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Abstract—In this work, we investigate the robust-
ness and consistency of the Equilibrium Propagation
(EqProp) algorithm for training analog neural networks,
addressing previous research limitations. We analyze the
algorithm’s robustness concerning learning parameter
variations and examine the relationship between power
calculations and convergence behavior. By accounting for
all relevant components and their impact on learning, we
aim to develop a reliable and consistent algorithm based
on EqProp principles.

Index Terms—Equilibrium Propagation, analog neural
networks, non-von Neumann architectures, energy based
models, machine learning.

I. INTRODUCTION

The development of Artificial Intelligence has come
a long way since its inception in the 1940s, with
pioneers like John von Neumann, Alan Turing, and
Norbert Wiener. The question "Can machines think?"
posed in the 1950s led to the possibility of creating ma-
chines that could mimic human cognition [1]. Today,
Artificial Intelligence research has made significant
progress, with deep neural networks being a prime ex-
ample of brain-inspired computing models. However,
current deep neural networks based on ASICs that
mostly rely on von Neumann architecture, are still far
from matching the computational power and efficiency
of the human brain, mainly due to the von Neumann
bottleneck problem and the diminishing returns of
Moore’s Law [2], [3].

Inspired by the brain’s inherent efficiency, non-von
Neumann architectures offer a promising approach
to enhance time and energy efficiency in computing
systems by integrating memory and processing units
using local variables. Backpropagation, a widely-used
supervised learning algorithm, has been pivotal in
training ANNs [4]. Recently, implementing the Back-
propagation algorithm in the analog domain has gained
popularity [5]. However, analog device imperfections
introduce significant vulnerability due to the algo-
rithm’s structure. The mismatch arising from imple-
menting gradient computation with non-ideal circuit
components results in increased error as the number
of layers deepen. Equilibrium Propagation (EqProp)
has emerged as a hardware-friendly alternative for
training energy-based models (EBMs) [6], [7], [8].
[6] asserts that analog nonlinear neural networks are
EBMs, making them suitable for training using the
EqProp algorithm.

The previous work [6] did not analyze the algo-
rithm’s robustness concerning learning parameter vari-

ations; in addition, it did not thoroughly investigate the
relationship between power calculations and conver-
gence behavior. This work aims to address the limita-
tions by thoroughly analyzing the EqProp algorithm’s
robustness and trying to find a better approximation
of the (ideal) Backpropagation gradient. By consider-
ing all relevant components and their impact on the
learning process, our goal is to develop a reliable and
consistent algorithm based on Equilibrium Propagation
principles.

II. EQUILIBRIUM PROPAGATION ALGORITHM

Unlike Backpropagation, EqProp computes quanti-
ties mimicking the gradient calculation through the
minimization of "energy", making it ideal for non-
von Neumann architectures [7]. [6] proposed a circuit
implementation in which EqProp can be applied to
perform a learning task.
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Fig. 1: Equilibrium Propagation Circuit
Implementation

Fig. 1 displays the circuit structure used for our
analysis, based on [6]. The circuit includes two input
DC sources, a bias, one hidden layer with two neu-
rons, and two output nodes. To address the positive
conductance constraint, we only double the output
nodes and subtract their voltages for potential negative
outputs. The activation function is implemented with
two antiparallel diodes in series with network (weight)
resistors, and bidirectional amplifiers prevent voltage
decay in both directions.

The algorithm has two training phases: the free
and nudged phases. In the free phase, no current
flows through the output nodes, as switches are open.
The system reaches a steady state, and the difference



between the target and obtained output yields a loss
value to be minimized throughout the iterations.

In the nudged phase, we introduce a constraint on
the circuit to move it from its equilibrium state, allow-
ing for the computation of the gradient. A feedback
current, proportional to the loss value, is injected by
closing the switches.

In Backpropagation, the weights (conductances) are
updated with the gradient of the loss function with the
following equation:

gij ← gij − α
∂L

∂gij
(1)

where α is the learning rate.
In Equilibrium Propagation, according to [6, Theo-

rem 1] (2), the gradient of the loss can be estimated
as:

∂L

∂gij
= lim
β→0

1

2β
((V βij )

2 − (V 0
ij)

2), (2)

where gij represents the conductance of a linear resis-
tor with terminals i and j; and V 0

ij and V βij represent
the voltage drop through resistors in the free phase and
nudged phase, respectively; and L represents the loss
calculated after free phase.

III. PRELIMINARY RESULTS

The implementation represented in Fig. 1 is tested
on a simple task, which will be called as case 1: while
V 0 = −2V and V 1 = 2V, V out_target = 1V.
Then, we observed the impact of variation of α and β
on the algorithm performance.
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Fig. 2: Evolution of the Error for α = 5× 10−4 and
10−7 ≤ β ≤ 0.1

Despite observing favorable convergence behaviors
like the green and orange lines, most beta values
resulted in non-convergence, highlighting the algo-
rithm’s sensitivity to learning parameter changes and
lack of robustness. Additionally, learning failed for
most randomized initial conductance values, indicating
inconsistency in the learning process. This discrep-
ancy between theoretical predictions and actual analog
circuit learning performance raises questions about

the causes of this mismatch. The convergences issues
observed in the EqProp algorithm in Fig.2 would
signal the potential for improving gradient estimation.

To better understand this discrepancy and investigate
the underlying causes, we delve into the power compu-
tation of two-terminal components within the nonlinear
resistive networks function as EBMs with their energy
function representing the total pseudo-power of the cir-
cuit. We employ a variational approach using PySpice
to compute the derivative of the power with respect to
the resistor values, enabling a deeper examination of
the energy perspective in these networks.

IV. CONCLUSION

Equilibrium Propagation is a promising algorithm
for energy-efficient, fast analog deep learning circuits.
This paper presents the EqProp algorithm in training
analog neural networks, highlighting its sensitivity to
learning parameter variations and initial conductance
values. The mismatch between theoretical predictions
and actual performance can be attributed to previously
overlooked components in power calculations.

Our overall project focuses on a comprehensive
analysis, considering all relevant components and their
effects on the optimization process. Future work will
aim to optimize the EqProp algorithm for increased
stability and robustness and develop gradient estima-
tion equations for the loss function. By achieving
these objectives, we aim to advance the understanding
of EqProp in analog neural networks and contribute
to developing low-power, fast, and reliable machine-
learning analog circuits inspired by the human brain’s
neural network.
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