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Abstract. Neural Radiance Field (NeRF) is a popular method for syn-
thesizing novel views of a scene from a set of input images. While NeRF
has demonstrated state-of-the-art performance in several applications,
it suffers from high computational requirements. Recent works have at-
tempted to address these issues by including explicit volumetric informa-
tion, which makes the optimization process difficult when fine-graining
the voxel grids. In this paper, we propose an ensemble approach that
combines the strengths of two NeRF models to achieve superior results
compared to state-of-the-art architectures, with a similar number of pa-
rameters. Experimental results show that our ensemble approach is a
promising strategy for performance enhancement, and beats vanilla ap-
proaches under the same parameter’s cardinality constraint.

Keywords: NeRF · Ensemble · 3D scene modeling · Compression

1 Introduction

Neural Radiance Fields (NeRFs) [16] have recently shown impressive results
in synthesizing photo-realistic 3D scenes from a set of 2D images. However,
NeRF suffers from limited scene diversity, long training time, and sensitivity to
training data [14]. To address these issues, recent works have proposed several
improvements to the original NeRF framework, such as NeRF++, which extends
NeRF to unbounded scenes [26].

Another promising approach to improve NeRF, yet to be explored, is en-
sembling. Ensemble methods combine multiple models to achieve better perfor-
mance than a single model. In the context of NeRF, ensembling can be achieved
by training multiple NeRF models on different subsets of the training data, or
by training different models with different architectures or hyperparameters. En-
sembling has been shown to be effective in improving the performance of various
computer vision tasks, such as image classification [8] and object detection [12].
One of the key advantages of ensemble methods is their ability to combine the
predictions of multiple models to produce a more accurate and robust prediction.
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This is particularly useful when the individual models have different strengths
and weaknesses, as the ensemble can leverage the strengths of each model while
mitigating their weaknesses.

However, there are several challenges associated with ensemble methods that
can limit their effectiveness. For example, how can we select the appropriate
combination of models in the ensemble? This is particularly difficult when there
are a large number of potential models to choose from, or when the individual
models are highly correlated with each other. Another challenge is how to effec-
tively combine the predictions of the individual models, particularly when they
have different levels of accuracy or confidence.

In this work, we explore the potentiality of NeRF ensembling to improve
performances. More specifically, we adopt a baseline, state-of-the-art architec-
ture, DVGO [22], trained on a very well-known dataset, Synthetic-NeRF [16].
We observe that, by employing a vanilla ensembling strategy of two models, we
may obtain suboptimal results. We propose a simple yet effective solution to
counter it, observing consistent performance improvement, with respect to the
baseline models, on a broad variety of tested resolutions, under the same mem-
ory footprint constraints. This paper aims at moving the first steps towards the
definition of an ultimate, highly-performing, efficient NeRF ensembling strategy.
At a glance, the contributions of this work are the following:

– To the best of our knowledge, this is the first work proposing a joint ensem-
bling and compression scheme for NeRF models: a formulation to prevent
performance degradation in case of conjoint pruning is proposed.

– We observe, on known benchmarks, that ensembling multiple models at dif-
ferent scales requires fewer parameters than training and compressing one
large model directly (under the same generated image quality constraint).

2 Related works

Neural Radiance Field (NeRF) [16] stand out in recent years as the most preva-
lent method for novel view rendering that infers photo-realistic views given a
moderate number of input images. Unlike traditional explicit volumetric rep-
resentation techniques, NeRF encodes the entire content of the scene includ-
ing view-dependent color emission and density into a single multi-layer percep-
tron (MLP) [16]. Besides, NeRF-based approaches are proving on the field to
have good generalization when undergoing several transformations, like changing
environmental light [1,21], image deformation [6,18,24] and are even usable in
more challenging setups including meta learning [23], learn dynamically-changing
scenes [7,11,15,25] and even in generative contexts [2,9,20]. Compared to explicit
representations, NeRF requires very little storage space, but on the contrary suf-
fers from lengthy training time and very slow rendering speed, as the MLP is
queried an extremely high number of times for rendering a single image. In more
detail, a NeRF takes as input a 3D point in space x and a viewing direction d
and returns a color c and a density σ. It utilizes volume rendering techniques
to achieve advanced 3D reconstruction: given a camera and a sparse set of cali-
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Fig. 1: An overview of NeRF training is presented. (a) illustrates the initial train-
ing setup, made of a sparse set of calibrated images of the same object under
different viewpoints conditions. (b) shows the training process made of ray cast-
ing, ray sampling, and volume rendering to compute the pixel color. Then the
generated image is compared to the ground truth (c).

brated images capturing the scene from various viewpoints, the rendering process
involves casting a ray from the camera’s eye to the center of a pixel, sampling
x1, ..., xk points along the ray and evaluating those points, obtaining a color, c,
and a density value, σ. The final pixel color, ĉ, is determined by alpha-blending
all the computed color values (c1, · · · , ck) along the ray

ĉ =

K∑
i=1

Tiαici Ti =

i−1∏
j=1

(1− αj) αi = 1− exp(σiδi), (1)

where αi is the value used for blending the colors values (its calculation depends
on the distance between adjacent sampling points δ = ||xj+1−xj || and Ti is the
transmittance. This process is repeated for each pixel in the image. Once the final
image is generated, it is compared to the ground truth using the photometric
loss (2), and the parameters of the multilayer perceptron are optimized through
backpropagation. Fig. 1 summarizes this process.

To reduce inference and training time, explicit prior on the 3D object rep-
resentation can be imposed. The most intuitive yet effective approach relies on
splitting the 3D volume into small blocks, each of which is learned by a tiny NeRF
model. With KiloNeRF [19], the advantage of doing this is twofold. Firstly, the
size of a single NeRF model is much smaller than the original one, reducing the
latency time. Secondly, the rendering process itself becomes parallelizable, as
multiple pixels can be rendered simultaneously. The downside of this approach
is that the granularity of the KiloNeRFs needs to be properly tuned, and the
proper tuning process can be time-consuming and require significant computa-
tional resources. Additionally, KiloNeRFs may struggle to capture fine details
and high-frequency variations in the input data, which can lead to inaccurate
reconstructions. To address these limitations, researchers have proposed sev-
eral extensions and variations of the original NeRF and KiloNeRF models. For
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Algorithm 1 NeRF ensemble training algorithm.
Require: Training set Dtrain, validation set Dval, ensemble of 2 NeRFs
1: Stage 1: Train 2 NeRFs independently on Dtrain
2: while Performance does not drop do
3: Stage 2 (Ens-FT): Fine-tune the ensemble of NeRFs
4: Stage 3 (CPE): Compress the ensemble, using Dval
5: end while
6: return Ensemble of NeRFs

instance, some works have explored the use of hierarchical or multi-scale repre-
sentations to better capture details at different levels of the scene [28,27]. Others
have investigated the incorporation of additional priors or constraints, such as
symmetry or smoothness assumptions, to improve the robustness and general-
ization of the models [13,16]. In parallel, the development of NeRFs with direct
voxel grid optimization is gaining more and more success. Direct Voxel Grid
Optimization (DVGO) [22] is a popular baseline for NeRFs due to its simplicity
and effectiveness. In contrast to traditional NeRFs, which use a continuous rep-
resentation of the scene, DVGO operates directly on a voxel grid. This makes
DVGO much more computationally efficient than NeRFs, as it allows for par-
allelization of the ray-marching process and significantly reduces the number of
samples required to render an image. Additionally, DVGO is less prone to over-
fitting and can handle more complex scenes with higher levels of detail. Despite
its limitations in terms of scalability, DVGO provides a strong and reliable base-
line for evaluating the performance of more advanced methods such as NeRFs.
Moreover, it has been shown that by training a NeRF with initialization from
a DVGO model, the NeRF can achieve comparable performance while requiring
significantly less training time and computational resources. Therefore, DVGO
remains a useful and widely used baseline for testing and comparing novel tech-
niques for 3D scene representation and rendering.

For this reason, in the present study, we have opted to employ the DVGO
architecture as a reference NeRF framework. While hybrid models, also known
as Explicit Voxel Grid models, exhibit superior efficiency and increased accuracy,
they necessitate substantial storage capacity, typically on the order of gigabytes.
As a result, some voxel pruning techniques have recently emerged with the goal
of minimizing storage requirements for these models. Re:NeRF [4] represents a
state-of-the-art approach for compressing EVG NeRFs and stands among the
forefront methods in reducing storage demands.

3 Method

In this section, we present our framework, which allows for the combination of
two NeRF models of different grid resolutions to improve performance on novel
view synthesis tasks. A general overview of the employed strategy is presented
in Algorithm 1. Our framework consists of three stages:



Two is Better than One 5

– independent training of multiple NeRF models (Stage 1);
– ensemble construction and fine-tuning (Stage 2);
– conjoint pruning phase of the ensembled NeRFs (Stage 3).

Independent Training of NeRF Models (Stage 1). In the first stage, we
train multiple NeRF models independently, each with a different grid resolution.
For each of them, we train the model for a fixed number of iterations, according
to the standard learning policy defined, minimizing the NeRF loss function:

L(w) =
1

M

M∑
m=1

∥Cm − C(w, xm, ωm)∥22 , (2)

where w represents the model parameters, Cm is the ground truth color of
the m-th pixel, C(w, xm, ωm) is the predicted color by the NeRF for the same
pixel, xm is the 3D point where the pixel lies, ωm is the corresponding viewing
direction and M is the total number of training samples. After the whole training
process ends, as observed in some recent work in the literature [4], the size of the
generated models can be drastically reduced, with marginal or even no impact
on the performance. This optional stage employs an iterative pruning strategy,
followed by quantization and entropy coding, on the models at isolation: we will
name it independent pruning of models (IPM).
Ensemble construction and ensemble fine-tuning (Stage 2). Once mul-
tiple NeRF models have been trained or compressed, we construct an ensemble
by combining them. Specifically, we simply perform an interpolation for the
outputs

Cavg
m =

1

2

2∑
n=1

Cn(wn, xm, ωm), (3)

where C2 indicates the output of the ensemble of 2 NeRFs, Cn is the output of
the n-th NeRF, and wn are the parameters of the n-th NeRF.
After constructing the ensemble, a fine-tuning stage follows. Specifically, we ob-
serve that by optimizing the output provided by (3), we have

Lavg(w) =
1

M

M∑
m=1

∥∥∥∥∥Cm − 1

2

2∑
n=1

Cn(wn, xi, ωi)

∥∥∥∥∥
2

2

. (4)

Conjoint pruning of the ensemble (Stage 3). The final phase consists
in jointly pruning the ensemble. We refer to this phase as conjoint pruning of
the ensemble (CPE). This phase targets superior performance compared to en-
sembling pre-trained models, with comparable (sometimes even lower) memory
footprint. The optimization of the loss function needs to be carefully reconsid-
ered as it may lead to suboptimal results as the pruning process progresses.
Indeed, according to (4), the ensemble’s output is computed by averaging the
output of the ensemble models. In the scenario where the models are pre-trained,
it is generally not a concern, and optimizing them based on this loss function
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Fig. 2: Comparison between Lsum and Lavg losses on Lego Dataset. Each point is
an average of the six ensemble configurations tested. It is important to note that
as the pruning progresses, the sum approach tends to yield better performance.

can yield great results. Nevertheless, in the case of conjoint pruning, optimizing
Lavg could be quite problematic. In particular, due to the pruning process, C1

and/or C2 (the output of the models of the ensemble) may contain multiple null
values (or values close to zero), depending on the compression rate. Therefore,
it is evident that an averaging of the ensemble models in such a scenario would
result in a significant reduction of the signal output of both models, regardless
of the pruning phase. We can avoid this problem by simply adopting, as the
output of our ensemble,

C2
i =

2∑
n=1

Cn(wn, xi, ωi), (5)

which leads to the minimization of the following loss function

Lsum(w) =
1

M

M∑
m=1

∥∥∥∥∥Cm −
2∑

n=1

Cn(wn, xi, ωi)

∥∥∥∥∥
2

2

. (6)

In Fig. 2, it can be observed that optimizing Lsum achieves better performances
than optimizing Lavg.

4 Experiments

In this section, we present the empirical results obtained on the Synthetic-
NeRF [16] dataset. It contains eight different realistic objects created with
Blender(chair, drums, ficus, hotdog, lego, materials, mic and ship), which are
synthesized from NeRF.

4.1 Setup

The target image resolution has been set up to 800×800 pixels, having 100 views
for training, 100 for validation, and 200 for testing. We choose DVGO [22] as a
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Table 1: Results on Synthetic-NeRF for DVGO. All the presented results are
averaged on the eight different datasets in Synthetic-NeRF. For the ensemble,
the models have resolution 1603 and the one indicated. In bold we report the
best values, while in italic the second best ones.

Metric
Method

Compress
Resolution

IPM ENS-FT CPE 1603 1703 1803 1903 2003 2563

PSNR(↑)

31.813 31.939 32.063 32.158 32.270 32.751
✓ 32.821 33.061 33.113 33.183 33.265 33.509

✓
LOW 31.801 31.909 32.240 32.313 32.421 32.644
HIGH 31.397 31.545 31.875 31.963 32.071 32.299

✓ ✓
LOW 32.431 32.846 32.913 32.948 33.042 33.200
HIGH 31.858 32.229 32.329 32.399 32.491 32.768

✓ ✓
LOW 32.724 32.938 32.942 33.002 33.084 33.302
HIGH 32.110 32.430 32.424 32.523 32.617 32.899

SIZE(MB)(↓)

634.44 766.78 907.23 1074.01 1248.80 2619.70
✓ 1274.62 1401.79 1545.86 1706.12 1882.07 3334.06

✓
LOW 4.67 5.35 6.13 6.99 8.80 13.55
HIGH 2.49 2.85 3.25 3.65 4.54 6.97

✓ ✓
LOW 7.22 8.15 8.78 9.44 10.11 14.98
HIGH 4.28 4.20 4.52 4.85 5.19 7.74

✓ ✓
LOW 7.37 7.84 8.46 9.08 9.77 14.37
HIGH 3.93 4.19 4.50 4.83 5.17 7.57

reference architecture, and we adopt the original paper’s learning strategy and
hyperparameters configuration. We propose standard image generation quality
metrics like PSNR, SSIM, and LPIPS (computed on AlexNet).

Besides, we compare the various results in terms of the size (in MB) of
the model compressed by Re:NeRF. We conduct experiments at different voxel
grid resolutions: 1603, 1703, 1803, 1903, 2003, and 2563. According to the pro-
posed approach, first, we train (and compress) several models at different reso-
lutions; then, we construct all the possible ensembles of two models combining
the lowest resolution (1603) with all the available resolutions (from 1603 up to
2563). As a standard pruning, quantization, and compression approach, we adopt
Re:NeRF [4]. Our code is developed using PyTorch 1.12, and the experiments
are performed on an NVIDIA A40 GPU.1

4.2 Results

Table 1 reports the results achieved on Synthetic-NeRF. The table consists of
four macro-sections, each corresponding to a reference measure (namely PSNR,
SSIM, LPIPS, and SIZE). Analyzing each macro section, we observe the follow-
ing: in the first row, the performance of the baseline models; in the second row
(ENS-FT), the performance of the fine-tuned ensemble; in the third row (IPM),
1 https://github.com/EIDOSLAB/nerf-ensemble-two-is-better-than-one.

https://github.com/EIDOSLAB/nerf-ensemble-two-is-better-than-one
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Fig. 3: (a) Comparison between baseline and ensembling in terms of PSNR and
memory footprint. (b) Comparison among individually pruned models (IPM),
IPM followed by one fine-tuning stage in ensembling (IPM+ENS-FT), and con-
joint pruned ensemble (CPE).

the performance of individually compressed models at two rates, low and high
(corresponding to 87.50% and 96.87% of the total parameters, respectively); in
the fourth row (IPM + ENS-FT), the performance of the pre-compressed mod-
els in the ensemble, and finally, the last row of each macro section shows the
performance of the conjoint pruning of the ensemble (CPE).

Please consider that every entry of the table is an average of eight models,
trained on the eight datasets collected within Synthetic-NeRF. Consistently, we
observe that, under the same resolution constraint, the proposed ensemble ap-
proach performs the best. More specifically, we observe a minor degradation of
the performance as the compression regime increases (as also indicated in [4]).
However, when investigating the model size, we observe that compressing the
ensemble can sensibly reduce its size, making it drop from order GB to a few MB.
In order to have a more visual impact on the benefits provided by our proposed
ensembling approach, we propose, in Fig. 3a, a comparison between baseline
models and the proposed ensemble, in terms of the model’s size. We observe
that, under the same model memory footprint, even without compression, the
ensemble consistently outperforms the baseline. We also propose a comparison
among single pruned models, ensemble with pre-compressed models and conjoint
pruned ensemble in Fig 3b. Also in this case the ensembling shows a consistent
performance improvement, despite consuming a comparable amount of mem-
ory. In Fig. 4 a qualitative comparison between the analyzed configurations is
proposed.

Fig. 5 presents a comparison between our ensembling strategy and several
state-of-the-art hybrid methods, such as Plenoxels [5], NSVF [10], Instant-
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Fig. 4: Qualitative results. As a baseline, we adopted a grid of 2563 voxels, while
for the ensemble, two grids with dimensions of 1603 and 2563 voxels were used.
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Fig. 5: Comparison of our ensembling strategy with state-of-the-art methods.

NGP [17] and TensoRF [3]. Similarly, in this case, our method has proven to
be reliable, surpassing the current state-of-the-art in terms of both quality and
memory footprint. In Fig. 6 we propose a study on the Lego dataset, in which we
investigate various ensemble resolutions of up to 6 models. Our findings reveal
that even a combination of just two models can result in a significant perfor-
mance improvement of over 1 dB. While incorporating more than two models can
lead to even greater performances, this approach also results in highly complex
models with significantly more parameters and memory footprint.

5 Conclusion

In this work, we explored the potential of NeRF ensembling to improve per-
formance. Specifically, we have sided a low-resolution architecture to a higher
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Fig. 6: Results on different ensembling resolutions on Lego dataset. Each pie
chart represents an ensemble composed of a number of models equal to the
number of slices.

one. Besides, a compression strategy, siding the ensemble, creates the perfect
synergy for extracting the best performance out of a restricted number of pa-
rameters. We have observed consistent performance improvements on a broad
variety of tested resolutions, under the same number of parameters. Our re-
sults demonstrate that ensembling can be a promising approach to improving
NeRF performance, and further exploration of this method will be conducted
in the next future. However, there are still several challenges associated with
ensembling that need to be addressed. For example, how to select the appro-
priate combination of models in the ensemble and how to effectively combine
their predictions. Overall, our work represents a step toward the development of
an ultimate, highly-performing, and efficient NeRF ensembling strategy. Future
research in this area could focus on addressing the challenges associated with
ensembling and exploring more advanced techniques to improve performance.
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