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SKETCHED NEWTON–RAPHSON∗

RUI YUAN† , ALESSANDRO LAZARIC‡ , AND ROBERT M. GOWER§

Abstract. We propose a new globally convergent stochastic second-order method. Our starting
point is the development of a new sketched Newton–Raphson (SNR) method for solving large scale
nonlinear equations of the form F (x) = 0 with F : Rp → Rm. We then show how to design several
stochastic second-order optimization methods by rewriting the optimization problem of interest as a
system of nonlinear equations and applying SNR. For instance, by applying SNR to find a stationary
point of a generalized linear model, we derive completely new and scalable stochastic second-order
methods. We show that the resulting method is very competitive as compared to state-of-the-art
variance reduced methods. Furthermore, using a variable splitting trick, we also show that the
stochastic Newton method (SNM) is a special case of SNR and use this connection to establish the first
global convergence theory of SNM. We establish the global convergence of SNR by showing that it is a
variant of the online stochastic gradient descent (SGD) method, and then leveraging proof techniques
of SGD. As a special case, our theory also provides a new global convergence theory for the original
Newton–Raphson method under strictly weaker assumptions as compared to the classic monotone
convergence theory.
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method, randomized Kaczmarz
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1. Introduction. One of the fundamental problems in numerical computing is
to find roots of systems of nonlinear equations such as

F (x) = 0,(1.1)

where F : Rp → Rm. We assume throughout that F : Rp → Rm is continuously
differentiable and that there exists a solution to (1.1), as follows.

Assumption 1.1. ∃x∗ ∈ Rp such that F (x∗) = 0.

Our main interest here is to solve nonlinear minimization problems in machine
learning. Most convex optimization problems such as those arising from training
a generalized linear model (GLM), can be rewritten as a system of nonlinear equa-
tions (1.1) either by manipulating the stationarity conditions or as the Karush–Kuhn–
Tucker equations.1 The building block of many iterative methods for solving nonlinear
equations is the Newton–Raphson (NR) method given by

xk+1 = xk − γ
(
DF (xk)⊤

)†
F (xk)(1.2)

at the kth iteration, where DF (x)
def
= [∇F1(x) · · · ∇Fm(x)] ∈ Rp×m is the transpose

of the Jacobian matrix of F at x, (DF (xk)⊤)† is the Moore–Penrose pseudoinverse of
DF (xk)⊤, and γ > 0 is the stepsize.
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The NR method is at the heart of many commercial solvers for nonlinear equa-
tions [44]. The success of NR can be partially explained by its invariance to affine
coordinate transformations, which in turn means that the user does not need to tune
any parameters (standard NR sets γ = 1). The downside of NR is that we need to solve
a linear least squares problem given in (1.2) which costs O(min{pm2,mp2}) when
using a direct solver. When both p and m are large, this cost per iteration is pro-
hibitive. Here we develop a randomized NR method based on the sketch-and-project
technique [22] which can be applied in large scale, as we show in our experiments.

1.1. The sketched Newton–Raphson method. Our method relies on using
sketching matrices to reduce the dimension of the Newton system.

Definition 1.2. The sketching matrix S ∈ Rm×τ is a random matrix sampled
from a distribution D, where τ ∈ N is the sketch size. We use Sk ∈ Rm×τ to denote a
sketching matrix sampled from a distribution Dxk that can depend on the iterate xk.

By sampling a sketching matrix Sk ∼ Dxk at kth iteration, we sketch (row com-
press) NR update and compute an approximate sketched Newton–Raphson (SNR) step;
see (1.3) in Algorithm 1. We use Dx to denote a distribution that depends on x, and
allow the distribution of the sketching matrix to change from one iteration to the next.

Algorithm 1. SNR: Sketched Newton–Raphson

1: parameters: D = distribution of sketching matrix; stepsize parameter γ > 0
2: initialization: Choose x0 ∈ Rp

3: for k = 0, 1, · · · do
4: Sample a fresh sketching matrix: Sk ∼ Dxk

xk+1 = xk − γDF (xk)Sk

(
S⊤
k DF (xk)⊤DF (xk)Sk

)†
S⊤
k F (xk)(1.3)

5: return: last iterate xk

Because the sketching matrix Sk has τ columns, the dominating costs of comput-
ing the SNR step (1.3) are linear in p and m. In particular, DF (xk)Sk ∈ Rp×τ can
be computed by using τ directional derivatives of F (xk), one for each column of Sk.
Using automatic differentiation [11], these directional derivatives cost τ evaluations
of the function F (x). Furthermore, it costs O(pτ2) to form the linear system in (1.3)
of Algorithm 1 by using the computed matrix DF (xk)Sk and O(τ3) to solve it, re-
spectively. Finally the matrix vector product S⊤

k F (xk) costs O(mτ). Thus, without
making any further assumptions to the structure of F or the sketching matrix, the
total cost in terms of operations of the update (1.3) is given by

Cost(update (1.3)) = O
(
(eval(F ) +m)× τ + pτ2 + τ3

)
.(1.4)

Thus Algorithm 1 can be applied when both p and m are large and τ is relatively
small.

1.2. Background and contributions.
(a) Stochastic second-order methods. There is now a concerted effort to develop

efficient second-order methods for solving high dimensional and stochastic optimiza-
tion problems in machine learning. Most recently developed Newton methods fall
into one of two categories: subsampling and dimension reduction. The subsampling
methods [17, 48, 31, 7, 60] and [1, 45]2 use minibatches to compute an approximate

2Newton sketch [45] and LiSSa [1] use subsampling to build an estimate of the Hessian but require
a full gradient evaluation. As such, these methods are not efficient for very large n.
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Newton direction. Though these methods can handle a large number of data points
(n), they do not scale well in the number of features (d). On the other hand, second-
order methods based on dimension reduction techniques such as [19] apply Newton’s
method over a subspace of the features, and as such do not scale well in the number
of data points. Sketching has also been used to develop second-order methods in the
online learning setting [24, 36, 8] and quasi-Newton methods [20].

Contributions. We propose a new family of stochastic second-order methods called
SNR. Each choice of the sketching distribution and nonlinear equations used to describe
the stationarity conditions leads to a particular algorithm. For instance, we show that
a nonlinear variant of the Kaczmarz method is a special case of SNR. We also show that
the subsampling based stochastic Newton method (SNM) [32] is a special case of SNR.
We provide a concise global convergence theory that when specialized to SNM gives its
first global convergence result. Furthermore, the convergence theory of SNR allows for
any sketch size, which translates to any minibatch size for the nonlinear Kaczmarz
and SNM. In contrast, excluding SNM, the subsampled based Newton methods [17, 48,
31, 7, 60, 1, 45] rely on high probability bounds that in turn require large minibatch
sizes.3 We detail the nonlinear Kaczmarz method in section 6 and the connection
with SNM in section 7.

(b) New method for GLMs. There exist several specialized methods for solving
GLMs, including variance reduced gradient methods such as SAG/SAGA [49, 13] and
SVRG [26], and methods based on dual coordinate ascent like SDCA [51], dual free
SDCA (dfSDCA) [50], and Quartz [46].

Contributions. We develop a specialized variant of SNR for GLMs in section 8.
Our resulting method scales linearly in the number of dimensions d and the number of
data points n and has the same cost as stochastic gradient descent (SGD) per iteration
in average. We show in experiments that our method is very competitive as compared
to state-of-the-art variance reduced methods for GLMs.

(c) Viewpoints of (sketched) Newton–Raphson. We show in section 3 that SNR can
be seen as SGD applied to an equivalent reformulation of our original problem. We will
show that this reformulation is always a smooth and interpolated function [37, 53].
These gratuitous properties allow us to establish a simple global convergence theory by
only assuming that the reformulation is a star-convex function: a class of nonconvex
functions that include convexity as a special case [42, 33, 63, 25].

(d) Classic convergence theory of Newton–Raphson. The better known conver-
gence theorems for NR (the Newton–Kantorovich–Mysovskikh theorems) only guaran-
tee local or semilocal convergence [28, 44]. To guarantee global convergence of NR, we
often need an additional globalization strategy, such as damping sequences or adap-
tive trust-region methods [12, 35, 15, 29], continuation schemes such as interior point
methods [41, 57], and more recently cubic regularization [32, 42, 9]. Globalization
strategies are used in conjunction with other second-order methods, such as inexact
Newton backtracking type methods [5, 3], Gauss–Newton or Levenberg–Marquardt
type methods [62, 61, 58], and quasi-Newton methods [58].4 The only global con-
vergence theory that does not rely on such a globalization strategy requires strong
assumptions on F (x), such as in the monotone convergence theory (MCT) [15].

Contributions. We show in section 5.3 that our main theorem specialized to the
standard NR method guarantees a global convergence under strictly less assumptions

3The batch sizes in these methods scale proportional to a condition number [1] or ϵ−1 where ϵ is
the desired tolerance.

4A recent paper [18] shows that quasi-Newton converges globally for self-concordant functions
without globalization strategy.
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as compared to the MCT, albeit under a different stepsize. Indeed, MCT holds for
stepsize equal to one (γ = 1) and our theory holds for stepsizes less than one (γ < 1).

Furthermore, we give an explicit sublinear O(1/k) convergence rate, as opposed
to only an asymptotic convergence in MCT. This appears not to have been known
before since, as stated by [15] w.r.t. the NR method, “Not even an a-priori estimation
for the number of iterations needed to achieve a prescribed accuracy may be possi-
ble.” We show that it is possible by monitoring which iterate achieves the best loss
(suboptimality).

(e) Sketch-and-project. The sketch-and-project method was originally introduced
for solving linear systems in [22, 23], where it was also proven to converge linearly and
globally. In [47], the authors then go on to show that the sketch-and-project method
is in fact SGD applied to a particular reformulation of the linear system.

Contributions. It is this SGD viewpoint in the linear setting [47] that we extend to
the nonlinear setting. Thus the SNR algorithm and our theory are generalizations of the
original sketch-and-project method for solving linear equations to solving nonlinear
equations, thus greatly expanding the scope of applications of these techniques.

1.3. Notation. In calculating an update of SNR (1.3) and analyzing SNR, the
following random matrix is key:

HS(x)
def
= S

(
S⊤DF (x)⊤DF (x)S

)†
S⊤.(1.5)

The sketching matrix S in (1.5) is sampled from a distribution Dx andHS(x) ∈ Rm×m

is a random matrix that depends on x. We use Ip ∈ Rp×p to denote the identity matrix

of dimension p and use ∥x∥M
def
=

√
x⊤Mx to denote the seminorm of x ∈ Rp induced

by a symmetric positive semidefinite matrix M ∈ Rp×p. Notice that ∥x∥M is not
necessarily a norm as M is allowed to be noninvertible. We handle this with care in
our forthcoming analysis. We also define the following sets: F (U) = {F (x) | x ∈ U}
for a given set U ⊂ Rp; W⊥ = {v | ⟨u, v⟩ = 0 for all u ∈ W} to denote the orthogonal
complement of a subspace W ; Im(M) = {y ∈ Rm | ∃x ∈ Rp s.t. Mx = y} to denote
the image space; and Ker(M) = {x ∈ Rp | Mx = 0} to denote the null space of a
matrix M ∈ Rm×p. If M is a random matrix sampled from a certain distribution D,
we use ES∼D [M] =

∫
M

MdPD(M) to denote the expectation of the random matrix.
We omit the notation of the distribution D, i.e., E [M], when the random source is
clear. In particular, when M is sampled from a discrete distribution with r ∈ N s.t.
P[M = Mi] = pi > 0, for i = 1, . . . , r and

∑r
i=1 pi = 1, then E [M] =

∑r
i=1 piMi.

1.4. Sketching matrices. Here we provide examples of sketching matrices that
can be used in conjunction with SNR. We point the reader to [56] for a detailed
exposure and introduction. The most straightforward sketch is given by the Gaussian
sketch where every coordinate Sij of the sketch S ∈ Rm×τ is sampled independent
and identically distributed according to a Gaussian distribution with Sij ∼ N (0, 1

τ )
for i = 1, . . . ,m and j = 1, . . . , τ . The sketch we mostly use here is the uniform
subsampling sketch, whereby

P[S = IC ] =
1(
m
τ

) for all set C ⊂ {1, . . . ,m} s.t. |C| = τ,(1.6)

where IC ∈ Rm×τ denotes the concatenation of the columns of the identity matrix
Im indexed in the set C. More sophisticated sketches that are able to make use of
fast Fourier type routines include the random orthogonal sketches [45, 2]. We will
not cover random orthogonal sketches here since these sketches are fast when applied
only once to a fixed matrix M, as opposed to being resampled at every iteration .
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2. The sketch-and-project viewpoint. The viewpoint that motivated the
development of Algorithm 1 was the following iterative sketch-and-project method
applied to the Newton system. For this viewpoint, we assume as follows.

Assumption 2.1. F (x) ∈ Im
(
DF (x)⊤

)
for all x ∈ Rp.

This assumption guarantees that there exists a solution to the Newton system
in (1.2). Indeed, we can now rewrite the NR method (1.2) as a projection of the
previous iterate xk onto the solution space of a Newton system

xk+1 = argminx∈Rp ∥x− xk∥2 s.t. DF (xk)⊤(x− xk) = −γF (xk).(2.1)

Since this is costly to solve when DF (xk) has many rows and columns, we sketch the
Newton system. That is, we apply a random row compression to the Newton system
using the sketching matrix S⊤

k ∈ Rτ×m and then project the previous iterates xk onto
this sketched system as follows:

xk+1 = argminx∈Rp ∥x− xk∥2 s.t. S⊤
k DF (xk)⊤(x− xk) = −γS⊤

k F (xk).(2.2)

That is, xk+1 is the projection of xk onto the solution space of the sketched New-
ton system. This viewpoint was our motivation for developing the SNR method.
Next we establish our core theory. The theory does not rely on the assumption
F (x) ∈ Im

(
DF (x)⊤

)
, though this assumption will appear again in several special-

ized corollaries. Without this assumption, we can still interpret the Newton step (1.2)
as the least squares solution of the linear system (2.1), as we show next.

3. Reformulation as stochastic gradient descent. Our insight into inter-
preting and analyzing the SNR in Algorithm 1 is through its connection to the SGD.
Next, we show how SNR can be seen as SGD applied to a sequence of equivalent refor-
mulations of (1.1). Each reformulation is given by a vector y ∈ Rp and the following
minimization problem:

min
x∈Rp

ES∼Dy

[
1

2
∥F (x)∥2HS(y)

]
,(3.1)

where HS(y) is defined in (1.5). To abbreviate notation, let

fS,y(x)
def
=

1

2
∥F (x)∥2HS(y)

and fy(x)
def
= E [fS,y(x)] =

1

2
∥F (x)∥2E[HS(y)]

.(3.2)

Every solution x∗ ∈ Rp to (1.1) is a solution to (3.1), since fy(x) is nonnegative
for every x ∈ Rp and fy(x

∗) = 0 is thus a global minima. With an extra assumption,
we can show that every solution to (3.1) is also a solution to (1.1) in the following
lemma.

Lemma 3.1. If Assumption 1.1 holds and the reformulation assumption

F (Rp) ∩Ker
(
ES∼Dy

[HS(y)]
)
= {0} for all y ∈ Rp(3.3)

holds, then argminx∈Rp fy(x) = {x | F (x) = 0} for every y ∈ Rp.

Proof. Let y ∈ Rp. Previously, we showed that {x | F (x) = 0} ⊂ argminx∈Rp fy(x).
Now let x∗ ∈ argminx∈Rp fy(x). By Assumption 1.1, we know that any global mini-
mizer x∗ of fy(x) must be s.t. fy(x

∗) = 0. This implies that F (x∗) ∈ Ker (E [HS(y)])
since E [HS(y)] is symmetric. However, F (x∗) ∈ F (Rp), and thus from (3.3), we have
that F (x∗) ∈ F (Rp) ∩ Ker (E [HS(y)]) = {0}, which implies F (x∗) = 0. Thus, we
have argminx∈Rp fy(x) ⊂ {x | F (x) = 0}, which concludes the proof.
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Thus with the extra reformulation assumption in (3.3), we can now use any viable
optimization method to solve (3.1) for any fixed y ∈ Rp and arrive at a solution
to (1.1). In Lemma A.1, we give sufficient conditions on the sketching matrix and
on the function F (x) that guarantee (3.3) holds. We also show how (3.3) holds for
our forthcoming examples in Appendix A as a direct consequence of Lemma A.1.
However, (3.3) imposes for all y ∈ Rp which can sometimes be restrictive. In fact,
we do not need for (3.1) to be equivalent to solving (1.1) for every y ∈ Rp. Indeed,
by carefully and iteratively updating y, we can solve (3.1) and obtain a solution
to (1.1) without relying on (3.3). The trick here is to use an online SGD method for
solving (3.1).

Since (3.1) is a stochastic optimization problem, SGD is a natural choice for solv-
ing (3.1). Let ∇fS,y(x) denote the gradient of the function fS,y(·) which is

∇fS,y(x) = DF (x)HS(y)F (x).(3.4)

Since we are free to choose y, we allow y to change from one iteration to the next
by setting y = xk at the start of the kth iteration. We can now take an SGD step by
sampling Sk ∼ Dxk at the kth iteration and updating

xk+1 = xk − γ∇fSk,xk(xk).(3.5)

It is straightforward to verify that the SGD update (3.5) is exactly the same as the
SNR update in (1.3).

The objective function fS,y(x) has many properties that makes it very favorable
for optimization including the interpolation condition and a gratuitous smoothness
property. Indeed, for any x∗ ∈ Rp s.t. F (x∗) = 0, we have that the stochastic gradient
is zero, i.e., ∇fS,y(x

∗) = 0. This is known as the interpolation condition. When it
occurs together with strong convexity, it is possible to shows that SGD converges
linearly [53, 37]. We will also give a linear convergence result in section 4 by assuming
that fy(x) is quasi-strongly convex. We detail the smoothness property next.

However, we need to be careful, since (3.5) is not a classic SGD method. In fact,
from the kth iteration to the (k + 1)th iteration, we change our objective function
from fxk(x) to fxk+1(x) and the distribution from Dxk to Dxk+1 . Thus it is an online
SGD. We handle this with care in our forthcoming convergence proofs.

4. Convergence theory. Using the viewpoint of SNR in section 3, we adapt
proof techniques of SGD to establish the global convergence of SNR.

4.1. Smoothness property. In our upcoming proof, we rely on the following
type of smoothness property thanks to our SGD reformulation (3.1).

Lemma 4.1. For every x ∈ Rp and any realization S ∼ Dx associated with any
distribution Dx,

1

2
∥∇fS,x(x)∥2 = fS,x(x).(4.1)

Proof. Turning to the definition of fS,x in (3.2), we have that

∥∇fS,x(x)∥2
(3.4)
= ∥DF (x)HS(x)F (x)∥2 = F (x)⊤HS(x)

⊤DF (x)⊤DF (x)HS(x)F (x)

= F (x)⊤HS(x)F (x) = 2fS,x(x),

where we used the property M†MM† = M† with M = S⊤DF (x)⊤DF (x)S to estab-

lish that HS(x)
⊤DF (x)⊤DF (x)HS(x)

(1.5)
= HS(x).
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This is not a standard smoothness property. Indeed, since ∇fS,x(x
∗) = 0 and

fx(x
∗) = 0, we have that (4.1) implies that ∥∇fS,x(x) − ∇fS,x(x

∗)∥2 ≤ 2(fS,x(x) −
fS,x(x

∗)), which is usually a consequence of assuming that fS,x(x) is convex and 1-
smooth (see Theorem 2.1.5 and equation (2.1.7) in [40]). Yet in our case, (4.1) is a
direct consequence of the definition of fS,x as opposed to being an extra assumption.
This gratuitous property will be key in establishing a global convergence result.

4.2. Convergence for star-convex. We use the shorthand fk(x)
def
= fxk(x),

fSk,k
def
= fSk,xk and Ek [·]

def
= E

[
· | xk

]
. Here we establish the global convergence of

SNR by supposing that fk is star-convex, which is a large class of nonconvex functions
that includes convexity as a special case [42, 33, 63, 25].

Assumption 4.2 (star-convexity). Let x∗ satisfy Assumption 1.1, i.e., let x∗ be a
solution to (1.1). For every xk given by Algorithm 1 with k ∈ N, we have that

fk(x
∗) ≥ fk(x

k) +
〈
∇fk(x

k), x∗ − xk
〉
.(4.2)

We now state our main theorem.

Theorem 4.3. Let x∗ satisfy Assumption 4.2. If 0 < γ < 1, then

E
[

min
t=0,...,k−1

ft(x
t)

]
≤ 1

k

k−1∑
t=0

E
[
ft(x

t)
]
≤ 1

k

∥x0 − x∗∥2

2γ (1− γ)
.(4.3)

Written in terms of F and for γ = 1/2 the above gives

E
[

min
t=0,...,k−1

∥F (xt)∥2E[HS(xt)]

]
≤ 4∥x0 − x∗∥2

k
.

Besides, if the stochastic function fS,x(x) is star-convex along the iterates xk, i.e.,

fSk,xk(x∗) ≥ fSk,xk(xk) +
〈
∇fSk,xk(xk), x∗ − xk

〉
(4.4)

for all Sk ∼ Dxk , then the iterates xk of SNR (1.3) are bounded with

∥xk − x∗∥ ≤ ∥x0 − x∗∥.(4.5)

Proof. Let t ∈ {0, . . . , k − 1} and δt
def
= xt − x∗. We have that

Et

[
∥δt+1∥2

] (3.5)
= Et

[
∥xt − γ∇fSt,t(x

t)− x∗∥2
]

= ∥δt∥2 − 2γ
〈
δt,∇ft(x

t)
〉
+ γ2Et

[
∥∇fSt,t(x

t)∥2
]

(4.2)

≤ ∥δt∥2 − 2γ(ft(x
t)− ft(x

∗)) + γ2Et

[
∥∇fSt,t(x

t)∥2
]

(4.1)
= ∥δt∥2 − 2γ (1− γ) (ft(x

t)− ft(x
∗))

ft(x
∗)=0
= ∥δt∥2 − 2γ (1− γ) ft(x

t).(4.6)

Taking total expectation for all t ∈ {0, . . . , k − 1}, we have that

E
[
∥δt+1∥2

]
≤ E

[
∥δt∥2

]
− 2γ (1− γ)E

[
ft(x

t)
]
.(4.7)

Summing both sides of (4.7) from 0 to k − 1 gives

E
[
∥xk − x∗∥2

]
+ 2γ (1− γ)

k−1∑
t=0

E
[
ft(x

t)
]
≤ ∥x0 − x∗∥2.
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Dividing through by 2γ (1− γ) > 0 and by k, we have that

E
[

min
t=0,...,k−1

ft(x
t)

]
≤ min

t=0,...,k−1
E
[
ft(x

t)
]
≤ 1

k

k−1∑
t=0

E
[
ft(x

t)
]
≤ 1

k

∥x0 − x∗∥2

2γ (1− γ)
,

where in the leftmost inequality we used Jensen’s inequality.
Finally, if (4.4) holds, then we can repeat the steps leading up to (4.6) without

the conditional expectation, so that

∥δt+1∥2
(3.5)+(4.4)+(4.1)

≤ ∥δt∥2 − 2γ (1− γ) fSt,t(x
t).

Since fSt,t(x
t) ≥ 0, we have ∥δt+1∥2 ≤ ∥δt∥2, i.e., (4.5) holds.

Theorem 4.3 is an unusual result for SGD methods. Currently, to get an O(1/k)
convergence rate for SGD, one has to assume smoothness and strong convexity [21]
or convexity, smoothness, and interpolation [53]. Here we get an O(1/k) rate by
only assuming star-convexity. This is because we have smoothness and interpolation
properties as a by-product due to our reformulation (3.1). However, the star-convexity
assumption of fk(·) for all k ∈ N is hard to interpret in terms of assumptions on F
in general. But, we are able to interpret it in many important extremes. That is,
for the full NR method, we show that it suffices for the Newton direction to be 2–co-
coercive (see (5.8) in section 5). For the other extreme where the sketching matrix
samples a single row, then the star-convexity assumption is even easier to check and
is guaranteed to hold so long as Fi(x)

2 is convex for all i = 1, . . . ,m (see section 6).
Next, we will show the convergence of F (xk) instead of fk(x

k) via Theorem 4.3.

4.2.1. Sublinear convergence of the Euclidean norm ∥F∥. If E [HS(x)] is
invertible for all x ∈ Rp, we can use Theorem 4.3 with the bound (4.5) to guaran-
tee that ∥F∥ converges sublinearly. Indeed, when E [HS(x)] is invertible, E [HS(x)]
is symmetric positive definite. Thus there exists λ > 0 that bounds the smallest
eigenvalue away from zero in any closed bounded set (e.g., {x ∈ Rp | ∥x − x∗∥ ≤
∥x0 − x∗∥}5):

min
x∈{x|∥x−x∗∥≤∥x0−x∗∥}

λmin (E [HS(x)]) = λ > 0,(4.8)

where λmin(·) is the smallest eigenvalue operator. Consequently, under the assumption
of Theorem 4.3 with the condition (4.4), from (4.5) and (4.8), we have

λE
[

min
t=0,...,k−1

∥F (xt)∥2
]
≤ E

[
min

t=0,...,k−1
∥F (xt)∥2E[HS(xt)]

]
(4.3)

≤ 1

k

∥x0 − x∗∥2

γ (1− γ)
.(4.9)

It turns out that using the smallest eigenvalue of E [HS(x)] in the above bound
is overly pessimistic. To improve it, first note that we do not need that E [HS(x)] is
invertible. Instead, we only need that F (x) ∈ Im(DF (x)⊤) ⊂ Im(E [HS(x)]), as we
show in Corollary 4.5. But first, we need the following lemma.

Lemma 4.4 (Lemma 10 in [19]). For any matrix W and symmetric positive semi-
definite matrix G s.t. Ker(G) ⊂ Ker(W), we have Ker(W⊤) = Ker(WGW⊤).

Note L
def
= supx∈{x|∥x−x∗∥≤∥x0−x∗∥} ∥DF (x)∥ > 0. Such L exists because x is in a

closed bounded convex set and because we have assumed that DF (·) is continuous. A
continuous mapping over a closed bounded convex set is bounded. Now we can state
the sublinear convergence results for ∥F∥.

5We can rewrite the set as the closure of the ball {x ∈ Rp | x ∈ B(x∗, ∥x0 − x∗∥)}.
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Corollary 4.5. Let

ρ(x)
def
= min

v∈Im(DF (x))/{0}

v⊤DF (x)E [HS(x)]DF (x)⊤v

∥v∥2
,(4.10)

ρ
def
= min

x∈{x|∥x−x∗∥≤∥x0−x∗∥}
ρ(x).(4.11)

It follows that 0 ≤ ρ(x) ≤ 1. If

F (x) ∈ Im(DF (x)⊤) ⊂ Im(E [HS(x)]) for all x ∈ Rp,(4.12)

then ρ(x) = λ+
min

(
DF (x)E [HS(x)]DF (x)⊤

)
> 0 for all x ∈ Rp, and ρ > 0, where

λ+
min is the smallest nonzero eigenvalue. Furthermore, if the star-convexity for each

sketching matrix (4.4) holds, then

E
[

min
t=0,...,k−1

∥F (xt)∥2
]
≤ 1

k
· L

2∥x0 − x∗∥2

ργ (1− γ)
.(4.13)

Proof. First recall that
(
DF (x)HS(x)DF (x)⊤

)2
= DF (x)HS(x)DF (x)⊤ for all

x ∈ Rp, which is shown in the proof of Lemma 4.1. Thus DF (x)HS(x)DF (x)⊤ is
a projection. By Jensen’s inequality, the eigenvalues of an expected projection are
between 0 and 1. Thus by the definition of ρ(x), we have 0 ≤ ρ(x) ≤ 1. Next,
by (4.12), we have Ker (E [HS(x)]) ⊂ Ker (DF (x)). Thus, we have that

Im (DF (x)) =
(
Ker

(
DF (x)⊤

))⊥
=
(
Ker

(
DF (x)E [HS(x)]DF (x)⊤

))⊥
,(4.14)

where the second equality is obtained by Lemma 4.4. Now from the definition of ρ(x)
in (4.10), we have

ρ(x)
(4.14)
= min

v∈(Ker(DF (x)E[HS(x)]DF (x)⊤))⊥/{0}

v⊤DF (x)E [HS(x)]DF (x)⊤v

∥v∥2

= λ+
min

(
DF (x)E [HS(x)]DF (x)⊤

)
> 0.

It now follows that ρ > 0, since the definition of ρ in (4.11) is given by minimizing ρ(x)
over the closed bounded set {x | ∥x−x∗∥ ≤ ∥x0−x∗∥}. Next, given x ∈ {x | ∥x−x∗∥ ≤
∥x0 − x∗∥}, since F (x) ∈ Im(DF (x)⊤) by (4.12) and noticing that Im(DF (x)⊤) =
Im(DF (x)⊤DF (x)), there exists v ∈ Rm s.t. F (x) = DF (x)⊤DF (x)v.

If F (x) ̸= 0, then DF (x)v ∈ Im (DF (x)) /{0}, we have

∥F (x)∥2E[HS(x)]
= v⊤DF (x)⊤DF (x)E [HS(x)]DF (x)⊤DF (x)v

(4.10)

≥ ρ(x)v⊤DF (x)⊤DF (x)v.(4.15)

Since F (x) = DF (x)⊤DF (x)v and Im(DF (x)⊤)⊕Ker(DF (x)) = Rm,6 we have that

∃! y ∈ Ker(DF (x)) ⊂ Rm s.t. v = (DF (x)⊤DF (x))†F (x) + y.

Thus DF (x)v = DF (x)(DF (x)⊤DF (x))†F (x) = (DF (x)⊤)†F (x).
Substituting this in (4.15), we have that

∥F (x)∥2E[HS(x)]
≥ ρ(x)∥F (x)∥2

(DF (x)⊤DF (x))†
≥ ρ

L2
∥F (x)∥2,(4.16)

6The operator ⊕ denotes the direct sum of two vector spaces.

D
ow

nl
oa

de
d 

08
/1

7/
23

 to
 1

44
.1

21
.8

6.
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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where in the last inequality we use that supx∈{x|∥x−x∗∥≤∥x0−x∗∥} ∥DF (x)∥ ≤ L and
ρ(x) ≥ ρ by the definition of ρ in (4.11) .

If F (x) = 0, (4.16) still holds. Thus, for all x ∈ {x | ∥x − x∗∥ ≤ ∥x0 −
x∗∥}, (4.16) holds. Consequently by Theorem 4.3 and (4.5) under the star-convexity
condition (4.4) with ∥xt − x∗∥ ≤ ∥x0 − x∗∥ for all t ∈ {0, . . . , k − 1}, we have that

ρ

L2
E
[

min
t=0,...,k−1

∥F (xt)∥2
]

(4.16)

≤ E
[

min
t=0,...,k−1

∥F (xt)∥2E[HS(xt)]

]
(4.3)

≤ 1

k

∥x0 − x∗∥2

γ (1− γ)
,

which after multiplying through by L2
/
ρ > 0 concludes the proof.

Thus with Corollary 4.5, we show that F (xt) converges to zero. This lemma
relies on the inclusion (4.12), which in turn imposes some restrictions on the sketching
matrix and F (x). In our forthcoming examples in sections 5 and 6, we can directly
verify the inclusion of (4.12). For other examples in sections 7 and 8, we provide the
following Lemma 4.6, where we give sufficient conditions for (4.12) to hold.

Lemma 4.6. Let F (x) ∈ Im(DF (x)⊤). Furthermore, we suppose that S ∼ Dx is
adapted to DF (x) by which we mean

Ker
(
E
[
SS⊤]) ⊂ Ker(DF (x)) ⊂ Ker

(
S⊤) for all S ∼ Dx.(4.17)

Then it follows that (4.12) holds for all x ∈ Rp.

Proof. Since Ker(DF (x)⊤DF (x)) = Ker(DF (x))
(4.17)
⊂ Ker(S⊤), we have

Ker
((

S⊤DF (x)⊤DF (x)S
)†)

= Ker
(
S⊤DF (x)⊤DF (x)S

)
= Ker(S),(4.18)

where the last equality is obtained by Lemma 4.4 with Ker(DF (x)⊤DF (x)) ⊂
Ker(S⊤). Thus, using Lemma 4.4 again with G =

(
S⊤DF (x)⊤DF (x)S

)†
, W = S,

and Ker(G) ⊂ Ker(W) given by (4.18), we have that

Ker(HS(x))
(1.5)
= Ker(S

(
S⊤DF (x)⊤DF (x)S

)†
S⊤) = Ker(S⊤) = Ker(SS⊤).

(4.19)

As HS(x) is symmetric positive semidefinite for all S ∼ Dx, we have that

v ∈ Ker (E [HS(x)]) ⇐⇒ E [HS(x)] v = 0 ⇐⇒ ∥v∥2E[HS(x)]
= 0 (as E [HS(x)] ⪰ 0)

⇐⇒ E
[
∥v∥2HS(x)

]
= 0 ⇐⇒

∫
S

∥v∥2HS(x)
dPDx

(S) = 0

⇐⇒ ∥v∥2HS(x)
= 0 for all S ∼ Dx

(
as ∥v∥2HS(x)

≥ 0 for all S
)

HS(x)⪰0⇐⇒ v ∈ Ker (HS(x)) for all S ∼ Dx ⇐⇒ v ∈
⋂

S∼Dx

Ker (HS(x)) ,

where we use
⋂

S∼Dx
Ker(HS(x)) to note the intersection of the random subsets

Ker(HS(x)) for all S ∼ Dx. Similarly, we have Ker(E
[
SS⊤]) = ⋂S∼Dx

Ker(SS⊤)

because SS⊤ is also symmetric, positive semidefinite for all S ∼ Dx. Thus we have

Ker(E [HS(x)]) =
⋂

S∼Dx

Ker(HS(x))

(4.19)
=

⋂
S∼Dx

Ker(SS⊤) = Ker(E
[
SS⊤]) (4.12)

⊂ Ker(DF (x)).

Consequently, by considering the complement of the above, we arrive at (4.12).
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We refer to a sketching matrix S ∼ Dx that satisfies (4.17) as a sketch that is
adapted to DF (x). One easy way to design such adapted sketches is the following.

Lemma 4.7. Let Ŝ ∈ Rp×τ s.t. Ŝ ∼ D a fixed distribution independent to x and
Ker(E[ŜŜ⊤]) ⊂ Ker(DF (x)⊤). Thus, S = DF (x)⊤Ŝ ∈ Rm×τ is adapted to DF (x).

Proof. First, Ker(DF (x)) ⊂ Ker(Ŝ⊤DF (x)) = Ker(S⊤). Furthermore, from

Lemma 4.4 with Ker(E[ŜŜ⊤]) ⊂ Ker(DF (x)⊤), we conclude the proof with

Ker
(
E
[
SS⊤]) = Ker(DF (x)⊤E[ŜŜ⊤]DF (x)) ⊂ Ker(DF (x)).

The condition Ker(E[ŜŜ⊤]) ⊂ Ker(DF (x)⊤) in Lemma 4.7 holds for many stan-
dard sketches including Gaussian and subsampling sketches presented as follows.

Lemma 4.8. For Gaussian and uniform subsampling sketches defined in section 1.4,
we have that E

[
SS⊤] = cIm with c > 0 a fixed constant depending on the sketch.

Proof. For Gaussian sketches with Sij ∼ N (0, 1
τ ), we have that c = 1. Indeed,

since the mean is zero, off-diagonal elements of E
[
SS⊤] are all zero. We note Si: the

ith row of S, then the ith diagonal element of the matrix E
[
SS⊤] is given by

E
[
Si:S

⊤
i:

]
=

τ∑
j=1

E
[
S2
ij

]
=

τ∑
j=1

1

τ
= 1.

For the uniform subsampling sketch (1.6), we have again that off-diagonal elements
are zero since the rows of S are orthogonal. The diagonal elements are constant with

E
[
Si:S

⊤
i:

]
=

1(
m
τ

) ∑
C⊂{1,...,m},|C|=τ,i∈C

1 =

(
m−1
τ−1

)(
m
τ

) =
τ

m
for all i = 1, . . . ,m.

From Lemma 4.8, we know that E[ŜŜ⊤] = cIp invertible with c > 0. Thus

Ker(E[ŜŜ⊤]) = {0} ⊂ Ker(DF (x)⊤) holds for any sketch size τ .

4.3. Convergence for strongly convex. Here we establish a global linear
convergence of SNR when assuming that fy is strongly quasi-convex.

Assumption 4.9 (µ-strongly quasi-convexity). Let x∗ satisfy Assumption 1.1 and

∃ µ > 0 s.t. fy(x
∗) ≥ fy(x) + ⟨∇fy(x), x

∗ − x⟩+ µ

2
∥x∗ − x∥2 for all x, y ∈ Rp.

(4.20)

Assumption 4.9 is strong, so much so that we have the following lemma.

Lemma 4.10. Assumption 4.9 implies (3.3) and that the solution to (1.1) is unique.

Proof. Let y ∈ Rp and let u ∈ F (Rp) ∩Ker (E [HS(y)]). u ∈ F (Rp) implies that
∃x ∈ Rp s.t. F (x) = u. Besides, u ∈ Ker (E [HS(y)]) implies that E [HS(y)]F (x) = 0.
Now we apply (4.20) at point x knowing that fy(x

∗) = 0:

0 ≥ fy(x) + ⟨∇fy(x), x
∗ − x⟩+ µ

2
∥x∗ − x∥2

=⇒ 0 ≥ 0 + ⟨0, x∗ − x⟩+ µ

2
∥x∗ − x∥2 (as E [HS(y)]F (x) = 0) ⇐⇒ x = x∗.

Thus F (x) = u = 0. We conclude F (Rp) ∩Ker (E [HS(y)]) = {0}, i.e., (3.3) holds.
Besides, let x′ be a global minimizer of fy(·). Then fy(x

′) = fy(x
∗) = 0 and

∇fy(x
′) = 0. Similarly, by applying (4.20) at point x′, we obtain x′ = x∗. Conse-

quently, x∗ is the unique minimizer of fy(·) for all y, thus the unique solution to (1.1),
according to (3.3) and Lemma 3.1.
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Under Assumption 4.9 , choosing γ = 1 guarantees a fast global linear conver-
gence.

Theorem 4.11. If x∗ satisfies Assumption 4.9 and γ ≤ 1, then SNR converges
linearly:

E
[
∥xk+1 − x∗∥2

]
≤ (1− γµ)k+1∥x0 − x∗∥2 with µ ≤ 1.(4.21)

Proof. Let δk
def
= xk − x∗. By expanding the squares, similarly we have that

Ek

[
∥δk+1∥2

]
= ∥δk∥2 − 2γ

〈
δk,∇fk(x

k)
〉
+ γ2Ek

[
∥∇fSk,k(x

k)∥2
]

(4.20)

≤ (1− γµ)∥δk∥2 − 2γ(fk(x
k)− fk(x

∗)) + γ2Ek

[
∥∇fSk,k(x

k)∥2
]

(4.1)

≤ (1− γµ)∥δk∥2 − 2γ (1− γ) (fk(x
k)− fk(x

∗))

≤ (1− γµ)∥δk∥2
(
since γ (1− γ) (fk(x

k)− fk(x
∗)) ≥ 0

)
.

Now by taking total expectation, we have that

E
[
∥xk+1 − x∗∥2

]
≤ (1− γµ)E

[
∥xk − x∗∥2

]
≤ (1− γµ)k+1∥x0 − x∗∥2.

Next, we show that µ ≤ 1. In fact, when we imply (4.20) at the point xk, it shows

(4.20)
(4.1)
=⇒ fk(x

∗) ≥ 1

2
Ek

[
∥∇fSk,k(x

k)∥2
]
+
〈
x∗ − xk,∇fk(x

k)
〉
+

µ

2
∥x∗ − xk∥2

⇐⇒ fk(x
∗) ≥ 1

2
Ek

[
∥x∗ −

(
xk −∇fSk,k(x

k)
)
∥2
]
− 1− µ

2
∥x∗ − xk∥2

fk(x
∗)=0

=⇒ (1− µ)∥x∗ − xk∥2 ≥ Ek

[
∥x∗ −

(
xk −∇fSk,k(x

k)
)
∥2
]
≥ 0.

Thus µ ≤ 1.

5. New global convergence theory of the NR method. As a direct conse-
quence of our general convergence theorems, in this section we develop a new global
convergence theory for the original NR method. We first provide the results in one
dimension in section 5.1, then a general result in higher dimensions in the subsequent
section 5.2, and we compare this result to the classic MCT in section 5.3.

5.1. A single nonlinear equation. Consider the case where F (x) = ϕ(x) ∈ R
is a one-dimensional function and x ∈ R. This includes common applications of the
NR method such as calculating square roots of their reciprocal7 and finding roots of
polynomials. Even in this simple one-dimensional case, we find that our assumptions
of global convergence given in Corollary 4.5 are strictly weaker than the standard
assumptions used to guarantee NR convergence, as we explain next.

The NR method in one dimension at every iteration k is given by

xk+1 = xk − ϕ(xk)

ϕ′(xk)

def
= g(xk).

To guarantee that this is well defined, we assume that ϕ′(xk) ̸= 0 for all k. A
sufficient condition for this procedure to converge locally is that |g′(x)| < 1 with x ∈ I

7Used in particular to compute angles of incidence and reflection in games such as Quake (https:
//en.wikipedia.org/wiki/Fast inverse square root).
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where I is a given interval containing the solution x∗. See, for example, section 1.1
in [15] or Chapter 12 in [44]. We can extend this to a global convergence by requiring

that |g′(x)| < 1 globally. In the case of NR, since g′(x) = 1 − ϕ′(x)2−ϕ(x)ϕ′′(x)
ϕ′(x)2 =

ϕ(x)ϕ′′(x)
ϕ′(x)2 , this condition amounts to requiring

|ϕ(x)ϕ′′(x)|
ϕ′(x)2

< 1.(5.1)

Curiously, condition (5.1) has an interesting connection to convexity. In fact, condi-
tion (5.1) implies that ϕ2(x) is convex and twice continuously differentiable. To see

this, note that d2

dx2ϕ
2(x) ≥ 0 is equivalent to

d2

dx2
ϕ2(x) = 2

d

dx
ϕ′(x)ϕ(x) = 2

(
ϕ(x)ϕ′′(x) + ϕ′(x)2

)
≥ 0.(5.2)

Now it is easy to see that (5.1) implies (5.2). Finally (5.2) also implies that ϕ2(x)
is star-convex, which is exactly what is required by our convergence theory in Corol-
lary 4.5.

Indeed, in this one-dimensional setting, Assumption 4.2 is equivalent to (4.4) and

our reformulation in (3.1) boils down to minimizing fy(x) = (ϕ(x)/ϕ′(y))
2
. Thus by

Corollary 4.5, the NR method converges globally if fxk(x), or simply if ϕ(x)2 is star-
convex and ϕ′(xk) ̸= 0 for all iterates of NR, which shows that our condition is strictly
weaker than the other conditions, because there exist functions that are star-convex
but not convex, e.g. ϕ(x)2 = |x|(1− exp(−|x|)) from [42, 33].

For future reference and convenience, we can rewrite the star-convexity of each
ϕ(x)2 as

0 = ϕ(x∗)2 ≥ ϕ2(x) + 2ϕ(x)ϕ′(x)(x∗ − x),

where x∗ is the global minimum of ϕ(x)2, i.e., ϕ(x∗) = 0. This can be rewritten as

0 ≥ ϕ(x) (ϕ(x) + 2ϕ′(x)(x∗ − x)) .(5.3)

By verifying (5.3) and that ϕ′(xk) ̸= 0 on the iterates of NR, we can guarantee that
the method converges globally.

5.2. The full NR. Now let F (x) ∈ Rm and consider the full NR method (1.2).
Similarly, since S = Im, Assumption 4.2 is equivalent to (4.4). Corollary 4.5 sheds
some new light on the convergence of NR. In this case, our reformulation (3.1) is given
by

fy(x) =
1

2
F (x)⊤(DF (y)⊤DF (y))†F (x) =

1

2
∥
(
DF (y)⊤

)†
F (x)∥2(5.4)

and Corollary 4.5 states that NR converges if fxk(x) is star-convex for all the iterates
xk ∈ Rp. This has a curious reinterpretation in this setting. Indeed, let

n(x)
def
= −(DF (x)⊤)†F (x)(5.5)

be the Newton direction. From (5.4) and (5.5), we have that

fx(x) =
1

2
∥n(x)∥2.(5.6)

Using (5.6), Corollary 4.5 can be stated in this special case as the following corollary.
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1568 RUI YUAN, ALESSANDRO LAZARIC, AND ROBERT M. GOWER

Corollary 5.1. Consider xk given by the NR (1.2) with γ < 1. If we have

F (x) ∈ Im(DF (x)⊤),(5.7)

1

2
∥n(x)∥2 ≤ ⟨n(x), x∗ − x⟩(5.8)

hold for every x = xk with solution x∗, then it exists L > 0 s.t. ∥DF (xk)∥ ≤ L and

min
t=0,...,k−1

∥F (xt)∥2 ≤ 1

k
· L

2∥x0 − x∗∥2

γ (1− γ)
.(5.9)

Proof. From (3.4), we have that

∇fx(x) = DF (x)(DF (x)⊤DF (x))†F (x) = (DF (x)⊤)†F (x) = −n(x).(5.10)

Substituting (5.6) and (5.10) in (4.4) yields (5.8). Next, for S = Im, we have that

Im(E [HS(x)])) = Im((DF (x)⊤DF (x))†) = Im(DF (x)⊤DF (x)) = Im(DF (x)⊤).

Thus, we have that F (x) ∈ Im(DF (x)⊤) ⊂ Im(E [HS(x)])), i.e., (4.12) holds. So
all the conditions in Corollary 4.5 are verified. Since S = Im, we have that ρ(x) = 1
for all x, so ρ = 1. Furthermore, because we assume that DF (·) is continuous and the
iterates xk are in a closed bounded convex set (4.5) which is implied by (4.4) from
Theorem 4.3, there exists L > 0 s.t. ∥DF (xk)∥ ≤ L for all the iterates. Finally, by
Corollary 4.5, the iterates converge sublinearly according to (4.13), which in this case
is given by (5.9).

Condition (5.8) can be seen as a co-coercivity property of the Newton direction.
This co-coercivity establishes a curious link with the modern proofs of convergence of
gradient descent which rely on the co-coercivity of the gradient direction. That is, if
f(x) is convex and L-smooth, then we have that the gradient is L–co-coercive with

1

L
∥∇f(x)∥2 ≤ ⟨∇f(x), x− x∗⟩ .

This is the key property for proving convergence of gradient descent; see, e.g., section
5.2.4 in [4]. To the best of our knowledge, this is the first time that the co-coercivity of
the Newton direction has been identified as a key property for proving convergence of
the Newton’s method. In particular, global convergence results for the NRmethod such
as the MCT only hold for functions F : Rp → Rm with p = m and rely on a stepsize
γ = 1; see [44, 15]. Corollary 5.1 accommodates “nonsquare” functions F : Rp → Rm.
Excluding the difference in stepsizes and focusing on “square” functions F : Rp → Rm

with p = m, next we show in Theorem 5.2 that our assumptions are strictly weaker
than those used for establishing the global convergence of NR with constant stepsizes
through the MCT.

5.3. Comparing to the classic monotone convergence theory of NR. Con-
sider m = p. Here we show that Assumption 1.1, (5.7), and (5.8) are strictly weaker
than the classic assumptions used for establishing the global convergence of NR with
constant stepsize. To show this, we take the assumptions used in the MCT in section
13.3.4 in [44] and compare with our assumptions in the following theorem.

Theorem 5.2. Let F : Rp → Rp and let xk be the iterates of the NR method with
stepsize γ = 1, that is,

xk+1 = xk −
(
DF (xk)⊤

)†
F (xk).(5.11)

Consider the following two sets of assumptions:
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(I) F (x) is componentwise convex, (DF (x)⊤)−1 exists and is elementwise posi-
tive for all x ∈ Rp. There exist x and y s.t. F (x) ≤ 0 ≤ F (y) elementwise.

(II) There exists a unique x∗ ∈ Rp s.t. F (x∗) = 0, (5.7) and (5.8) hold for k ≥ 1.
If (I) holds, then (II) always holds. Furthermore, there exist problems for which (II)
holds and (I) does not hold.

Proof. First, we prove (I) =⇒ (II). Assume that (I) holds. Since DF (x) is
invertible, (5.7) holds trivially. By section 13.3.4 in [44], we know that there exists a
unique x∗ ∈ Rp s.t. F (x∗) = 0. It remains to verify if (5.8) holds for k ≥ 1. First,
note that the invertibility of DF (xk) gives

fk(x
k) =

1

2
∥F (xk)∥2

(DF⊤
k DFk)

† =
1

2
∥(DF⊤

k )−1Fk∥2
(5.11)
=

1

2
∥xk+1 − xk∥2,(5.12)

with abbreviations fk(x
k) ≡ fxk(xk), Fk ≡ F (xk), and DFk ≡ DF (xk). Furthermore,

∇fk(x
k) = DFk(DF⊤

k DFk)
−1F (xk) = (DF⊤

k )−1F (xk)
(5.11)
= xk − xk+1.(5.13)

Thus we can rewrite the right-hand side of the star-convexity assumption (4.2) as

fk(x
k) +

〈
∇fk(x

k), x∗ − xk
〉 (5.12)+(5.13)

=
1

2
∥xk+1 − xk∥2 +

〈
xk − xk+1, x∗ − xk

〉
=

1

2
∥xk+1 − xk∥2 +

〈
xk − xk+1, xk+1 − xk + x∗ − xk+1

〉
= −1

2
∥xk+1 − xk∥2 +

〈
xk − xk+1, x∗ − xk+1

〉
.

From (I), we induce by Lemma 3.1 in [15] that NR is componentwise monotone with
x∗ ≤ xk+1 ≤ xk for k ≥ 1. Thus xk − xk+1 ≥ 0 and x∗ − xk+1 ≤ 0 componentwise
and consequently,

〈
xk − xk+1, x∗ − xk+1

〉
≤ 0. Thus it follows that

fk(x
k) +

〈
∇fk(x

k), x∗ − xk
〉

≤ 0 = fk(x
∗).

Thus (5.8) holds for k ≥ 1 and this concludes that (I) =⇒ (II).
We now prove that (II) does not imply (I). Consider the example F (x) = Ax− b,

where A ∈ Rp×p is invertible and b ∈ Rp. Thus, DF (x) = A⊤ is invertible and (5.7)
holds. As for (5.8), let x∗ be the solution, i.e., Ax∗ = b; we have that

fk(x) =
1

2
∥F (x)∥2(DF (xk)⊤DF (xk))−1 =

1

2
∥A(x− x∗)∥2(AA⊤)−1 =

1

2
∥x− x∗∥2,

which is a convex function and so (5.8) holds and thus (II) holds. However, (I) does
not necessarily hold. Indeed, if A = −Ip, then DF (x) is not elementwise positive.

We observe that our assumptions are also strictly weaker than the affine covariates
formulations of convex functions given in Lemma 3.1 in [15]. The proof is verbatim
to the above.

Theorem 5.2 only considers the case that the stepsize γ = 1. We also investigate
the case where the stepsize γ < 1 in particular in one dimension and show that
MCT does not hold in this case. Since this analysis is not the main interest of
the paper, please refer to Appendix C in [59] for more details. Thus we claim that
our assumptions are strictly weaker than the assumptions used in MCT [44, 15] for
establishing the global convergence of NR, albeit for different stepsizes.

D
ow

nl
oa

de
d 

08
/1

7/
23

 to
 1

44
.1

21
.8

6.
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1570 RUI YUAN, ALESSANDRO LAZARIC, AND ROBERT M. GOWER

6. Single row sampling: The nonlinear Kaczmarz method. The SNR en-
joys many interesting instantiations. From these, we have chosen three to present in
the main text: the nonlinear Kaczmarz method in this section, SNM [32] in section 7,
and a new specialized variant for solving GLMs in section 8.

Here we present the new nonlinear Kaczmarz method as a variant of SNR. Consider
the original problem (1.1). We use a single row importance weighted subsampling
sketch to sample rows of F (x) = 0. That is, let P[S = ei] = pi with the ith unit
coordinate vector ei ∈ Rm for i = 1, . . . ,m. Then the SNR update (1.3) is given by

xk+1 = xk − γ
Fi(x

k)

∥∇Fi(xk)∥2
∇Fi(x

k).(6.1)

We dub (6.1) the nonlinear Kaczmarz method, as it can be seen as an extension of
the randomized Kaczmarz method [27, 52] for solving linear systems to the nonlinear
case.8 By (3.2), this nonlinear Kaczmarz method is simply SGD applied to minimizing

fxk(x) =

m∑
i=1

P[S = ei]fei,xk(x)
(3.2)+(1.5)

=
1

2

m∑
i=1

pi
Fi(x)

2

∥∇Fi(xk)∥2
.

A sufficient condition for (3.3) to hold is that the diagonal matrix

Eei

[
Hei(x

k)
] (1.5)

=

m∑
i=1

pi
eie

⊤
i

∥∇Fi(xk)∥2
= Diag

(
pi

∥∇Fi(xk)∥2

)
(6.2)

is invertible. Thus E
[
HS(x

k)
]
is invertible if ∇Fi(x

k) ̸= 0 for all i ∈ {1, . . . ,m} and
xk ∈ Rp, in which case Ker (E [HS(y)]) = {0} for all y ∈ Rp and (3.3) holds.

Finally, to guarantee that (6.1) converges through Theorem 4.3, we need fxk(x)
to be star-convex on xk at every iteration. In this case, it suffices for each Fi(x)

2 to be
star-convex, since any conic combination of star-convex functions is star-convex [33].
This is a straightforward abstraction of the one-dimensional case, in that, if (5.3) holds
for every Fi in the place of ϕ, we can guarantee the convergence of (6.1). This is also
equivalent to assuming the star-convexity for each sketching matrix (4.4). Further-
more, if F (x) ∈ Im(DF (x)⊤) holds for all x, then (4.12) holds, as Ker (E [HS(y)]) =
{0}. We can guarantee the convergence of (6.1) through Corollary 4.5.

7. The stochastic Newton method. We now show that SNM [32] is a special
case of SNR. This connection combined with the global convergence theory of SNR

gives us the first global convergence theory of SNM, which we detail in section 7.2.
SNM [32] is a stochastic second-order method that takes a Newton-type step at

each iteration to solve optimization problems with a finite-sum structure

min
w∈Rd

[
P (w)

def
=

1

n

n∑
i=1

ϕi(w)

]
,(7.1)

where each ϕi : Rd → R is twice differentiable and strictly convex. Briefly, the updates
in SNM at the kth iteration are given by

wk+1 =

(
1

n

n∑
i=1

∇2ϕi(α
k
i )

)−1(
1

n

n∑
i=1

∇2ϕi(α
k
i )α

k
i − 1

n

n∑
i=1

∇ϕi(α
k
i )

)
,(7.2)

8We note that there exists a nonlinear variant of the Kaczmarz method which is referred to as the
Landweber–Kaczmarz method [34]. Though the Landweber–Kaczmarz is very similar to Kaczmarz,
it is not truly an extension since it does not adaptively reweight the stepsize by ∥∇Fi(x

k)∥2.
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αk+1
i =

{
wk+1 if i ∈ Bn,

αk
i if i /∈ Bn,

(7.3)

where αk
1 , . . . , α

k
n are auxiliary variables, initialized in SNM, and Bn ⊂ {1, . . . , n} is a

subset of size τ chosen uniformly on average from all subsets of size τ .

7.1. Rewrite SNM as a special case of SNR. Since P (w) is strictly convex, every
minimizer of P satisfies ∇P (w) = 1

n

∑n
i=1 ∇ϕi(w) = 0. Our main insight to deducing

SNM is that we can rewrite this stationarity condition using a variable splitting trick.
That is, by introducing a new variable αi ∈ Rd for each gradient ∇ϕi, and letting
p := (n + 1)d and x =

[
w ;α1 ; · · · ;αn

]
∈ Rp be the stacking9 of the w and αi

variables, we have that solving ∇P (w) = 0 is equivalent to finding the roots of the
following nonlinear equations:

F (x) = F (w ;α1 ; · · · ;αn)
def
=

[
1

n

n∑
i=1

∇ϕi(αi) ; w − α1 ; · · · ; w − αn

]
,(7.4)

where F : R(n+1)d → R(n+1)d. Our objective now becomes solving F (x) = 0 with
p = m = (n+ 1)d. To apply SNR to (7.4), we are going to use a structured sketching
matrix. But first, we need some additional notation.

Divide Ind ∈ Rnd×nd into n contiguous blocks of size nd× d as follows:

Ind
def
= [ Ind,1 Ind,2 · · · Ind,n ]

where Ind,i is the ith block of Ind. Let Bn ⊂ {1, . . . , n} with |Bn| = τ chosen uniformly
at average. Let IBn ∈ Rnd×τd denote the concatenation of the blocks Ind,i such that
the indices i ∈ Bn.

At the kth iteration of SNR, denoting xk = [wk; αk
1 ; · · · ; αk

n], we define our
sketching matrix S ∼ Dxk as

S =


Id 0

1
n∇

2ϕ1(α
k
1)

...
1
n∇

2ϕn(α
k
n)

IBn

 ∈ R(n+1)d×(τ+1)d.(7.5)

Here the distribution Dxk depends on the iterates xk. The sketch size of S is (τ +1)d
with any τ ∈ {1, . . . , n}. Now we can state the following lemma.

Lemma 7.1. Let ϕi be strictly convex for i = 1, . . . , n. At each iteration k, the
updates of SNR (1.3) with F defined in (7.4), the sketching matrix Sk defined in (7.5),
and stepsize γ = 1 are equal to the updates (7.2) and (7.3) of SNM.

In our upcoming proof of Lemma 7.1, we still need the following lemma.

Lemma 7.2. Let ϕi be twice differentiable and strictly convex for i = 1, . . . , n.
The Jacobian DF (x)⊤ of F (x) defined in (7.4) is invertible for all x ∈ R(n+1)d.

Proof. Let x ∈ R(n+1)d. Let y
def
= (u; v1; · · · ; vn) ∈ R(n+1)d with u, v1, . . . , vn ∈ Rd

such that DF (x)y = 0. The transpose of the Jacobian of F (x) is given by

DF (x) =


0 Id · · · Id

1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)

−Ind

 .(7.6)

9In this paper, vectors are columns by default, and given x1, . . . , xn ∈ Rq , we note [x1; . . . ;xn] ∈
Rqn the (column) vector stacking the xi’s on top of each other with q ∈ N.
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From DF (x)y = 0 and (7.6), we obtain

n∑
i=1

vi = 0 and
1

n
∇2ϕi(αi)u = vi for all i = 1, . . . , n.

Plugging the second equation into the first one gives ( 1n
∑n

i=1 ∇2ϕi(αi))u = 0. Since
every ϕi is twice differentiable and strictly convex, we have∇2ϕi(αi) > 0. This implies
1
n

∑n
i=1 ∇2ϕi(αi) > 0 and is thus invertible. Consequently u = 0 and vi = 0, from

which we conclude that the Jacobian DF (x)⊤ is invertible.

Now we can give the proof of Lemma 7.1.

Proof. Consider an update of SNR (1.3) with F defined in (7.4), the sketching
matrix Sk defined in (7.5) , and stepsize γ = 1 at the kth iteration. By Lemma 7.2,
we have that DF (x) is invertible and thus Assumption 2.1 holds. By (2.2), the SNR

update (1.3) can be rewritten as

xk+1 = argmin ∥w − wk∥2 +
n∑

i=1

∥αi − αk
i ∥2 s.t. S⊤

k DF (xk)⊤(x− xk) = −S⊤
k F (xk).

(7.7)

Plugging (7.4), (7.5), and (7.6) into the constraint in (7.7) and simplifying the matrix
multiplications, we have that (7.7) is given by

xk+1 = [wk+1;αk+1
1 ; · · · ;αk+1

n ] = argmin ∥w − wk∥2 +
n∑

i=1

∥αi − αk
i ∥2

s. t.
1

n

n∑
i=1

∇2ϕi(α
k
i )(w − αk

i ) = − 1

n

n∑
i=1

∇ϕi(α
k
i ),

w = αj for j ∈ Bn.(7.8)

To solve (7.8), first note that αk+1
i = αk

i for i ̸∈ Bn, since there is no constraint on
the variable αi in this case. Furthermore, by the invertibility of 1

n

∑n
i=1 ∇2ϕi(α

k
i ), we

have that (7.8) has a unique solution s.t. αj = w for all j ∈ Bn and

w =

(
1

n

n∑
i=1

∇2ϕi(α
k
i )

)−1(
1

n

n∑
i=1

∇2ϕi(α
k
i )α

k
i − 1

n

n∑
i=1

∇ϕi(α
k
i )

)
.

Thus the SNR update (7.8) is exactly the SNM updates (7.2) and (7.3) in [32].

7.2. Global convergence theory of SNM. Let x′ def
= (w′;α′

1; · · · ;α′
n) ∈ R(n+1)d

and S ∼ Dx defined in (7.5). By applying the global convergence theory of SNR, we
can now provide the first global convergence theory for SNM.

Corollary 7.3. Let w∗ be a solution to ∇P (w) = 0. Consider the iterate xk =

(wk;αk
1 ; · · · ;αk

n) given by SNM (7.2) and (7.3) and note x∗ def
= (w∗;w∗; · · · ;w∗) ∈

R(n+1)d. If there exists µ > 0 such that for all x, x′ ∈ R(n+1)d,

fx′(x∗) ≥ fx′(x) + ⟨∇fx′(x), x∗ − x⟩+ µ

2
∥x∗ − x∥2(7.9)

= fx′(x) + ⟨∇fx′(x), x∗ − x⟩+ µ

2

(
∥w∗ − w∥2 +

n∑
i=1

∥w∗ − αi∥2
)
,

then the iterates {xk} of SNM converge linearly according to

E
[
∥xk+1 − x∗∥2

]
≤ (1− µ)k+1∥x0 − x∗∥2.(7.10)
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Proof. As ∇P (w∗) = 0, this implies immediately that x∗ is a solution of F .
Besides, (7.9) satisfies Assumption 4.9. Thus by Theorem 4.11, we get (7.10).

Even though (7.9) is a strong assumption, this is the first global convergence
theory of SNM, since only local convergence results of SNM are addressed in [32].

As a by-product, we find that the function F (x) in (7.4) and the sketch S defined
in (7.5) actually satisfy (4.12) through Lemma 4.6, namely as the following lemma.

Lemma 7.4. Consider the function F defined in (7.4) and the sketching matrix S
defined in (7.5); then we have the condition (4.12) hold.

Proof. First, we show that E
[
SS⊤] is invertible for all x ∈ R(n+1)d. By the

definition of S in (7.5),

SS⊤ =


Id

1
n∇

2ϕ1(α1) · · · 1
n∇

2ϕn(αn)
1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)

IBn
I⊤Bn

+M

 ,

where M = {Mij}1≤i≤n,1≤j≤n is divided into n × n contiguous blocks of size d × d
with each block Mij defined as the following:

Mij
def
=

1

n
∇2ϕi(αi) ·

1

n
∇2ϕj(αj) ∈ Rd×d and M ∈ Rnd×nd.

Taking the expectation over S w.r.t. the distribution D(w,α1,··· ,αn) gives

E
[
SS⊤] =


Id

1
n∇

2ϕ1(α1) · · · 1
n∇

2ϕn(αn)
1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)

τ
nInd +M



=


Id

1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)




Id
1
n∇

2ϕ1(α1)
...

1
n∇

2ϕn(αn)


⊤

+
τ

n

[
0 0
0 Ind.

]
,(7.11)

where E
[
SS⊤] is symmetric, positive semidefinite. Let (u; v1; · · · ; vn) ∈ R(n+1)d s.t.

(u; v1; · · · ; vn)⊤E
[
SS⊤] (u; v1; · · · ; vn) = 0.

From (7.11), we obtain∥∥∥∥∥
[
Id;

1

n
∇2ϕ1(α1); · · · ;

1

n
∇2ϕn(αn)

]⊤
[u; v1; · · · ; vn]

∥∥∥∥∥
2

+
τ

n

n∑
i=1

∥vi∥2 = 0.

Since both terms are nonnegative, we obtain
∑n

i=1 ∥vi∥2 = 0 =⇒ for all i, vi = 0,
and then u = 0. This confirms that E

[
SS⊤] is positive definite, thus invertible and

Ker(E
[
SS⊤]) = {0}. Besides, from Lemma 7.2, we get DF (x) invertible. Thus

F (x) ∈ Im(DF (x)⊤) and Ker(DF (x)) = {0}. We have that (4.17) holds. By
Lemma 4.6, we have that (4.12) holds for all x ∈ R(n+1)d.

From Lemma 7.4, we know that for any size of the subset sampling |Bn| = τ ∈
{1, · · · , n}, the condition (4.12) holds. The corresponding sketch size of S is (τ +1)d.
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8. Applications to GLMs—tossing-coin-sketch method. Consider the prob-
lem of training a GLM

w∗ = arg min
w∈Rd

P (w)
def
=

1

n

n∑
i=1

ϕi(a
⊤
i w) +

λ

2
∥w∥2,(8.1)

where ϕi : R → R+ is a convex and continuously twice differentiable loss function,
ai ∈ Rd are data samples, and w ∈ Rd is the parameter to optimize. As the objective
function is strongly convex, the unique minimizer satisfies ∇P (w) = 0, that is,

∇P (w) =
1

n

n∑
i=1

ϕ′
i(a

⊤
i w)ai + λw = 0.(8.2)

Let Φ(w)
def
=
[
ϕ′
1(a

⊤
1 w) · · · ϕ′

n(a
⊤
nw)

]⊤ ∈ Rn and A
def
=
[
a1 · · · an

]
∈ Rd×n. By

introducing auxiliary variables αi ∈ R s.t. αi
def
= −ϕ′

i(a
⊤
i w), we can rewrite (8.2) as

w =
1

λn
Aα and α = −Φ(w).(8.3)

Note x = [α;w] ∈ Rn+d. The objective of finding the minimum of (8.1) is now
equivalent to finding zeros for the function

F (x) = F (α;w)
def
=

[
1
λnAα− w
α+Φ(w)

]
,(8.4)

where F : Rn+d → Rn+d. Our objective now becomes solving F (x) = 0 with p = m =
n+ d. For this, we will use a variant of the SNR. The advantage in representing (8.2)
as the nonlinear system (8.4) is that we now have one row per data point (see the
second equation in (8.3)). This allows us to use sketching to subsample the data.

Since the function F has a block structure, we will use a structured sketching
matrix, which we refer to as a tossing-coin-sketch. But first, we need the following
definition of a block sketch.

Definition 8.1 ((n, τ)–block sketch). Let Bn ⊂ {1, . . . , n} be a subset of size τ
uniformly sampling at random. We say that S ∈ Rn×τ is a (n, τ)–block sketch if
S = IBn

where IBn
denotes the column concatenation of the columns of the identity

matrix In ∈ Rn×n whose indices are in Bn.

Our tossing-coin-sketch is a sketch that alternates between two blocks depending
on the result of a coin toss.

Definition 8.2 (tossing-coin-sketch). Let Sd ∈ Rd×τd and Sn ∈ Rn×τn be a
(d, τd)–block sketch and a (n, τn)–block sketch, respectively. Let b ∈ (0; 1). Now each
time we sample S, we “toss a coin” to determine the structure of S ∈ R(d+n)×(τd+τn).
That is, S = [ Sd 0

0 0 ] with probability 1− b and S = [ 0 0
0 Sn

] with probability b.

By applying the SNR method with a tossing-coin-sketch for solving (8.4), we arrive
at an efficient method for solving (8.1) that we call the TCS method. By using a
tossing-coin-sketch, we can alternate between solving a linear system based on the
first d rows of (8.4) and a nonlinear system based on the last n rows of (8.4).

TCS is inspired by the first-order stochastic dual ascent methods [51, 50, 46].
Indeed, (8.3) can be seen as primal-dual systems with primal variables w and dual
variables α. Stochastic dual ascent methods are efficient to solve (8.3). At each
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iteration, they update alternatively the primal and the dual variables w and α with
the first-order informations. Thus, by sketching alternatively the primal and the dual
systems and updating accordingly with the Newton-type steps, TCS’s updates can be
seen as the second-order stochastic dual ascent methods.

We show in the next section that the TCS method verifies (4.12). Using sketch
sizes s.t. τn ≪ n, the TCS method has the same cost as SGD in the case d ≪ n. The low
computational cost per iteration is thus another advantage of the TCS method. See
Appendix B the complexity analysis. For a detailed derivation and implementation of
the TCS method which is straightforward, please refer to Appendix F and Algorithm
4 in Appendix G in [59] for more details.

8.1. The condition (4.12) in the case of the TCS method. In this section,
we show that the TCS method verifies (4.12) through Lemma 4.6 in the following.

Lemma 8.3. Consider the function F defined in (8.4) and the tossing-coin-sketch
S defined in Definition 8.2; then (4.12) holds.

Proof. First, we show that E
[
SS⊤] is invertible. By Definition 8.2, it is straight-

forward to verify that

E
[
SS⊤] = [ (1−b)τd

n Id 0

0 bτn
n In

]
is invertible and Ker(E

[
SS⊤]) = {0}. Now we show the Jacobian DF⊤(x) invertible.

Let x = [α;w] ∈ Rn+d with α ∈ Rn and w ∈ Rd. Then DF (x) is written as

DF (x)⊤ =

[
1
λnA −Id
In ∇Φ(w)⊤

]
,(8.5)

where ∇Φ(w)⊤ = Diag
(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
n(a

⊤
nw)

)
A⊤ ∈ Rn×d. Denote the diagonal

matrix D(w)
def
= Diag

(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
n(a

⊤
nw)

)
. Since ϕi is continuously twice differ-

entiable and convex, ϕ′′
i (a

⊤
i w) ≥ 0 for all i. Thus, D(w) ≥ 0.

Let (u; v) ∈ Rn+d with u ∈ Rn and v ∈ Rd such that DF (x)⊤[u; v] = 0. We have

DF (x)⊤
[
u
v

]
= 0

(8.5)⇐⇒
[

1
λnA −Id
In ∇Φ(w)⊤

] [
u
v

]
= 0 =⇒

(
In +

1

λn
D(w)A⊤A

)
u = 0.

(8.6)

If D(w) is invertible, (8.6) becomes

D(w)

(
D(w)−1 +

1

λn
A⊤A

)
u = 0 ⇐⇒

(
D(w)−1 +

1

λn
A⊤A

)
u = 0.(8.7)

Since D(w) is invertible, i.e., D(w) > 0, we obtain D(w)−1 > 0. As 1
λnA

⊤A ≥ 0, we
get D(w)−1 + 1

λnA
⊤A > 0, thus invertible. From (8.7), we get u = 0.

Otherwise, D(w) is not invertible. Without losing generality, we assume that
ϕ′′
1(a

⊤
1 w) ≥ ϕ′′

2(a
⊤
2 w) ≥ · · · ≥ ϕ′′

n(a
⊤
nw) = 0. Let j be the largest index for which

ϕ′′
j (a

⊤
j w) > 0. If j does not exist, then D(w) = 0. From (8.6), we get u = 0 directly.

If j exists, we have 1 ≤ j < n and

D(w)A⊤A = Diag
(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
j (a

⊤
j w), 0, . . . , 0

)
A⊤A

=

[
Diag

(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
j (a

⊤
j w)

)
A⊤

1:jA1:j 0
0 0

]
,(8.8)
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Table 1
Details of the data sets for binary classification.

Dataset Dimension (d) Samples (n) C.N. of the model L

covetype 54 581012 7.45× 1012 1.28× 107

a9a 123 32561 5.12× 104 1.57
fourclass 2 862 4.86× 106 5.66× 103

artificial 50 10000 3.91× 104 3.91
ijcnn1 22 49990 2.88× 103 5.77× 10−2

webspam 254 350000 7.47× 104 2.13× 10−1

epsilon 2000 400000 3.51× 104 8.76× 10−2

phishing 68 11055 1.04× 103 9.40× 10−2

where A1:j
def
= [a1 · · · aj ] ∈ Rd×j . Note u = [u1; · · · ;un] ∈ Rn. Plugging (8.8)

into (8.6), we get(
In +

1

λn

[
Diag

(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
j (a

⊤
j w)

)
A⊤

1:jA1:j 0
0 0

])
u = 0

⇐⇒

{ (
Ij +

1
λnDiag

(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
j (a

⊤
j w)

)
A⊤

1:jA1:j

)
u1:j = 0

u(j+1):n = 0
,(8.9)

where u1:j
def
= [u1; · · · ;uj ] ∈ Rj and u(j+1):n

def
= [uj+1; · · · ;un] ∈ Rn−j . From (8.9),

u(j+1):n = 0. Now Diag
(
ϕ′′
1(a

⊤
1 w), . . . , ϕ

′′
j (a

⊤
j w)

)
is invertible in the subspace Rj

as every coordinate in the diagonal ϕ′′
i (a

⊤
i w) is strictly positive for all 1 ≤ i ≤ j.

Similarly, we obtain u1:j = 0 from the first equation of (8.9). Overall we get u = 0.
Thus, in all cases, u = 0, then v = 1

λnAu = 0. We can thus induce thatDF (α;w)⊤

is invertible for all α and w. Similar to Lemma 7.4, we have that (4.17) holds, and
by Lemma 4.6, we have that (4.12) holds.

From Lemma 8.3, we know that for any size of the block sketch τd ∈ {1, . . . , d}
and τn ∈ {1, · · · , n}, (4.12) holds. The corresponding sketch size of S is τd + τn.

8.2. Experiments for TCS method applied for GLM. We consider the
logistic regression problem with eight datasets10 taken from LibSVM [10], except for
one artificial dataset. Table 1 provides the details of these datasets, including the
condition number (C.N.) of the model and the smoothness constant L of the model.

The C.N. of the logistic regression problem is given by C.N.
def
= λmax(AA⊤)

4nλ +1, where
λmax(·) is the largest eigenvalue operator. The smoothness constant L is given by

L
def
= λmax(AA⊤)

4n + λ. As for the logistic regression problem, we consider the loss
function ϕi in (8.1) in the form ϕi(t) = ln(1 + e−yit) where yi are the target values
for i = 1, . . . , n.

The artificial dataset. The artificial dataset A⊤ ∈ Rn×d in Table 1 is of size
10000 × 50 and is generated by a Gaussian distribution whose mean is zero and
covariance is a Toeplitz matrix. Toeplitz matrices are completely determined by their
diagonal. We set the diagonal of our Toeplitz matrix as [c0; c1; · · · ; cd−1] ∈ Rd where
c ∈ R+ is a parameter. We choose c = 0.9 (closed to 1) which results in A having
highly correlated columns, which in turn makes A an ill-conditioned dataset. We set

the ground truth coefficients of the modelw = [(−1)0 ·e− 0
10 ; · · · ; (−1)d−1 ·e− d−1

10 ] ∈ Rd

10All datasets except for the artificial dataset can be found on https://www.csie.ntu.edu.tw/
∼cjlin/libsvmtools/datasets/. Some of the datasets can be found in [30, 6, 38, 55, 16].
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Fig. 1. Experiments for TCS method applied for GLM. Color available online.

Table 2
Details of the parameters’ choices (γ and b) for 50-TCS, 150-TCS, and 300-TCS.

50-TCS 150-TCS 300-TCS

Dataset Stepsize Bernoulli Bernoulli Bernoulli

covetype 1.0 n
n+τn∗3

n
n+τn∗3

n
n+τn∗3

a9a 1.5 n
n+τn

− 0.03 n
n+τn

− 0.03 n
n+τn

− 0.11

fourclass 1.0 n
n+τn

− 0.11 n
n+τn

− 0.11 n
n+τn

− 0.11

artificial 1.0 n
n+τn

− 0.03 n
n+τn

− 0.11 n
n+τn

− 0.11

ijcnn1 1.8 n
n+τn

− 0.03 n
n+τn

− 0.11 n
n+τn

− 0.11

webspam 1.8 n
n+τn∗3

n
n+τn∗3

n
n+τn∗3

epsilon 1.8 n
n+τn∗3

n
n+τn∗3

n
n+τn∗3

phishing 1.8 n
n+τn

− 0.03 n
n+τn

− 0.11 n
n+τn

− 0.11

and the target values of the dataset y = sgn
(
A⊤w + r

)
∈ Rn where r ∈ Rn is the

noise generated from a standard normal distribution.
We compare the TCS method with SAG [49], SVRG [26], dfSDCA [50], and

Quartz [46]. All experiments were initialized at w0 = 0 ∈ Rd (and/or α0 = 0 ∈ Rn

for TCS/dfSDCA methods). For all methods, we used the stepsize that was shown to
work well in practice. For instance, the common rule of thumb for SAG and SVRG is
to use a stepsize 1

L , where L is the smoothness constant. This rule of thumb stepsize
is not supported by theory. Indeed for SAG, the theoretical stepsize is 1

16L and it
should be even smaller for SVRG depending on the C.N. For dfSDCA and Quartz,
we used the stepsize suggested in the experiments in [50] and [46], respectively. For
TCS, we used two types of stepsize, related to the C.N. of the model. If the C.N. is
big (Figure 1, top row), we used γ = 1 except for a9a with γ = 1.5. If the C.N. is
small (Figure 1, bottom row), we used γ = 1.8. We also set the Bernoulli parameter
b (probability of the coin toss) depending on the size of the dataset (see Table 2 in
Appendix B), and τd = d. We tested three different sketch sizes τn = 50, 150, 300.
More details of the parameter settings are presented in Appendix B.

We used λ = 1
n regularization parameter, evaluated each method 10 times, and

stopped once the gradient norm11 was below 10−5 or some maximum time had been

11We evaluated the true gradient norm every 1000 iterations. We also paused the timing when
computing the performance evaluation of the gradient norm.

D
ow

nl
oa

de
d 

08
/1

7/
23

 to
 1

44
.1

21
.8

6.
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1578 RUI YUAN, ALESSANDRO LAZARIC, AND ROBERT M. GOWER

reached. In Figure 1, we plotted the central tendency as a solid line and all other
executions as a shaded region for the wall-clock time versus gradient norm.

From Figure 1, TCS outperforms all other methods on ill-conditioned problems
(Figure 1, top row), but not always the case on well-conditioned problems (Fig-
ure 1, bottom row). This is because in ill-conditioned problems, the curvature of
the optimization function is not uniform over directions and varies in the input space.
Second-order methods effectively exploit information of the local curvature to con-
verge faster than first-order methods. To further illustrate the performance of TCS
on ill-conditioned problems, we compared the performance of TCS on the artificial
dataset in the top right of Figure 1. Note as well that for reaching an approximate
solution at an early stage (i.e., tol = 10−3, 10−4), TCS is very competitive on all
problems. TCS also has the smallest variance compared to the first-order methods
based on eyeballing the shaded error bars in Figure 1, especially compared to SVRG.
Among the three tested sketch sizes, 150 performed the best except on the epsilon
dataset.

9. Conclusion and future work. We introduced the SNR method, for which
we provided strong convergence guarantees. We also developed several promising
applications of SNR to show that SNR is very flexible and tested one of these specialized
variants for training GLMs. SNR is flexible by the fact that its primitive goal is to solve
efficiently nonlinear equations. Since there are many ways to rewrite an optimization
problem as nonlinear equations, each rewrite leads to a distinct method, thus leads
to a specific implementation in practice (e.g., SNM, TCS methods) when using SNR.
Besides, the convergence theories presented in section 4 guarantee a large variety of
choices for the sketch. This flexibility allows us to discover many applications of SNR
and their induced consequences, especially providing new global convergence theories.
As such, we believe that SNR and its global convergence theory will open the way
to designing and analyzing a host of new stochastic second-order methods. Further
venues of investigation include exploring the use of adaptive norms for projections and
leveraging efficient sketches (e.g., the fast Johnson–Lindenstrauss sketch [45], sketches
with determinantal sampling [39]) to design even faster variants of SNR or cover other
stochastic second-order methods. Since SNR can be seen as SGD, it might be possible
to design and develop efficient accelerated SNR or SNR with momentum methods. On
the experimental side, it would be interesting to apply our method to the training of
deep neural networks.

Appendix A. Sufficient conditions for reformulation assumption (3.3).
To give sufficient conditions for (3.3) to hold, we need to study the spectra of

E [HS(x)]. The expected matrix E [HS(x)] has made an appearance in several ref-
erences [19, 39, 14] in different contexts and with different sketches. We build upon
some of these past results and adapt them to our setting.

First note that (3.3) holds if E [HS(x)] is invertible. The invertibility of E [HS(x)]
was already studied in detail in the linear setting in Theorem 3 in [23] when S is
sampled from a discrete distribution. Here we can state a sufficient condition of (3.3)
for sketching matrices that have a continuous distribution.

Lemma A.1. For every x ∈ Rp, if ES∼Dx

[
SS⊤] and DF (x)⊤DF (x) are invert-

ible, then ES∼Dx
[HS(x)] is invertible.

Proof. Let x ∈ Rp and S ∼ Dx. Let G = DF (x)⊤DF (x) which is thus symmetric
positive definite and W = S⊤. In this case, since G is invertible we have that
Ker(G) = {0} ⊂ Ker(W) verified, and by Lemma 4.4, we have that

Ker
((

S⊤DF (x)⊤DF (x)S
)†)

= Ker
(
S⊤DF (x)⊤DF (x)S

)
= Ker(S).(A.1)
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Consequently, using Lemma 4.4 again with G =
(
S⊤DF (x)⊤DF (x)S

)†
, W = S, and

Ker(G) ⊂ Ker(W) given by (A.1), we have that

Ker(HS(x)) = Ker
(
S
(
S⊤DF (x)⊤DF (x)S

)†
S⊤
)
= Ker(S⊤) = Ker(SS⊤).

(A.2)

Following the same steps in the proof of Lemma 4.6 right after (4.19), we obtain

Ker(E [HS(x)]) =
⋂

S∼Dx

Ker(HS(x))
(A.2)
=

⋂
S∼Dx

Ker(SS⊤) = Ker(E
[
SS⊤]) = {0},

where the last equality follows as E
[
SS⊤] is invertible, which concludes the proof.

The invertibility of E
[
SS⊤] states that the sketching matrices need to “span every

dimension of the space” in expectation. This is the case for Gaussian and subsampling
sketches which are shown in Lemma 4.8. This is also the case for our applications SNM
and TCS which are shown in the proofs of Lemmas 7.4 and 8.3, respectively.

As for the invertibility of DF (x)⊤DF (x) ∈ Rm×m, this imposes that DF (x) has
full-column rank for all x ∈ Rp, thus m ≤ p. This excludes the regime of solving
F (x) = 0 with m > p. However, our applications SNM and TCS also satisfy this
condition and are again shown in the proofs of Lemmas 7.4 and 8.3, respectively.

Consequently, by Lemma A.1, we have that SNM and TCS satisfy (3.3).

Appendix B. Additional experimental details and the complexity. See
Table 2 for the parameters we chose for TCS in the experiments in Figure 1. Such
choices are due to TCS’s cost per iteration which involves the feature dimension d, the
number of the data samples n, the sketch sizes (τd, τn), and the Bernoulli parameter
b. Here we only consider datasets with d ≪ n.

It is beneficial to first understand TCS’s cost in the simple setting where τd =
τn = 1. The cost per iteration is stochastic and depends on the nature of the sketch.

When performing the updates (1.3) with (d, τd)–block sketch, we sketch the first
d rows of (8.4). As τd = 1, let Sd = e′j ∈ Rd×1 with e′j the jth unit coordinate in Rd.

For Sk = [ Sd 0
0 0 ] with Sd = e′j at the kth iteration, we get

αk+1
i = αk

i − γ ·
Aji

λn

(
1
λn

[
Aαk

]
j
− wk

j

)
1

λ2n2 [AA⊤]jj + 1
for all i = 1, . . . , n,(B.1)

wk+1
j = wk

j + γ ·
1
λn

[
Aαk

]
j
− wk

j

1
λ2n2 [AA⊤]jj + 1

.(B.2)

The cost of this iteration can be O(n) with n coordinates’ updates of the auxiliary
variable α. Indeed, the term 1

λ2n2 [AA⊤]jj is precomputed and stored in the fixed

matrix 1
λ2n2AA⊤ ∈ Rd×d. We also introduce an auxiliary variable αk to keep tracking

the term αk = 1
λnAαk ∈ Rd. The vector αk can be efficiently updated by

αk+1 = αk − γ ·
αk
j − wk

j
1

λ2n2 [AA⊤]jj + 1
· [AA⊤]j ,(B.3)

where [AA⊤]j is the jth column of AA⊤. Thus the update of αk costs O(d). Notice
that we only update one single coordinate of w from this sketch, i.e., wj .
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Alternatively, when performing the updates (1.3) with (n, τn)–block sketch, we
sketch the last n rows of (8.4). For Sk = [ 0 0

0 Sn
] with Sn = ei the ith unit coordinate

in Rn at kth iteration, we get

αk+1
i = αk

i − γ · αk
i + ϕ′

i(a
⊤
i w

k)

∥ai∥22ϕ′′
i (a

⊤
i w

k)2 + 1
,(B.4)

wk+1 = wk − γ · αk
i + ϕ′

i(a
⊤
i w

k)

∥ai∥22ϕ′′
i (a

⊤
i w

k)2 + 1
· ϕ′′

i (a
⊤
i w

k)ai,(B.5)

αk+1 = αk − γ · αk
i + ϕ′

i(a
⊤
i w

k)

∥ai∥22ϕ′′
i (a

⊤
i w

k)2 + 1
· 1

λn
ai.(B.6)

The cost of this iteration is O(d) with the full coordinates’ updates of w,α and a
single coordinate update of α. If we choose b = n/(n+ d) to sample one row of (8.4)
uniformly, the cost per iteration in expectation will be

Cost(update TCS) = O(n) ∗ (1− b) +O(d) ∗ b = O(nd/(n+ d)) = O(min(n, d)).
(B.7)

Consequently, the TCS method on average has the same cost as SGD, i.e., O(d)
in the case d ≪ n. Increasing τd and τn drops significantly the number of iterations,
but increases the total cost per iteration. Thus there is a trade-off between increasing
the sketch sizes and keeping the total cost per iteration low. For the total cost in
general with different choices of τd, τn, and b, please refer to Appendix H in [59] for
more details.

Different to our global convergence theories, in practice, choosing constant step-
size γ > 1 may converge faster for certain datasets. Here we need to be careful that
the stepsize we mentioned is the stepsize used for (n, τn)–block sketch. As for (d, τd)–
block sketch, we always choose γ = 1, which solves exactly the linear system. In our
experiments, we found that the choice of the stepsize is related to the C.N. of the
model. If the dataset is ill-conditioned with a big C.N., γ = 1 is a good choice (Fig-
ure 1, top row, except for a9a); if the dataset is well-conditioned with a small C.N., all
γ ∈ (1, 1.8] still converges. In practice, γ = 1.8 is a good choice for well-conditioned
datasets (Figure 1, bottom row). For a9a, we did a grid search for the stepsize. To
avoid tuning the stepsizes, it is possible to apply a stochastic line search process [54]
in our method TCS without increasing its complexity. Please refer to Appendix I in
[59] for more details.
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[27] M. S. Kaczmarz, Angenäherte auflösung von systemen linearer gleichungen, Bulletin In-
ternational de l’Académie Polonaise des Sciences et des Lettres. Série A, Sciences
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