A 65.76 (4.15) 86.95 (11.79) 53.71 (4.64) 18.26 (15.17) 23.42 (1.95)

(He et al., 2020) MinPix V 34.89 (22.20) 85.86 (10.37) 24.66 (18.93) 19.62 (10.10) 23.07 (3.09)

M5 - Kid-Net Random and A 65.70 (3.23) 88.93 (9.88) 52.82 (5.29) 19.48 (7.88) 23.19 (1.92)

(Taha et al., 2018) dynamic weighting V 28.36 (23.56) 87.01 (16.84) 19.78 (18.87) 28.52 (21.23) 22.02 (3.89)

M6 - nnU-Net Foreground in A 68.05 (5.26) 84.43 (11.05) 57.85 (6.32) 15.55 (9.13) 22.12 (1.99)

(Isensee et al., 2021) 33.3% of mini-batch V 39.78 (16.80) 79.36 (12.87) 28.15 (14.27) 25.12 (28.97) 23.18 (2.60)

Proposed 1: Proposed A 63.45 (5.67) 71.73 (9.99) 57.87 (7.31) 17.46 (9.65) 21.15 (1.93)

Deep Sup. Dice + CE MinPix V 42.64 (20.12) 76.67 (13.17) 31.84 (17.12) 23.55 (17.00) 21.38 (3.27)

Proposed 2: Proposed A 75.88 (3.03) 87.92 (4.64) 67.09 (6.15) 9.79 (4.58) 19.67 (2.39)

Deep Sup. Dice + CE +MsLoss MinPix V 60.33 (25.63) 81.76 (9.33) 53.26 (27.28) 18.65 (21.29) 19.47 (3.65)

Proposed 3: Proposed A 76.77 (3.93) 80.41 (10.17) 75.04 (7.66) 10.02 (5.80) 17.73 (2.49)

Deep Sup. Dice + CE + TsLoss MinPix V 58.35 (26.79) 75.83 (13.01) 54.09 (28.87) 18.84 (21.31) 19.37 (3.29)

or to the only use of cross-entropy as loss function. Given the high presence of false negatives (low recall

in Table 2) we think it may be due more to the latter. The TopNet method (M1) shows balanced results

between arteries and veins. However, the final segmentation strongly depends on the output of the first

decoder, i.e. the vessel mask, which is only optimized via the Dice loss function (without deep supervision).

For this reason, the algorithm has difficulties finding blood vessels with a smaller diameter than the main

ones, as explained in Section 4.1. Indeed, this method is conceived for blood vessels inside the liver that

have the same size and the same intensity. Results are thus not surprising. Overall, nnU-Net of Isensee

et al. (2021) (M6) can be identified as the best technique, where deep supervision with Dice and CE leads

to good results without any heavy post-processing. For this reason and because of the ease in building on

this method, we decided to apply our oversampling method within nnU-Net and then add our proposed loss
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functions. The proposed oversampling method is effective and comparable to the one presented in nnU-Net,

nevertheless it seems to better balance the number of voxels examined for each class in the case of multiple

structures, reducing the difference in performance among classes. The use of MsLoss greatly improves

segmentation results, highly reducing false negatives and both spatial distance and morphological similarity

between prediction and reference. The addition of FvLoss to build the final T sLoss decreases even more the

number of false negatives, at the expense of increasing false positives, but with significant morphological

similarity improvement.

This is best seen from the qualitative results in Figure 13 (worst, average and best results for each

method) and from the Recall analysis in Figure 11. In the latter, we can infer that the use of the proposed

loss functions allows the network to identify better vessels of smaller diameter and with different directions

(and thus morphology) from each other. Moreover, better results for both vein sub-structures underline that

such vesselness loss functions may overtake heterogeneity problems.

We underline that the use of Dice and cross-entropy (CE) alone does not consider the minimization of

morphological differences, as can be seen from the graphs in Figures 12a and 12b. In these experiments we

selected 100 patches with high presence of the target structures and trained with different combinations of

loss functions for 500 epochs. The T sLoss and MsLoss values are plotted for each training, including one in

which it is not used as a loss function during training (in orange). In Figure 12a, the proposed loss function

is considered in its entirety as T sLoss and we can see that it is not minimized during Dice+CE training. In

Figure 12b, the attention is on the morphological loss term (MsLoss), and we can notice that the use of the

specific vesselness loss term (FvLoss) helps in better optimizing the MsLoss (red and green curve).

6.2. Ureters segmentation

Similar considerations can also be made for ureters segmentation. However, the database used was very

limited and the test set of only 5 subjects may not be representative. Quantitative results are shown in Ta-

ble 3. Here the most performing state-of-the-art method, from a spatial overlap and morphological point of

view, is DenseBiasedU-Net of He et al. (2020) (M4). This may be due to the very small thickness of the

ureters (comparable to renal blood vessels, see Section 1.1), whose information is better propagated thanks

to the use of the dense connections. Nevertheless, memory usage is already up to the limit with such a

network and adding another loss term such as the one we propose is not possible. Moreover, the results of

DenseBiasedU-Net have a high number of false positives that produce significant errors as we can see from

the high 95HD and precison, in contrast to what observed in Table 2. The other networks show similar be-
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(a) Evolution of T sLoss

(b) Evolution of MsLoss

Figure 12: Evolution of proposed losses during training for different loss functions combinations.

haviors to those for blood vessel segmentation, with nnU-Net of Isensee et al. (2021) (M6) performing better

when not considering the post-processing step (namely GAR) of the Deep Distance Transform of Wang et al.
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Table 3: Results on 5 patients using patches of size 96×160×160 obtained with the methods in Table 1 and with our proposed method

for ureters (U) segmentation. *pre-selected location sources. **without GAR. ***without HRA and DPA. Mean and standard deviation

of the results are provided.

Method Oversampling S Dice Score [%] (↑) Precision [%] (↑) Recall [%] (↑) 95HD [mm] (↓) ∆Λ (↓)

M1 - TopNet* Proposed U 52.82 (29.45) 82.29 (12.29) 47.59 (12.29) 18.53 (30.84) 23.07 (4.91)

(Keshwani et al., 2020) MinPix

M2 - Deep Distance Transform** Proposed U 54.47 (28.49) 79.94 (12.03) 49.82 (29.72) 18.45 (27.12) 23.27 (4.46)

(Wang et al., 2020) MinPix

M2 - Deep Distance Transform Proposed U 55.50 (28.17) 83.83 (9.98) 48.50 (27.93) 17.71 (25.62) 22.95 (4.36)

(Wang et al., 2020) MinPix

M3 - Deep Distance Transform Proposed U 46.69 (28.77) 81.22 (13.56) 43.03 (34.25) 18.01 (24.62) 24.69 (6.28)

(Ma et al., 2020; Wang et al., 2020) MinPix

M4 - DenseBiasedU-Net*** Proposed U 57.31 (28.14) 70.25 (8.96) 57.45 (31.05) 23.42 (24.87) 21.45 (3.91)

(He et al., 2020) MinPix

M5 - Kid-Net Random and U 50.38 (26.66) 79.97 (14.84) 46.07 (31.99) 17.71 (24.35) 23.95 (5.97)

(Taha et al., 2018) dynamic weighting

M6 - nnU-Net Foreground in U 54.55 (24.82) 78.95 (13.20) 49.28 (29.35) 19.02 (24.76) 23.21 (4.97)

(Isensee et al., 2021) 33.3% of mini-batch

Proposed 1: Proposed U 53.58 (24.03) 80.55 (10.40) 45.15 (29.95) 18.17 (24.29) 22.66 (4.32)

Deep Sup. Dice + CE MinPix

Proposed 2: Proposed U 59.51 (25.85) 79.89 (6.53) 54.41 (26.85) 8.15 (12.47) 20.90 (5.65)

Deep Sup. Dice + CE +MsLoss MinPix

Proposed 3: Proposed U 53.30 (29.49) 84.03 (12.04) 49.64 (33.79) 17.09 (25.78) 21.15 (3.02)

Deep Sup. Dice + CE + TsLoss MinPix

(2020) method (M2). When applying our oversampling method to nnU-Net we get worse results for over-

lapping measures (lower Dice score and combination of precision and recall), and better results for spatial

and morphological measures (lower Hausdorff distance and morphological similarity). The use of MsLoss

improves all the measures, with a particular decrease in false negatives. The use of FvLoss in combination

with MsLoss worsens these results, and this may be due to an inappropriate choice of parameters or to the

not tubular shape of the renal calyces (i.e. the beginning of excretory pathways that is usually segmented

as ureters, as in Figure 4). Finally, it is important to note that, unlike what was observed for blood vessels,

there are generally few differences in quantitative results among the different techniques. The high standard

deviation for all measures as well as a very limited test set, as mentioned earlier, make it difficult to draw

conclusions with confidence.

Differences are barely visible also for qualitative results. In Figure 14, worst, average and best results

from each method are displayed. Some ceCT images have a high contrast heterogeneity in these structures,

particularly in the case of biphasic injection, such as for the patient shown on the top of Figure 14. Further-
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more, the low number of voxels of the ureters makes overlap measurements not very reliable, as we can see

from the last two patients in Figure 14 (predictions almost complete but Dice score under 80%). Eventually,

thanks to this figure it is easier to understand the fineness of these structures on the tubular section and the

presence of the renal calyces discussed above, which both make segmentations even more complicated.

7. Conclusions

In this work, we proposed for the first time an assessment and comparison of state-of-the-art methods

for segmentation of renal tubular structures (arteries, veins and ureters) on ceCT images from pediatric

patients with renal pathologies. The assessment focused on prior art addressing these images and structures,

but other interesting approaches were also analyzed. Although the analysis may not be fully extensive,

especially for ruled-based methods or non-deep machine learning approaches, preliminary tests resulted in

great difficulty in segmenting the renal tubular structures in pediatric ceCT images acquired on arteriovenous

phase. Regarding comparisons, although more methods would have been interesting to compare, the lack of

codes and the few details available in the articles did not allow us to reproduce them with confidence.

We also proposed a new loss function designed from the so-called vesselness function to improve state-

of-the-art results. This loss function is based on the comparison of eigenvalues of the Hessian matrix of

segmentation masks and Frangi’s vesselness (Frangi et al., 1998) enhancement on target voxels in a multi-

scale deep supervision way. The combination of this tubular structures loss with voxel-wise loss functions

allows overcoming some problems of the latter, such as the difficulty in correctly optimizing tubular struc-

tures with elongated shape, intra-scale changes and inter-anatomy variation. The results demonstrated great

improvements from a morphological point of view, with segmentation results showing fewer interruptions,

at the expense of a slight increase in false positives. This confirms that the use of voxel-wise loss functions

and overlapping measures is not sufficient for the evaluation of such structures. The use of the second loss

term, related to Frangi’s vesselness, appears to be of no benefit in cases where the structure has non-tubular

regions. In addition, several hyperparameters are introduced with the use of this loss function.

Future work points to an automation of the choice of loss function parameters, as well as to new exper-

iments on different target tubular structures such as liver or brain vessels on ceCT images but also on other

acquisition modalities. Moreover, for ureters segmentation, new experiments will be performed once more

data will be collected, and a semantic division between renal calyces and ureters should be performed in the

manual reference segmentation.
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Figure 13: Worst (top, DiceS core : A = 78.30; V = 15.01), average (middle, A = 77.94; V = 62.07) and best (bottom, A = 83.56; V =

84.29) segmentation results (averaged between arteries and veins) on single patients for our method using the proposed T sLoss, and the

results for the same patients with the other methods. For each patient we present also one coronal slice highlighting the most peculiar

and difficult areas with green arrows (left: input ceCT; right: reference segmentation). The number-method correspondence is shown

in Table 1. The order of the methods correspond to that shown in Table 2. 3D models are back-front to make renal arteries visible,

otherwise are covered by renal veins. Arteries in red and veins in blue.
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Figure 14: Worst (top, DiceS core : U = 14.92), average (middle, U = 67.80) and best (bottom, U = 79.05) segmentation results on

ureters (in color pink) on single patients for our method using the proposed MsLoss, and the results for the same patients with the other

methods. For each patient we show also one coronal slice highlighting the most peculiar and difficult regions with green arrows (left:

input ceCT; right: reference segmentation). The number-method correspondence is shown in Table 1, while the order corresponds to

that shown in Table 3. The differences are barely visible and do not result in major differences from the point of view of subsequent

manual correction.
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Appendix A. Differentiability of Morphological similarity loss function

According to the first Magnus’ theorem (Magnus, 1985):

“Let Ho be a real symmetric n × n matrix. Let Wo be a normalized eigenvector associated with a simple

eigenvalue λo of Ho. Then a real-valued function λ and a vector function W are defined for all H in some

neighborhood N(Ho) ⊂ Rn×n of Ho, such that: λ(Ho) = λo, W(Ho) = Wo, and HW = λW, W ′W = 1,

H ∈ N(Ho), where W ′ denote the transpose of W. Moreover, the functions λ and W are∞ times differentiable

on N(Ho), and the differentials at Ho are: dλ = W ′o(dH)Wo and dW = (λoIn −Wo)+(dH)Wo (where A+ is the

Moore–Penrose inverse of A, i.e. the pseudo-inverse). Equivalently, the derivative at Ho for λ is given by:
∂λ

∂(vecH)′ = W ′o ⊗W ′o or ∂λ
∂H = WoW ′o, where vecH denotes the column vector that stacks the columns of H one

underneath the other, and ⊗ denotes the Kronecker product.”

This means that if the Hessian matrix H is real symmetric, as in our case, the eigenvalues function λ is

differentiable in the neighborhood of H via the product of the normalized eigenvectors Wo (associated with

the simple eigenvalue λo of H) with its transpose.

To give further details, the derivative of the cost function MsLoss for a single predicted voxel Pm with

respect to a parameter Zp of the network Z can be written as:

∂MsLoss
∂Zp

=
∂MsLoss
∂Λ

∂Λ

∂H
∂H
∂gσ

∂gσ
∂Pm

∂Pm

∂Zp
(A.1)

where Pm = (Z(I))(m), m is a voxel at position (xm, ym, zm) of the input image I, Λ = (λ1, λ2, λ3) and

MsLoss = 1
3M
∑M

m=1[(λ1Pm
− λ1Rm

)2 + (λ2Pm
− λ2Rm

)2 + (λ3Pm
− λ3Rm

)2].

For the sake of simplicity we define Vm = gσ ∗ Pm, and using the Magnus’s theorem with an eigenvector

Wo = (wo1,wo2,wo3)′ for each λo∈[1,3], we have for a single voxel m (with M equal to the number of voxels)
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with respect to a parameter Zp:

∂MsLoss
∂Zp

=

=
∂MsLoss
∂Λ

∂Λ

∂H
∂H
∂Vm

∂Vm

∂Zp
=

=
∂MsLoss
∂Λ

∂Λ

∂(vecH)′
∂(vecH)′

∂Vm

∂Vm

∂Zp
=

=

[
∂MsLoss
∂λ1

∂MsLoss
∂λ2

∂MsLoss
∂λ3

]
×


∂λ1

∂(vecH)′

∂λ2
∂(vecH)′

∂λ3
∂(vecH)′


×


∂hx2

∂(Vm)1
...

∂hx2

∂(Vm)M

... ... ...
∂hz2

∂(Vm)1
...

∂hz2

∂(Vm)M

 ×

∂(Vm)1
∂Zp

...

∂(Vm)M
∂Zp

 =

=

[
∂MsLoss
∂λ1

∂MsLoss
∂λ2

∂MsLoss
∂λ3

]
×


W ′1 ⊗W ′1
W ′2 ⊗W ′2
W ′3 ⊗W ′3


×


∂hx2

∂(Vm)1
...

∂hx2

∂(Vm)M

... ... ...
∂hz2

∂(Vm)1
...

∂hz2

∂(Vm)M

 ×

∂(Vm)1

Zp

...

∂(Vm)M
Zp


where W ′o ⊗W ′o =

[
wo1 wo2 wo3

]
⊗

[
wo1 wo2 wo3

]
=

=

[
wo1wo1 wo1wo2 wo1wo3 ... wo3wo1 wo3wo2 wo3wo3

]
This matrix multiplication returns a single value, i.e. the gradient of MsLoss with respect to the param-

eter Zp, which will be multiplied by lr in order to update the parameter (e.g. weight) Zp.

Appendix B. Comparison of different optimizers

In our method, we assessed also the performance of Adam (Kingma and Ba, 2015) and Adagrad (Duchi

et al., 2011) optimizers with initial lr of 10−3, taking inspiration from Lahlouh et al. (2022). Results are

shown in Table B.4, which show that the use of SGD with lr=0.01 leads to better performance.
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Table B.4: Benchmarks using different optimizers and different lr on our proposed method using the baseline loss function: CE+Soft

Dice with deep supervision. Patch size 32×64×64. A: Arteries; V:Veins. Mean and standard deviation of the results are shown.

Technique Structures

Optimizer lr S Dice Score [%] (↑) Precision [%] (↑) Recall [%] (↑) HD95 [mm] (↓) ∆Λ (↓)

SGD 0.01 A 74.25 (4.24) 85.80 (11.25) 67.02 (7.45) 13.76 (17.15) 19.65 (2.04)

V 58.67 (27.06) 82.73 (9.89) 51.10 (27.69) 16.17 (12.86) 19.77 (3.36)

SGD 0.001 A 73.39 (3.25) 86.54 (6.65) 64.48 (7.11) 9.23 (3.56) 20.35 (2.01)

V 56.89 (28.44) 83.03 (8.45) 50.47 (28.78) 14.59 (11.67) 19.99 (3.40)

ADAM 0.01 A 69.97 (5.17) 79.07 (13.14) 64.89 (8.08) 20.21 (17.96) 19.91 (2.39)

V 51.84 (24.70) 61.55 (17.61) 52.53 (28.82) 24.71 (24.36) 20.16 (3.36)

ADAM 0.001 A 74.32 (2.48) 85.88 (8.34) 66.52 (6.99) 9.48 (4.58) 19.92 (1.87)

V 58.12 (26.24) 80.69 (12.85) 50.21 (27.59) 16.23 (17.87) 20.05 (3.63)

ADAGRAD 0.01 A 73.54 (4.83) 85.86 (11.79) 66.02 (7.64) 14.46 (17.13) 19.90 (2.38)

V 57.40 (27.07) 83.69 (8.17) 50.31 (27.81) 16.05 (10.15) 19.76 (3.59)

ADAGRAD 0.001 A 60.34 (6.90) 53.75 (10.66) 70.77 (5.97) 16.11 (1.87) 18.67 (1.45)

V 20.95 (14.76) 51.22 (27.09) 13.55 (10.11) 13.87 (3.56) 22.55 (2.98)

Appendix C. Parameters research

We conducted a parameters search for α, β and γ of Frangi’s vesselness (Frangi et al., 1998) and the best

σmax for ensuring zero gradient only in the main direction. The goal was to find the parameters for which

the vesselness score F was greater than zero for all voxels of the target structures. Results are shown in the

tables in Figure C.15.

Appendix D. Implementation study of the proposed tubular structures loss functions

Two other empirically studies were done using patches of size 32 × 64 × 64: the first one to find the

best implementation for Gaussian kernel application, while the second one to find the best wms of MsLoss.

The choice of using small patches was made in order to make training faster and in order to verify the

effectiveness of the proposed loss functions even when the ratio of foreground to background voxels is

higher. However, even with the use of a method for ROI cropping, the use of such small patches greatly

slows down the inference phase and it is not recommended for the implementation of pipelines for the

creation of anatomical 3D models. Here, we made use of reference segmentations to extract the ROI where

target structures are present. Results are respectively shown in Table D.5 and Table D.6, where the best

methods are those later used as presented in the main text. The application of several Gaussian kernels in all
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Figure C.15: Search of best parameters for σmax of Gaussian filter and α, β and γ for Frangi’s vesselness filter: we counted the

percentage of voxels of target structures that have a Frangi vesselness greater than 0. The use of σmax=25 and α=0.1, β=0.1 and γ=2

allows values greater than zero for all voxels and thus distinguishing them from having no segmentation or from blob or plate structures.

From the tables we can deduce that the most important value to set is σmax to have a strong enough gradient given the larger cross

sectional size of some vessels (e.g. aorta and cava vein) and of calyces (attachment of ureters to the kidneys). For the same reason, a

smaller value of α also allows us to consider structures with a blob-like shape. As there are no plates or structures with little contrast,

the weights of β and γ are irrelevant. Color code: from light to dark green as the percentange is better.

levels of resolution allows for a better extraction of morphological information and thus better comparison

between the predicted and reference structures. The first wms to weight MsLoss was calculated in order to

have values around 1, as Dice loss and Fvloss values are between 0 and 1. Due to the fact that ∆Λ for the
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baseline is approximately 20, we chose wms equal to 0.05. This value was then confirmed to be the best

suited.

Table D.5: Results using 3D patches of size 32×64×64 for different Gaussian kernel implementations. The values of σi∈[1,5] are in the

range [1,σmax+1] with a step of σmax
4 . We used as method for this study the nnU-Net (Isensee et al., 2021) with U-Net as backbone and

CE+Soft Dice with deep supervision as baseline loss function. Here wms is fixed at 0.05, σmax at 25. A: Arteries: V: Veins. Mean and

standard deviation of the results are shown.

Vesselness Structures

Loss Deep Sup. σi S Dice Score [%] (↑) Precision [%] (↑) Recall [%] (↑) HD95 [mm] (↓) ∆Λ (↓)

No - - A 73.49 (3.87) 85.15 (10.80) 66.10 (7.21) 15.78 (18.19) 20.05 (2.19)

V 57.07 (27.75) 84.73 (8.31) 48.79 (27.54) 17.19 (13.93) 20.01 (3.18)

MsLoss No [1,5] A 74.17 (5.49) 83.73 (10.86) 68.11 (8.05) 14.21 (17.59) 19.12 (2.19)

V 58.55 (29.16) 82.58 (6.47) 53.12 (30.26) 16.02 (12.77) 19.24 (3.57)

MsLoss Yes 5 A 76.16 (5.16) 86.04 (10.88) 69.81 (7.79) 17.09 (16.86) 18.16 (1.89)

V 57.78 (27.29) 82.81 (7.85) 51.43 (28.42) 21.15 (17.92) 19.63 (3.54)

MsLoss Yes [q+1] A 74.14 (5.35) 80.78 (11.68) 70.23 (7.08) 14.13 (17.50) 18.71 (1.86)

as Deep V 58.93 (26.89) 81.65 (8.12) 52.86 (28.39) 15.01 (11.23) 19.50 (3.44)

MsLoss Yes [1,(5-q)] A 75.30 (4.92) 84.42 (11.34) 69.55 (7.51) 13.49 (17.97) 18.83 (2.09)

as Deep V 60.68 (26.45) 80.94 (7.89) 55.16 (28.68) 16.18 (15.31) 18.99 (3.56)

MsLoss + FvLoss No [1,5] A 76.84 (5.69) 80.04 (11.44) 75.60 (7.25) 15.69 (17.73) 17.23 (1.89)

V 58.71 (27.05) 76.89 (9.16) 55.97 (30.28) 14.77 (10.91) 19.11 (3.26)

MsLoss + FvLoss Yes 5 A 74.23 (5.60) 84.05 (12.91) 68.31 (7.10) 15.85 (17.53) 19.23 (1.71)

V 58.41 (26.59) 82.44 (9.79) 50.39 (26.92) 16.63 (18.12) 20.17 (3.06)

MsLoss + FvLoss Yes [q+1] A 75.07 (6.12) 83.96 (13.06) 69.89 (7.67) 15.66 (17.59) 18.73 (1.84)

as Deep V 58.70 (25.83) 81.47 (11.19) 50.54 (26.26) 13.62 (11.61) 20.22 (3.10)

MsLoss + FvLoss Yes [1,(5-q)] A 77.04 (7.18) 84.49 (13.47) 72.82 (7.65) 15.77 (17.58) 17.72 (1.97)

as Deep V 58.04 (24.35) 81.30 (10.95) 50.54 (24.47) 15.44 (8.98) 17.83 (4.65)

Using the same small patches of size as before we tested the vesselness implementation used by Cao et al.

(2010) and Wang et al. (2022) where eigenvalues are ordered by magnitude as in the original vesselness

functions. Results are shown in Table D.7. As discussed in Section 4, a direct comparison of vesselness

scores leads to worsening of results because two voxels belonging to vessels with different preferential

directions (the predicted and reference ones) can have very similar vesselness scores. Furthermore, the

Recall analysis using patches of size 32×64×64 is also shown in Figure D.16, which confirms what was

stated in Section 6.

Other qualitative results are shown in Figure D.17 from the experiments done using smaller patches of

size 32×64×64. Note that the proposed loss function is capable to deal with the strong heterogeneity of

veins, and that the segmentation of fine renal arteries is improved.

41



Table D.6: Results using 3D patches of size 32×64×64 with different wms to weight MsLoss. For these tests we used our proposed

method that differs on the oversampling technique used compared to nnU-Net (Isensee et al., 2021). We used U-Net as backbone

and CE+Soft Dice+TsLoss with deep supervision as loss function. The proposed vesselness loss functions are applied also with deep

supervision with the Gaussian kernel applied with σi∈[1,5−q] from 1 to σmax+1 with a step of σmax
4 , where q is the output resolution

level (0 is the output at the same size of the input image). A: Arteries: V: Veins. Mean and standard deviation of the results are shown.

wms S Dice Score [%] (↑) Precision [%] (↑) Recall [%] (↑) HD95 [mm] (↓) ∆Λ (↓)

0.01 A 77.19 (7.79) 79.56 (13.16) 76.86 (6.62) 15.08 (17.68) 17.07 (1.98)

V 56.22 (26.92) 81.25 (8.84) 50.47 (29.15) 16.65 (12.79) 19.76 (3.63)

0.05 A 77.31 (4.42) 78.10 (12.48) 77.19 (6.64) 13.83 (17.39) 17.15 (1.81)

V 60.20 (25.15) 76.38 (9.08) 57.22 (29.36) 14.58 (11.33) 19.11 (3.57)

0.1 A 72.79 (7.26) 70.61 (13.06) 77.72 (6.59) 15.69 (17.77) 19.92 (2.27)

V 58.57 (25.08) 78.92 (8.07) 53.11 (27.85) 16.78 (15.32) 19.99 (3.50)

0.5 A 68.85 (6.83) 62.91 (12.19) 79.03 (6.77) 21.57 (19.77) 17.17 (1.99)

V 58.87 (23.73) 72.76 (9.19) 55.58 (28.31) 19.36 (26.81) 18.98 (3.53)

1 A 51.72 (8.85) 40.64 (11.42) 75.87 (5.99) 31.72 (18.23) 16.16 (1.42)

V 44.42 (15.31) 34.67 (11.52) 67.57 (26.91) 41.74 (25.13) 17.06 (3.62)

Table D.7: Results using 3D patches of size 32×64×64 on combination of different loss functions. For these tests we used our proposed

method that differs on the oversampling technique used compared to nnU-Net (Isensee et al., 2021). We used U-Net as backbone and

CE+Soft Dice with deep supervision as baseline loss function. Here wms is fixed at 0.05, the proposed loss functions are applied also

with deep supervision with the Gaussian kernel applied with σi∈[1,5−q] from 1 to σmax+1 with a step of σmax
4 , where q is the output

resolution level (0 is the output at the same size of the input image). A: Arteries: V: Veins. Mean and standard deviation of the results

are given. *The eigenvalues are ordered by magnitude as in the original vesselness functions.

Loss function used S Dice Score [%] (↑) Precision [%] (↑) Recall [%] (↑) HD95 [mm] (↓) ∆Λ (↓)

No A 74.25 (4.24) 85.80 (11.25) 67.02 (7.45) 13.76 (17.15) 19.65 (2.04)

V 58.67 (27.06) 82.73 (9.89) 51.10 (27.69) 16.17 (12.86) 19.77 (3.36)

FvLoss* as Frangi SSVMD A 73.65 (5.16) 86.71 (11.72) 65.53 (7.10) 15.10 (17.03) 19.56 (1.96)

(Cao et al., 2010) V 58.81 (27.93) 80.41 (9.63) 53.40 (29.25) 14.42 (10.42) 19.42 (3.36)

FvLoss* as Jerman SSVMD A 73.13 (5.56) 85.37 (12.14) 65.63 (7.66) 14.71 (17.24) 20.03 (1.86)

(Wang et al., 2022) V 56.06 (27.40) 83.33 (8.05) 48.72 (27.74) 15.26 (11.83) 20.23 (3.32)

MsLoss A 75.63 (4.57) 81.07 (11.64) 72.74 (7.55) 13.26 (17.54) 18.21 (1.88)

(Λ in Ms ordered via W) V 59.73 (26.19) 79.81 (9.65) 53.73 (28.23) 14.71 (12.07) 19.23 (3.25)

MsLoss + FvLoss A 77.31 (4.42) 78.10 (12.48) 77.19 (6.64) 13.83 (17.39) 17.15 (1.81)

(Λ in Ms ordered via W) V 60.20 (25.15) 76.38 (9.08) 57.22 (29.36) 14.58 (11.33) 19.11 (3.57)
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Figure D.16: Recall of the first row and last four rows of experiments in Table D.5 with patches of size 32×64×64 for the different

structures. Arteries are divided into aorta, renal arteries and celiac artery, and veins are divided into cava vein and renal veins.
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Figure D.17: Example of segmentation for veins (top) and arteries (bottom) on two difficult cases. The top ceCT image presents a

strong heterogeneity in the cava vein due to the tumor presence. The bottom ceCT image presents renal arteries with a very few voxels.
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