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ON ADAPTIVE SKETCH-AND-PROJECT FOR SOLVING LINEAR
SYSTEMS\ast 

ROBERT M. GOWER\dagger , DENALI MOLITOR\ddagger , JACOB MOORMAN\ddagger , AND

DEANNA NEEDELL\ddagger 

Abstract. We generalize the concept of adaptive sampling rules to the sketch-and-project
method for solving linear systems. Analyzing adaptive sampling rules in the sketch-and-project
setting yields convergence results that apply to all special cases at once, including the Kaczmarz
and coordinate descent. This eliminates the need to separately analyze analogous adaptive sampling
rules in each special case. To deduce new sampling rules, we show how the progress of one step of
the sketch-and-project method depends directly on a sketched residual. Based on this insight, we
derive a (1) max-distance sampling rule, by sampling the sketch with the largest sketched residual,
(2) a proportional sampling rule, by sampling proportional to the sketched residual, and finally (3)
a capped sampling rule. The capped sampling rule is a generalization of the recently introduced
adaptive sampling rules for the Kaczmarz method [Z.-Z. Bai and W.-T. Wu, SIAM J. Sci. Comput.,
40 (2018), pp. A592--A606]. We provide a global exponential convergence theorem for each sampling
rule and show that the max-distance sampling rule enjoys the fastest convergence. This finding is also
verified in extensive numerical experiments that lead us to conclude that the max-distance sampling
rule is superior both experimentally and theoretically to the capped sampling rule. We also provide
numerical insights into implementing the adaptive strategies so that the per iteration cost is of the
same order as using a fixed sampling strategy when the product of the number of sketches with the
sketch size is not significantly larger than the number of columns.

Key words. sketch-and-project, adaptive sampling, least squares, randomized Kaczmarz, coor-
dinate descent
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1. Introduction. We consider the fundamental problem of finding an approxi-
mate solution to the linear system

Ax = b,(1.1)

where A \in \BbbR m\times n and b \in \BbbR m. Given the possibility of multiple solutions, we set out
to find a least-norm solution given by

x\ast def
= min

x\in \BbbR n

1
2 \| x\| 

2
\bfB subject to Ax = b,(1.2)

where B \in \BbbR n\times n is a symmetric positive definite matrix and \| x\| 2\bfB 
def
= \langle Bx, x\rangle . Here,

we consider consistent systems, for which there exists an x that satisfies (1.1).
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ADAPTIVE SKETCH-AND-PROJECT 955

When the dimensions of A are large, direct methods for solving (1.2) can be
infeasible, and iterative methods are favored. In particular, Krylov subspace iterative
methods including the conjugate gradient algorithms [24] are the industrial standard
so long as one can afford full matrix vector products and the system matrix fits
in memory. On the other hand, if a single matrix vector product is considerably
expensive, or A is too large to fit in memory, then randomized iterative methods such
as the randomized Kaczmarz [26, 57] and the coordinate descent method [36, 29] are
effective.

1.1. Randomized Kaczmarz. The randomized Kaczmarz method is typically
used to solve linear systems of equations in the large data regime, i.e., when the
number of samples m is much larger than the dimension n. The Kaczmarz method
was originally proposed in 1937 and has seen applications in computer tomography
(CT scans), signal processing, and other areas [26, 57, 16, 38]. In each iteration k, the
current iterate xk is projected onto the solution space of a selected row of the linear
system of (1.1). Specifically, at each iteration

xk+1 = argmin
x\in \BbbR n

\bigm\| \bigm\| x - xk
\bigm\| \bigm\| 2 subject to Aik:x = bik ,

where Aik: is the row of A selected at iteration k. Let A\top 
ik:

denote the transpose of
this row. The Kaczmarz update can be written explicitly as

xk+1 = xk +
bik  - \langle Aik:, x

k\rangle 
\| Aik:\| 

2 A\top 
ik:
.(1.3)

1.2. Coordinate descent. Coordinate descent is commonly used for optimizing
general convex optimization functions when the dimensions are extremely large, since
at each iteration only a single coordinate (or dimension) is updated [55, 54]. Here, we
consider coordinate descent applied to (1.2). In this setting, it is sometimes referred
to as randomized Gauss--Seidel [36, 29].

At iteration k an index i \in \{ 1, . . . , n\} is selected and the coordinate xk
i of the

current iterate xk is updated such that the least-squares objective \| b - Ax\| 2 is min-
imized. More formally,

xk+1 = argmin
x\in \BbbR n, \lambda \in \BbbR 

\| b - Ax\| 2 subject to x = xk + \lambda ei,

where ei is the ith coordinate vector. Let A:i denote the ith column of A and A\top 
:i

denote the transpose of this column. The explicit update for coordinate descent
applied to (1.2) is given by

xk+1 = xk  - 
A\top 

:ik
(Axk  - b)

\| A:ik\| 
2 eik .(1.4)

1.3. Sketch-and-project methods. Sketch-and-project is a general archetypal
algorithm that unifies a variety of randomized iterative methods including both ran-
domized Kaczmarz and coordinate descent along with all of their block variants [18].
At each iteration, sketch-and-project methods project the current iterate onto a sub-
sampled or sketched linear system with respect to some norm. Let B \in \BbbR n\times n be a
symmetric positive definite matrix. We will consider the projection with respect to
the B-norm given by \| \cdot \| \bfB =

\sqrt{} 
\langle \cdot ,B\cdot \rangle .
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956 GOWER, MOLITOR, MOORMAN, AND NEEDELL

Let Si \in \BbbR m\times \tau for i = 1, . . . , q be the set of sketching matrices where \tau \in \BbbN is
the sketch size. In general, the set of sketching matrices Si could be infinite; however,
here, we restrict ourselves to a finite set of q \in \BbbN = \{ 1, 2, . . . \} sketching matrices. At
the kth iteration of the sketch-and-project algorithm, a sketching matrix Si is selected
and the current iterate xk is projected onto the solution space of the sketched system
S\top 
ik
Ax = S\top 

ik
b with respect to the B-norm. Given a selected index ik \in \{ 1, . . . , q\} the

sketch-and-project update solves

xk+1 = argmin
x\in \BbbR n

\bigm\| \bigm\| x - xk
\bigm\| \bigm\| 2
\bfB 

subject to S\top 
ik
Ax = S\top 

ik
b.(1.5)

The closed form solution to (1.5) is given by

xk+1 = xk  - B - 1A\top Hik(Axk  - b),(1.6)

where

Hi
def
= Si(S

\top 
i AB - 1A\top Si)

\dagger S\top 
i for i = 1, . . . , q,(1.7)

and \dagger denotes the pseudoinverse.
One can recover the randomized Kaczmarz method under the sketch-and-project

framework by choosing the matrix B as the identity matrix and sketches Si = ei.
If instead B = A\top A and sketches Si = Aei = A:i, then the resulting method is
coordinate descent.

1.4. Sampling of indices. An important component of the methods above is
the selection of the index ik at iteration k. Methods often use independently and
identically distributed (i.i.d.) indices, as this choice makes the method and analysis
relatively simple [57, 44]. In addition to choosing indices i.i.d. at each iteration, several
adaptive sampling methods have also been proposed, which we discuss next. These
sampling strategies use information about the current iterate in order to improve
convergence guarantees over i.i.d. random sampling strategies at the cost of extra cal-
culation per iteration. Under certain conditions, such strategies can be implemented
with only a marginal additional cost per iteration.

1.4.1. Sampling for the Kaczmarz method. The original Kaczmarz method
cycles through the rows of the matrix A and makes projections onto the solution
space with respect to each row [26]. In 2009, Strohmer and Vershynin suggested
selecting rows with probabilities that are proportional to the squared row norms (i.e.,

pi \propto \| Ai:\| 22) and provided the first proof of exponential convergence of the randomized
Kaczmarz method [57].

Several adaptive selection strategies have also been proposed in the Kaczmarz
setting. The max-distance Kaczmarz or Motzkin's method selects the index ik at
iteration k that leads to the largest magnitude update [48, 37]. In addition to the max-
distance selection rule, Nutini et al. also consider the greedy selection rule that chooses
the row corresponding to the maximal residual component, i.e., ik = argmaxi | Ai:x

k - 
bi| at each iteration, but show that the max-distance Kaczmarz method performs at
least as well as this strategy [48]. More sophisticated adaptive methods have also been
suggested for randomized Kaczmarz, such as the capped sampling strategies proposed
in [3, 4, 5] or the sampling Kaczmarz Motzkin's method of [31, 22].

1.4.2. Sampling for coordinate descent. For coordinate descent, several
works have investigated adaptive coordinate selection strategies [51, 47, 44, 1]. As
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ADAPTIVE SKETCH-AND-PROJECT 957

coordinate descent is not restricted to solving linear systems, these works often con-
sider more general convex loss functions. A common greedy selection strategy for
coordinate descent applied to differentiable loss functions is to select the coordinate
that corresponds to the maximal gradient component, which is known as the Gauss--
Southwell rule [58, 34, 47, 44] or adaptively according to a duality gap [8].

1.4.3. Sampling for sketch-and-project. The problem of determining the
optimal fixed probabilities with which to select the index ik at each iteration k was
shown in section 5.1 of [18] to be a convex semidefinite program, which is often a
harder problem than solving the original linear system. The problem of determining
the optimal adaptive probabilities is even harder as one must consider the effects of
the current index selection on the future iterates. Here, instead, we present adaptive
sampling rules that are not necessarily optimal but can be efficiently implemented
and are proven to converge faster than the fixed nonadaptive rules.

1.5. Choosing the sketches and preconditioning. Another key question is
how we should choose the set of sketching matrices. This question has been partially
answered in section 5.2 of [20], wherein the authors show that if a preconditioned A
were available, then the set of sketching matrices should be drawn from row partitions
or column partitions of this preconditioned matrix. This strategy can be combined
with any index sampling rule for an overall faster algorithm. Here, we will assume a
set of sketching matrices has been provided, and we focus only on the index sampling
rule.

1.6. Additional related works. Various related works consider extensions to
solving (1.2) in the randomized Kaczmarz, coordinate descent, and sketch-and-project
settings. The following summary of related works is not exhaustive. While we
consider consistent linear systems, others have analyzed and extended sketch-and-
project methods to handle inconsistent linear systems [52, 61, 53, 35, 15]. An adap-
tive maximum-residual sampling strategy has also been analyzed for the inconsistent
extension [52]. The randomized Kaczmarz method has also been studied in the con-
text of solving systems of linear inequalities [29, 37, 7, 6]. Block and accelerated
variants of randomized Kaczmarz and coordinate descent have also been analyzed
[55, 39, 43, 42, 33, 40, 45]. Recent works have considered combining ideas from ran-
dom sketching methods with those from the sketch-and-project framework [50].

2. Contributions. The primary contribution of our work is to generalize the
concept of adaptive sampling to the sketch-and-project framework. We introduce
adaptive sampling to this framework and perform the first convergence analysis of
several adaptive sampling rules. Analyzing adaptive sampling rules in the sketch-
and-project setting yields convergence results that apply to all special cases at once,
including the Kaczmarz and coordinate descent settings. This eliminates the need
to separately analyze analogous adaptive sampling rules in each special case. The
sketch-and-project setting also allows for adaptive sampling rules from one special
case to be generalized to all others.

We introduce and analyze three different adaptive sampling rules for the general
sketch-and-project method: the max-distance sampling rule, the capped adaptive
sampling rule, and proportional sampling probabilities. We prove that each of these
adaptive methods converge exponentially in mean squared error with convergence
guarantees that are strictly faster than the guarantee for the nonadaptive method
that samples indices uniformly. We compare the theoretical convergence guarantees
as well as empirical performance for these three adaptive methods along with sampling
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958 GOWER, MOLITOR, MOORMAN, AND NEEDELL

from a fixed distribution. Theoretically, the max-distance sampling rule has the fastest
convergence guarantee of the sampling rules considered. Empirically, the max-distance
rule typically performs best out of the adaptive sampling rules considered and can
outpace sampling from a fixed distribution even in terms of flops required.

2.1. Key quantity: Sketched loss. As we will see in the general convergence
analysis of the sketch-and-project method detailed in section 7, the convergence at
each iteration depends on the current iterate xk and a key quantity known as the
sketched loss

fi(x
k)

def
=
\bigm\| \bigm\| Axk  - b

\bigm\| \bigm\| 2
\bfH i

(2.1)

of the sketch Si (recall that Hi, defined in (1.7), is symmetric positive semidefinite

and thus \| \cdot \| \bfH i

def
=
\sqrt{} 
\langle \cdot ,Hi\cdot \rangle gives a seminorm). This sketched loss was introduced

in [56], where the authors show that the sketch-and-project method can be seen as
a stochastic gradient method (we expand on this in section 4). We show that using
adaptive selection rules based on the sketched losses results in new methods with
faster convergence guarantees.

2.2. Max-distance rule. We introduce the max-distance sketch-and-project
method, which is a generalization of both the max-distance Kaczmarz method (also
known as Motzkin's method) [48, 37, 23], greedy coordinate descent (Gauss--Southwell
rule [47]), and all their possible block variants. Nutini et al. showed that the max-
distance Kaczmarz method performs at least as well as uniform sampling and the
nonuniform sampling method of [57], in which rows are sampled with probabilities
proportional to the squared row norms of A [48]. We extend this result to the general
sketch-and-project setting and also show that the max-distance rule leads to a worst-
case convergence guarantee that is strictly faster than that of any fixed probability
distribution. The max-distance rule is additionally at least as fast as the adaptive
sampling methods considered. The theoretical and experimental results presented
here suggest that the max-distance rule is superior to alternative sampling strategies
for sketch-and-project methods. In particular, as adaptive sampling methods are
proposed in various settings and for applications, our work suggests that they should
be compared with the max-distance sampling strategy [3, 4, 5, 6, 30].

2.3. The capped adaptive rule. A new family of adaptive sampling meth-
ods was recently proposed for the Kaczmarz and coordinate descent type methods
[3, 4, 5]. We extend these methods to the sketch-and-project setting, which allows
for their application in other settings such as for coordinate descent. While intro-
duced in the Kaczmarz setting under the names greedy randomized Kaczmarz and
relaxed greedy randomized Kaczmarz, we refer to this suite of methods in general as
capped adaptive methods because they select indices i whose corresponding sketched
losses fi(x

k) are larger than a capped threshold given by a convex combination of
the largest and average sketched losses. These sampling strategies were introduced as
``greedy randomized"" sampling rules [3, 4, 5]; however, we rename them here to pre-
vent confusion with the greedy max-distance sampling rule. It was proven in [3] that
the worst-case convergence guarantee when using the capped adaptive rule is strictly
faster than the fixed nonuniform sampling rule given in [57]. In subsection 7.5, we
generalize this capped adaptive sampling to sketch-and-project methods and prove
that the resulting convergence guarantee of this adaptive rule is slower than that of
the max-distance rule. Furthermore, in Appendix A.3, we show that the max-distance
rule requires less computation at each iteration than the capped adaptive rule.

D
ow

nl
oa

de
d 

08
/1

7/
23

 to
 1

44
.1

21
.8

6.
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ADAPTIVE SKETCH-AND-PROJECT 959

2.4. The proportional adaptive rule. We also present a new and much sim-
pler randomized adaptive rule as compared to the capped adaptive rule discussed
above, in which indices are sampled with probabilities that are directly proportional
to their corresponding sketched losses fi(x

k). We show that this rule gives a resulting
convergence that is at least twice as fast as when sampling the sketches uniformly.

2.5. Efficient implementations. Our adaptive methods come with the added
cost of computing the sketched loss f(xk) of (2.1) at each iteration. Fortunately, the
sketched loss can be computed efficiently with certain precomputations as discussed
in section 8. We show how the sketched losses can be maintained efficiently via
an auxiliary update, leading to reasonably efficient implementations of the adaptive
sampling rules. We demonstrate improved performance of the adaptive methods over
uniform sampling when solving linear systems with both real and synthetic matrices
per iteration and in terms of the flops required.

2.6. Consequences and future work. Our results on adaptive sampling have
consequences on many other closely related problems. For instance, an analogous
sampling strategy to our proportional adaptive rule has been proposed for coordinate
descent in the primal-dual setting for optimizing regularized loss functions [51]. Also
a variant of adaptive and greedy coordinate descent has been shown to speed up the
solution of the matrix scaling problem [1]. The matrix scaling problem is equivalent to
an entropy-regularized version of the optimal transport problem which has numerous
applications in machine learning and computer vision [1, 10]. Thus the adaptive
methods proposed here may be extended to these other settings such as adaptive
coordinate descent for more general smooth optimization [51]. The adaptive methods
and the analysis proposed in this paper may also provide insights toward adaptive
sampling for other classes of optimization methods such as stochastic gradient, since
the randomized Kaczmarz method can be reformulated as stochastic gradient descent
(SGD) applied to the least-squares problem [41].

3. Notation. We now introduce notation that will be used throughout. Let \Delta q

denote the simplex in \BbbR q, that is,

\Delta q
def
=

\Biggl\{ 
p \in \BbbR q :

q\sum 
i=1

pi = 1, pi \geq 0, for i = 1, . . . , q

\Biggr\} 
.

For probabilities p \in \Delta q and values xi depending on an index i = 1, . . . , q, we denote

\BbbE i\sim p [xi]
def
=
\sum q

i=1 pixi, where i \sim p indicates that i is sampled with probability pi.
At the kth iteration of the sketch-and-project algorithm, a sketching matrix Sik is
sampled with probability

\BbbP [Sik = Si | xk] = pki for i = 1, . . . , q,(3.1)

where pk \in \Delta q and we use pk
def
= (pk1 , . . . , p

k
q ) to denote the vector containing these

probabilities. We drop the superscript k when the probabilities do not depend on the
iteration.

For any symmetric positive semidefinite matrix G we write the seminorm induced

by G as \| \cdot \| 2\bfG 
def
= \langle \cdot ,G\cdot \rangle , while \| \cdot \| denotes the standard 2-norm (\| \cdot \| 2). For any matrix

M, \| M\| F
def
=
\sqrt{} \sum 

i,j M
2
ij , where Mij is the jth entry of the ith row of M. We use

\lambda +
min(G)

def
= min

v\in Range(\bfG ),v \not =0

\| v\| 2\bfG 
\| v\| 22

to denote the smallest nonzero eigenvalue of G.
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3.1. Organization. The remainder of the paper is organized as follows. Sec-
tions 4 and 5 provide additional background on the sketch-and-project method and
motivation for adaptive sampling in this setting. Section 4 explains how the sketch-
and-project method can be reformulated as SGD. The sampling of the sketches can
then be seen as importance sampling in the context of SGD. Section 5 provides geomet-
ric intuition for the sketch-and-project method and motivates why one would expect
adaptive sampling strategies that depend on the sketched losses fi(x

k) to perform
well.

Section 6 introduces the various sketch selection strategies considered throughout
the paper, while section 7 provides convergence guarantees for each of the resulting
methods. In section 8, we discuss the computational costs of adaptive sketch-and-
project for the sketch selection strategies of section 6 and suggest efficient implemen-
tations of the methods. Section 9 discusses convergence and computational cost for
the special subcases of randomized Kaczmarz and coordinate descent. Performance
of adaptive sketch-and-project methods are demonstrated in section 10 for both syn-
thetic and real matrices.

4. Reformulation as importance sampling for stochastic gradient de-
scent. The sketch-and-project method can be reformulated as a stochastic gradient
method, as shown in [56]. We use this reformulation to motivate our adaptive sam-
pling as a variant of importance sampling.

Let p \in \Delta q. Consider the stochastic program

min
x\in \BbbR d

F (x)
def
= \BbbE i\sim p [fi(x)] = \BbbE i\sim p

\Bigl[ 
\| Ax - b\| 2\bfH i

\Bigr] 
.(4.1)

Objective functions F (x) such as the one in (4.1) are common in machine learning,
where fi(x) often represents the loss with respect to a single data point.

When \BbbE i\sim p [Hi] is invertible, solving (4.1) is equivalent to solving the linear sys-
tem (1.1). This invertibility condition on \BbbE i\sim p [Hi] can be significantly relaxed by
using the following technical exactness assumption on the probability p and the set
of sketches introduced in [56].

Assumption 1. Let p \in \Delta q, \Sigma 
def
= \{ S1, . . . ,Sq\} be a set of sketching matrices and

Hi as defined in (1.7). We say that the exactness assumption holds for (p,\Sigma ) if

Null (\BbbE i\sim p [Hi]) \subset Null
\bigl( 
A\top \bigr) .

This exactness assumption guarantees1 that

Null (A) = Null
\bigl( 
A\top \BbbE i\sim p [Hi]A

\bigr) 
.(4.2)

This in turn guarantees that the expected sketched loss of the point x is zero if and
only if Ax = b. Indeed, by taking the derivative of (4.1) and setting it to zero we
have that

\nabla F (x) = A\top \BbbE i\sim p [Hi] (Ax - b) = A\top \BbbE i\sim p [Hi]A(x - x\ast ) = 0.

Thus, every minimizer x of (4.1) is such that

x - x\ast \in Null
\bigl( 
A\top \BbbE i\sim p [Hi]A

\bigr) (4.2)
= Null (A) ,(4.3)

1This can be shown by applying Lemma B.1 in Appendix B with G = \BbbE i\sim p [Hi] and W = A.
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thus A(x  - x\ast ) = Ax  - b = 0. As shown in [19] and [56] this exactness assumption
holds trivially for most practical sketching techniques.

When the number of fi functions is large, the SGD method is typically the method
of choice for solving (4.1). To view the sketch-and-project update in (1.6) as an SGD
method, we sample an index ik \sim p at each iteration and take a step

xk+1 = xk  - \nabla \bfB fik(x
k),(4.4)

where \nabla \bfB fik(x
k) is the gradient taken with respect to the B-norm. For fi(x

k) of
(2.1), the exact expression of this stochastic gradient is given by

\nabla \bfB fik(x
k) = B - 1A\top Hik(Axk  - b).(4.5)

By plugging (4.5) into (4.4) we can see that the resulting update is equivalent to a
sketch-and-project update in (1.6).

Though the indices i \in \{ 1, . . . , q\} are often sampled uniformly at random for SGD,
many alternative sampling distributions have been proposed in order to accelerate
convergence, including adaptive sampling strategies [9, 25, 41, 60, 27, 32, 2]. Such
sampling strategies give more weight to sampling indices corresponding to a larger

loss fi(x) or a larger gradient norm
\bigm\| \bigm\| \nabla \bfB fi(x)

\bigm\| \bigm\| 2
\bfB 
. In the sketch-and-project setting,

it is not hard to show2 that these two sampling strategies result in similar methods
since

fi(x) = \| Ax - b\| 2\bfH i
=
\bigm\| \bigm\| \nabla \bfB fi(x)

\bigm\| \bigm\| 2
\bfB 
.

In general, updating the loss and gradient of every fi(x) at each iteration can be
too expensive. Thus many methods resort to using global approximations of these
values such as the Lipschitz constant of the gradient [41] that lead to fixed data-
dependent sample distributions. For the sketch-and-project setting, we demonstrate
in section 8 that the adaptive sample distributions can be calculated efficiently, with
a per-iterate cost on the same order as is required for the sketch-and-project update.

5. Geometric viewpoint and motivational analysis. The sketch-and-
project method given in (1.5) can be seen as a method that calculates the next iterate
xk+1 by projecting the previous iterate xk onto a random affine space. Indeed, the
constraint in (1.5) can be rewritten as

\{ x : S\top 
i Ax = S\top 

i b\} = x\ast +Null
\bigl( 
S\top 
i A
\bigr) 
.(5.1)

In particular, (1.5) is an orthogonal projection of the point xk onto an affine space
that contains x\ast with respect to the B-norm. See Figure 5.1 for an illustration. This
projection is determined by the following projection operator.

Lemma 5.1. Let

Zi
def
= B - 1/2A\top Si(S

\top 
i AB - 1A\top Si)

\dagger S\top 
i AB - 1/2 = B - 1/2A\top HiAB - 1/2(5.2)

for i = 1, . . . , q, which is the orthogonal projection matrix onto Range
\bigl( 
B - 1/2A\top Si

\bigr) 
.

Consequently

2See Lemma 3.1 in [56].
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xk

xk+1

x\ast 

x\ast +Null
\bigl( 
S\top 
i A
\bigr) 

fi(x
k)

Fig. 5.1. The geometric interpretation of (1.5), as the projection of xk onto a random affine

space that contains x\ast . The distance traveled is given by fi(x
k) =

\bigm\| \bigm\| xk+1  - xk
\bigm\| \bigm\| 2
\bfB 
.

ZiZi = Zi, and equivalently (I - Zi)Zi = 0.(5.3)

Furthermore we have that (I - Zi) gives the projection depicted in Figure 5.1 since

B1/2(xk+1  - x\ast ) = (I - Zik)B
1/2(xk  - x\ast ).(5.4)

Finally we can rewrite the sketched loss as

fi(x) = \| B1/2(x - x\ast )\| 2\bfZ i
for i = 1, . . . , q.(5.5)

Proof. The proof of (5.3) relies on standard properties of the pseudoinverse and
is given in Lemma 2.2 in [18].

As for the proof of (5.4), subtracting x\ast from both sides of (1.6) we have that

xk+1  - x\ast = xk  - x\ast  - B - 1A\top Hik(Axk  - b)

\bfA x\ast =b
= xk  - x\ast  - B - 1/2B - 1/2A\top HikAB - 1/2B1/2(xk  - x\ast )

(5.2)
= xk  - x\ast  - B - 1/2ZikB

1/2(xk  - x\ast ).(5.6)

It now only remains to multiply both sides by B1/2.
Finally the proof of (5.5) follows by using Ax\ast = b together with the definitions

of Hi and Zi given in (1.7) and (5.2) so that

fi(x) = \| A(x - x\ast )\| 2\bfH i
= \| x - x\ast \| 2\bfA \top \bfH i\bfA 

(5.2)
=
\bigm\| \bigm\| \bigm\| B1/2(x - x\ast )

\bigm\| \bigm\| \bigm\| 2
\bfZ i

.(5.7)

With the explicit expression for the projection operator we can calculate the
progress made by a single iteration of the sketch-and-progress method. The conver-
gence proofs later on in section 7 will rely heavily on Lemmas 5.2 and 5.3.

Lemma 5.2. Let xk \in \BbbR d and let xk+1 be given by (1.5). Then the squared mag-
nitude of the update is \bigm\| \bigm\| xk+1  - xk

\bigm\| \bigm\| 2
\bfB 
= fik(x

k),(5.8)

and the error from one iteration to the next decreases according to\bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2
\bfB 
=
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - fik(x

k).(5.9)
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Proof. We begin by deriving (5.9). Taking the squared norm in (5.4) we have\bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2
\bfB 

=
\bigm\| \bigm\| \bigm\| (I - B - 1/2ZikB

1/2)(xk  - x\ast )
\bigm\| \bigm\| \bigm\| 2
\bfB 

=
\bigm\| \bigm\| \bigm\| (I - Zik)B

1/2(xk  - x\ast )
\bigm\| \bigm\| \bigm\| 2
2

=
\Bigl\langle 
B1/2(xk  - x\ast ), (I  - Zik)(I  - Zik)B

1/2(xk  - x\ast )
\Bigr\rangle 

(5.3)
=
\Bigl\langle 
B1/2(xk  - x\ast ), (I  - Zik)B

1/2(xk  - x\ast )
\Bigr\rangle 

=
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - 
\Bigl\langle 
ZikB

1/2(xk  - x\ast ),B1/2(xk  - x\ast )
\Bigr\rangle 

(5.5)
=
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - fi(x

k).(5.10)

Finally we establish (5.8) by subtracting xk from both sides of (1.6) so that

xk+1  - xk =  - B - 1/2ZikB
1/2(xk  - x\ast ).

It now remains to take the squared B-norm and use (5.5).

Equation (5.8) shows that the distance traveled from xk to xk+1 is given by
the sketch residual fik(x

k), as we have depicted in Figure 5.1. Furthermore, (5.9)
shows that the contraction of the error xk+1  - x\ast is given by  - fik(x

k). Consequently
Lemma 5.2 indicates that in order to make the most progress in one step, or maximize
the distance traveled, we should choose ik corresponding to the largest sketched loss
fik(x

k). We refer to this greedy sketch selection as the max-distance rule, which we
explore in detail in subsection 6.3.

Next we give the expected decrease in the error.

Lemma 5.3. Let pk \in \Delta q. Consider the iterates of the sketch-and-project method
given in (1.6) where ik \sim pki as is done in Algorithm 6.2. It follows that

\BbbE i\sim pk

\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2
\bfB 

| xk
\Bigr] 
=
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - \BbbE i\sim pk

\bigl[ 
fi(x

k)
\bigr] 
.

Proof. The result follows by taking the expectation over (5.9) conditioned on xk.

Lemma 5.3 suggests choosing adaptive probabilities so that \BbbE i\sim pk

\bigl[ 
fi(x

k)
\bigr] 
is large.

This analysis motivates the adaptive methods described in subsection 6.2.

6. Selection rules. Motivated by Lemmas 5.2 and 5.3, we might think that sam-
pling rules that prioritize larger entries of the sketched loss should converge faster.
From this point we take two alternatives: (1) choose the ik that maximizes the de-
crease (subsection 6.3) or (2) choose a probability distribution that prioritizes the
biggest decrease (subsection 6.2). Below, we describe several sketch-and-project sam-
pling strategies (fixed, adaptive, and greedy) and analyze their convergence in sec-
tion 7. The adaptive and greedy sampling strategies require knowledge of the current
sketched loss vector at each iteration. Calculating the sketched loss from scratch is
expensive, thus in section 8 we will show how to efficiently calculate the new sketched
loss f(xk+1) using the previous sketched loss f(xk).

6.1. Fixed sampling. We first recall the standard nonadaptive sketch-and-
project method that will be used as a comparison for the greedy and adaptive versions.
In the nonadaptive setting the sketching matrices are sampled from a fixed distribu-
tion that is independent of the current iterate xk. For reference, the details of the
nonadaptive sketch-and-project method are provided in Algorithm 6.1.
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Algorithm 6.1. Nonadaptive sketch-and-project.

1: input: x0 \in \BbbR n, A \in \BbbR m\times n, b \in \BbbR m, p \in \Delta q, and a set of sketching matrices
S = [S1, . . . ,Sq]

2: for k = 0, 1, 2, . . . do
3: ik \sim pi
4: xk+1 = xk  - B - 1A\top Hik(Axk  - b)

5: output: last iterate xk+1

Algorithm 6.2. Adaptive sketch-and-project.

1: input: x0 \in \BbbR n, A \in \BbbR m\times n, b \in \BbbR m, and a set of sketching matrices S =
[S1, . . . ,Sq]

2: for k = 0, 1, 2, . . . do

3: fi(x
k) =

\bigm\| \bigm\| Axk  - b
\bigm\| \bigm\| 2
\bfH i

for i = 1, . . . , q

4: Calculate pk \in \Delta q  \triangleleft Typically based on f(xk)
5: ik \sim pki
6: xk+1 = xk  - B - 1A\top Hik(Axk  - b)

7: output: last iterate xk+1

6.2. Adaptive probabilities. Equation (5.9) motivates selecting indices that
correspond to larger sketched losses with higher probability. We refer to such sampling
strategies as adaptive sampling strategies, as they depend on the current iterate and
its corresponding sketched loss values. In the adaptive setting, we sample indices at
the kth iteration with probabilities given by pk \in \Delta q. Adaptive sketch-and-project is
detailed in Algorithm 6.2.

6.3. Max-distance rule. We refer to the greedy sketch selection rule given by

ik \in argmax
i=1,...,q

fi(x
k) = argmax

i=1,...,q

\bigm\| \bigm\| Axk  - b
\bigm\| \bigm\| 2
\bfH i

(6.1)

as the max-distance selection rule. If multiple indices lead to the maximal sketched
loss, any of these indices can be chosen. Per iteration, the max-distance rule leads
to the best decrease in mean squared error. The max-distance sketch-and-project
method is described in Algorithm 6.3. This greedy selection strategy has been studied
for several specific choices of B and sketching methods. For example, in the Kaczmarz
setting, this strategy is typically referred to as max-distance Kaczmarz or Motzkin's
method [21, 48, 37]. For coordinate descent, this selection strategy is the Gauss--
Southwell rule [44, 47]. We provide a convergence analysis for the general sketch-
and-project max-distance selection rule in Theorem 7.7. We further show that max-
distance selection leads to a convergence rate that is strictly faster than the resulting
convergence rate when sampling from any fixed distribution. While the max-distance
rule leads to the fastest convergence for a single iteration, we cannot guarantee that it
leads to the fastest convergence overall, as the sketch chosen at each iteration affects
the resulting iterate and thus all subsequent iterations.

7. Convergence. We now present convergence results for the max-distance
selection rule, uniform sampling, and adaptive sampling with probabilities propor-
tional to the sketched loss. We summarize the convergence rate guarantees discussed
throughout section 7 in Table 7.1. Note that these convergence guarantees are up-
per bounds and thus may not reflect the expected performance of each selection rule.
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Algorithm 6.3. Max-distance sketch-and-project.

1: input: x0 \in \BbbR n, A \in \BbbR m\times n, b \in \BbbR m, and a set of sketching matrices S =
[S1, . . . ,Sq]

2: for k = 0, 1, 2, . . . do

3: fi(x
k) =

\bigm\| \bigm\| Axk  - b
\bigm\| \bigm\| 2
\bfH i

for i = 1, . . . , q

4: ik = argmaxi=1,...,q fi(x
k)

5: xk+1 = xk  - B - 1A\top Hik(Axk  - b)

6: output: last iterate xk+1

Though they are only upper bounds on the mean squared error, there is merit in com-
paring convergence guarantees between methods, since there is currently no known
way to compare the mean squared errors directly. We observe in section 10 that the
adaptive methods with faster convergence guarantees also converge faster in practice.
Our first step in the analysis is to establish an invariance property of the iterates.
The restriction to this invariant set allows for a tighter convergence analysis.

Definition 7.1. Define the set

\Omega 
def
= \{ x \in Range

\bigl( 
B - 1A\top \bigr) : fi(x) = 0 for some i \in \{ 1, . . . , q\} \} ,

where fi(x) is as defined in (2.1).

We now show that if the initial iterate x0 is chosen from \Omega , then all subsequent
sketch-and-project iterates xk remain in \Omega . One can ensure that x0 \in \Omega by applying
a sketch-and-project update (equation (1.6)) to any initial point in Range

\bigl( 
B - 1A\top \bigr) .

Lemma 7.2. If x0 \in \Omega , as defined in Definition 7.1, then xk \in \Omega .

Proof. We first show that if x0 \in Range
\bigl( 
B - 1A\top \bigr) , then xk - x\ast \in Range

\bigl( 
B - 1A\top \bigr) 

for k \geq 0.3 First note that x\ast \in Range
\bigl( 
B - 1A\top \bigr) . This follows by taking the La-

grangian of (1.2) given by

L(x, \lambda ) = 1
2 \| x\| 

2
\bfB + \langle \lambda ,Ax - b\rangle .

Taking the derivative with respect to x, setting to zero, and isolating x gives

x\ast =  - B - 1A\top \lambda \in Range
\bigl( 
B - 1A\top \bigr) .(7.1)

Consequently x\ast  - x0 \in Range
\bigl( 
B - 1A\top \bigr) . Assuming that xk  - x\ast \in Range

\bigl( 
B - 1A\top \bigr) 

holds, by induction we have that

xk+1  - x\ast (1.6)
= xk  - x\ast  - B - 1A\top Sik(S

\top 
ik
AB - 1A\top Sik)

\dagger S\top 
ik
(Axk  - b)\underbrace{}  \underbrace{}  

\in Range(\bfB  - 1\bfA \top )

.(7.2)

Thus xk+1 - x\ast is the difference of two elements in the subspace Range
\bigl( 
B - 1A\top \bigr) and

thus xk+1 - x\ast \in Range
\bigl( 
B - 1A\top \bigr) . Since xk  - x\ast , x\ast \in Range

\bigl( 
B - 1A\top \bigr) for all k \geq 0,

we have that xk \in Range
\bigl( 
B - 1A\top \bigr) for all k \geq 0.

We now show that for fi(x) as defined in (2.1),

fik(x
k+1) = 0 \forall k \geq 0.

3This result was first presented in [19]. We present and prove it here for completeness.
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Recall from (5.5) that we can write

fik(x
k+1) =

\bigm\| \bigm\| \bigm\| B1/2(xk+1  - x\ast )
\bigm\| \bigm\| \bigm\| 2
\bfZ ik

=
\Bigl\langle 
ZikB

1/2(xk+1  - x\ast ),B1/2(xk+1  - x\ast )
\Bigr\rangle 
.

(7.3)

By (5.4) and Lemma 5.1, we have that the above is equal to zero:

ZikB
1/2(xk+1  - x\ast )

(5.4)
= ZikB

1/2(xk  - B - 1/2ZikB
1/2(xk  - x\ast ) - x\ast )

= ZikB
1/2(xk  - x\ast ) - ZikZikB

1/2(xk  - x\ast ))

(5.3)
= ZikB

1/2(xk  - x\ast ) - ZikB
1/2(xk  - x\ast ))

= 0.

We also make use of the following fact. For a symmetric positive semidefinite
random matrix M \in \BbbR n\times n drawn from some probability distribution \scrD and for any
vector v \in \BbbR n

\BbbE \scrD 

\Bigl[ 
\| v\| 2\bfM 

\Bigr] 
= \BbbE \scrD [\langle v,Mv\rangle ] = \langle v,\BbbE \scrD [Mv]\rangle = \| v\| 2\BbbE \scrD [\bfM ] .(7.4)

7.1. Important spectral constants. We define two key spectral constants in
the following definition that will be used to express our forthcoming rates of conver-
gence.

Definition 7.3. Let \Omega be the set defined in Definition 7.1. Define

\sigma 2
\infty (B,S)

def
= min

v\in \Omega 
max

i=1,...,q

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\| v\| 2\bfB 
.(7.5)

Let p \in \Delta q and let

\sigma 2
p(B,S)

def
= min

v\in \Omega 

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\BbbE i\sim p[\bfZ i]

\| v\| 2\bfB 
.(7.6)

Next we show that \sigma 2
\infty (B,S) and \sigma 2

p(B,S) can be used to lower bound maxi fi(x)
and \BbbE i\sim p [fi(x)], respectively. This result will allow us to develop (5.9) and Lemma
5.3 into a recurrence later on.

Lemma 7.4. Let p \in \Delta q and consider the iterates xk given by Algorithm 6.2 with
x0 \in \Omega when using any adaptive sampling rule. The spectral constants (7.5) and (7.6)
are such that

max
i=1,...,q

fi(x
k) \geq \sigma 2

\infty (B,S)
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
,(7.7)

\BbbE i\sim p

\bigl[ 
fi(x

k)
\bigr] 

\geq \sigma 2
p(B,S)

\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2
\bfB 
.(7.8)

Proof. From the invariance provided by Lemma 7.2 we have that xk  - x\ast \in 
Range

\bigl( 
B - 1A\top \bigr) and consequently

maxi=1,...,q fi(x
k)

\| xk  - x\ast \| 2\bfB 

(5.5)
= max

i=1,...,q

\bigm\| \bigm\| B1/2(xk  - x\ast )
\bigm\| \bigm\| 2
\bfZ i

\| xk  - x\ast \| 2\bfB 

\geq min
v\in Range(\bfB  - 1\bfA \top )

max
i=1,...,q

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 
\bfZ i

\| v\| 2\bfB 

(7.5)
= \sigma 2

\infty (B,S) \forall k.(7.9)
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Analogously we have that

\BbbE i\sim p

\bigl[ 
fi(x

k)
\bigr] 

\| xk  - x\ast \| 2\bfB 

(5.5)
=

\BbbE i\sim p

\Bigl[ \bigm\| \bigm\| B1/2(xk  - x\ast )
\bigm\| \bigm\| 2
\bfZ i

\Bigr] 
\| xk  - x\ast \| 2\bfB 

\geq min
v\in Range(\bfB  - 1\bfA \top )

\BbbE i\sim p

\Bigl[ \bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\Bigr] 
\| v\| 2\bfB 

(7.6)+(7.4)
= \sigma 2

p(B,S).(7.10)

Thus (7.7) and (7.8) follow by rearranging (7.9) and (7.10), respectively.

Finally, we show that \sigma 2
p(B,S) and \sigma 2

\infty (B,S) are always less than one, and if the
exactness Assumption 1 holds, then they are both strictly greater than zero. One
obvious disadvantage of sampling from a fixed distribution is that it is possible to
sample the same index twice in a row. Since the current iterate already lies in the
solution space with respect to the previous sketch, no progress is made in such an
update. For adaptive distributions that only assign nonzero probabilities to nonzero
sketched loss values, the same index will never be chosen twice in a row since the
sketched loss corresponding to the previous iterate will always be zero (Lemma 7.2).
This fact allows us to derive convergence rates for adaptive sampling strategies that
are strictly better than those for fixed sampling strategies and motivates the defi-
nition of \gamma , given in (7.11). The value \gamma arises in the convergence analysis of the
capped-adaptive sampling strategy and allows for the comparison of the convergence
guarantees for the sampling strategies that are summarized in Table 7.1.

Lemma 7.5. Let p \in \Delta q and the set of sketching matrices \{ S1, . . . ,Sq\} be such
that the exactness Assumption 1 holds. Define

\gamma 
def
=

1

1 - mini=1,...,q pi
\geq 1.(7.11)

We then have the following relations:

0 < \lambda +
min (\BbbE i\sim p [Zi]) \leq \sigma 2

p(B,S) \leq \gamma \sigma 2
p(B,S) \leq \sigma 2

\infty (B,S) \leq 1.

Proof. Using the definition of Zi given in (5.2) and the fact that B is symmetric
positive definite, we have

Null (\BbbE i\sim p [Zi])
(5.2)
= Null

\Bigl( 
B - 1/2A\top \BbbE i\sim p [Hi]AB - 1/2

\Bigr) 
= Null

\Bigl( 
A\top \BbbE i\sim p [Hi]AB - 1/2

\Bigr) 
Lemma B.1

= Null
\Bigl( 
AB - 1/2

\Bigr) 
,

where we applied Lemma B.1 in the appendix with G = \BbbE i\sim p [Hi] and W = A.
Taking the orthogonal complement of the above we have that

Range (\BbbE i\sim p [Zi]) = Range
\Bigl( 
B - 1/2A\top 

\Bigr) 
.(7.12)

Using the above we then have

\sigma 2
p(B,S)

(7.6)
= min

v\in \Omega 

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\BbbE i\sim p[\bfZ i]

\| v\| 2\bfB 
(7.12)

\geq min
\bfB 1/2v\in Range(\BbbE i\sim p[\bfZ i])

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\BbbE i\sim p[\bfZ i]

\| v\| 2\bfB 
= \lambda +

min (\BbbE i\sim p [Zi]) > 0.
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968 GOWER, MOLITOR, MOORMAN, AND NEEDELL

Since \gamma \geq 1, we have that \sigma 2
p(B,S) \leq \gamma \sigma 2

p(B,S).
Furthermore,

\sigma 2
p(B,S)

(7.6)
= min

v\in \Omega 

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\BbbE i\sim p[\bfZ i]

\| v\| 2\bfB 

(7.4)
= min

v\in \Omega 

\BbbE i\sim p

\Bigl[ \bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\Bigr] 
\| v\| 2\bfB 

= min
v\in \Omega 

\sum q
i=1 pi

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\| v\| 2\bfB 
.

Since v \in \Omega , there exists j such that
\bigm\| \bigm\| B1/2v

\bigm\| \bigm\| 2
\bfZ j

= 0. Thus,

\sigma 2
p(B,S) = min

v\in \Omega 

\sum 
i \not =j pi

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\| v\| 2\bfB 

\leq 
\sum 
i \not =j

pi min
v\in \Omega 

max
i=1,...,q

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\| v\| 2\bfB 

\leq 1

\gamma 
\sigma 2
\infty (B,S).

Finally, using the fact that the matrix Zi is an orthogonal projection (Lemma 5.1),
we have that

\sigma 2
\infty (B,S) = min

v\in \Omega 
max

i=1,...,q

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2
\bfZ i

\| v\| 2\bfB 
(5.3)
= min

v\in \Omega 
max

i=1,...,q

\bigm\| \bigm\| ZiB
1/2v

\bigm\| \bigm\| 2\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2

\leq min
v\in \Omega 

max
i=1,...,q

\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2\bigm\| \bigm\| B1/2v
\bigm\| \bigm\| 2 = 1.

7.2. Sampling from a fixed distribution. We first present a convergence
result for the sketch-and-project method when the sketches are drawn from a fixed
sampling distribution. This result will later be used as a baseline for comparison
against the adaptive sampling strategies.

Theorem 7.6. Consider Algorithm 6.1 with x0 \in \Omega for some set of probabilities
p \in \Delta q. It follows that

\BbbE 
\Bigl[ \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] 
\leq 
\bigl( 
1 - \sigma 2

p(B,S)
\bigr) k \bigm\| \bigm\| x0  - x\ast \bigm\| \bigm\| 2

\bfB 
.

Proof. Combining Lemma 5.3 and (7.8) of Lemma 7.4 we have that

\BbbE ik\sim p

\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2
\bfB 

| xk
\Bigr] 

Lemma 5.3
=

\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2
\bfB 
 - \BbbE ik\sim p

\bigl[ 
fi(x

k)
\bigr] 

(7.8)

\leq 
\bigl( 
1 - \sigma 2

p(B,S)
\bigr) \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
.

Taking the full expectation and unrolling the recurrence, we arrive at Theorem 7.6.
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There are several natural and previously studied choices for fixed sampling distri-
butions, for example, sampling the indices uniformly at random. Another choice is to
pick p \in \Delta q in order to maximize \sigma 2

p(B,S), but this results in a convex semidefinite
program (see section 5.1 in [18]). The authors of [18] suggest convenient probabili-

ties such that pi \sim 
\bigm\| \bigm\| A\top Si

\bigm\| \bigm\| 2
\bfB  - 1 for which \sigma 2

p(B,S) reduces to the scaled condition
number.

7.3. Max-distance selection. The following theorem provides a convergence
guarantee for the max-distance selection rule of subsection 6.3. To our knowledge, this
is the first analysis of the max-distance rule for general sketch-and-project methods.

Theorem 7.7. The iterates of max-distance sketch-and-project method in Algo-
rithm 6.3 satisfy \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
\leq (1 - \sigma 2

\infty (B,S))k
\bigm\| \bigm\| x0  - x\ast \bigm\| \bigm\| 2

\bfB 
,

where \sigma \infty (B,S) is defined as in (7.5) of Definition 7.3.

Proof. Combining (5.9) and (7.7) we have that\bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2
\bfB 

(5.9)
=
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - max

i=1,...,q
fi(x

k)

(7.7)

\leq 
\bigl( 
1 - \sigma 2

\infty (B,S)
\bigr) \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
.

Unrolling the recurrence gives Theorem 7.7.

Since the max-distance rule makes the best possible update at each iteration, it
has the fastest convergence guarantee possible under the analysis considered.

7.4. The proportional adaptive rule. We now consider the adaptive sampling
strategy in which indices are sampled with probabilities proportional to the sketched
loss values. For this sampling strategy, we derive a convergence rate that is strictly
faster than that of Theorem 7.6 for uniform sampling.

Theorem 7.8. Consider Algorithm 6.2 with pk = f(xk)
\| f(xk)\| 1

and x0 \in \Omega with \Omega 

as defined in Definition 7.1. Let u = ( 1q , . . . ,
1
q ) \in \Delta q and \sigma 2

u(B,S) be as defined in

(7.6). Let \BbbV \BbbA \BbbR u [\cdot ] denote the variance taken with respect to the uniform distribution
over indices i \in \{ 1, . . . , q\} . It follows that for k \geq 1,

\BbbE 
\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 
| xk
\Bigr] 
\leq 
\bigl( 
1 - (1 + q2\BbbV \BbbA \BbbR u

\bigl[ 
pki
\bigr] 
)\sigma 2

u(B,S)
\bigr) \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
.(7.13)

Furthermore we have that

\BbbE 
\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] 
\leq 
\Bigl( 
1 - 

\Bigl( 
1 + 1

q

\Bigr) 
\sigma 2
u(B,S)

\Bigr) k
\BbbE 
\Bigl[ \bigm\| \bigm\| x1  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] 
.(7.14)

Proof. Let \BbbE u [\cdot ] denote the expectation taken with respect to the uniform distri-
bution over indices i \in \{ 1, . . . , q\} . First note that

\BbbV \BbbA \BbbR u

\bigl[ 
fi(x

k)
\bigr] 
= \BbbE u

\bigl[ 
(fi(x

k))2
\bigr] 
 - \BbbE u

\bigl[ 
fi(x

k)
\bigr] 2

=
1

q

\sum 
(fi(x

k))2  - 1

q2

\Bigl( \sum 
fi(x

k)
\Bigr) 2

.

(7.15)

Given that pk = f(xk)
\| f(xk)\| 1

,
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970 GOWER, MOLITOR, MOORMAN, AND NEEDELL

\BbbE i\sim pk

\bigl[ 
fi(x

k)
\bigr] 

=

q\sum 
i=1

pki fi(x
k)

=

q\sum 
i=1

(fi(x
k))2\sum q

i=1 fi(x
k)

(7.15)
=

q\BbbV \BbbA \BbbR u

\bigl[ 
fi(x

k)
\bigr] 
+ 1

q

\bigl( \sum 
fi(x

k)
\bigr) 2\sum q

i=1 fi(x
k)

=

\biggl( 
q2\BbbV \BbbA \BbbR u

\biggl[ 
fi(x

k)\sum q
i=1 fi(x

k)

\biggr] 
+ 1

\biggr) 
1

q

q\sum 
i=1

fi(x
k).(7.16)

Recalling that pki = fi(x
k)\sum q

i=1 fi(xk)
and using Lemma 5.3 we have that

\BbbE 
\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 
| xk
\Bigr] 
\leq 
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - (1 + q2\BbbV \BbbA \BbbR u

\bigl[ 
pki
\bigr] 
)\sigma 2

u(B,S)
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
.

Furthermore, due to Lemma 7.2 we have that pk+1
ik

= 0. Therefore

\BbbV \BbbA \BbbR u

\bigl[ 
pk+1
i

\bigr] 
=

1

q

q\sum 
i=1

\Biggl( 
pk+1
i  - 1

q

q\sum 
s=1

pk+1
s

\Biggr) 2

=
1

q

q\sum 
i=1

\biggl( 
pk+1
i  - 1

q

\biggr) 2

\geq 1

q

\biggl( 
pk+1
ik

 - 1

q

\biggr) 2

=
1

q3
.

This lower bound on the variance gives the following upper bound on (7.13):

\BbbE 
\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 
| xk
\Bigr] 
\leq 
\Bigl( 
1 - 

\Bigl( 
1 + 1

q

\Bigr) 
\sigma 2
u(B,S)

\Bigr) \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2
\bfB 
.

Taking the expectation and unrolling the recursion gives (7.14).

Thus by sampling proportional to the sketched losses the sketch-and-project
method enjoys a strictly faster convergence rate as compared to sampling uniformly.
How much faster depends on the variance of the adaptive probabilities through 1 +
q2\BbbV \BbbA \BbbR u

\bigl[ 
pki
\bigr] 
, which in turn depends on the variance of the sketched losses.

This same variance term is used in [51] to analyze the convergence of an adap-
tive sampling strategy based on the dual residuals for coordinate descent applied to
regularized loss functions and in [49] for adaptive sampling in the block-coordinate
Frank--Wolfe algorithm for optimizing structured support vector machines.

7.5. Capped adaptive sampling. We now extend the capped adaptive sam-
pling method and convergence guarantees of [3, 4, 5] for the randomized Kaczmarz
and coordinate descent settings to the general sketch-and-project setting; see Algo-
rithm 7.1. Let p \in \Delta q be a fixed reference probability. At each iteration k an index
set \scrW k is constructed on line 4 of Algorithm 7.1 that contains indices whose sketched
losses are sufficiently close to the maximal sketched loss and that are at least as large
as \BbbE i\sim p

\bigl[ 
fi(x

k)
\bigr] 
. At each iteration, the adaptive probabilities pki are zero for all in-

dices that are not included in the set \scrW k. The input parameter \theta \in [0, 1] controls
how aggressive the sampling method is. In particular, if \theta = 1, the method reduces to
max-distance sampling. As \theta approaches 0, the sampling method remains adaptive,
as only indices corresponding to sketched losses larger than \BbbE i\sim p

\bigl[ 
fi(x

k)
\bigr] 
are sampled

with nonzero probability. Bai and Wu originally introduced an adaptive randomized
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Algorithm 7.1. Capped adaptive sketch-and-project.

1: input: x0 \in \BbbR n, A \in \BbbR m\times n, b \in \BbbR m, p \in \Delta q, \theta \in [0, 1] and a set of sketching
matrices \{ S1, . . . ,Sq\} 

2: for k = 0, 1, 2, . . . do

3: fi(x
k) =

\bigm\| \bigm\| Axk  - b
\bigm\| \bigm\| 2
\bfH i

for i = 1, . . . , q.

4: \scrW k =
\bigl\{ 
i | fi(xk) \geq \theta maxj=1,...,q fj(x

k) + (1 - \theta )\BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] \bigr\} 

5: Choose pk \in \Delta q such that support(pk) \subset \scrW k

6: ik \sim pk

7: xk+1 = xk  - B - 1A\top Hik(Axk  - b)

8: output: last iterate xk+1

Kaczmarz method with \theta = 1/2 [3] and generalized this to allow for the more general
choice of \theta \in [0, 1][4].

Algorithm 7.1 generalizes and improves upon the methods proposed in [3, 4, 5]
in several ways. We generalize the methods from the randomized Kaczmarz setting
to the more general sketch-and-project setting. We additionally allow for the use of
any fixed reference probability distribution p \in \Delta q, whereas the methods of [3, 4, 5]
use a specific reference probability when identifying the set of indices that will be
selected with nonzero probability. Last, we allow for the use of any adaptive sampling
strategy such that the probabilities pki are zero outside of the set \scrW k whereas the
methods proposed in [3, 4, 5] specify that a specific adaptive probability be used.
However, this restriction is unnecessary in proving the accompanying convergence
result Theorem 7.10.

Below, we provide two convergence guarantees for Algorithm 7.1. Theorem 7.9
provides a convergence guarantee in terms of the spectral constants \sigma 2

\infty (B,S) and
\sigma 2
p(B,S) of Definition 7.3 and the parameter \theta . Theorem 7.10 provides a generaliza-

tion of the convergence rate derived in [4].

Theorem 7.9. Consider Algorithm 7.1 with x0 \in \Omega , where \Omega is as defined in
Definition 7.1. Let p \in \Delta q be a fixed reference probability and \theta \in [0, 1]. Let

\scrW k =

\biggl\{ 
i | fi(xk) \geq \theta max

j=1,...,q
fj(x

k) + (1 - \theta )\BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] \biggr\} 

.(7.17)

It follows that

\BbbE 
\Bigl[ \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] 
\leq 
\bigl( 
1 - \theta \sigma 2

\infty (B,S) - (1 - \theta )\sigma 2
p(B,S)

\bigr) k \bigm\| \bigm\| x0  - x\ast \bigm\| \bigm\| 2
\bfB 
.(7.18)

Proof. First note that \scrW k is not empty since

max
j=1,...,q

fj(x
k) \geq \BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] 
,

and thus argmaxj=1,...,q fj(x
k) \in \scrW k. Since pki = 0 for all i \not \in \scrW k, Lemma 5.3 gives

that

\BbbE i\sim pk

\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2
\bfB 

| xk
\Bigr] 
=
\bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 
 - 
\sum 
i\in \scrW k

pki fi(x
k).(7.19)

We additionally have
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972 GOWER, MOLITOR, MOORMAN, AND NEEDELL\sum 
i\in \scrW k

fi(x
k)pki

(7.17)

\geq 
\sum 
i\in \scrW k

\biggl( 
\theta max
j=1,...,q

fj(x
k) + (1 - \theta )\BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] \biggr) 

pki

= \theta max
j=1,...,q

fj(x
k) + (1 - \theta )\BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] 

(7.20)

Lemma 7.4
\geq 

\bigl( 
\theta \sigma 2

\infty (B,S) + (1 - \theta )\sigma 2
p(B,S)

\bigr) \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2
\bfB 
.(7.21)

Using (7.21) to bound (7.19) and taking the expectation gives the result.

The resulting convergence rate is a convex combination of the spectral constant
\sigma 2
\infty (B,S) which corresponds to the max-distance convergence rate guarantee and

\sigma 2
p(B,S) corresponding to the convergence rate guarantee for the fixed reference prob-

abilities p. This convex combination is in terms of the parameter \theta and we can see
that as \theta approaches 1 the method and convergence guarantee approach that of max-
distance. When \theta is close to 0, the convergence guarantee approaches that of a fixed
distribution, but still filters out sketches with sketched losses less than \BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] 
.

This suggests that for \theta \approx 0 the convergence rate guarantee is loose.
We now explicitly extend the analysis of Bai and Wu's work of [3, 4, 5] to derive

a convergence rate guarantee for our more general Algorithm 7.1.

Theorem 7.10. Consider Algorithm 7.1 with x0 \in \Omega , where \Omega is as defined in
Definition 7.1. Let p \in \Delta q be a set of fixed reference probabilities and \theta \in [0, 1]. Let

\gamma 
def
=

1

maxi=1,...,q

\sum q
j=1, j \not =i pj

> 1.

It follows for k \geq 1 that

\BbbE 
\Bigl[ \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] (7.22)

\leq 
\bigl( 
1 - (\theta \gamma + (1 - \theta ))\sigma 2

p(B,S)
\bigr) k - 1 \bigl( 

1 - \theta \sigma 2
\infty (B,S) - (1 - \theta )\sigma 2

p(B,S)
\bigr) \bigm\| \bigm\| x0  - x\ast \bigm\| \bigm\| 2

\bfB 
,

where the expectation is taken with respect to the probabilities prescribed by Algo-
rithm 7.1.

Proof. By Lemma 7.2, at least one of the sketched losses is guaranteed to be zero
for each iteration k \geq 1. Making the conservative assumption that this sketched loss
corresponds to the smallest probability \^pkik , for an adaptive sampling strategy that

assigns pki = 0 to sketches Si with a sketched loss fi(x
k) = 0 we have that

maxj=1,...,q fj(x
k+1)

\BbbE j\sim p [fj(xk+1)]
\geq \gamma .(7.23)

Combining this with (7.20),\sum 
i\in \scrW k

fi(x
k+1)pk+1

i \geq 
\biggl( 
\theta 
maxj=1,...,q fj(x

k+1)

\BbbE j\sim p [fj(xk+1)]
+ (1 - \theta )

\biggr) 
\BbbE j\sim p

\bigl[ 
fj(x

k+1)
\bigr] 

(7.23)

\geq (\theta \gamma + (1 - \theta ))\BbbE j\sim p

\bigl[ 
fj(x

k+1)
\bigr] 

(7.6)

\geq (\theta \gamma + (1 - \theta ))\sigma 2
p(B,S).(7.24)

Consequently for k \geq 1, by (7.19), we then have

\BbbE 
\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 
| xk
\Bigr] 
\leq 
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
 - (\theta \gamma + (1 - \theta ))\sigma 2

p(B,S)
\bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 
.
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Taking the expectation and unrolling the recursion gives

\BbbE 
\Bigl[ \bigm\| \bigm\| xk+1  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] 
\leq 
\bigl( 
1 - (\theta \gamma + (1 - \theta ))\sigma 2

p(B,S)
\bigr) k - 1 \bigm\| \bigm\| x1  - x\ast \bigm\| \bigm\| 2

\bfB 
.

Since, at the very first update, we cannot guarantee that there exists i \in [1, . . . , q]
such that fi(x

0) = 0, (7.24) is not guaranteed for k = 0. So instead we use (7.18) to
unroll the last step in this recurrence to arrive at (7.22).

The convergence rate for Algorithm 7.1 of Theorem 7.10 is an improvement over
the convergence rate guarantee for a fixed probability distribution since \gamma > 1. As
was the case for Theorem 7.9, the convergence rate is maximized when \theta = 1, at
which point the resulting method is equivalent to the max-distance sampling strategy
of Algorithm 6.3. Further, when \theta = 1, Theorem 7.10 guarantees that

\BbbE 
\Bigl[ \bigm\| \bigm\| xk  - x\ast \bigm\| \bigm\| 2

\bfB 

\Bigr] 
\leq 
\bigl( 
1 - \gamma \sigma 2

p(B,S)
\bigr) k - 1 \bigl( 

1 - \sigma 2
\infty (B,S)

\bigr) \bigm\| \bigm\| x0  - x\ast \bigm\| \bigm\| 2
\bfB 
.

For \theta = 0, Theorem 7.10 recovers the same convergence guarantee as for sampling
according to the nonadaptive probabilities p.

7.6. Convergence summary. Sketch-and-project convergence guarantees with
varying sampling strategies are summarized in Table 7.1. Recall Lemma 7.5, which
states that under Assumption 1

0 < \sigma 2
p(B,S) \leq \gamma \sigma 2

p(B,S) \leq \sigma 2
\infty (B,S) \leq 1.

Combining Lemma 7.5 with the convergence guarantees in Table 7.1, we see that
adaptive strategies have faster convergence guarantees than sampling with respect to
corresponding fixed distributions and the max-distance method has the fastest con-
vergence guarantee of all methods considered. In fact, the max-distance rule has the
fastest convergence guarantee possible under the convergence analysis considered. In
section 10, we will see that sampling strategies with similar costs and faster con-
vergence guarantees typically outperform those with slower convergence guarantees
despite the fact that the derived convergence guarantees are not tight.

8. Implementation tricks and computational complexity. One can per-
form adaptive sketching with the same order of cost per iteration as the standard
nonadaptive sketch-and-project method when \tau q, the number of sketches q times the
sketch size \tau , is not significantly larger than the number of columns n. In particular,
adaptive sketching methods can be performed for a per-iteration cost of O(\tau 2q+ \tau n),

Table 7.1
Summary of convergence guarantees of section 7, where \gamma = 1/maxi=1,...,q

\sum q
j=1,j \not =i pi as

defined in (7.11) and \epsilon = \theta (\gamma  - 1) \leq \theta 1
q - 1

.

Sampling
strategy

Convergence
rate bound

Rate bound
shown in

Fixed, pki \equiv pi 1 - \sigma 2
p(B,S) [18], Theorem 7.6

Max-distance 1 - \sigma 2
\infty (B,S) Theorem 7.7

pki \propto fi(x
k) 1 - 

\Bigl( 
1 + 1

q

\Bigr) 
\sigma 2
u(B,S) Theorem 7.8

Capped 1 - (1 + \epsilon )\sigma 2
p(B,S) Theorem 7.10
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974 GOWER, MOLITOR, MOORMAN, AND NEEDELL

whereas the standard nonadaptive sketch-and-project method has a per-iteration cost
of O(\tau n). Appendix A discusses the costs of adaptive sketch-and-project methods in
more detail. Pseudocode for efficient implementation is provided in Algorithm A.1.

The main computational costs of adaptive sketch-and-project (Algorithm 6.2) at
each iteration come from computing the sketched losses fi(x

k) of (2.1) and updating
the iterate from xk to xk+1 via (1.6). The iterate update for xk and the formula

for the sketched loss fi(x
k) = \| Ax - b\| 2\bfH i

both require calculating what we call the
sketched residual,

Rk
i

def
= C\top 

i S
\top 
i (Axk  - b),(8.1)

where Ci is any square matrix satisfying CiC
\top 
i = (S\top 

i AB - 1A\top Si)
\dagger . The adaptive

methods considered here require the sketched residual Rk
i for each sketch index i =

1, 2, . . . , q at each iteration. For such adaptive methods, it is possible to update the
iterate xk and compute the sketched losses fi(x

k) more efficiently if one maintains
the set of sketched residuals \{ Rk

i : i = 1, 2, . . . , q\} in memory.
Different sampling strategies require different amounts of computation as well.

Among the adaptive sampling strategies considered here, max-distance sampling re-
quires the least amount of computation followed by sampling proportional to the
sketched losses. Capped adaptive sampling requires the most computation. The costs
for each sampling strategy are discussed in detail in Appendix A.3 and are summarized
in Table A.3.

Remark 1. While the adaptive strategies require calculating the sketched resid-
uals \{ Rk

i : i = 1, . . . , q\} at each iteration, this calculation can be done using the
auxiliary update (A.4) in 2\tau 2q flops (see Table A.2), which is significantly less com-
putation than using full gradient descent updates for many choices of sketch size \tau 
and number of sketches q. The gradient descent update for the least-squares problem
with step size \gamma k is given by

xk+1 = xk  - \gamma k\nabla F (x)

= xk  - \gamma kA
\top \bigl( Axk  - b

\bigr) 
.

Let rk
def
= A\top \bigl( Axk  - b

\bigr) 
. This update can be rewritten as

xk+1 = xk  - \gamma kr
k

and rk can be updated as

rk+1 = A\top \bigl( Axk+1  - b
\bigr) 

= A\top \bigl( A \bigl( xk  - \gamma kr
k
\bigr) 
 - b
\bigr) 

= rk  - \gamma kA
\top Ark.

The product between A\top Ark and A\top Axk both require O(n2) flops with A\top A pre-
computed, making a full gradient descent update significantly more expensive than
adaptive sketch-and-project updates for which \tau 2q \ll n2.

When \tau = 1 (including both the Kaczmarz and coordinate descent setting), the
cost of the adaptive sketch-and-project update is O(q), where q is the number of
sketches. For randomized Kaczmarz and coordinate descent, this cost is O(m)+O(n)
and O(n), respectively. Note that this is a factor less expensive than the O(n2) cost
of a full gradient update.
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9. Summary of consequences for special cases. We now discuss the conse-
quences of the convergence analyses of section 7 and the computational costs detailed
in section 8 for the special sketch-and-project subcases of randomized Kaczmarz and
coordinate descent. For Ci as defined in (A.1), in both the randomized Kaczmarz
method and coordinate descent, Ci is a scalar and thus its value is fixed.

9.1. Adaptive Kaczmarz. By choosing the parameter matrix B = I and
sketching matrices Si = ei for i = 1, . . . ,m where ei \in \BbbR n is the ith coordinate
vector, we arrive at the Kaczmarz method introduced in subsection 1.1. For ran-
domized Kaczmarz, the sketches Si = ei isolate a single row of the matrix A, as
S\top 
i A = Ai:. In this setting, the number of sketches q = m for A \in \BbbR m, and the

sketch size is \tau = 1. In order to perform the adaptive update efficiently, the matrices

B - 1A\top SiCi =
A\top 

i:

\| Ai:\| 
and C\top 

i S
\top 
i AB - 1A\top SjCj =

\langle Ai:,Aj:\rangle 
\| Ai:\| \| Aj:\| 

\forall i, j = 1, 2, . . .m

should be precomputed.
In order to succinctly express the convergence rates, we define the diagonal prob-

ability matrix P = diag(p1, . . . , pm) and the normalized matrix \=A
def
= D - 1

RKA, with

DRK
def
= diag (\| A1:\| 2 , . . . , \| Am:\| 2) as in [48]. In the randomized Kaczmarz setting,

the projection matrix Zi as defined in (5.2) is the orthogonal projection onto the ith
row of A and takes the form

Zi =
Ai:A

\top 
i:

\| Ai:\| 2
.

We then have
\BbbE i\sim p [Zi] = D - 1

RKAPA\top D - 1
RK = \=A\top P \=A.

The costs and convergence rates for the adaptive sampling strategies discussed in
section 6 applied to the Kaczmarz method are summarized in Table 9.1, where we

used the notation \| x\| \infty 
def
= maxi | xi| for any vector x.

Table 9.1
Summary of convergence guarantees and costs of various sampling strategies for the ran-

domized Kaczmarz algorithm. Here, \gamma = 1/maxi=1,...,m
\sum m

j=1,j \not =i pi as defined in (7.11), P =

diag(p1, . . . , pm) is a matrix of arbitrary fixed probabilities, and \=A
def
= D - 1

RKA, with DRK
def
=

diag
\bigl( 
\| A1:\| 2 , . . . , \| Am:\| 2

\bigr) 
. Only leading order flop counts are reported. The number of sketches is

q, the sketch size is \tau , and the number of rows and columns in the matrix A is m and n, respectively.

Sampling
strategy

Convergence
rate bound

Rate bound
shown in

Flops per
iteration

Uniform 1 - 1
m
\lambda +
min(

\=A\top \=A) [48], Theorem 7.6 2min(n,m) + 2n

pi \propto \| Ai:\| 22 1 - \lambda +
min(\bfA 

\top \bfA )

\| \bfA \| 2
F

[57], Theorem 7.6 2min(n,m) + 2n

Max-distance 1 - min
v\in Range(\bfA \top )

\| \=\bfA v\| \infty 
\| v\| 2

[48], Theorem 7.7 3m+ 2n

pki \propto fi(x
k) 1 - m+1

m
\lambda +
min(

\=A\top \=A) Theorem 7.8 5m+ 2n

Capped 1 - (\theta \gamma + 1)\lambda +
min(

\=A\top P \=A) [4], Theorem 7.10 9m+ 2n
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976 GOWER, MOLITOR, MOORMAN, AND NEEDELL

9.2. Adaptive coordinate descent. By choosing the parameter matrix B =
A\top A and sketching matrices Si = Aei for i = 1, . . . , n where ei \in \BbbR m is the ith
coordinate vector, we arrive at the coordinate descent method introduced in subsec-
tion 1.2. In this setting, the number of sketches q = n, where n is number of columns
in A, and the sketch size is \tau = 1.

Coordinate descent uses fewer flops per iteration than indicated by the general
computation given in Appendix A.1. This computational savings arises from the
sparsity of the matrix B - 1A\top SikCik = ei/ \| A:i\| . As a result, the iterate update of
xk to xk+1 using the sketched residuals Rk

ik
requires only O(1) flops instead of 2n

flops as indicated in the general analysis that is summarized in Table A.2. The cost
of a coordinate descent update is dominated by the 2n flops required to calculate Rk

ik
either by the auxiliary update of Algorithm A.1 or directly via (8.1).

Similar to the randomized Kaczmarz case, we define the diagonal probability ma-

trix P
def
= diag(p1, . . . , pn) and the normalized matrix \widetilde A def

= AD - 1
CD, with DCD

def
=

diag (\| A:1\| 2 , . . . , \| A:n\| 2). The projection matrix Zi as defined in (5.2) is the projec-
tion given by

Zi = (A\top A) - 1/2A\top A
eie

\top 
i

\| A:i\| 2
A\top A(A\top A) - 1/2 = (A\top A)1/2

eie
\top 
i

\| A:i\| 2
(A\top A)1/2.

We then have
\BbbE i\sim p [Zi] = (A\top A)1/2D - 1

CDPD - 1
CD(A\top A)1/2.

Note that \BbbE i\sim p [Zi] is similar to PD - 1
CDA\top AD - 1

CD = P\widetilde A\top \widetilde A and thus

\lambda +
min(\BbbE i\sim p [Zi]) = \lambda +

min(P
\widetilde A\top \widetilde A).

The costs and convergence rates for the adaptive sampling strategies discussed in
section 6 applied to coordinate descent are summarized in Table 9.2.

10. Experiments. We test the performance of various adaptive and nonadap-
tive sampling strategies in the special sketch-and-project subcases of randomized
Kaczmarz and coordinate descent. Despite the fact that the convergence guaran-
tees of section 7 are only upper bounds, empirical results demonstrate that methods

Table 9.2
Summary of convergence guarantees and costs of various sampling strategies for adaptive coor-

dinate descent. Here, \gamma = 1/maxi=1,...,n
\sum n

j=1,j \not =i pi as defined in (7.11), P = diag(p1, . . . , pn) is

a matrix of arbitrary fixed probabilities, and \widetilde A = AD - 1
CD, with DCD = diag

\bigl( 
\| A:1\| 2 , . . . , \| A:n\| 2

\bigr) 
.

Only flop counts of leading order are reported.

Sampling
Convergence
rate bound

Rate bound
shown in

Flops per
iteration

Uniform 1 - 1
n
\lambda +
min(

\widetilde A\top \widetilde A) Theorem 7.6 2n

pi \propto \| A:i\| 22

\biggl( 
1 - \lambda +

min(\bfA 
\top \bfA )

\| \bfA \| 2
F

\biggr) 
[29] Theorem 7.6 2n

Max-distance 1 - min
v\in Range(\bfA \top )

\| \widetilde \bfA v\| \infty 
\| v\| 2

. Theorem 7.7 3n

pki \propto fi(x
k) 1 - n+1

n
\lambda +
min(

\widetilde A\top \widetilde A) Theorem 7.8 5n

Capped 1 - (\theta \gamma + 1)\lambda +
min(P

\widetilde A\top \widetilde A) Theorem 7.10 9n
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with better convergence guarantees typically converge faster in practice as well. We
report performance via three different metrics: norm-squared error versus iteration,
norm-squared error versus approximate flop count, and the worst expected conver-
gence factor. The worst expected convergence factor aims to approximate the spectral
constants of Definition 7.3.

Results are averaged over 50 trials. Unless specified otherwise, for synthetic ma-
trices (Figures 10.1 and 10.2), a different matrix A is used for each trial. In all
experiments, a different exact solution x\ast and vector b are used in each trial. The
exact solutions x\ast are generated by

x\ast =
A\top \omega 

\| A\top \omega \| \bfB 
,

where \omega \in \BbbR m is a vector of i.i.d. random normal entries. Thus \| x\ast \| 2\bfB = 1 is
normalized with respect to the B-norm and lies in the row space of A. The latter
condition guarantees that x\ast is indeed the unique solution to (1.1). We measure the
error in terms of the B-norm. Recall that for randomized Kaczmarz B = I , while
for coordinate descent, B = A\top A. The sketch-and-project methods are implemented
using the auxiliary update Algorithm A.1 as detailed in Algorithm A.1. For the max-
distance sampling rule, if multiple sketches achieve the maximal sketched-loss value,
we select the first such sketch.

(a) Adaptive randomized Kaczmarz, \bfA \in 
\BbbR 100\times 1000.

(b) Adaptive randomized Kaczmarz, \bfA \in 
\BbbR 1000\times 100.

(c) Adaptive coordinate descent, \bfA \in 
\BbbR 100\times 1000.

(d) Adaptive coordinate descent, \bfA \in 
\BbbR 1000\times 100.

Fig. 10.1. A comparison between different selection strategies for randomized Kaczmarz and
coordinate descent methods. Squared error norms were averaged over 50 trials. Confidence intervals
indicate the middle 95\% performance. Subplots on the left show convergence for underdetermined
systems, while those on the right show the convergence on overdetermined systems.
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978 GOWER, MOLITOR, MOORMAN, AND NEEDELL

(a) Adaptive randomized Kaczmarz, \bfA \in 
\BbbR 100\times 1000.

(b) Adaptive randomized Kaczmarz, \bfA \in 
\BbbR 1000\times 100.

(c) Adaptive coordinate descent, \bfA \in 
\BbbR 100\times 1000.

(d) Adaptive coordinate descent, \bfA \in 
\BbbR 1000\times 100.

Fig. 10.2. A comparison between different selection strategies for randomized Kaczmarz and
coordinate descent methods. Squared error norms were averaged over 50 trials and are plotted
against the approximate flops aggregated over the computations that occur at each iteration. Con-
fidence intervals indicate the middle 95\% performance. Subplots on the left show convergence for
underdetermined systems, while those on the right show the convergence on overdetermined systems.

We consider synthetic matrices of size 1000\times 100 and 100\times 1000 that are generated
with i.i.d. standard Gaussian entries. We additionally test the various adaptive sam-
pling strategies on two large-scale matrices arising from real-world problems. These
matrices are available via the SuiteSparse Matrix Collection [11]. The first system
(Ash958) is an overdetermined matrix with 958 rows, 292 columns, and 1916 entries
[13, 14]. The matrix comes from a survey of the United Kingdom and is part of the
original Harwell sparse matrix test collection. The second real matrix we consider is
the GEMAT1 matrix, which arises from optimal power flow modeling. This matrix is
highly underdetermined and consists of 4929 rows, 10,595 columns, and 47,369 entries
[13, 14]. Note that the matrices considered are small enough to be loaded into mem-
ory, so direct methods could be used to solve the systems and the precomputational
costs for the adaptive sketch-and-project methods are affordable.

10.1. Error per iteration. We first investigate the convergence of the squared

norm of the error,
\bigm\| \bigm\| xk  - x\ast 

\bigm\| \bigm\| 2
\bfB 

in terms of the number of iterations; see Figure 10.1.
The first row of subfigures (Figures 10.1(a) and 10.1(b)) shows convergence for ran-
domized Kaczmarz, while the second row of subfigures (Figures 10.1(c) and 10.1(d))
gives the convergence of various sampling strategies for coordinate descent. The first
column of subfigures (Figures 10.1(a) and 10.1(c)) uses an underdetermined system of
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(a) Adaptive coordinate descent. (b) Adaptive randomized Kaczmarz.

(c) Adaptive coordinate descent. (d) Adaptive randomized kaczmarz.

Fig. 10.3. A comparison between different selection strategies for randomized Kaczmarz and
coordinate descent methods on the Ash958 matrix. Squared error norms were averaged over 50
trials and plotted against both the iteration and the approximate flops required. Confidence intervals
indicate the middle 95\% performance.

100\times 1000 while the second column of subfigures (Figures 10.1(b) and 10.1(d)) consid-
ers an overdetermined system of 1000\times 100. Figures 10.3(c) and 10.3(d) demonstrate
convergence per iteration for the Ash958 matrix and Figures 10.4(a) and 10.4(c) for
randomized Kaczmarz and coordinate descent applied to the GEMAT1 matrix.

As expected, we see that the max-distance sampling strategy performs at least
as well as well as other adaptive sampling strategies and uniform sampling. These
experiments provide evidence that, in addition to having the best convergence guar-
antee, the max-distance rule outperforms other adaptive sampling methods in prac-
tice as well. For randomized Kaczmarz applied to underdetermined systems and
coordinate descent applied to overdetermined systems, max-distance and the capped
adaptive sampling strategies perform similarly in terms of squared error per itera-
tion. The convergence of randomized Kaczmarz for each sampling strategy applied
to overdetermined systems is very similar to that of coordinate descent applied to
underdetermined systems. Similarly, the convergence of randomized Kaczmarz for
each sampling strategy applied to underdetermined systems is very similar to that
of coordinate descent applied to overdetermined systems. For the large and under-
determined GEMAT1 matrix, we find that randomized coordinate descent methods
have much larger variance in their performance compared to randomized Kaczmarz
methods.

10.2. Error versus approximate flops required. If we take into account the
number of flops required for each method, the relative performance of the methods
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(a) Adaptive randomized Kaczmarz. (b) Adaptive randomized Kaczmarz.

(c) Adaptive coordinate descent. (d) Adaptive coordinate descent.

Fig. 10.4. A comparison between different selection strategies for randomized Kaczmarz and
coordinate descent on the GEMAT1 matrix. Squared error norms were averaged over 50 trials and
plotted against both the iteration and the approximate flops required. Confidence intervals indicate
the middle 95\% performance.

changes significantly. In order to approximate the number of flops required for each
sampling strategy, we use the leading order flop counts per iteration given in Tables 9.1
and 9.2. We do not consider the precomputational costs, but only the costs incurred at
each iteration. The performance in terms of flops of each sampling strategy is reported
in Figure 10.2. Performance on the Ash958 matrix is reported in Figures 10.3(c)
and 10.3(d). Performance on the GEMAT1 matrix for randomized Kaczmarz and
coordinate descent is reported in Figures 10.4(b) and 10.4(d).

As discussed in section 8, the adaptive methods are typically more expensive than
nonadaptive methods as one must update the sketched residuals Rk

i for i = 1, . . . , q at
each iteration k. Yet even after taking flops into consideration, we find that the max-
distance sampling strategy still performs the best overall on the systems considered.

For randomized Kaczmarz applied to an overdetermined synthetic matrix, uni-
form sampling performance is comparable to max-distance (Figure 10.2(b)). In all
other experiments, however, max-distance sampling is the clear winner. Since max-
distance sampling performs at least as well per iteration as capped adaptive sampling
and sampling with probabilities proportional to the sketched losses, yet the max-
distance sampling method is less expensive, it naturally performs the best among the
adaptive methods when flop counts are considered.

10.3. Spectral constant estimates. Theorems 7.6 to 7.10 of section 7 provide
conservative views of the convergence rates of each method, as the spectral constants
of Definition 7.3 give the expected convergence corresponding to the worst possible
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Table 10.1
Minimal expected step size factor for each sampling method applied to matrices containing i.i.d.

Gaussian entries.

Sampling
Randomized Kaczmarz Coordinate descent
1000\times 100 100\times 1000 1000\times 100 100\times 1000

Uniform 0.00705 0.00667 0.00656 0.00715

pi \propto \| A:i\| 22 0.02019 0.01569 0.01722 0.02014

Capped 0.03885 0.01901 0.01952 0.03878
Max-distance 0.04593 0.01994 0.02171 0.04711

point x \in Range
\bigl( 
B - 1A

\bigr) 
as opposed to the iterates xk. In practice, the convergence

at each iteration might perform better than the convergence bounds indicate.
Recall that the convergence rates derived in section 7 are given in terms of spectral

constants (Definition 7.3) of the form

\sigma 2
p(B,S)

def
= min

x\in Range(\bfB  - 1\bfA \top )

\BbbE i\sim p [fi(x)]

\| x - x \star \| 2\bfB 
.

We will refer to the value

\BbbE i\sim pk

\bigl[ 
fi(x

k)
\bigr] 

\| xk  - x \star \| 2\bfB 
as the expected step size factor and note that larger values indicate superior perfor-
mance.

The smallest expected step size factor observed for each method provides an
estimate and upper bound on the spectral constants in the derived convergence rates.
The minimal expected step size factor for each sampling method applied to random
Gaussian matrices of size 1000\times 100 and 100\times 1000 is reported in Table 10.1. Since
these values depend on the matrix A considered, we use a single random Gaussian
matrix of each size. As expected, we find that these values increase from uniform
sampling, sampling proportional to the sketched losses, capped adaptive sampling, and
finally max-distance selection. In Theorem 7.8, we proved a bound on the convergence
rate for sampling proportional to the sketched losses that was twice as fast as the
convergence guarantee for uniform sampling. We find that the estimated spectral
constants in Table 10.1 for the proportional sampling strategy is also at least twice
as large as the estimated spectral constant for uniform sampling.

11. Conclusions. We extend adaptive sampling to the general sketch-and-
project setting. The analysis of adaptive sampling rules in the sketch-and-project
setting yields results for all special cases (randomized Kaczmarz, coordinate descent,
block variants) at once. We present a computationally efficient method for implement-
ing the adaptive sampling strategies using an auxiliary update. For several specific
adaptive sampling strategies including max-distance selection, the capped adaptive
sampling of [3, 4, 5], and sampling proportional to the sketched residuals, we de-
rive convergence rates and show that the max-distance sampling rule has the fastest
convergence guarantee among the sampling methods considered. This superior per-
formance is seen in practice as well for both the randomized Kaczmarz and coordinate
descent subcases. We find no evidence that adaptive sampling strategies with costs
similar to the max-distance rule have any advantages over the max-distance rule.
Adaptive sampling rules that are cheaper than max-distance or accelerated in other
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ways remain promising directions for improved convergence [31, 46, 22]; this would
include analyzing various computational costs and architectures.

Appendix A. Implementation tricks and computational complexity.
We describe how one can perform adaptive sketching with the same order of cost

per iteration as the standard nonadaptive sketch-and-project method when \tau q, the
number of sketches q times the sketch size \tau , is not significantly larger than the
number of columns n. In particular, we show how adaptive sketching methods can be
performed for a per-iteration cost of O(\tau 2q + \tau n), whereas the standard nonadaptive
sketch-and-project method has a per-iteration cost of O(\tau n). The precomputations
and efficient update strategies presented here are a generalization of those suggested
in [3] for the Kaczmarz setting. Precomputational costs are a one-time expense and
are independent of the sampling strategy. The precomputational costs depend on the
sparsity structure of the sketches and are summarized for randomized Kaczmarz and
coordinate descent in Table A.1. The computational costs given in this section may
be overestimates of the costs required for specific sketch choices such as when the
update is sparse, as is the case in coordinate descent. The special cases of adaptive
Kaczmarz and adaptive coordinate descent are analyzed in section 9.

Pseudocode for efficient implementation is provided in Algorithm A.1. Through-
out this section, we will frequently omit O(1) and O(log(q)) flop counts since they are
insignificant compared to the number of rows m, the number of columns n, and the
number of sketches q.

Table A.1
Precomputational costs for adaptive randomized Kaczmarz and adaptive coordinate descent.

The computational costs assume the previous elements have been computed and give the cost of
computing the value for all indices.

Computation Randomized Kaczmarz Coordinate descent

Ci of (A.1) 1
\| \bfA i:\| 

2mn+O(m) 1
\| \bfA :i\| 

2mn+O(n)

B - 1A\top SiCi
\bfA \top 

i:
\| \bfA i:\| 

mn ei
\| \bfA :i\| 

n

C\top 
i S\top 

i AB - 1A\top SjCj
\langle \bfA i:,\bfA j:\rangle 

\| \bfA i:\| \| \bfA j:\| 
m2n

+O(m2 +mn)
\langle \bfA :i,\bfA :j\rangle 

\| \bfA :i\| \| \bfA :j\| 
mn2

+O(mn+ n2)

Algorithm A.1. Efficient adaptive sampling sketch-and-project.

1: input: A \in \BbbR m\times n, b \in \BbbR m, \{ Si \in \BbbR m\times \tau : i = 1, 2, . . . , q\} , B \in Rn\times n, x0 \in 
Range

\bigl( 
B - 1A\top \bigr) ,

2: compute Ci = Cholesky
\Bigl( 
(S\top 

i AB - 1A\top Si)
\dagger 
\Bigr) 
for i = 1, 2, . . . , q

 \triangleleft The Ci can be discarded after line 5.
3: compute B - 1A\top SiCi \in \BbbR n\times \tau for i = 1, 2, . . . , q
4: compute C\top 

i S
\top 
i AB - 1A\top SjCj \in \BbbR \tau \times \tau for i, j = 1, 2, . . . , q

5: initialize R0
i = C\top 

i

\bigl( 
S\top 
i (Ax0  - b)

\bigr) 
\in \BbbR \tau for i = 1, 2, . . . , q

6: for k = 0, 1, 2, . . . do

7: compute fi(x
k) =

\bigm\| \bigm\| Rk
i

\bigm\| \bigm\| 2
2
for i = 1, 2, . . . , q

8: sample ik \sim pki , where pk \in \Delta q is a function of f(xk)
9: update xk+1 = xk  - (B - 1A\top SikCik)R

k
ik

10: update Rk+1
i = Rk

i  - (C\top 
i S

\top 
i AB - 1A\top SikCik)R

k
ik

for i = 1, 2, . . . , q

11: output: last iterate xk+1
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Table A.2
Summary of the costs of the of Algorithm A.1 excluding costs that are specific to the sampling

method. The number of sketches is q, the sketch size is \tau , and the number of columns in the matrix
A is n.

Per iteration
computation

Flops

fi(x
k) \forall i via
(A.2)

(2\tau  - 1)q

xk+1 via

(A.3)
2\tau n

Rk
i \forall i with

auxiliary update,
(A.4)

2\tau 2q

Rk
ik

via direct

computation,
(8.1)

2\tau n

(a) Baseline flop counts. Flop
counts of O(1) have been omitted.

Stored object Storage

xk n

Rk
i \forall i \tau q

B - 1A\top SiCi \forall i \tau qn

C\top 
i S\top 

i AB - 1A\top SjCj

\forall i, j
1
4
\tau (\tau + 1)q(q + 1)

C\top 
i S\top 

i A and

C\top 
i S\top 

i b \forall i
\tau q(n+ 1)

(b) Storage costs.

A.1. Per-iteration cost. The main computational costs of adaptive sketch-
and-project (Algorithm 6.2) at each iteration come from computing the sketched losses
fi(x

k) of (2.1) and updating the iterate from xk to xk+1 via (1.6). We now discuss
how these steps can be calculated efficiently. A suggested efficient implementation for
adaptive sketch-and-project is provided in Algorithm A.1. The costs of each step of
an iteration of the adaptive sketch-and-project method are summarized in Table A.2.

Let Ci be any square matrix satisfying

CiC
\top 
i = (S\top 

i AB - 1A\top Si)
\dagger .(A.1)

For example, Ci could be the Cholesky decomposition of (S\top 
i AB - 1A\top Si)

\dagger . The
sketched loss fi(x

k) and the iterate update from xk to xk+1 can now be written as

fi(x
k) =

\bigm\| \bigm\| S\top 
i (Axk  - b)

\bigm\| \bigm\| 2
\bfC i\bfC \top 

i

=
\bigm\| \bigm\| C\top 

i S
\top 
i (Axk  - b)

\bigm\| \bigm\| 2
2

and
xk+1 = xk  - B - 1A\top SikCikC

\top 
ik
S\top 
ik
(Axk  - b).

Notice that both the iterate update for xk and the formula for the sketched loss fi(x
k)

share the sketched residual Rk
i

def
= C\top 

i S
\top 
i (Axk - b) defined in (8.1). In adaptive meth-

ods one must compute the sketched residual Rk
i for i = 1, 2, . . . , q. When sampling

from a fixed distribution, however, calculating the sketched losses fi(x
k) is unneces-

sary and only the sketched residual Rk
ik

corresponding to the selected index ik need
be computed.

Depending on the sketching matrices Si and the matrix B, it is possible to update
the iterate xk and compute the sketched losses fi(x

k) more efficiently if one maintains
the set of sketched residuals \{ Rk

i : i = 1, 2, . . . , q\} in memory. Using the sketched
residuals, the calculations above can be rewritten as

fi(x
k) =

\bigm\| \bigm\| Rk
i

\bigm\| \bigm\| 2
2

(A.2)
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and

xk+1 = xk  - B - 1A\top SikCikR
k
ik
.(A.3)

The sketched residuals for the current iteration \{ Rk
i : i = 1, 2, . . . , q\} can be

computed in two ways, either via an auxiliary update applied to the set of sketched
residuals for the previous iteration \{ Rk - 1

i : i = 1, 2, . . . , q\} or directly using the iterate
xk. Using the auxiliary update,

Rk+1
i = C\top 

i S
\top 
i (Axk+1  - b)

= C\top 
i S

\top 
i

\Bigl( 
A(xk  - B - 1A\top SikCikR

k
ik
) - b

\Bigr) 
= Rk

i  - C\top 
i S

\top 
i AB - 1A\top SikCikR

k
ik

(A.4)

with the initialization
R0

i = C\top 
i

\bigl( 
S\top 
i (Ax0  - b)

\bigr) 
.

If the matrix C\top 
i S

\top 
i AB - 1A\top SjCj \in \BbbR \tau \times \tau is precomputed for each i, j = 1, 2, . . . , q,

the sketched residual Rk
i can be updated to Rk+1

i for 2\tau 2 flops for each index i via
(A.4). Using the precomputed matrices requires storing 1

4\tau (\tau + 1)q(q + 1) floats.
In the nonadaptive case, one only needs to compute the single sketched residual

Rk
ik

as opposed to the entire set of sketched residuals, since the sketched losses fi(x
k)

are not needed. If the matrices

C\top 
i S

\top 
i A \in \BbbR \tau \times n and C\top 

i S
\top 
i b \in \BbbR \tau 

are precomputed for i = 1, 2, . . . , q, computing each sketched residual Rk
i directly

from the iterate xk costs 2\tau n flops via (8.1). If q\tau > n, then it is cheaper to compute
the sketched residual Rk

ik
using the auxiliary update (A.4) rather than computing it

directly from xk.
From the sketched residual Rk

i , the sketched losses fi(x
k) can be computed for

2\tau  - 1 flops for each index i via (A.2). If the matrix B - 1A\top SiCi \in \BbbR n\times \tau is pre-
computed for each i = 1, 2, . . . , q, the iterate xk can then be updated to xk+1 for 2\tau n
flops via (A.3). These costs are summarized in Table A.2.

A.2. Cost of sampling indices. The cost of computing the sampling prob-
abilities pk from the sketched losses fi(x

k) depends on the sampling strategy used.
Sampling from a fixed distribution can be achieved with an O(1) cost using precom-
putations of O(q) [59]. Adaptive strategies sample from a new, unseen distribution at
each iteration, which can be achieved with an average of q flops using, for example,
inversion by sequential search [28], [12, p. 86]. In practice, the probabilities pki cor-
responding to each index i are given by a function of the sketched losses f(xk

i ) and
normalizing these values is unnecessary. Instead, one can sum the q sketched losses
and apply inversion by sequential search with a random value r generated between
zero and the sum of these values. This summation requires q  - 1 flops. Thus, the
total cost for sampling from an adaptive probability distribution for the methods con-
sidered is approximately 2q flops on average. The costs for the sampling strategies
discussed in section 6 are summarized in Table A.3. The calculations of these costs
are discussed in more detail in Appendix A.3. Costs per iteration including sampling
are reported in Table A.4.

A.3. Sampling strategy specific costs. We now detail the calculations that
lead to the costs associated with each of the specific sampling strategies that are
reported in Table A.3.
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Table A.3
Rule-specific per-iteration costs of Algorithm A.1. Only leading order flop counts are reported.

The nonsampling flops are those that are independent of the specific adaptive sampling method used
and are those that correspond to the steps indicated in Table A.2(a). The extra flops for sampling
are those that are required to calculate the adaptive sampling probabilities pk at each iteration. The
number of sketches is q, the sketch size is \tau , and the number of columns in the matrix A is n.

Sampling strategy Nonsampling flops Flops from sampling

Fixed, pki \equiv pi \forall k 2\tau min(n, \tau q) + 2\tau n O(1)

Max-distance
(2\tau 2 + 2\tau  - 1)q + 2\tau n

q if \tau > 1
O(log(q)) if \tau = 1

pki \propto fi(x
k) 2q

Capped 6q

Table A.4
Summary of convergence guarantees of section 7, where \gamma = 1/maxi=1,...,m

\sum m
j=1,j \not =i pi as

defined in (7.11) and \epsilon = \theta (\gamma  - 1) \leq \theta 1
m
. Flop counts of O(log(q)) have been omitted. Flop counts

assume all matrices are dense. The number of sketches is q, the sketch size is \tau , and the number of
columns in the matrix A is n.

Sampling
strategy

Flops per
iteration

when \tau > 1

Flops per
iteration

when \tau = 1

Fixed, pki \equiv pi 2\tau min(n, \tau q) + 2\tau n 2min(n, q) + 2n

Max-distance (2\tau 2 + 2\tau )q + 2\tau n 3q + 2n

pki \propto fi(x
k) (2\tau 2 + 2\tau + 1)q + 2\tau n 5q + 2n

Capped (2\tau 2 + 2\tau + 5)q + 2\tau n 9q + 2n

A.3.1. Sampling from a fixed distribution. When sampling the indices i
from a fixed distribution, computing the sketched losses fi(x

k) is unnecessary and
only the sketched residual Rk

ik
of the selected index ik is needed to update the iterate

xk. If q\tau > n, where q is the number of sketches, \tau is the sketch size, and n is the
number of columns in the matrixA, it is cheaper to compute the sketched residualRk

ik

using the auxiliary update (A.4) rather than computing it directly from xk. Ignoring
the O(1) cost of sampling from the fixed distribution, the iterate update takes either
4\tau n flops if q\tau > n and one maintains the set of sketched residuals via the auxiliary
update (A.4) or 2\tau (n + q) flops if the sketched residual Rk

ik
is calculated from the

iterate xk directly via (8.1).

A.3.2. Max-distance selection. Performing max-distance selection requires
finding the maximum element of the length q vector of sketched losses given in (A.2).
In the average case, this costs q + O(log q) flops, where q flops are used to check
each element and O(log q) flops arise from updates to the running maximal value.
For convenience, we ignore the O(log q) flops and consider the cost of the selection
step using the max-distance rule to be q flops. If the sketches Si are vectors, or
equivalently we have \tau = 1, then the sketched residuals Rk

i are scalars and finding
the maximal sketched loss fi(x

k) is equivalent to finding the sketched residual Rk
i of

maximal magnitude. We can thus save q flops per iteration by skipping the step of
computing the sketched losses and instead taking the sketched residual of maximal
magnitude.
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A.3.3. Sampling proportional to the sketched loss. Sampling indices with
probabilities proportional to the sketched losses fi(x

k) requires approximately 2q flops
on average using inversion by sequential search.

A.3.4. Capped adaptive sampling. Recall that using capped adaptive sam-
pling requires identifying the set

\scrW k =

\biggl\{ 
i | fi(xk) \geq \theta max

j=1,...,q
fj(x

k) + (1 - \theta )\BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] \biggr\} 

.

Sampling with the capped adaptive sampling strategy requires identifying the set \scrW k

and sampling an index from this set. Identifying the set \scrW k requires q + O(log q)
flops to identify the maximal sketched loss fi(x

k), 2q flops to compute the weighted
average of the sketched losses \BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] 
, O(1) flops to calculate the threshold for

the set \scrW k, and q flops to compare each sketched loss against the threshold. Sampling
an index from the set \scrW k requires on average 2q flops by using inversion by sequential
search as discussed in section A.2.4 Thus, the total cost of the sampling step is
6q+O(log q) flops. When a uniform average is used in place of the weighted average,
the expected sketched loss \BbbE j\sim p

\bigl[ 
fj(x

k)
\bigr] 
can be computed in just q flops as opposed

to 2q. In that case, the total cost of the sampling step is only 5q +O(log q).

Appendix B. Auxiliary lemma. We now invoke a lemma taken from [17].

Lemma B.1. For any matrix W and symmetric positive semidefinite matrix G
such that

Null (G) \subset Null
\bigl( 
W\top \bigr) ,(B.1)

we have that

Null (W) = Null
\bigl( 
W\top GW

\bigr) 
.(B.2)

Proof. In order to establish (B.2), it suffices to show the inclusion Null (W) \supseteq 
Null

\bigl( 
W\top GW

\bigr) 
since the reverse inclusion trivially holds. Letting s\in Null

\bigl( 
W\top GW

\bigr) 
,

we see that \| G1/2Ws\| 2 = 0, which implies G1/2Ws = 0. Consequently

Ws \in Null
\Bigl( 
G1/2

\Bigr) 
= Null (G)

(B.1)
\subset Null

\bigl( 
W\top \bigr) .

Thus Ws \in Null
\bigl( 
W\top \bigr) \cap Range (W) which are orthogonal complements which shows

that Ws = 0.
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