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Abstract. The chapter provides a detailed description of W-Sec, a for-
mal model-based countermeasures’ impact assessment method. It also
introduces a new formal definition of the two SysML profiles used in
SysML-Sec and W-Sec, enabling (i) for the future automation of several
W-Sec stages and (ii) for the definition of consistency rules ensuring the
consistency of the models written in these two distinct modeling lan-
guages. In addition, the chapter evaluates W-Sec with a new industry
4.0 case-study and discusses the strengths and the current limitations of
the approach in this new application field.
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1 Introduction

Cyber-physical systems (CPS), including industrial control systems (ICS), con-
trol physical processes involved in safety-critical industries (energy, chemical in-
dustry, etc.) [19]. Therefore, cyber attacks targeting CPS may result in extremely
harmful consequences. Maintaining a high security level for these systems is thus
an essential process for CPS designers and operators. CPS security is an active
research field including various challenging topics. Among them, the selection of
optimal countermeasures3 mitigating the systems’ vulnerabilities is a complex
issue. Indeed, any modification brought to a CPS must comply with the – often
drastic – safety, security and performance requirements ensuring the system’s
dependability.

Two of our previous contributions proposed modeling and impact assessment
approaches that help in addressing this issue. On the one hand, we proposed
3 A countermeasure refers in our works to any modification brought to a system in or-
der to mitigate one or several vulnerabilities. It can be a modification of the system’s
software, hardware, processes, and/or to its physical, logical and network architec-
ture.
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in [26] a countermeasures impact4 assessment method targeting the context of
CPS. Relying on CPS modeling with networks of timed automata (NTA), this
method has three main drawbacks. Firstly, it is difficult to capture in a single
modeling language heterogeneous aspects (such as data security, hardware archi-
tecture and discrete software behavior) at a same abstraction level. As a result,
the models may lack in precision regarding some aspects (e.g., data security and
low-level hardware aspects). Secondly, modeling all these aspects with a single
NTA may lead to a model that is complex to understand and to verify. Last, due
to the difficulty to model data security aspects with NTAs, the impact assess-
ment of this NTA-based method does not include a fine-grained data security
analysis. On the other hand, with SysML-Sec [4], we proposed a CPS design
and verification method relying on two distinct SysML-based formal modeling
languages. One of them targets high-level system architectural and behavioral
aspects, when the other one is well suited for modeling fine-grained hardware
and low-level security aspects. Yet, a drawback of SysML-Sec is that the method
considers a single attacker model at the verification stage.

Therefore, we proposed in [25] a new countermeasures selection method called
W-Sec, merging the strengths of our two previous contributions in order to cor-
rect the flaws we mention above. This chapter is an extended version of this
work presented at the 10th ModelsWard conference. It brings to this initial pa-
per several enhancements:

– A formal description of W-Sec is now given.
– For this purpose, the chapter provides a new mathematic definition of the

models designed with the two modeling languages used in SysML-Sec and
in W-Sec. This formalization is also the first step towards the automation of
some W-Sec modeling stages.

– In order to ensure the modeling consistency between the two languages, the
links between the both modeling views are now explicitely defined.

– W-Sec is applied to a new, more complex, real case-study, in a new context
(connected factories and industrial control systems).

It is organized as follows. Sect. 2 presents the industrial case-study we use trough-
out the chapter to illustrate and evaluate the method. Then, Sect. 3 provides our
new formalization of the two modeling languages. Sect. 4 describes both theoret-
ical and practical aspects of W-Sec. Afterwards, Sect. 5 gives an overview of the
related works. Last, Sect. 6 discusses the case-study results and the contributions
W-Sec brings to our previous contributions.

2 IT’m Factory: an Industry 4.0 Case-Study

IT’m Factory is a research and training platform5 hosted by the École des Mines
de Saint-Étienne. It provides researchers and companies with a realistic con-
nected factory case-study including typical industry 4.0 features (connected and
4 Impact refers to positive impacts (i.e., efficiency) as well as to negative impacts (i.e.,
regressions).

5 https://itm-factory.fr/index.php/objectif_et_visite_360/.

https://itm-factory.fr/index.php/objectif_et_visite_360/
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automated packaging chain, collaborative robots, virtual and augmented reality
glasses, digital twin, etc.). The case-study we present in this paper is focused on
the packaging chain.

2.1 The Packaging Chain

This chain is composed of four autonomous machines: a warehouse, a filling
machine, a cobot (a collaborative autonomous articulated robotic arm) and a
packer. The warehouse contains empty pots and, when operating, places them
at regular intervals on the filling machine’s conveyor belt. The filling machine
detects the pots and fills them with grains. When a pot arrives at the extremity
of the conveyor belt, the collaborative robot grabs it, closes the pot with a cap
and places it on the packer conveyor belt. The packer then places it in a crate.
When a crate is filled with six pots, the packer ejects it and continues the process
with a new empty crate.

For supervision reasons, these machines are connected to a local network
and may be supervised from a remote SCADA6 console as well as from local
control panels. Thanks to these HMIs, users can define the setpoint values for
the physical processes the machines perform. Users can also supervise in real
time the parameters of the machines and the number of filled pots, etc. Some
values are also shared with a remote supervision system that can be connected to
external networks. Fig. 2.1 shows the physical architecture and network topology
of the packaging chain, with a focus on the internal architecture of the filling
machine (the warehouse’s and the packer’s architectures are very close to this
one). The data flows are also depicted in this figure with colored/decorated
arrows.

Local Switch

Control Panel

IoT
Extension

PLC

Sensors

Actuators

Main Switch

SCADA

Firewall
Remote

Supervision

Other Subsystems

Fig. 1. Architecture of the filling machine (in the grey enclave) and its network flows

In the case-study presented in this paper, we specifically focus on the filling
machine, the main switch and the SCADA remote console.

6 Supervisory Control and Data Acquisition system.
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2.2 Scenarios, Attack and Countermeasures

Our case-study integrates the two main functional scenarios of the filling ma-
chine: a scenario Sc1 where the machine is supervised from its local control
panel, and a scenario Sc2 where it is supervised from the SCADA remote con-
sole. In the both scenarios the user sends a start command to the machine and
then defines the following setpoints: the speed of the conveyor belt, the filling
duration of each pot (i.e., the desired grains volume), and the centering offset
of the filling machine’s nozzle with respect to the center of each pot during the
filling phases.

In this case-study, we also consider one attack we want to protect the system
from. This attack aims at falsifying the centering offset setpoints in order to
make the filling machine discharging the grains on the conveyor belt. To achieve
this goal, the attack scenario consists of two consecutive steps. The first one is
an ARP poisoning attack targeting the SCADA console in order to reroute its
outgoing traffic to the attacker’s host. The second step consists in modifying
the centering offset setpoint with a value greater to the pots radius, and then in
forwarding the modified message to the PLC (via the main and local switches).
Note that the platform is actually already protected against this attack since
the control algorithms executed by the PLC perform a consistency check on the
received setpoint values (contermeasure C1, see below). Moreover, we assume
for this case-study that the SCADA console and the main switch are vulnerable
to ARP poisoning. However, for the needs of our paper we consider that the
platform has not its embedded countermeasures yet.

In addition, we evaluate four countermeasures aiming at mitigating this at-
tack. C1, an offset setpoint check: each time the PLC receives a centering offset
setpoint, it checks if it exceeds the radius of a pot. If it is the case, the re-
ceived value is replaced with the the value of the radius minus 1 cm. C2 is a
cryptographic countermeasure, consisting in symmetric encryption of the com-
munications between the PLC and the SCADA console and the local control
panel. C3 consists in defining static ARP tables and denying ARP is-at re-
quests. Last, C4 is an emergency countermeasure consisting in unpluging the
filling machine from the main switch.

The following sections will describe W-Sec both theoretically and practically,
by relying on models and results coming from this case-study.

3 Preliminary Concepts: TTool’s SysML Profiles

W-Sec relies on two modeling languages provided by the toolkit TTool 7. These
languages are two formally defined SysML profiles: one of them, AVATAR [23],
used in TTool’s System View (or S-View), is well suited for the high-level behav-
ioral modeling of a system. The other one, DIPLODOCUS [13], used in TTool’s
Hardware/Software Partitioning View (or HSW-View), targets the joint model-
ing of hardware and software aspects of a system and is well suited for a low-level
7 https://ttool.telecom-paris.fr/.

https://ttool.telecom-paris.fr/
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modeling of a component. This section provides new mathematical definitions of
the models these two SysML profiles enable to design, that enable for a formal
definition of W-Sec in Sect. 4.

3.1 Preliminary Definitions

The two modeling views share some common concepts. Although these concepts
have not exactly the same meaning in the both cases, we present them in a
common definition for simplicity reasons.

Definition 1 (Types, Attributes, Expressions and Signals).

– Types = {Bool,Z,N}
– Attr is a set of attributes, typed by type : Attr→ Types.
– Expressions are usual integer and boolean expressions over attributes. They

are typed in the usual way.
– Profiles = {(t1, · · · , tn) | n ∈ N ∧ ∀ 1 ≤ i ≤ n, ti ∈ Types}.
– Sign = InSigntOutSign is8 a set of signals, typed by profile : Sign→ Profiles.

InSign contains input signals. OutSign contains output signals.

3.2 The System View (S)

In S-View, models rely on SysML blocks exchanging signals and having a behav-
ior modeled with state-machine diagrams. Definition 5 provides the mathemat-
ical definition of a whole model designed in this view. Definition 4 describes a
SysML block, and definition 3 defines its state-machine diagram. Last, the syn-
tactic correctness of such a model is given in definition 6. These four definitions
rely on basic concepts that are provided in definition 2.

Definition 2 (S-View Basic Sets and associated Abstract Syntax).

– Meth is a set of methods, typed by profile : Meth→ Profiles.
– m(e1, . . . , en) is a method call, where m is a method and e1, . . . , en are

expressions respecting the profile of m.
– There are four kinds of actions:
• Affectations a := e where a is an attribute and e an expression of the
same type.

• Random affectations a :=? where a is an attribute.
• Send sends(e1, . . . , en), where s is an output signal and e1, . . . , en are
attributes respecting the profile of s.

• Receive receives(e1, . . . , en), where s is an input signal and e1, . . . , en are
attributes respecting the profile of s.

– Port is a set of ports.

Definition 3 (State Machine Diagram). A state machine diagram is a di-
rected (control flow) graph smd = (s0,S ,T ) where
8 "t" denotes the disjoint union.
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– S is a set of states, s0 ∈ S is the initial state.
– T is a set of transitions t = 〈sstart , after , condition, actions, send〉 where:
• after = (tmin , tmax ), in N2, constrains the delay before firing t.
• sstart , send ∈ S 2 are respectively the source and target states of t.
• condition is a boolean expression that must be true to enable t.
• actions is a sequence of actions/method calls, executed when t is fired.

attr(smd) (resp. meth(smd), sign(smd), insign(smd), outsign(smd)) denotes
the set of attributes (resp. methods, signals, input signals, output signals) used
in smd.

A state machine diagram is syntactically correct if all states are reachable
from s0 (by some syntactic path on transitions).

Definition 4 (Block Description).

A block description is a 6-uple D = 〈AD ,MD ,PD ,SiD ,SoD , smdD〉 where
AD ⊂ Attr, MD ⊂ Meth, SiD ⊂ InSign, SoD ⊂ OutSign, PD ⊂ Port, smd is a
state machine diagram, and all these sets are finite.

It is syntactically correct if smdD is syntactically correct, attr(smdD) ⊆ AD
and meth(smdD) ⊆ MD .

The following definition derives from the SysML block instance diagram de-
fined in [5].

Definition 5 (S-Model).
A system model, or S-Model, is a 5-uple 〈B, d ,L, C,R〉 where:

– B is a finite set of blocks.
– d is a function which associate a block description to each block of B.

for X ∈ {A,M ,P ,Si ,So , smd} and B ∈ B, XB abbreviates Xd(B), and
P =

⊔
B∈B

PB , So =
⊔

B∈B
SoB and Si =

⊔
B∈B

SiB .

– L ⊂ P × P contains links. It is an irreflexive and antisymmetric partial
injection.

– C ⊆ L × So × Si is a set of connexions 〈〈p1, p2〉, so , si〉 such that p1 and s0
belong to the same block, and p2 and si belong to the same block.

– R ⊂ B × B is such that
• its transitive closure R∗ is a noetherian order.
• its inverse relation R−1 is a function.

When 〈B1,B2〉 ∈ R, we say that B1 “contains”/“is a superblock of” B2 and
that B2 “is contained by”/“is a subblock of” B1.

Remark: the set of subblocks of a block B defines a finite tree with B as root.

Definition 6 (Syntactically Correct S-Model).
LetM = 〈B, d ,L, C,R〉 be a S-Model.M is syntactically correct if and only if:

– ∀〈〈p1, p2〉, so , si〉 ∈ C, profile(so) = profile(si)
– ∀B ∈ B, d(B) is syntactically correct and ∀ sx ∈ sign(smdB ),
• ∃!〈〈p1, p2〉, so , si〉 ∈ C, sx = so ∨ sx = si .
• ∃B ′ ∈ B, (B ′,B) ∈ R∗ ∧ (sx ∈ SoB ′ ∨ sx ∈ SiB ′).
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3.3 The Hardware-Software Partitioning View (HSW)

HSW-View models are mathematically close to S-View models, but present some
key differences. Indeed, they rely on a couple of specific SysML block diagrams
(one modeling software aspects, the other modeling hardware aspects) and on
two allocations that explicit the links between the both block diagrams. The
whole HSW-Model is defined in definition 12. Definitions 10 and 11 define the
both specific SysML block diagrams used in this view. The SysML blocks used
in the software diagram are defined in definition 9, and the activity diagrams
used for modeling their behavior in definition 8. These five definitions rely on
basic concepts that are provided in definition 7.

Definition 7 (HSW-View Basic Sets and associated Abstract Syntax9).

– DSign ⊆ Sign is a set of data signals. For any d in DSign, profile(d) = (N).
– Keys is a set of cryptographic keys.
– There are six kinds of actions:
• Affectations and Random affectations such as defined in Def. 2.
• Send actions:

∗ sende(a1, . . . , an), where e ∈ OutSign and a1, . . . , an are attributes
respecting profile(e).

∗ encrsendd(k , e) where d ∈ OutSign ∩ DSign, k ∈ Keys and e is a
(natural) integer expression.

• Receive actions:
∗ receivee(a1, . . . , an), where e ∈ InSign and a1, . . . , an are attributes
respecting profile(e).

∗ encrreceived(k , e) where d ∈ InSign ∩ DSign, k ∈ Keys and e is a
(natural) integer expression.

• Delay: delay(e), where e is a (natural) integer expression.

Definition 8 (Activity Diagram). An activity diagram is a directed (control
flow) graph ad = 〈s0,S ,T 〉 where:

– S is a set of states, s0 ∈ S is the initial state.
– T is a set of transitions t = 〈sstart , condition, action, send〉 where:
• (sstart , send) ∈ S 2 are respectively the source and the target states of t
• condition is a boolean expression that must be true to enable t
• action is an action executed when t is fired.

attr(ad) (resp sign(ad), keys(ad)) denotes the set of attributes (resp. signals,
keys) used in ad.

An activity diagram is syntactically correct if all states are reachable from s0
(by some syntactic path on transitions).
9 Note that in this view, data are abstracted: we do not model data values and the
profile of a data signal is an integer representing the amount of transfered data. More-
over, computations (exec, wait,. . . ) are abstracted by their complexity (a duration)
in one unique "delay" operation.
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Definition 9 (Task Description).
A task description is a 5-uple D = 〈AD ,SiD ,SoD , adD〉 where AD ⊂ Attr, SiD ⊂
InSign, SoD ⊂ OutSign, adD is an activity diagram, and all these sets are finite.

It is syntactically correct if adD is syntactically correct, attr(adD) ⊆ AD and
sign(adD) ⊆ SiD ∪ SoD .

Definition 10 (Application Model).
An application model is a 4-uple 〈T , d , C,K〉 where K ⊆ Keys and:

– T is a finite set of tasks.
– d is a function which associate a task description to each task of T .

For X ∈ {A,Si ,So , ad} and T ∈ T , XT abbreviates Xd(T), and
So =

⊔
T∈T

SoT and Si =
⊔

T∈T
SiT .

– C ⊂ So × Si is a set of connexions.

It is syntactically correct if and only if :

– ∀〈so , si〉 ∈ C, profile(so) = profile(si)
– ∀T ∈ T , d(T ) is syntactically correct and keys(adT ) ⊆ K.

Architecture models rely on specific SysML blocks called hardware nodes.
There are different kinds of hardware nodes, depending on the compoment they
model: Bus, CPU, FPGA, HWA (hardware accelerator), DMA Controller, Mem-
ory, and Bridge.

Definition 11 (Architecture Model).
An architecture model is a 2-uple 〈H,L〉 where:

– H = Buses tCPU tFPGAtHWAtDMAtMemories tBridges is a finite
set of hardware nodes.

– L ⊂ (H\Buses)× Buses is a set of links between hardware nodes.

Definition 12 (HSW-Model).
A HSW-Model is a 4-uple 〈App,Arch,Alloct ,Allock 〉 where App = 〈T , d , C,K〉
is an application model, Arch = 〈H,L〉 is an architecture model such as defined
in definition 11, and:

– Alloct : T → CPU tFPGAtHWA is a total function called task allocation.
– Allock ⊆ K ×Memories is the key allocation.

It is syntactically correct iff App is syntactically correct and, informally,

– for each signal connection there is a path from the execution node of the
task of the output signal to a memory and a path from this memory to the
execution node of the task of the input signal.

– for each key used by a task, there is a path from the execution node of the
task to a memory where the key is allocated.

(roughly speaking, a path is a sequence of linked busses and bridges between an
execution node and a memory)
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4 W-Sec: Theory and Practice

W-Sec relies on formal methods, since its aim is to quantitatively assess the
impact and efficiency of security countermeasures. Verification techniques, in-
cluding model-checking and simulation, are then needed for verifying safety and
security properties as well as performance thresholds. Therefore formal methods
take part in the four W-Sec stages: an initial modeling stage, a second model-
ing (mutation) stage, a verification stage and then a last modeling (enrichment)
stage. This section explains these four stages both from theoretical a point of
view and an applied perspective. These stages derive from the stages of our ini-
tial NTA-based impact assessment method, and bring to them several substantial
improvements as discussed in Sect. 6.

{MC,PSec,PPerf}
(HSW View) {MA,MP}

{MS,PSafe}
(S View)

{MC,M
A,P
C }

PSecPPerf

{RSec,RPerf}

{MS,MP
S}

MA
S

MA,P
S

{RReg
Safe,R

Eff
Safe}

PSafe PSafe PSafe

: Model mutation
: Simulation (with TTool HSW simulator)
: Feedback to models
: Model-checking (with ProVerif)
: Model-checking (with TTool internal model-checker)

HSW S : Initial models (first W-Sec stage)

HSW S : “Mutant” models (second W-Sec stage)

HSW S : Verification and simulation results (third W-Sec stage)

Fig. 2. The W-Sec Method (adapted from [25])

4.1 Modeling the System using S and HSW Views

The preliminary W-Sec stage consists in building a comprehensive modeling of
the system. For this, three classes of models are designed:
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– The system models, called S-Models (see Sect. 3), are captured in S-View.
We denote with MS the set of these system models: each element of MS
models the high-level discrete and physical behavior of the whole system10.
Note that MS gathers several models. Indeed, a system may operate ac-
cording to different functional scenarios: for instance, the IT’m Factory’s
packaging chain can be controlled from the local control panel (first sce-
nario), from the remote SCADA (second scenario), or from the both (third
scenario). As we usually want to compute the countermeasures impact on the
system according to several of these functional scenarios, we need to design
one system model per scenario. Differences between these system models are
usually light, e.g., the variables of some blocks are initialized with different
values.

– The components models, called HSW-Models (see Sect. 3), are captured
in HSW-View. We denote withMC the set of these components models.MC
contains one model per modeled component11. As explained in [25], these
models are focused on the component but can also include some external
tasks/hardware patterns in order to model the component’s external com-
munications and to be able to consider these external elements during the
verification stage.

– The attack models and the countermeasures models. We denote with
MA and MP the sets of these models. MA is a set of attack models (e.g.,
attack trees): each element of this set describes an attack that can occur on
the system. MP is a set of countermeasures models: each element of this set
describes a countermeasure we want to assess.

Unlike our NTA-based impact assessment method [26] that relies on a single
model approach at this stage, W-Sec is based on a two-view modeling approach
for two main reasons.

Firstly, as we explained in [25], the single model approach requires the model-
ing of heterogeneous items (e.g., software and hardware) and aspects (e.g., data
security and system safety) with the same formalism. As a result, an important
effort is necessary to express heterogeneous concepts with the same language
and within the same views. Also, the resulting model typically lacks in precision
with respect to one of the modeled aspects, for instance data security, and de-
tails are not given at the same abstraction level. The two-view approach tackles
both issues since (i) the HSW-View provides dedicated SysML patterns for low-
level hardware and data security modeling and (ii) the S-View provides a SysML
profile tailored for complex systems behavioral modeling, including all the mod-
eling capabilities of standard behavioral modeling formalisms like networks of
finite automata. This approach thus enables for a better modeling accuracy with
respect to both high-level (system) and low-level (components) aspects.
10 Systems models may also include some blocks and signals modeling the system’s

environment.
11 A component is an equipment of the system. For instance, the components of IT’m

Factory’s packaging chain include the PLC, the two switches, the local control panel,
etc.
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Secondly, gathering all aspects in a single model leads to a pointlessly com-
plex model that may be difficult to formally verify or to simulate. Indeed, the
objective consists in performing safety, security and performance analyses thanks
to model-checking and simulation. To this end, some modeling aspects are es-
sential when performing one of these three assessments while being unnecessary
when performing the two others (e.g., the output values of an algorithm can be
needed when analyzing its safety, while they can be useless when assessing its
performance). Once again, the two-view approach addresses this issue since our
modeling approach cleverly separates safety, security and performance concerns.
On the one hand, security and performance assessments are indeed performed
in the HSW-View: hardware modeling is obviously needed to assess a system’s
performance, and verifying the security properties we want to assess (i.e., in-
tegrity, authenticity and confidentiality of data when transferred between two
components or processed by a component) includes hardware-related attacks
(e.g, putting a probe on a bus, stealing a cryptographic key from a memory,
. . . ). On the other hand, safety assessments are carried out in the S-View, since
their aim is to provide an analysis of the countermeasures regarding the over-
all system’s functions and behavior. If safety countermeasures need to modify
the HSW views, e.g., by introducing a redundancy on processor, then obviously
the HSW view must be updated and performance and security reassessed. This
drawback due to the separation of concerns is further discussed in Sect. 4.3.

In conclusion, the models of MC shall only include the information that
is necessary to precisely depict the software and hardware architecture of the
modeled components, as well as the low-level security and performance, includ-
ing algorithmic complexity, aspects. In addition, the models of MS shall only
integrate the information that is necessary to depict the high-level aspects of the
system (e.g., system’s functions, dynamics and system-wide network topology)
and, if needed, some component-level information in order to depict the high-
level behavior of the components algorithms (i.e., the evolution of their output
parameters depending on their inputs).

Based on the system’s safety, security and performance requirements, safety
and security properties (PSafe and PSec) are also designed at this preliminary
stage, and performance thresholds (PPerf ) are also set. Due to our separation,
security properties are included in the HSW-View while the S-View features
safety properties. TTool offers specific pragmas to describe properties within
views.

Example 1 (S-Model and HSW-Model).
An excerpt of the packaging chain S-Model is given in Fig. 3 and 4:

– Fig. 3 shows the part of the block diagram modeling the filling machine.
Note that only a subset of the blocks attributes and signals is displayed in
this figure.

– Fig. 4 shows the state-machine diagram associated with the block FillingMachine HMI.

In addition, Fig. 5 provides an excerpt of the architecture diagram model-
ing the hardware part of the Siemens S7-1200 PLC used for the filling machine
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block

MainSwitch

- fillingDuration : int;
- conveyorSpeedSetpoint : int;
- nozzleSpeedSetpoint : int;

block

FillingMachine_Switch

- fillingDuration : int;
- conveyorSpeedSetpoint : int;
- nozzleSpeedSetpoint : int;

block

FillingMachine_HMI

- fillingDuration : int;
- nozzleSpeedSetpoint : int;
- conveyorSpeedSetpoint : int;

block

FillingMachine_PLC

- fillingDuration : int;
- conveyorSpeedSetpoint : int;
- nozzleSpeedSetpoint : int;

block

RemoteConsole

- fillingDuration : int;
- nozzleSpeedSetpoint : int;
- conveyorSpeedSetpoint : int;

block

FillingMachine_Sensors

- potAtEndPosition = false : bool;
- potBelowNozzle = false : bool;
- nozzlePosition : int;

physicalblock

Environment

- conveyorMotorSpeed : int;
- nozzleMotorSpeed : int;
- nozzleOpening : bool;

block

FillingMachine_Actuators

- fillingCommand = false : bool;
- conveyorMotorCommand = 0 : int;
- nozzleMotorCommand = 0 : int;

usecaseblock

ActionSequence

- fillingDuration : int;
- conveyorSpeedSetpoint : int;
- nozzleSpeedSetpoint : int;

Fig. 3. S-Model: part of the block diagram modeling the filling machine
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Fig. 4. S-Model: state-machine diagram modeling the behavior of the filling machine’s
control panel
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Fig. 5. HSW-Model: part of the architecture diagram of the filling machine PLC (based
on the analysis presented in [1])
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Fig. 6. HSW-Model: activity diagram of a typical task

control, and Fig. 6 shows an activity diagram of a task executed by the PLC.
The horizontal bar models a sequence of activities (from left to right). Purple
sending/receiving refer to events, while blue sending/receiving refer to data ex-
changed. There, only a quantity of data is exchanged, not values: values are
not needed for performance evaluation, but only the amount of values which
is exchanged via buses and memories. This diagram illustrates the HSW-View
modeling abstractions: apart from the signals reception and sending, the whole
algorithm behavior is depicted through a complexity operator that performs
48 operations on integers. This figure has been chosen after an analysis of the
source-code of the modeled task, by adding the number of add, multiply, move,
etc. instructions along the most complex execution path.

At the end of this stage, the S-View then features the set of system models
MS and the set of safety properties PSafe, while the HSW-View features the set
of components models MC, the set of security properties PSec and the set of
performance thresholds PPerf (see Fig. 2).

In order to ease the consistency between S and HSW views, the following
modeling rules should be followed when it is possible:

– In the S-View, a component shall be modeled with one single block (that
might, if needed, contain subblocks).

– In the HSW-View, for each HSW-Model, the attribute sets of the tasks shall
be included in the attribute set of the S-Model block modeling the same
component.

– In the HSW-View, for each HSW-Model, each output (resp. input) data sig-
nal modeling an external communication of the component shall match a
unique output (resp. input) signal belonging to the output (resp. input) sig-
nals set of the S-Model block modeling the same component. More formally,
given a component C , we denote withMC ∈MC its HSW-Model and with
BC the block modeling this component in models of MS. SoBC (resp. SiBC )
is the output (resp. input) signals set of BC . We denote with SoMC (resp.
SiMC ) the output (resp. input) signals set of the application model ofMC ,
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and with Sd,ext
oMC

⊆ SoMC (resp. Sd,ext
iMC

⊆ SiMC ) the set of output (resp.
input) data signals that model an external communication of the compo-
nent. Then, it shall be ensured that ∀MC ∈MC,∃ f : Sd,ext

oMC
↪−→ SoBC ∧

∃ g : Sd,ext
iMC

↪−→ SiBC
12.

4.2 Modeling the Countermeasures Deployment and the Attacks:
HSW-Models and S-Models Mutations

Like in [26], the second W-Sec stage consists in altering the initial sets of models
MS,MC in order to enrich them with the attacks and countermeasures descrip-
tion provided by MA and MP. Alterations of formal models are often called
mutations [21,2,24]. In our context, a mutation of a S-Model or of a HSW-Model
is any alteration that preserves its syntactic correctness (see Def. 13 - 15).

S-Models Mutations

Definition 13 (S-Model Mutation). Let S be the set of all syntactically cor-
rect S-Models. We call S-Model mutation any (partial) function µ : S 7→ S.

Such a function can be seen as a composition of atomic modifications on
the model, or mutation operators similarly to what is explained in [2] for timed
automata. Concerning S-Models, these operators include:

– At S-Model level:
1. Addition/deletion of a block
2. Addition/deletion of a link between two ports
3. Addition/deletion of a connexion
4. Addition/deletion of a block containment relation

– At block level:
5. Addition/deletion of an attribute
6. Addition/deletion of an input (resp. output) signal
7. Addition/deletion of a state in the block’s state machine diagram
8. Addition/deletion of a transition in the block’s state machine diagram

Formally defining each of these operators in this chapter would be pointlessly
long; but we provide below, as an example, the definition of the block addition
operator that is used in example 2.

Definition 14 (Block Addition). Let B be the set of all blocks and S be
the set of all syntactically correct S-Models. We define a block addition as the
function

add : S×B→ S
(M,B) 7→ M′

such thatM = 〈B, d ,L, C,R〉 andM′ = 〈B ∪ {B}, d ,L, C,R〉.
12 f : E ↪−→ F means that f is an injective application from E to F .
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Using these S-Model mutations, three sets of S-Models are derived from the
set MS and from the sets of counteremeasures and attacks models MP and MA.

1. MP
S . This set contains the initial S-Models enriched with the countermea-

sures descriptions. Since it is necessary to assess the impact of the counter-
measures with respect to each functional scenario, each S-Model of MS is
mutated into card(MP)mutant S-Models (one per countermeasure). In other
terms, if we denote with µPatch the mutation that integrates the countermea-
sure model Patch with a S-Model, MP

S = {µPatch(M) | M ∈MS,Patch ∈
MP}.

2. MA
S . This set contains the relevant initial S-Models enriched with the attacks

descriptions: for each element of MA, each S-Models of MS that model
functional scenarios in which the modeled attack can occur is mutated into a
S-Model enriched with the attack model. In other terms, if we denote with (i)
µAtt the mutation that integrates the attack model Att with a S-Model and
with (ii) MSAtt ⊆MS the set of S-Models that model functional scenarios
in which the attack described by Att can occur, MA

S =
⋃

Att∈MA

{µAtt(M) |

M ∈MSAtt}.
3. MA,P

S . This set contains the S-Models ofMA
S enriched with the countermea-

sures models: for each element of MA
S , card(MP) mutant S-Models (one per

countermeasure) are produced. In other terms, if we denote with µPatch the
mutation that integrates the countermeasure model Patch with a S-Model,
MA,P

S = {µPatch(M) | M ∈MA
S ,Patch ∈MP}.

Example 2 (Mutations of S-Models).
Fig. 7 shows the block diagram initially depicted in Fig. 3 after a muta-

tion modeling the integration of the attack scenario introduced in Sect. 2. This
mutation is the composition of: (i) a block addition, (ii) two link additions,
(iii) two new connexions, (iv) two state additions and (v) seven transition addi-
tions in the RemoteConsole block. In addition, Fig. 8 shows an excerpt of the
FillingMachine PLC block’s state-machine diagram before and after a mutation
modeling the offset setpoint check countermeasure. This mutation consists in (i)
a transition deletion, (ii) two state additions and (iii) four transition additions.

HSW-Models Mutations

Definition 15 (HSW-Model Mutation). Let C be the set of all syntacti-
cally correct HSW-Models. We call HSW-Model mutation any (partial) function
µ : C 7→ C.

As for S-Models mutations, HSW-Models mutations are sequences of atomic
operators:

– At HSW-Model level:
1. Modification of the task allocation function
2. Addition/deletion of an element in the key allocation set
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block

MainSwitch

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

FillingMachine_Switch

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

FillingMachine_HMI

- fillingDuration : int;

- nozzleSpeedSetpoint : int;

- conveyorSpeedSetpoint : int;

block

FillingMachine_PLC

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

attackscenario

Attacker

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

RemoteConsole

- fillingDuration : int;

- nozzleSpeedSetpoint : int;

- conveyorSpeedSetpoint : int;

block

FillingMachine_Sensors

- potAtEndPosition = false : bool;

- potBelowNozzle = false : bool;

- nozzlePosition : int;

physicalblock

Environment

- conveyorMotorSpeed : int;

- nozzleMotorSpeed : int;

- nozzleOpening : bool;

block

FillingMachine_Actuators

- fillingCommand = false : bool;

- conveyorMotorCommand = 0 : int;

- nozzleMotorCommand = 0 : int;

usecaseblock

ActionSequence

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

MainSwitch

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

FillingMachine_Switch

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

FillingMachine_HMI

- fillingDuration : int;

- nozzleSpeedSetpoint : int;

- conveyorSpeedSetpoint : int;

block

FillingMachine_PLC

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

attackscenario

Attacker

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

block

RemoteConsole

- fillingDuration : int;

- nozzleSpeedSetpoint : int;

- conveyorSpeedSetpoint : int;

block

FillingMachine_Sensors

- potAtEndPosition = false : bool;

- potBelowNozzle = false : bool;

- nozzlePosition : int;

physicalblock

Environment

- conveyorMotorSpeed : int;

- nozzleMotorSpeed : int;

- nozzleOpening : bool;

block

FillingMachine_Actuators

- fillingCommand = false : bool;

- conveyorMotorCommand = 0 : int;

- nozzleMotorCommand = 0 : int;

usecaseblock

ActionSequence

- fillingDuration : int;

- conveyorSpeedSetpoint : int;

- nozzleSpeedSetpoint : int;

Fig. 7. MA
S : mutation modeling an ARP spoofing and man in the middle attack

offsettingNozzlePosition

checkingPotAtEndPosition

[else]

[(centeringOffset != 0) && not(nozzleOffsetted)]
conveyorMotorCommand = conveyorSpeedSetpoint
nozzleMotorCommand = conveyorMotorCommand + centeringOffset
nozzleOffsetted = true
fillingOngoing = true

verifyingOffsetValue

offsettingNozzlePosition

replacingOffsetValue

checkingPotAtEndPosition

[else]

conveyorMotorCommand = conveyorSpeedSetpoint

nozzleMotorCommand = conveyorMotorCommand + centeringOffset

nozzleOffsetted = true
fillingOngoing = true

[(centeringOffset != 0) && not(nozzleOffsetted)]

[centeringOffset > 5]

centeringOffset = 5
[centeringOffset < 5]

centeringOffset = 5

[(5<= centeringOffset) && (centeringOffset<=5)]

verifyingOffsetValue

offsettingNozzlePosition

replacingOffsetValue

checkingPotAtEndPosition

[else]

conveyorMotorCommand = conveyorSpeedSetpoint

nozzleMotorCommand = conveyorMotorCommand + centeringOffset

nozzleOffsetted = true
fillingOngoing = true

[(centeringOffset != 0) && not(nozzleOffsetted)]

[centeringOffset > 5]

centeringOffset = 5
[centeringOffset < 5]

centeringOffset = 5

[(5<= centeringOffset) && (centeringOffset<=5)]

(a) smd before mutation (b) smd after mutation

Fig. 8. MP
S : mutation of a subpart of the PLC state-machine diagram, modeling the

offset setpoint check
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– At architecture model level:
3. Addition/deletion of a hardware node
4. Addition/deletion of a link

– At application model level:
5. Addition/deletion of a task
6. Addition/deletion of a connexion

– At task level:
7. Addition/deletion of an attribute
8. Addition/deletion of an input (resp. output) signal
9. Addition/deletion of a state in the tasks’s activity diagram
10. Addition/deletion of a transition in the tasks’s activity diagram

Using these HSW-Model mutations, the set of HSW-Models MA,P
C is derived

from the set MC and from the sets of counteremeasures and attacks models
MP and MA. This set contains the relevant HSW-Models13 enriched with the
countermeasures and attack descriptions. Due to the modeling approach in the
HSW-View, countermeasures are often modeled with additional tasks and/or
with additional complexity and encryption/decryption operators14. In HSW-
View, attacks are modeled in two ways:

1. a Dolev-Yao attacker model is embedded in ProVerif [7], the security model-
checker used in TTool. Therefore, before performing security verification, the
tool automatically composes HSW-Models with a worst-case attack scenario
at data level.

2. if this attacker model is inadequate to model the desired attack scenario (e.g.,
if the attack modifies the execution flow of a task), mutations can be used to
model it thanks to new tasks, signals and actions in activity diagrams that
influence the execution flow of the application model.

In other terms, if we denote with (i) µAtt the mutation that integrates the
attack model Att with a HSW-Model, with (ii) µPatch the mutation that in-
tegrates the countermeasure model Patch with a HSW-Model and with (iii)
MCAtt,Patch ⊆ MC the set of HSW-Models that model components on which
the countermeasure modeled by Patch is deployed and which is targeted by the
attack scenario modeled by Att , MA,P

C =
⋃

Att∈MA,Patch∈MP

{µAtt ◦µPatch(M) |

M ∈MCAtt,Patch}.

Example 3 (Mutations of HSW-Models).
Fig. 9 shows the mutation, in HSW-View, modeling the deployment of the

offset setpoint check countermeasure. Since this countermeasure consists in per-
forming two comparisons and at most one move instruction, the complexity
operator modeling 48 integer operations is replaced with a complexity operator
modeling three more operations on integers.

13 i.e., the models of components on which the countermeasures described by MP are
deployed and that are targeted by the attack scenarios described by MA.

14 These operators are actions over transitions in the tasks activity diagrams (see
Def. 7).
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(a) ad before mutation (b) ad after mutation

Fig. 9. MA,P
C : mutation of an activity diagram of a task executed by the PLC, modeling

the offset setpoint check

4.3 Computing the Impacts and Enriching the Models

Once the mutations have been applied, the third stage of W-Sec consists in
computing the positive and negative impacts of the countermeasures thanks to
formal verification and simulation.

Computing the Components-Level Performance and Security Impacts

First, simulations are performed with TTool’s internal simulator on the mod-
els of MC and on the models of MA,P

C . The aim of these simulations is to mea-
sure, for each component targeted by a given countermeasure, the total execution
time of an iteration of the application modeled in the component’s HSW-Model.
The set RPerf contains the results of these simulations.

Example 4 (Performance impacts).
(i) Composition of the set MC. We have modeled two components in the

HSW-View: the filling machine’s S7-1200 PLC, and the SCADA (i.e., the remote
console). The whole control algorithm has been modeled in the PLC application
model, whereas only an abstract setpoint message formatting and sending task
has been modeled in the SCADA application model.

(ii) Assessed countermeasure. We provide here the performance assess-
ment results of the symmetric encryption countermeasure. Note that the full
results (i.e. regarding the four countermeasures) will be provided in Sect. 6.

(iii) Chosen performance thresholds. In our case-study, we consider
that the PLC performance threshold is given by the filling machine’s sensors
commutation rate. As their maximum commutation rate is equal to 500 Hz, the
full operating cycle of the PLC (i.e., the elapsed time between the reception of a
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setpoint message and the sending of the commands/supervision message) shall
remain below 2 ms. In addition, since the SCADA console is not safety-critical
we have not set up a performance threshold for this component; notwithstanding,
we still can compare the execution times after/before the deployment of the
countermeasures and therefore quantify their overhead cost.

(iv) Results (RPerf ): Table 1 provides the execution times 15, in nanosec-

No countermeasure Symmetric Encryption
PLC 608.5 ns 690 ns (+13,3%)

SCADA 42.5 ns 170.8 ns (+301,9%)
Table 1. Some performance assessment results

onds, of an iteration of the PLC control application and of the SCADA message
formatting and sending task. We can notice that the overall computational cost
for the PLC is far below our performance threshold in both cases, and that the
overhead cost for the SCADA message handling task (128.3 ns) is reasonable.
Therefore, this countermeasure should be suitable from a performance perspec-
tive.

Secondly, security verifications are carried out on the models of MC and
MA,P

C . These verifications consists in (i) an automated HSW-Models to ProVerif
specifications translation [18,17] and (ii) a model-checking of these specifications
against the chosen security properties with ProVerif. The set of security results
RSec is thus built at this stage.

Example 5 (Security verification).

(i) Composition of the set MC, (ii) Assessed countermeasure: same
as above.

(iii) Chosen security properties. Since we want to protect the system
against a falsification of the network messages sent to the PLC, we have chosen
to verify the data origin authenticity (strong authenticity) and data integrity
(weak authenticity) for the following data channels: SCADA→ Main switch and
Filling machine switch → PLC.

(iv) Results (RSec): Table 2 provides the formal verification results con-

No countermeasure Symmetric Encryption
SCADA → Main switch Weak auth.: 7

Strong auth.: 7
Weak auth.: 3
Strong auth.: 7

Local switch → PLC Weak auth.: 7
Strong auth.: 7

Weak auth.: 3
Strong auth.: 7

Table 2. Some security assessment results

15 Each figure is an average of 10 consecutive measurements.
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cerning the two chosen properties. We notice that the nominal (i.e., with no
countermeasure deployed) system does not protect the two studied data flows
from an attacker. On the other hand, symmetric encryption in our implemen-
tation seems to enable the components for detecting any alteration of the data
conveyed by the both channels16.

Computing the System-Level Safety Impacts

The last impact assessment performed at this stage consists in verifying the
models of MS, MP

S , M
A
S and MA,P

S against the chosen safety properties. The
models are verified thanks to the direct model-checking algorithm of S-Models
embedded in TTool [10]. Like in our NTA-based impact assessment method [26],
the aim of these model-checking operations is to quantify:

– the safety regression due to each countermeasure deployment, thanks to the
comparison of the model verifications performed on the models belonging to
MS and MP

S .
– the efficiency of each countermeasure in terms of safety requirements recov-

ery when the attack is carried out, thanks to the comparison of the model
verifications performed on the models belonging to MA

S and MA,P
S .

Example 6 (Safety assessment).
(i) Functional scenarios. The two functional scenarios Sc1 and Sc2 (see

Sect. 2) are assessed.
(ii) Assessed countermeasure. We present here the safety assessment of

the offset setpoint check.
(iii) Safety properties. We have chosen to evaluate the following safety

properties. P1: every pot put on the conveyor belt will eventually be filled by
the machine with the volume chosen by the operator; P2: the machine never
discharges grains outside of a pot (on the conveyor belt); and P3: the SCADA
remote console is always kept up-to-date with the number of filled pots.

(iv) Results (PPerf ): Table 3 (a) shows that the assessed countermeasure

No countermeasure Offset check
P1 3 3
P2 3 3
P3 3 3

(a) No attack, scenarios Sc1 and Sc2

No countermeasure Offset check
P1 7 3
P2 7 3
P3 3 3

(b) With attack, scenario Sc2
Table 3. Some safety assessment results

does not cause any safety regression, neither in scenario Sc1 nor in scenario Sc2:

16 Actually, symmetric encryption does not provide integrity. But our verifying envi-
ronment assumed that if a ciphered message is modified by an attacker, the receiver
will notice that the deciphered text is inconsistent.
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with respect to our safety requirements, this countermeasure has no negative
impact. In addition, Table 3 (b) shows that when the attack is carried out, the
countermeasure preserves the properties P1 and P2 that the nominal system
was not able to preserve: this countermeasure therefore has a positive impact.

Enriching the Models

Once the assessment results are known, further W-Sec iterations may be
necessary in order to refine the countermeasures models MP. For instance, for
a given countermeasure, performance results on a component might reveal that
some functions cannot be executed by the component: the countermeasure model
shall then be refined in order to express this issue in the S-Models thanks to more
suitable mutations. Once the modelsMP have been refined, the second and third
W-Sec phases are performed again in order to obtain more accurate assessment
results.

In addition, if one of the assessed countermeasures Patch is selected to be
deployed on the system, the {MC,MS} model base must be modified in order
to keep them up-to-date: MS is replaced with the subset of MP

S that depicts
the deployment of Patch on the system; and the elements of MC that model
a component targeted by Patch are replaced with the result of the mutation
integrating Patch with themselves.

5 Related Works

Assessing the (negative and positive) impacts of several security countermeasures
in order to find the optimal one is not really a new research topic: Brykczyn-
ski and Small [8] and Nicol [22] highlighted in 2003 and 2005 the interest of
such an assessment before the deployment of a countermeasure. Subsequently,
several optimal countermeasures selection methods have been proposed. Nespoli
et al. [20] provided an interesting litterature survey focused on the recent (be-
tween 2012 and 2016) contributions to this topic. When it comes to evaluate
the countermeasures’ negative impacts, the surveyed approaches mainly focus
on the monetary cost of them. However, as we explained in [25], “several of them
express the impacts in terms of system downtime or impacts on the provided
services, e.g. in terms of confidentiality, integrity, availability and performance.
Depending on the methods, these impacts can be used as inputs of the selection
method (thus they are not computed on the basis of the countermeasure descrip-
tion but chosen on the basis of a human analysis), or computed.” Some of these
approaches even explicitely assess the “collateral damages” of the countermea-
sures, like the one presented by Gonzalez-Granadillo et al. [14]. Nevertheless,
none of them seem to enable for a precise enough countermeasures impact as-
sessment with respect to the behavior of the system, which is critical regarding
CPS. For instance, a comprehensive evaluation of a software countermeasure de-
ployed on a PLC controlling a physical process requires, beyond the evaluation
of the availability of the PLC, to quantify how the output command values of
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the PLC’s control algorithms are affected. To the best of our knowledge, how-
ever, few contributions published after this survey propose approaches enabling
for a precise and objective impact assessment of security countermeasures with
respect to the systems behaviors.

Part of a patch-management approach for naval systems, we proposed in [26]
a formal verification-based impact assessment method for security countermea-
sures. This method relies on formal modeling and verification of networks of
UPPAAL timed automata [6]. Firstly, the system is modeled with a network
of timed automata (NTA). Then, when a vulnerability that affect the system
is discovered, the NTA is mutated into four sets of new NTAs modeling (i) the
vulnerable system, (ii) the vulnerable system enhanced with security counter-
measures mitigating the vulnerability, (iii) the realization of successful attacks
exploiting this vulnerability on the original vulnerable system, and (iv) the re-
alization of these attacks on the “patched” systems. Afterwards, the original
NTA as well as the modified NTAs are formally verified against a set of safety
properties. The positive and negative impacts of the evaluated countermeasures
are then assessed by comparing the verification results. Formal modeling and
verification for the assessment of cybersecurity-related events (countermeasures
deployment, attacks) is well-suited to the context of CPS – including ICS –,
and further promising contributions have been proposed by Jawad et Jaskolka
in [15] regarding the impact assessment of cyberattacks, and by Jawad et al.
in [16] where the authors model a botnet infrastructure with UPPAAL NTAs
and evaluate the efficiency of a countermeasure thanks to simulation. Neverthe-
less, as we explained in [24], a drawback of our previous approach [26] is that
the NTA-based modeling formalism lacks in expressiveness with respect to data
security aspects: for instance, data confidentiality is here modeled in a too sim-
plistic way, with a boolean variable modeling an illegitimate access to the com-
ponent processing the data. As a consequence, the verification of the properties
expressing data security requirements may lead to results that are not accurate
and/or representative enough. In addition, designing a fine-grained modeling of
heterogeneous aspects (e.g., hardware architecture, scheduling policy of a pro-
cessor, and software behavior) of a system in a same modeling language can be
time-consuming and error-prone, and the resulting model can be complex to un-
derstand as it encompasses heterogeneous aspects in a single modeling view. In
addition, gathering all the modeled aspects in a single fine-grained model may
also lead to a state-space explosion at verification stage due to the potential
multiplication of states, variables, etc.

The aim of W-Sec is precisely to address these lacks. This requires more
suitable modeling formalisms and tools that enable for designing and verifying
formal models in a fine-grained way while enabling for capturing heterogeneous
aspects without complexifying the models. SysML-Sec [4] provides a framework
and a method for designing safe and secure embedded systems. For these needs,
SysML-Sec relies on two enhanced and formally defined SysML profiles that en-
ables for modeling high-level system architectural and behavioral aspects, as well
as fine-grained hardware ones. SysML-Sec is fully supported by the toolkit TTool
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that provides a graphical and easy-to-use interface for designing and verifying
models with the two SysML-Sec profiles: direct model-checking [9] and simu-
lation can be performed with TTool. In addition, TTool provides two distinct
modeling views (one per SysML profile) that help simplifying the system models,
and is tailored for producing joint safety, security and performance analyses [3],
thus spanning the three critical assessment dimensions of a countermeasure. For
these reasons, have chosen TTool and its tailored formal SysML profiles as the
underlying formalism and toolkit for designing a method improving our previ-
ous one [26]. In a complementary way, W-Sec also complements the SysML-Sec
method. Indeed, the attack model considered in SysML-Sec is the Dolev-Yao
one [11]. Therfore other kinds of attacks such as “sequences of exploitation of
vulnerabilities of several components” [4] are considered out of scope. TW-Sec
then widens the considered attack corpus as it considers modular attack scenar-
ios like in [26].

6 Discussion

6.1 Regarding our Previous Contributions

As we explained in [25], W-Sec merges contributions from SysML-Sec and [26]
(see Table 4). As a result, W-Sec brings several improvements to both of the
methods. With regards to [26]:

– W-Sec “reduces the models complexity since it does not rely on a single NTA
but on several models that can separately be simulated and verified. These
models are based on two distinct views which only contain the information
needed for their respective purposes (i.e., safety assessment at system-level
or security and performance assessment), and do not aggregate all this in-
formation in a single view.

– Hardware modeling relies on configurable templates already defined in TTool
(CPU, memories, DMA, etc.) so it helps reducing the modeling time and
effort, while giving more precision to the models with respect to the NTA
approach.

– Low-level security aspects can be captured in a more fine-grained way. In
addition, this low-level security modeling is facilitated thanks to TTool pre-
defined security-related patterns (e.g., cryptographic algorithm models or
hardware firewall blocks).

– Thanks to the simulation and verification tools provided by TTool, W-Sec as-
sesses the impact of countermeasures and attacks, with respect to a widened
property basis. Indeed, we can now evaluate fine and low-level security prop-
erties (e.g., related to the integrity of a data transfer, or the confidentiality
of a component data).” [25]

In addition, as explained in Sect. 5, W-Sec also complements the SysML-Sec
approach thanks to the consideration of modular attack scenarios.
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Modeling formalism From SysML-Sec and [12]
Two-views modeling From SysML-Sec
Use of HSW-View for low-level
component modeling

W-Sec contribution

Separation of safety concerns at
system level in S-View vs. secu-
rity and performance aspects at
component-level in HSW-View

W-Sec contribution

Attacks and countermeasures mod-
eling through model mutations

From [26]

S-Models and HSW-Models muta-
tions definitions and operators

W-Sec contribution

Impact assessment approach From [26] (composition of
the sets of mutant system
models, comparison of ver-
ification results)

Table 4. Comparison with SysML-Sec and [26] (table expanded from [25])

6.2 Regarding IT’m Factory Case-Study Results

W-Sec has been evaluated with the IT’m Factory’s packaging chain case-study.
This evaluation provides interesting results, complementary to those discussed
in [25] where W-Sec is evaluated with a rover swarm case-study. Indeed, even if
these two systems have common aspects (cyber-physical systems, safety-critical
systems, etc.) they also have significant differences : contrary to the rover swarm,
the packaging chain is a real system, it relies on highly specific devices like
PLCs, the source code of its control algorithms was provided in a domain-specific
language —ladder logic—, etc.).

The first interesting conclusion is that the W-Sec modeling approach is well
suited for modeling industrial systems, especially PLCs. Designing the PLC
HSW-Models was really natural indeed, since ladder logic includes low-level in-
structions that can easily be converted in complexity operators (see Fig. 6).
Moreover, the sequential logic of PLC algorithms is particularly consistent with
the semantics of tasks and activity diagrams in HSW-Models. However, the mod-
eling stage is still an engineering task that may require a lot of time depending
on the modeled system. Given the relative semantic proximity between ladder
logic and our modeling formalism, the (partial) automation of the models gen-
eration from PLC source-code is an interesting research direction we intend to
investigate.

Also regarding the modeling stage, we have been able to optimize the S-
Models to avoid combinatorial explosion at verification stage, while this issue
occurred in the rovers case-study [25]. Yet, both the rover swarm and the pack-
aging chain necessitate “environment” blocks that compute the evolution of the
physical parameters of the systems, leading to potential highly-complex state
space graphs. This shows that W-Sec can be suitable for complex systems of
systems, provided the S-Models are wisely designed.
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Four countermeasures were evaluated in this case-study. They target differ-
ent components, implement different mechanisms and belong to two categories:
software patches (C1, C2 and C3) and hardware temporary workaround (C4).
For each of these countermeasures, we were able to provide appropriate models
with HSW and S-Models mutations that seem well suited for the countermea-
sures modeling needs. Notwithstanding these encouraging results, applying these
mutations still requires human intervention and thus can be time-consuming. We
are currently working on a mutation language and compiler that will enable for
automating this process: the new formalization provided in Sect. 3 is a good step
towards this automation.

P1 P2 P3
Sc1 3 3 3
Sc2 3 3 3

Sc2 + Attack 7 7 3

(a) without countermeasure

P1 P2 P3
Sc1 3 3 3
Sc2 3 3 3

Sc2 + Attack 3 3 3

(b) C1 (offset check)

P1 P2 P3
Sc1 3 3 3
Sc2 3 3 3

Sc2 + Attack 7 3 3

(c) C2 (encryption)
P1 P2 P3

Sc1 3 3 3
Sc2 3 3 3

Sc2 + Attack 3 3 3

(d) C3 (static ARP table)

P1 P2 P3
Sc1 3 3 7
Sc2 7 3 7

Sc2 + Attack 7 3 7

(d) C4 (unplugging)
Table 5. Full safety assessment results

No countermeasure C1 C2 C3 C4
PLC 608.5 ns 610.7 ns 690 ns 608.5 ns 608.5 ns

SCADA 42.5 ns 42.5 ns 170.8 ns 40.6 ns 42.5 ns
Table 6. Full performance assessment results

No countermeasure C1 C2
SCADA → Main switch Weak auth.: 7

Strong auth.: 7
Weak auth.: 7
Strong auth.: 7

Weak auth.: 3
Strong auth.: 7

Local switch → PLC Weak auth.: 7
Strong auth.: 7

Weak auth.: 7
Strong auth.: 7

Weak auth.: 3
Strong auth.: 7

C3 C4
SCADA → Main switch Weak auth.: 7

Strong auth.: 7
Weak auth.: 7
Strong auth.: 7

Local switch → PLC Weak auth.: 7
Strong auth.: 7

Weak auth.: 7
Strong auth.: 7

Table 7. Full security assessment results

The third W-Sec stage (i.e., impact assessment) provided results that are
presented in Tables 5, 6 and 7. As in [25], these results shows the relevance of a
joint safety/security/performance assessment of countermeasures. Indeed, a mere
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safety analysis would lead to chose the countermeasures C1 and C3: the security
analysis yet shows that the system with these countermeasures is still vulnerable
to a Dolev-Yao attacker on the two critical data channels studied. Similarly, a
single performance analysis would lead to select C3 and C4, although the safety
verification results show an important regression for C4. Finally the security
analysis alone favors C2, which leads to a safety regression on one property
with respect to C1 and C3.

Relatedly, these results illustrate a current lack of our method. Indeed, com-
paring the assessment results to find the optimal countermeasure may be a dif-
ficult problem since it requires to rank very different properties between them
(e.g., is it more important to ensure that no grain can be discharged on the con-
veyor belt, to minimize the duration of a PLC algorithm iteration or to ensure
that one of the communication channels is protected with integrity?). We tried
to address a similar problem in [26], but the proposed metrics was based on
the definition of a strict total order on the importance of properties and func-
tional scenarios (called missions), that may lack in realism [24]. An interesting
research direction could be to affect weights to functional scenarios and proper-
ties, enabling for a non-strict ordering of properties and scenarios and defining
evaluation formulae based on these weights.

Concerning the results again, note that it is necessary to put the SCADA
performance results into perspective: unlike the PLC HSW-Model, the SCADA
console HSW-Model is not based on a real system description nor on a real al-
gorithm. We have arbitrarily considered that the supervision application runs
on a standard host (Core i5 CPU), and we have modeled a fictitious algorithm
creating a network message and sending it. Therefore, the SCADA performance
results are far less likely than the PLC ones that are based on the real sys-
tem. They should only be seen as complementary results that illustrate how the
method can deal with several HSW-Models.

7 Conclusions and Future Works

Extending the works presented at ModelsWard 2022 [25], this chapter provides a
detailed and formalized description of W-Sec, a formal model-based method for
assessing the safety, security and performance impacts of security countermea-
sures. It also defines three consistency rules that help ensuring the consistency
of the models used in the method. For those purposes, it also provides new
mathematic definitions of the two SysML profiles used in SysML-Sec and W-
Sec. W-Sec has now been evaluated with two case-studies, a rover swarm and
a connected factory’s packaging chain: the chapter presents the results of the
latter and discusses the relevance of the method for this new application field.
It also discusses the current limitations of W-Sec, and gives several research
perspectives.

We are currently investigating two of them. Firstly, the automation of the
second (mutation) W-Sec stage: the mathematic definitions given in Sect. 3
enable for formally defining each mutation operator and designing a mutation
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language. A compiler for this language is currently being implemented in TTool.
Secondly, we are studying the semantic links between the ladder logic language,
used for programming Siemens PLCs, and the two SysML profiles we use. This is
the first step towards the automation of the first (modeling) W-Sec stage in the
context of industrial control systems. A third interesting research perspective
we intend to investigate is the design of tailored metrics enabling for an easy
comparison of the impact assessment results. We also plan to evaluate W-Sec
with further attack and countermeasures scenarios on our connected factory
case-study.
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