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ABSTRACT
This paper explores the possibility of using a genetic algorithm
to launch a Spectre attack on different branch predictors with the
same binary. We focus on RISC-V architectures, specifically Sonic-
BOOM, as they are the most likely to have a wide variety of branch
predictors while sharing the same ISA. We show that our genetic
algorithm is able to find a training and attack sequence to mount a
Spectre Bounds Check Bypass attack on multiple branch predictors.

1 INTRODUCTION
Nowadays, with the rise of information technology, we rely on
computer systems to manage financial, medical or military infor-
mation. Their sensitive nature attracts nefarious actors wanting to
abuse them, making cyber threats more and more common, and
their consequences, severe.

As some computer programs deal with confidential information,
or are critical to health or safety, it is therefore necessary to protect
them against attacks seeking to extract this information or pre-
venting their operation. However, multiple users and tasks often
have to share the same computing resources to distribute the cost
of such systems. In order to avoid information leaks or crashes,
isolation measures are implemented, such as Memory Protection or
Virtual Memory. These isolation measures have been implemented
to prevent code from accessing data they should not access, for
example belonging to another task. This mitigates direct secret
information extraction, as programs should not be able to access
secret information being processed by another program. However,
this isolation was found to be imperfect. With cache-based timing
attacks, for example, it is possible to observe events correlated with
secret data, making it retrievable by timing some process which
takes a different amount of time depending on whether or not the
event happened. With the Spectre and Meltdown attacks [3, 6–8],
it was discovered that not even the hardware can be trusted, as an
attacker could influence it to induce observable events depending
on the secret, bypassing isolation measures. Though mitigations
are available [2, 9, 12], they are costly in terms of performance.

As flaws in these isolation mechanisms are discovered, assump-
tions made on the security of the underlying abstractions are no
longer valid, breaking security guarantees.

To increase performance, multiple techniques are used to ex-
ecute as much code as possible in the minimum amount of time.
One of these techniques enable modern processors to speculatively
execute instructions, making use of circuitry that would otherwise
be idle. Instead of waiting for the result of a conditional branch,
the processor will try to predict which branch will be taken and
speculatively execute the instructions following it, discarding the
results in the case of a misprediction. To maximize the performance

gain, the branch predictor should predict the branch as accurately
as possible, branch predictor designs usually using the branching
history of the given branch to derive patterns. Another element, the
cache, was introduced to reduce the latency of memory accesses.
Caches are small yet fast memories containing data deemed most
likely to be used in the near future.

Spectre attacks work by leveraging this speculative execution
and using the cache as a covert channel to recover secret data. The
attacker will try to manipulate the branch predictor to specula-
tively execute an instruction that will change the state of the cache,
enabling a timing attack.

As Spectre attacks rely on speculative execution, they are sensi-
tive to changes in the branch prediction algorithms.

RISC-V is an open ISA with a royalty-free specification. Thanks
to this openness, it is becoming increasingly widespread in small
embedded systems, withWestern Digital having a RISC-V controller
for their drives, and other vendors building their own microarchite-
cures. With this openness and use in many different specialized
applications, many microarchitecures with completely different
implementations of the ISA are becoming available to run software
on.

For example, while Spectre attackswere replicated on BOOMv2 [5],
it is not replicable as-is on BOOMv3 as the branch predictor was
changed from a gshare branch predictor to a TAGE predictor with
a loop predictor [13, 18].

As RISC-V is an open ISA with many implementations, it is more
likely to have a large diversity in branch predictors, hindering a
widespread attack on all RISC-V implementations.

While such diversity might prevent the spread of a targeted at-
tack to other microarchitectures through the same binary, an attack
treating branch predictors as black boxes would enable attackers to
target a wider variety of microarchitectures with only one binary.

In this paper, we show how a simple genetic algorithm can be
used to find how to mount a Spectre attack on different branch
predictors with the same binary, being completely agnostic to the
inner workings of the branch predictors. In Section 2, we present
the basics of Spectre attacks and the branch predictors targeted by
them. In Section 3, we reframe the Spectre Bounds Check Bypass
attack in terms of a sequence of arguments which can be evaluated
to see whether the attack yields accurate results. We then propose
in Section 4 a simple genetic algorithm to find a sequence that, with
the Spectre access time measuring setup, yields the most accurate
recovery of a secret. The results presented in Section 6 show the
method’s effectiveness by making the algorithm exhibit a training-
and-attack sequence for different branch predictors, using the same
binary, on the BOOMv3 RISC-V microarchitecture.
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2 PRELIMINARIES
2.1 Spectre v1
Spectre is a class of micro-architectural attacks relying on a mis-
prediction triggering a change in the cache state observable by the
attacker. Multiple variants of Spectre exist, some targeting indirect
branch prediction, others the return stack buffer [7]. The specific
variant we are targeting is the Bounds Check Bypass attack, often
called Spectre v1 [6]. This attacker needs to target a code gadget in
the attacked code that is vulnerable to this flaw.

This gadget needs to be of this form:
(1) A conditional branch on a value x that can be controlled by

the attacker.
(2) In the branch, a load of a value y from a location dependent

on the attacker-controlled x.
(3) Following that, another load from a location dependent on

y.
The attack consists of:
(1) Executing the gadget with values such that the branch

predictor’s next prediction on the branch is to take it.
(2) Executing the gadget with a specific value as an argument

such that y is the secret.
(3) The latency of an access to the location dependent on y

being different due to the change in cache state induced
by the previous step, the attacker can infer y, therefore the
secret.

For example, considering the following gadget:
if (x < array1_size) {

_ = array2[array1[x]];
}

By executing this gadget with a controlled x value, the attacker
can train the branch predictor to predict that the branch will be
taken. The attacker then executes the gadget with an x value such
that array1 + x is the address of a secret value, even if the condi-
tion is false. The branch predictor will predict that the branch will
be taken, and the processor will execute the subsequent instructions
speculatively. Before the resolution of the branch, the processor
will get the result of the load at array1 + x, the secret, and ex-
ecute a load of the value at array2 + secret. The execution of
this last load will bring in the cache the value at array2 + secret.
By timing the latency of the array2 array, the secret value can be
deduced. This can be done by methods such as a Prime+Probe [11]
or Flush+Reload [16]. Other variants exist, using other types of
branching and therefore the kinds of branch predictors used to
predict those branches, such as return target buffers or indirect
branch predictors. However, they do not enter the scope of this
paper.

2.2 Targets of the attack
Various micro-architectures are susceptible to such attacks. They
may use all kinds of ISAs, such as x86, but such attacks were also
replicated on microarchitectures using different ISAs, such as ARM,
or even RISC-V [5]. This is because the Spectre attacks does not
rely on a specific ISA, but on the use of speculative execution. This
technique is implemented in many microarchitectures intended for

relatively high performance applications. Indeed, this technique
improves the pipeline efficiency so much that the performance
improvements cannot be ignored, therefore many microarchitec-
tures are vulnerable to Spectre attacks, such as BOOM, a RISC-V
microarchitecture aiming at performance. Yet while the attacks
rely on the use of this technique, it is worth noting that not only
the presence of speculative execution is necessary, but the branch
predictor needs to be trained aptly to correctly execute the attack,
and there is a huge diversity in branch predictors.

Apart from static branch predictors, which can be trivially at-
tacked without training, or simply cannot, depending on how the
program was compiled, most branch predictors rely on the previous
executions to make an informed guess.

For example, the gshare branch predictor uses a global history
of taken/not taken branches and the branch address to select a
2-bit saturating counter. This means that by calling the code gad-
get enough times, the branch predictor will, for the given address
and global history, have saturated the counter, making it reliably
mispredict. However the TAGE-L branch predictor not only uses a
global history to select a backing branch predictor, but also a loop
predictor [13]. A loop predictor prevents a repeated attack with
a fixed-length training sequence, as with time, the loop predictor
will correctly predict when the branch will not be taken. Also, it
is important to keep in mind that these predictors can be have
multiple versions by varying the parameters such as branch history
length, also using a local history, etc… With this diversity, while
the general behaviour of most branch predictors is understood, an
attack relying on the specific behaviour of a branch predictor is
open to a simple change in its implementation causing the attack
to fail.

3 PROBLEM DEFINITION
The attacker, while writing their attack, would like to have the best
attack sequence for the microarchitecture their attack is running
on, and have their attack work on as many microarchitectures as
possible as it could be an unknown to the attacker. Their problem is
therefore: How to write an attack that targets accurately as many
microarchitectures as possible?

To deal with the variety of possible branch predictors, an ideal
attack would be able to adapt without prior knowledge of branch
predictor behaviour, so that it could run on any vulnerable microar-
chitecture.

Previous work focuses on discovering new attacks or rediscov-
ering existing ones, through reverse engineering [4], or through
fuzzing [10, 15]. While these methods are useful to discover new
variants or to check that a countermeasure works, they take either
a lot of human time and require the adaptation to be done before
compiling the attack, thus limiting the number of branch predictors
the attack targets to those the programmer implemented support
for, or a lot of time to run because of the breadth of the search,
and therefore are not suited for use in an attack where the attacker
could be discovered and stopped.

We try to address these issues by incorporating knowledge of
the basic building blocks of the Spectre V1 attack into an automated
method, while treating the branch predictor’s behaviour as a black
box.
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Using Spectre V1, the attacker is trying to find a way to make the
branch predictor mispredict on a branch instruction such that the
misprediction could be exploited to leak data. In existing Spectre
attacks, it is achieved though a training sequence, where the target
gadget is called with x values such that the branch predictor ”learns”
to predict a ”taken” branch, then when the predictor is trained, the
gadget is called with the chosen x value to attack.

The entire attack sequence, from the attacker’s point of view, can
be therefore summarized as the list of calls to the target functions,
which can be further reduced to the list of arguments used.

Given the characteristics of the Spectre v1 attack, we then de-
fine a solution as a sequence of G8 values used to train the branch
predictor, with a flag to indicate when to use the attacking x value.

A solution to the problem should have the following characteris-
tics, in decreasing order of importance:

• An attack using the call sequence should retrieve the secret
data as accurately as possible.

• It should be as fast as possible.

Other characteristics might also be desirable for an attack but
fall outside the scope of this paper.

We recognise here an optimisation problem: for the architecture
the code is running on, which solution makes the attack work the
most accurately, and the fastest?

4 ALGORITHM
4.1 Overview
Genetic algorithms are simple but effective optimisation algorithms.
They use principles of natural selection to select the best solutions
among candidates, and create new candidates from them.

A solution is a set of parameters that can be evaluated using
a fitness function determining their use as a base for the next
generation. New candidates are created bymutating the parameters
and crossing over with other solutions.

In addition, some techniques, such as elitism, are added to this
simple algorithm to avoid undesirable behaviours. Elitism consists
of keeping the best solutions of the previous generation in the next
generation, in order to avoid throwing away good parameters with
little hope of getting them back in future generations.

We decide to try a genetic algorithm because the format of a
solution to the problem closely resembles a genome: a sequence of
values the interpretation of which gives a result whose fitness can
be measured, which, in the case of a Spectre V1 attack, a sequence
of arguments to call the gadget with whose effectiveness to extract
the secret is evaluated.

Our genetic algorithm is composed of the following steps:

1 Initialise the population with the null solution, which
corresponds to repeatedly calling the gadget with 0 as the
attacker-controlled value.

2 Evaluate the fitness (see 4.2) of each solution by using
them in an attack against a dummy target function using
the gadget.

3 Keep the best solution of the previous generation.
4 Generate new candidates (see 4.3) by mutating and cross-

ing over the best solutions using the following substeps:

4.1 Randomly swap the parameters of the 2 best solutions
(crossing over ).

4.2 Generate the other candidates by mutating one of the
2 solutions and randomly swapping two consecutive
parameters. This means that we randomly modify ar-
guments in the sequence of calls and randomly swap
them in the sequence order.

5 Repeat steps 2 to 5 until the maximum number of genera-
tions is reached.

4.2 Fitness Function
To have a solution with the desired characteristics, we designed the
fitness function to take into account the following parameters:

• Time taken to execute the attack, in the number of execu-
tions of the gadget.

• The ability to recover the secret value as the first guess.
• The ability to recover the secret value as the second guess.

As a multi-objective optimization problem, the importance of
the objectives are parametrized in the fitness formula.

The formula chosen to evaluate the fitness of a solution is:

� = '5 ∗�5 + 'B ∗�B +) + �

Where:
'5 is the number of bytes of the secret found as first guesses.
'B is the number of bytes of the secret found as second guesses.
�5 is the score coefficient of first guess recovery.
�B is the score coefficient of second guess recovery.
) is a time score based on the number of calls to the gadget.
� is a bonus score for finding close to the entire secret.

With

� = �1 ∗ (
'5 + 'B

(
)2

( being the secret’s size and �1 being the bonus coefficient.

) = (#1 − #B ) ∗�C
#1 being a reference number of calls to the gadget, #B being the
measured number of calls, and �C being a coefficient.

4.3 Generation of new candidates
Contrary to most genetic algorithms, the genes we use, the argu-
ments to be used in sequence with the gadget, are mostly irrelevant
on their own, as they cannot have their fitness evaluated indepen-
dently.This behaviour is caused by the fact only the way to evaluate
the fitness of a set of genes is to try an attack and that most of the
problem is ”when” to attack, and is likely not affected by the value
of G8 as long as it verifies the condition. However, it is important to
keep this ability to have different values in case a branch predictor
is able to use this information to correctly predict the branch.

This is why it is important to allow genes tomove in the sequence.
Moving genes allow not only for a more diverse population, but
also permit faster convergence in case the optimal solution needs a
specific number of ”taken” calls to be made to successfully attack.

We generate the next generation by first swapping the genes of
the two best solutions with a probability U , then we generate the
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other solutions by applying mutations or swaps to one of the two
solutions thus generated.

Two consecutive genes are swapped with a probability V . This is
to allow the genes to move in the sequence. Then we can apply a
mutation to the gene with a probability W . The mutation is chosen
with a uniform distribution in the interval [0,1].

5 TESTING METHOLOGY
To test the algorithm we used a dummy function susceptible to a
Spectre Bounds Check Bypass attack, a randomly-generated secret,
and a function using a solution to attack and get the secret from
the side channel. We then implemented the genetic algorithm, and
wrapped it in a loop to test it several times. To prevent previous
attempts from interfering with the current one, we add random
calls to the dummy function so the branch predictor cannot keep a
behaviour induced by previous candidates.

Both the genetic algorithm and the attacking code run on the
attacked processor.

In order to complete the different tests in a timely manner, we
decided to forgo simulating the BOOM RISC-V microarchitecture
and instead use a board with an FPGA, and synthesized the BOOM
core. The board we used is a Diligent Nexys Video.

Due to resource constraints, the available memory was taken
into account in the parameters of the program.

We executed the program using, for RISC V targets, BOOMv3 as
a base, and configuring it to use different branch predictors. The
cores thus generated were then synthsized and put on a FPGA.

The following branch predictors were tested:

1 TAGE-L, natively used by BOOMv3
2 Alpha21264, also available in the BOOM codebase

Their configuration was kept at their default values in the BOOM
codebase, which, to the time of writing, are as described in Table 1.

Table 1: Branch predictor configurations

Parameter TAGE-L Alpha21264
Max Meta Length 120 64
Global History Length 64 32
Local History Length 1 32
Local History Sets 0 128

5.1 Parameters
We tested the algorithm using the fitness parameters described in
Table 2 and the algorithm constants described in Table 3. The secret
size was chosen to be 10 bytes arbitrarily. The rationale behind
the choice of small genome size, generation size and number of
generations is to keep the execution time low enough, taking the
performance of the microarchitecture into account. #1 was set
corresponding to the order of magnitude of calls to the gadget
reached after a few iterations. �C was set to 1

64 as a scaling factor.
�5 and�B were set to 10 and 5 respectively, to givemore importance
to first guess recovery, and�1 was set to 100 in order to double the
score if the entire secret is recovered.

Table 2: Parameters used for the fitness function

Parameter Value
�5 10
�B 5
�1 100
�C

1
64

#1 1000

Table 3: Parameters of the genetic algorithm

Parameter Value
Genome size 1024
Generation size 8
Number of generations 32
U 1

2
V 1

8
W 1

16
0 -4
1 3

Figure 1: Performance of the generated solutions on the
TAGE-L branch predictor by generation

6 RESULTS
On the TAGE-L branch predictor, the algorithm managed to con-
verge very quickly towards an acceptable solution, as 80% accuracy
was hit at the second generation as shown in Figure 1. We can also
see the the algorithm struggles to have an accuracy better than
85%. While it is certain that an attack specifically written for this
branch predictor could achieve a near-100% accuracy, and our al-
gorithm is unable to generate a solution with better that 90%, our
algorithm treated the branch prediction behaviour as a black blox
and thus did not rely on the programmer targeting the specific
microarchitecture. On Figure 2 we can see that the algorithm is able
to generate solutions that are far better at extracting the secret than
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Figure 2: Comparison of the accuracy of the generated solu-
tions on the TAGE-L branch predictor by generation versus
random solutions

random solutions. Random solutions were generated as a sequence
of random 32 bits integers sampled from a uniform distribution.

Figure 3: Performance of the generated solutions on the Al-
pha21264 branch predictor by generation

We have very similar results to the TAGE-L branch predictor on
the Alpha21264 branch predictor, but the maximum accuracy of a
generation can get a bit higher, sometimes beating the 90%. The
average accuracy follows the same trend with a slight increase from
the TAGE-L results. This can be attributed to the the increased com-
plexity of the TAGE-L branch predictor, meaning that the behaviour
of the Alpha21264 branch predictor is more predictable.

7 CONCLUSION
The simple genetic algorithm we showed in this article is able to
find a training and attacking sequence to successfully extract a
secret using a Spectre Bounds Check Bypass attack on multiple
branch predictors, being agnostic to their inner workings. It is able
to achieve this in a relatively small number of generations, and
its accuracy, though not perfect, makes a Spectre attack against a
wider range of microarchitectures feasible in a single binary. With
this algorithm, the training and attacking code doesn’t have to
be re-implemented for each microarchitecture, and therefore, less
microarchitecture specific code has to be written for an attack.
This means that to defend against the Spectre class of attacks, it
is not possible to rely on branch predictor diversity to avoid a
widespread attack, meaning that dedicated countermeasures such
as GhostMinion [2] have to be implemented.

8 FUTUREWORK
A simple genetic algorithm provided good results, but other al-
gorithms might yield better and more accurate results, such as
Artificial Neural Networks, or more complex genetic algorithms.
We also see Q-learning algorithms as possibly yielding better results
with faster convergence. Moreover, this method could be tested
on other RISC-V microarchitectures or other ISAs to evaluate its
effectiveness on other branch predictors.

Our work focused on branch prediction diversity, but does not
address the diversity in cache configurations. As RISC-V does not
include an instruction to invalidate a cache line, clearing the cache
for the attack necessitates prior knowledge of the cache config-
uration. Moreover, our work did not focus on avoiding prefetch
interference, nor on how to extract the secret from the timing data.
A truly generic attack would require to also implement a method
to dynamically infer the cache configuration, avoid prefetch inter-
ference in retrieving the information and an agnostic way to infer
the secret. Fortunately, the first problem already has a solution as it
was needed to optimise programs for architectures with poorly doc-
umented memory hierarchies [1, 17]. The second problem already
was addressed in the original Spectre paper [6] with a randomised
read order as recent x86 processors implement a prefetch, and the
third problem might be able to be solved by a Machine Learning
algorithm as a demonstration of such a method was tried [14]. A
binary implementing those solutions should be generic enough to
be able to extract secrets on all microarchitectures sharing the same
ISA if they are susceptible to a Bounds Check Bypass attack.
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