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Robustness to spatially-correlated speckle
in Plug-and-Play PolSAR despeckling

Cristiano Ulondu Mendes, Loı̈c Denis, Charles Deledalle, Florence Tupin

Abstract—Synthetic Aperture Radar (SAR) provides valuable
information about the Earth’s surface in all-weather and day-
and-night conditions. Due to the inherent presence of speckle
phenomenon, a filtering step is often required to improve the
performance of downstream tasks. In this paper, we focus on
dealing with the spatial correlations of speckle, which impacts
negatively many of the existing speckle filters. Taking advantage
of the flexibility of variational methods based on the Plug-and-
Play strategy, we propose to use a Gaussian denoiser trained to
restore SAR scenes corrupted by colored Gaussian noise with
correlation structures typical of a range of radar sensors. Our
approach improves the robustness of Plug-and-Play despeckling
techniques. Experiments conducted on simulated and real po-
larimetric SAR images show that the proposed method removes
speckle efficiently in the presence of spatial correlations without
introducing artifacts, with a good level of detail preservation. Our
method can be readily applied, without network re-training or
fine-tuning, to filter SAR images from various sensors, acquisition
modes (SAR, PolSAR, InSAR, PolInSAR), spatial resolution,
and even benefit from co-registered multi-temporal stacks, when
available. The code of the trained models is made freely available
at https://gitlab.telecom-paris.fr/ring/mulog-drunet.

Index Terms—SAR, polarimetry, image despeckling, deep
learning, correlated speckle.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (SAR) images
offer rich information of the back-scattering mechanisms

occuring throughout the scene [1]. They are particularly useful
to retrieve physical information for land, ice, ocean, forest, or
urban applications [2]. Yet, due to the speckle phenomenon,
these images, like all SAR images, are difficult to analyze. The
speckle phenomenon occurs due to the coherent summation
of many elementary echoes within a radar resolution cell. It
appears in the images in the form of strong signal-dependent
fluctuations. The development of efficient speckle filtering
methods that preserve at best the content of the images is
therefore crucial for many applications, in particular those
requiring the full spatial resolution provided by the instrument.
Many approaches have been proposed in the past three decades
to address this problem. They can be divided into several
groups:

C. Ulondu Mendes and F. Tupin are with LTCI, Télécom Paris, Institut
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Local filtering: These methods aim to attenuate the fluctua-
tions at each pixel by combining the information within
a small neighbourhood. Examples are the Lee filters [3],
the Kuan filters [4], or the simplest one, the boxcar filter,
which consists in a simple moving average.

Patch-based techniques: The target pixel is still denoised by
combining the values of pixels contained within a neigh-
borhood (this time, a much larger neighborhood defined
by the so-called search window is used). The importance
of each pixel of the search window is derived based on
patch similarity. By discarding dissimilar pixels, patch-
based methods perform adaptive smoothing: speckle is
strongly reduced in homogeneous areas while geometrical
and textural structures are preserved [5].

Variational methods: They formulate the restoration prob-
lem as the minimization of a cost function involving a
data fidelity term that accounts for the statistics of speckle
and a regularization term that promotes noise-free images
(for example: smooth images with sharp edges [6]–[9]).

Deep learning: Neural networks with a large number of
parameters are trained in order to learn how speckle
fluctuations can be separated from the content of SAR
scenes [10], [11]. In the case of single-channel SAR
images, many training strategies have been proposed [12]:
(i) supervised learning [13], [14] where pairs of speckle-
free and corrupted images are provided (first, despeckled
images are produced by averaging a long time series of
co-registered images, or by degrading the resolution of
a very high resolution image, then, corrupted versions
of these images are generated with synthetic speckle);
(ii) semi-supervised learning uses pairs of images of the
same area to train the network to predict the second image
with only the first image as input (if speckle is temporally
decorrelated, only the underlying reflectivity is output by
the network provided that adequate change compensation
is performed [15]); (iii) self-supervised learning masks
partially the input image: the central pixel in blind-
spot approaches [16] or either the real or the imaginary
component in MERLIN [17]. Despeckling polarimetric
SAR images with deep learning is much more chal-
lenging than the case of single-channel intensity images:
polarimetric information is represented in the form of
complex-valued covariance matrices. The networks have
to adapt both to the statistics of speckle (involving scene-
dependent correlations between polarimetric channels)
and to the high variability of polarimetric SAR scenes.
Several approaches have been considered to address
these difficulties. Foucher et al. [18] follow an additive
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decomposition of polarimetric SAR covariance matrices
into the speckle-free covariances and two additional
signal-dependent corruption terms. They then derive an
iterative despeckling scheme involving a shallow neural
network to suppress these additive corruptions. Most
other approaches use a matrix logarithm transform to turn
the speckle into an almost signal-independent additive
component. This component is then suppressed thanks
to an iterative processing [19] or in a single-step with
a network involving only real-valued operations [20],
or complex-valued processing [21]. Another direction
consists of using a neural network to compute the relative
weights of pixels in the final estimation. This can be seen
as an extension of pixel-selection methods introduced by
the seminal works of Lee [22], [23] and later particularly
developed by patch-based approaches. First introduced
to despeckle intensity images [24], this idea has been
recently extended to polarimetric SAR images [25].

The Plug-and-Play framework (PnP) [26], [27] can be seen
as a bridge between variational methods and the other classes,
as it allows Gaussian denoisers of any form to be included
within an iterative minimization algorithm derived from the
statistical model of speckle.

Many of the proposed speckle removal methods perform
poorly when applied to real SAR images because they assume
that the speckle is spatially independent, while in practice it
is spatially correlated. Preprocessing steps that decorrelate the
speckle either modify the appearance of the SAR scene (side-
lobes of the bright targets) or degrades the spatial resolution
(by subsampling) [28]. Rather than whitening speckle [29],
[30], it is preferable to design restoration methods that are
robust to the spatial correlations of speckle to preserve the
spectral apodization and sampling of the original SAR im-
ages. Only few despeckling methods are robust to speckle
correlations. In single-channel despeckling, training a neural
network to process images with spatially correlated speckle
provides robustness to these correlations. For multi-channel
SAR images such as in PolSAR, robustness to spatially cor-
related speckle has not been addressed yet by deep-learning-
based methods. To the best of our knowledge, the only type
of methods that can be applied to PolSAR images without a
preprocessing step to reduce speckle correlations is the non-
local methods [31]. The goal of this paper is to propose
a despeckling framework for monochannel and multichannel
SAR images that is robust to spatial correlation through
the joint exploitation of statistical models and deep neural
networks. Our main contributions are summarized as follows:

1) we provide a despeckling framework robust to the spatial
correlations of speckle observed for a range of sensors,
without requiring a decorrelating preprocessing step;

2) we enable to handle single-channel (intensity) or multi-
channel (polarimetric and/or interferometric) SAR images
from various sensors with a single neural network (no re-
training necessary);

3) when a temporal stack of images is available, we enable
to perform a multi-temporal polarimetric filtering based
on the ratio with a virtually speckle-free ”super-image”

(extension of our preliminary work on multi-temporal
polarimetric filtering presented at IGARSS [32]);

4) We make the source code available for reproducible
research.

II. IMPROVEMENT OF MULOG’S ROBUSTNESS TO
SPATIALLY CORRELATED SPECKLE

Our method builds on the generic despeckling method
MuLoG [27], [33]. In the following paragraphs, we first recall
the statistical model of speckle and the main steps of MuLoG,
then we describe how we modified the Gaussian denoiser at the
core of MuLoG in order to improve the robustness to spatial
correlations.

A. Statistical model of multi-channel SAR images

An important step in the development of a variational
filtering method is the selection of an adequate statistical
model. A widely used model to describe speckle in SAR
images is the Goodman model [34] in which the diffusion
vector k ∈ Cd at a given pixel of a d-channel SAR image
follows a d-variate complex circular Gaussian distribution
Nc(Σ) defined by the probability density function (PDF):

p(k|Σ) =
1

πd|Σ|
exp

(
−k∗Σ−1k

)
(1)

where ∗ refers to the Hermitian transpose and |Σ| denotes
the determinant of matrix Σ. This PDF is fully characterized
by the covariance matrix Σ = E[kk∗] ∈ Cd×d, a Hermitian
positive definite matrix that contains all the polarimetric and/or
interferometric information of interest. It is common practice
to pre-estimate Σ by computing the empirical covariance C
over a relatively small neighborhood ω (e.g., a square window
centered on the pixel of interest). In the absence of spatial
correlations of speckle, the number of pixels L in ω defines the
number of looks (the number of independent looks is strictly
smaller in the case of correlations). The empirical covariance
C follows a Wishart distribution [35] parameterized by Σ and
L: C ∼ W(Σ;L), and its PDF is well-defined when L ≥ d:

pC(C|Σ) =
LdL|C|L−d

Γd(L)|Σ|L
exp(−Ltr(Σ−1C)) (2)

where Γd(L) = πd(d−1)/2
d∏

l=1

Γ(L− l+1) and Γ is the gamma

function.
In this paper, we focus on polarimetric SAR imagery

(PolSAR), i.e. the case where d = 3, yet our method can
readily be applied to interferometric (InSAR or PolInSAR)
images.

Although widely used, the Goodman model of eq. (1) does
not account for the transfer function of the SAR system. Most
radar image providers apply spectral apodization and oversam-
pling to reduce the sidelobes of strong scatterers and adjust
the pixel size (see figure 1), resulting in images corrupted
by spatially correlated speckle noise. Spatial correlation of
the speckle leads to severe artifacts with most despeckling
algorithms unless a proper preprocessing step is applied [28].
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Figure 1: Generative model of SAR images.

B. Brief recall of the MuLoG framework

The MuLoG framework corresponds to the extension to
the multi-channel case of the variational approach MIDAL
(Multiplicative Image Denoising by Augmented Lagrangian)
[7] and the application of the Plug-and-Play (PnP) approach.
MIDAL was introduced to estimate, in the logarithmic domain,
the underlying reflectivity of a scene from the L-look intensity
image. The authors of [7] highlight three benefits of this
domain change. Firstly, taking the logarithm of the intensity
transforms the multiplicative nature of the speckle into an
additive fluctuation with constant variance; secondly, it facili-
tates the resolution of the optimization problem derived from
the MAP formulation by removing the positivity constraint
under the multiplicative model; and finally, it makes the data
fidelity term convex. MuLoG builds on these advantages to
denoise PolSAR images which are much more challenging due
to the complex relationships binding the different terms of the
covariance matrices that must be preserved during the filtering
process. Rather than defining an explicit regularization term, it
adopts a PnP strategy: it includes a denoising step performed
by an off-the-shelf denoiser suitable to remove additive white
Gaussian noise in images. It can benefit readily from the
continuing progress of research on Gaussian denoisers.

Let C be the speckled version of an n-pixels image of
covariance matrices Σ ∈ Cn×d×d, where d is the number
of channels (d = 3 in monostatic polarimetry). If the input
data are available in the form of SLC diffusion vectors k,
full-rank covariance matrices C with a controlled condition
number can be formed by modifying the eigenvalues of the
rank-one matrices kk∗ (see Algorithm 5 and Sec. 4.2 in [33]),
without altering the spatial resolution. The main steps to filter
the image C with the MuLoG filtering framework are the
following [27], [33]:

1) at each pixel i, the matrix logarithm of the covariance ma-
trix Ci is computed, leading to an image C̃ ∈ Cn×d×d.

2) the d2 real-valued degrees of freedom of these log-
transformed covariance matrices are extracted and
whitened, leading to y ∈ Rn×d2

.
3) the maximum a posteriori estimator associated with the

filtering of y is given by:

x̂ ∈ argmin
x∈Rn×d2

− log(py(y|x))− log(px(x))︸ ︷︷ ︸
R(x)

(3)

Solving this problem with the alternating directions
method of multipliers (ADMM) consists of iterating the
following steps:

ẑi ← argmin
zi∈Rn

β

2
∥zi − x̂i + m̂i∥2 +Ri(z

i)

for each real-valued channel i from 1 to d2, (4)
m̂← m̂+ ẑ− x̂ (5)

(Lagrange multipliers update)

x̂← argmin
x∈Rn×d2

β

2
∥x− ẑ− m̂∥2 − log(py(y|x)) . (6)

The PnP strategy consists of replacing the equation (4) by
the application of a Gaussian denoiser Dσ , corresponding
to an implicit regularization:

∀i ∈ [[1, d2]], ẑi = Dσ(x̂
i − m̂i) (7)

where σ = 1√
β

controls the filtering strength.
4) At the end of the ADMM algorithm, the d2 real-valued

channels of x̂ are recombined into an image of complex
covariance matrices, and a matrix exponential is applied
to obtain the final result Σ̂.

Like MIDAL, MuLoG assumes the independence of speckle
from one pixel to the next and artifacts appear if speckle is
spatially correlated. To suppress these artifacts, we propose in
Sec.II-D to improve the robustness of the Gaussian denoiser
to spatially correlated noise. Before discussing this robustifi-
cation strategy, we present in the next paragraph the Gaussian
denoiser we selected in this work.

C. DRUNet: A versatile architecture for Plug-and-Play strate-
gies

We have considered the DRUNet architecture recently in-
troduced in [36]. The DRUNet architecture, shown in Figure
2, is based on three different network architectures. The
main part takes advantage of two efficient architectures, the
UNet [37], which is presented as a frugal architecture in
terms of training dataset requirements, and the RESNet [38].
DRUNet consists of a contraction (downscaling) followed by
a symmetric expansion (upscaling) and incorporates residual
blocks between the scaling layers. The first layer increases
the number of channels to 64, and is then doubled after each
downsampling operation.

It is well-known that the noise level of the assumed Gaus-
sian noise in PnP strategies can vary from one ieration to the
next. Our choice was mainly motivated by the need for an
architecture that can handle a wide range of noise levels with
a single model. DRUNet verifies this condition by taking as
input a noisy image with an additional channel defining the
noise standard deviation, as initially proposed in the FFDNet
architecture. In addition, DRUNet may achieve better results
thanks to the use of stride convolutions for the contraction
phase instead of max-pooling (followed by a non-strided
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Figure 2: Comparison of UNet and DRUNet architectures.

convolution) [39] (see Figure 2). Stride convolutions apply
the kernel to every element of the input whereas max-pooling
applies it to a subset of the input. Thus, stride convolutions
preserve more spatial information. This increases the receptive
field of neurons in deeper layers of the network. As a result,
the network can learn more complex features.

D. Generation of a training set with spatially-correlated
Gaussian noise

The formation model of mono-channel SAR images il-
lustrated in the figure 1 can be used to simulate spatially
correlated speckle fields in accordance with the characteristics
of a given radar sensor. Speckle is a multiplicative noise: in
a fully developed speckle area, the complex amplitude of the
scene can be written as the product of the scene’s amplitude√
r ∈ Rn

+ with the complex speckle field s ∈ Cn:
√
r ⊙ s,

with ⊙ the element-wise product. The transfer function of
the SAR imaging system introduces a spectral apodization
that can be modeled as a 2D convolution product with the
impulse response h, see for example [40]. The intensity
|(
√
r⊙s)∗h|2 of the resulting complex image is the quantity

designated by the term ”radar image” in the right part of
the figure 1. As mentioned in section II-B, the logarithm (or
matrix logarithm, in the case of polarimetric SAR images)
is applied at the first step of the MuLoG algorithm. It has
the effect of making the speckle approximatively additive:
y = log |(

√
r ⊙ s) ∗ h|2 ≈ x+ η where x is the component

describing the radar scene and η is the speckle component
after the log transformation (this decomposition is exact for
an ideal SAR response, i.e., when h corresponds to a Dirac
distribution).

To adapt the Gaussian denoiser, we propose to train it to
remove an additive noise component η ∼ N (0,Cη), spatially
correlated according to the covariance matrix Cη ∈ Rn×n,
instead of a white Gaussian noise η ∼ N (0, σ2Id)

In the case of a homogeneous radar scene with a unitary
reflectivity (r = 1), the log-intensity image y = log |s∗h|2 ≈
η (the approximation stems from the discrepancy between
Fisher-Tippett distribution followed by the log intensities in the
absence of spatial correlations and the Gaussian distribution).
In order to simulate Gaussian noises that are statistically as

close as possible to y, we set Cη = Cov[y] which we estimate
from draws of y obtained from simulated complex speckle
fields s. Since the speckle is spatially stationary (the radar
imaging system is characterized by its transfer function), the
covariance matrix Cη is itself stationary and can be charac-
terized in the frequency domain by the power spectral density
(PSD) Ψη (Cη is diagonalizable by the Fourier transform).
We apply the periodogram method, consisting of averaging
the power spectra of several random draws of log |s ∗ h|2 in
order to estimate a spatial filter g capable of producing the
expected spatial correlations:

g = F−1
[
Ψ̂

1/2

η

]
, with Ψ̂η =

1

K

K∑
k=1

∣∣F{log |sk ∗ h|2}∣∣2
(8)

and where F and F−1 are the direct and inverse Fourier
transforms. Thus, we can draw white noises ϵ ∼ N (0, I)
and turn them into correlated noises η = g ∗ ϵ such that
Cov[η] ≈ Cov[y].

The simulation process described above can also be used
to generate noises for the training of a ”generic” Gaussian
denoiser that would be robust to spatial correlations associated
to various sensors. To achieve this, one can replace Ψη in
equation (8) with a random convex combination of PSDs
linked to different covariance matrices. Figure 3 shows that
such a generic denoiser leads to results that are comparable
to those obtained with a denoiser trained specifically for the
PSD of the sensor.

E. DRUNet training details

In this section, we detail the training process of DRUNet
and show its superiority over the UNet architecture for our
despeckling task through a visual comparison. The training
is performed on noise-free Sentinel-1 images made publicly
available by Dalsasso et al. [14]. Both networks are trained
by minimizing the L1 loss using the ADAM optimizer with
mini-batches of 16 patches of size 128 × 128. We divided
our initial dataset into training and validation datasets, and we
monitored the loss on the validation dataset and performed

1RADARSAT is an official brand of the Canadian Space Agency
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Figure 3: Visual comparison of MuLoG filtering results using DRUNetG trained on a unique spatial correlation and DRUNetG
trained as a generic denoiser: from top to bottom are shown images acquired with RADARSAT-2, RCM 1©Government of
Canada (RADARSAT Constellation Mission) and UAVSAR ©NASA/JPL-Caltech sensors.

an early stopping to avoid overfitting. The training process
for UNet and DRUNet takes about 30 minutes on Pytorch
with an Nvidia Tesla A100 GPU. The results shown in figure
4 correspond to the case of RADARSAT-2 images and they
indicate that DRUNet tends to produce sharper images than
UNet.

III. APPLICATION TO POLARIMETRIC SAR IMAGES

In this section, we compare our approach to existing meth-
ods on simulated and real SLC PolSAR images. The unavail-
ability of network weights for deep-learning-based methods
makes it difficult to compare with these methods. Therefore,
the following methods are considered: the 5× 5 boxcar filter,
the 7 × 7 refined Lee filter [23], and the patch-based filter
NL-SAR [31]. The source code of NL-SAR has been made
publicly available by the authors of the paper and we used
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(a) Initial RADARSAT-2 PolSAR image (b) MuLoG + UNet (c) MuLoG + DRUNet

Figure 4: Filtering results of a single-look RADARSAT-2 polarimetric image with MuLoG. First row: Pauli RGB representation
of covariance matrix images, second row: intensity of the HH channel, last row: close up views of the area delineated by the
red squares.

PolSARpro v6.0 implementation of refined Lee filter.

A. Performance assessment metrics

It has been stated that a good speckle filter method should
have the following characteristics [41]:

1) strong speckle reduction in homogeneous areas;
2) scene feature preservation (texture, edges,. . . );
3) radiometric preservation;
4) absence of artifacts.

To evaluate our method we use the following criteria:

• Equivalent Number of Looks (ENL): it measures the
degree of speckle removal in homogeneous areas and is
defined as:

ENL =
µ2
ÎH

σ2
ÎH

, ÎH = {Îρ, ρ ∈ H} (9)

where H is the set of pixel indices defining a homoge-
neous area in image Î , µ2

ÎH
and σ2

ÎH
are the empirical

mean and the empirical variance of ÎZ , respectively. A
higher value of the ENL indicates a stronger suppression
of speckle.
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Figure 5: Ground truths computed from UAVSAR data ©NASA/JPL-Caltech. The colored boxes mark the regions where some
of the metrics are computed: the green box indicated by the green arrow in the first image for co-pol and cross-pol, and the
red boxes in the last image for ENL.

proposed
Metric Boxcar Refined Lee NL-SAR MuLoG+DRUNetS MuLoG+DRUNetG

MSSIM ↑1 0.814±0.0003 0.810±0.01 0.857±0.0005 0.860±0.0007 0.857±0.0009
GSIM ↓0 0.169±0.0002 0.174±0.009 0.165±0.0004 0.122±0.0002 0.123±0.0003

ENL ↑ 12.0 15.13 25.7 146.1 291.8

Table I: Quantitative evaluation of despeckling methods on images with simulated speckle (best performances are indicated in
bold).

• Mean Structural Similarity Index Measure(MSSIM) [42]:
this parameter is given by:

MSSIM(I, Î) =
1

n

n∑
k=1

SSIM(Ik, Îk) (10)

with,

SSIM(Ik, Îk) =
(2µIkµÎk

+ κ1)(2σIk Îk + κ2)

(µ2
Ik

+ µ2
Îk

+ κ1)(σ2
Ik

+ σ2
Îk

+ κ2)

(11)

where n is the number of pixel of I , κ1 and κ2 are
constants and µIk , σIk Îk , and σ2

Ik
are the empirical

expectation, covariance, and variance, respectively, com-
puted locally around pixel k. This criterion takes values
between −1 and 1 which are the worst and best values,
respectively.

• Global SIMilarity (GSIM) [43]: the global similarity of
two N-pixels multichannel SAR images Σ, Σ̂ ∈ Cn×d×d

is defined as

GSIM(Σ, Σ̂) =
1

nd2

n∑
k=1

∥ log(Σk)− log(Σ̂k)∥F (12)

where ∥ · · · ∥F corresponds to the Frobenius norm and log
is the matrix logarithm. A lower value of this criterion
indicates a higher degree of similarity.

• The Cloude-Pottier polarimetric decomposition parame-
ters (entropy H, anisotropy A, and angle α) [44], [45]:
they have been shown to be well-adapted for covariance
matrix classification and thus can be used to indicate
if covariance matrices within the same class are less
scattered in the H-A-α space thanks to the speckle
filtering.

• The polarimetric signatures (co-pol and cross-pol) [45]–
[47]: the polarimetric signature P ∈ R+ of a target
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represented by the covariance matrix Ck ∈ Cd×d at a
pixel k allows to visualize the response of the target
under different settings (polarization of the waves, relative
position of the target to the illumination source, . . . ). It
is defined as follows:

P = (1 cos(2ϕi)cos(2ψi) cos(2ϕi)sin(2ψi) sin(2ϕi))
×K×
(1 cos(2ϕj)cos(2ψj) cos(2ϕj)sin(2ψj) sin(2ϕj))t

(13)

where K is the Kennaugh matrix [48] associated to Ck,
the pairs (ϕi, ψi), and (ϕj , ψj) of orientation angle ψ ∈
[−π

2 ,
π
2 ] and ellipticity angle ϕ ∈ [−π

4 ,
π
4 ] correspond

respectively to the parameters describing the polarization
state of the incident and backscattered waves. There
is an infinity of possible signatures but the most used
in despeckling quality assessment are the co-pol which
corresponds to the case where the polarization is invariant
in emission and reception i.e ϕj = ϕi and ψj = ψi, and
the cross-pol which corresponds to the case where the
polarization in emission and reception are orthogonal i.e
ϕj = −ϕi and ψj = ψi +

π
2 .

The first two criteria of our list are defined for intensity
images, we extend them to PolSAR images by averaging their
values over the three intensity images corresponding to the
diagonal values of the covariance matrices.

B. Results on simulated data

The experiences in this section have been conducted con-
sidering the spatial correlation associated to RADARSAT-2
high-resolution images (12 × 12 meters). The ground truths
were obtained by applying a 7×15 multi-looking followed by
downsampling to a UAVSAR noisy SLC PolSAR image with
1.8× 0.8 meters pixels (respectively in the range and azimuth
directions). This multilooking produced almost speckle-free
PolSAR images (an equivalent number of looks equal to 22
has been estimated on these images) with a spatial resolution
close to RADARSAT-2 images, as can be seen in figure
5 representing five 400 × 400 images with a variety of
areas including water, fields, mountains, forests, and human
constructions.

For each of the five images represented in figure 5, we
simulated 10 independent speckled SLC versions with the
following procedure. Starting from the ground truth PolSAR
image of covariance matrices Σ ∈ Cn×3×3, we perform the
pixel-wise Cholesky decomposition: at each pixel i, we find
the unique lower triangular matrix with real positive diagonal
elements matrix Ai such that Σi = AiAi

∗. Diffusion vectors
ki ∼ Nc(Σi) distributed according to equation (1) can then
be obtained by drawing standard circular Gaussian random
vectors ϵ ∼ Nc(I) and multiplying them with matrix Ai:
ki = Aiϵ. The SAR transfer function can then be applied
to each channel of the simulated complex-valued SLC images
k, according to the model discussed in Section II-D.

Table I shows the results of the quantitative comparison of
the proposed method with the Boxcar filter, the Refined Lee
filter, and NL-SAR on the simulated data using the first five

proposed
Refined Lee NL-SAR MuLoG+DRUNetG
1⃝ 2⃝ 3⃝ 1⃝ 2⃝ 3⃝ 1⃝ 2⃝ 3⃝

ENL 7.04 7.71 8 9.19 26.53 14 22.90 62.57 84

Table II: Equivalent number of looks (ENL) reached by
reference methods and the proposed polarimetric restoration
technique on 3 high-resolution airborne PolSAR images: 1⃝ E-
SAR image from the DLR, 2⃝ F-SAR image from the DLR,
3⃝ SETHI image from the ONERA.

metrics of the above list. It represents the global mean of the
obtained results and the mean of the corresponding standard
deviations computed separately for each ground truth. As it can
be seen our method outperforms the others (the results used
for this analysis can be viewed in a pdf file shared with the
code). The co-pol and cross-pol signatures shown in figure 6
also indicate that the proposed method restores polarimetric
properties close to the reference signatures. Values of the
ENL are large (>100) with our method, which indicates a
strong smoothing in the output images. Only the order of
magnitude of the ENL should be compared since the sole
maximization of the ENL is not recommended as it captures
both positive effects (speckle suppression) and negative effects
(over-smoothing and loss of texture/details).

C. Results on real data

In this section, we present visual and quantitative results
on three real mono-look polarimetric SAR images captured
by different high-resolution remote sensing sensors: ESAR
(DLR), FSAR (DLR), and SETHI (ONERA). The spatial
dimensions of the images are 512 × 512, 1014 × 1014, and
1024× 1024 pixels, respectively.

The despeckled images presented in figure 7 show that
speckle fluctuations are reduced by all filtering techniques
and that the proposed method performs a stronger smoothing
of homogeneous areas while preserving geometrical details.
Finally, in the figure 8 representing 3D scattergrams of
the Cloude-Pottier polarimetric decomposition parameters for
three distinct homogenous areas of the ESAR image, we can
observe that, as expected from a despeckling method, the
distribution of the parameters for the despeckled images 8(b-d)
is much more clustered than for the speckled image 8(a). The
clusters are even more separable with our method, indicating
a performance compared to NL-SAR or the refined Lee filter.

We describe in the next section how our robust polarimetric
despeckling algorithm MuLoG+DRUNet can also be included
into a multi-temporal filtering framework.

IV. EXTENSION TO MULTI-TEMPORAL POLARIMETRIC
IMAGES: RABASAR-POLAR

Several constellations of satellites such as RCM, TerraSAR-
X, Sentinel-1 give access to long time series of polarimetric
images. The increasing availability of these time series has
encouraged the development of methods that take advantage
of the temporal redundancy to improve the speckle filtering.
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(a) Original (b) Boxcar (c) Refined Lee (d) NLSAR (e)
MuLoG+DRUNetS

(f)
MuLoG+DRUNetG

Figure 6: Co-pol (first row) and cross-pol (second) computed from the average covariance matrix of the 3× 3 area of the first
image in figure 5 mark by a green box.

(a) Initial images (b) Refined Lee (c) NLSAR (d) MuLoG+DRUNetG

Figure 7: Filtering results of high-resolution PolSAR images acquired by E-SAR ©DLR, F-SAR ©DLR and SETHI ©ONERA
sensors. The colored boxes in the left column images show the boundaries of the regions where the metrics are computed:
white for ENL and the others for the Cloude-Pottier polarimetric decomposition.

In the following sections, we recall briefly the multi-temporal mono-channel SAR filter RABASAR [49] and present its
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Figure 8: 3D scattergram of the Cloude-Pottier polarimetric decomposition parameters for the three homogeneous regions in
the E-SAR image indicated by the red, green and blue boxes.

extension to polarimetric data.

A. Ratio-based filtering: RABASAR

The RABASAR method has been proposed to filter intensity
SAR images. It exploits a time series of intensity SAR images
of the same area to filter an image. It can be divided into the
following three main steps, illustrated on Figure 9:

• The first step consists in summarizing the geometrical
information in the time series into an image called the
”super-image” due to its very low speckle level. This
summary image is a first estimate of the reflectivity of
the image to be filtered. The simplest way to compute
the super-image is to take the mean of all the elements of
the time series which is a good estimator when there are
no strong changes in the scene over time. Other formulas
to account for changes in the scene have been proposed
and studied in [49], [50].

• The second step is to form a ratio image, by computing
a pixel-by-pixel division of the noisy image to be filtered
by the ”super-image”. The resulting image contains fewer
structures than the original noisy image and is, therefore,
easier to denoise because there is less risk of removing
useful information. This ratio image can be filtered using
the MuLoG algorithm.

• In the last step, the final estimation is obtained by re-
multiplying the filtered ratio with the ”super-image”.

It has been shown in [49] that the RABASAR method
leads to a good filtering level and better structure preservation
than state-of-the-art multi-temporal denoising methods such
as 2SPPB [51] and MSAR-BM3D [52]. The same level of
performance is expected from its extension to polarimetric
images. As usual, dealing with polarimetric data is more
challenging. Indeed, the transition from the mono-channel
case is not straightforward due to the special properties of
covariance matrices. To generalize RABASAR to PolSAR
images the definition of the ratio image needs to be adapted.
Suitable definitions of the ratio between a polarimetric noisy
image C and the super-image Σ̂super are such that the ratio
matrix Ri at pixel i is distributed according to W(I) when
Ci ∼ W(Σ̂super

i ), i.e., it follows a white speckle noise in
the absence of change with respect to the ”super-image”. Let

Σ̂super
i = AiA

∗
i be a matrix factorization (this factorization

is not unique). Then A−1
i CiA

∗
i
−1 is distributed according to

W(I) provided that Ci ∼ W(Σ̂super
i ).

Proof. Let {kℓ}ℓ=1..L be L random vectors independently
and identically distributed according to a circular com-
plex Gaussian distribution with unit covariance matrix
Nc(I). The vectors {Aikℓ}ℓ=1..L then follow the distribu-
tion Nc(AiA

∗
i ), i.e., Nc(Σ̂

super
i ). The empirical covariance

Ci = 1
L

∑L
ℓ=1(Aikℓ)(Aikℓ)

∗ thus follows the Wishart
distribution W(Σ̂super

i ). The corresponding ratio matrix
Ri ≡ A−1

i CiA
∗
i
−1 = 1

L

∑L
ℓ=1 A

∗
i (Aikℓ)(Aikℓ)

∗A∗
i
−1 =

1
L

∑L
ℓ=1 kℓk

∗
ℓ then follows the Wishart distributionW(I).

Satisfactory factorizations include the Cholesky factoriza-
tion (where matrix Ai is triangular with a positive diagonal)
and the square root. The square root factorization has been
used in all our experiments.

The proposed ratio-based polarimetric filtering is:

Ĉ = AD
{
A−1CA∗ −1

}
A∗, (14)

where D{} denotes the polarimetric despeckling operation,
typically performed by MuLoG with our Gaussian denoiser
robust to spatially-correlated speckle, and matrix products
are applied at each pixel of the images (A ∈ Cn×d×d,
C ∈ Cn×d×d, and Ĉ ∈ Cn×d×d are fields of matrices, only
the despeckling operation D{} is applied spatially, the other
operations being performed pixelwise).

B. Experiments

In this section, we present the qualitative and quantitative
results of RABASAR’s extension to PolSAR images.

We considered a temporal stack of 17 PolSAR images
that were acquired by the RADARSAT-2 sensor in a 9
months period. The performance of MuLoG embedded with
the ”generic” Gaussian denoiser is visually compared with
the performance of RABASAR applied to the downsampled
dataset, and RABASAR applied to the original dataset using
MuLoG embedded with BMD3 and the ”generic” denoiser,
respectively. The results are shown in the figure 10. Although
RABASAR allows to retrieve more structures, thanks to their
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Figure 9: Scheme of the main steps of ratio-based filtering for polarimetric SAR images.

storage in the super-image (mostly temporally stable struc-
tures), the figure 10c illustrates the loss of information caused
by the downsampling process. The use of our approach in the
RABASAR method helps to obtain very detailed restorations
10d containing the structures specific to the image being
denoised as well as the temporally stable structures which
are not retrieved in the mono-date case 10b. To further
illustrate the improvement in restoration quality offered by
the RABASAR framework compared to the mono-date case,
attention is directed towards a small area containing a fine
structure barely visible in the noisy image in figure 11. Using
a mask computed on the image restored with RABASAR, a
ratio between the average intensity of the homogeneous area
below the structure and the average intensity in the structure
is computed on the HV-intensity images from the noisy
PolSAR image, and the results obtained in mono-date and
multi-temporal configurations. The results, indicated within
the legend of the respective images in 11, show that the ratio
is better preserved with RABASAR.

V. CONCLUSION

Due to the difficulty of handling complex-valued covariance
matrices, the literature on polarimetric SAR image despeckling
is much less extended than for intensity SAR images. By
performing a matrix-logarithm and decomposition into real-
valued channels that can be denoised independently, MuLoG
simplifies this problem. Yet, the statistical model of speckle
used as starting point to derive the MuLoG algorithm ignores
spatial correlations of speckle that are present in actual SAR
images. In this paper, we proposed a solution to this problem
that exploits the learning capabilities of deep-learning models
in the PnP approach adopted in MuLoG. We proposed to
train a deep-learning-based Gaussian denoiser to be robust
to spatial correlations. We have shown that it is possible

to improve the robustness of our despeckling method to the
spatial correlations of a range of sensors with a single neural
network. Our approach leads to a versatile method for multi-
channel SAR image despeckling. From a practical point of
view, it simplifies the training problem of deep neural net-
works for PolSAR imagery which is reduced to mono-channel
filtering (simplifying the constitution of the training set). The
downside of this simplified single-channel processing step is
the requirement to perform several iterations to produce a
despeckled image (T ×d2 single-channel denoising operations
for T steps of the ADMM loop on d-channel SAR images, see
table III). Despeckling techniques based on a single pass in
a feed-forward network can be typically T times faster, but
are harder to train and can not readily handle SAR images
with different number of channels, e.g. InSAR or PolInSAR.
We hope that, by providing the code and network weights
of our one-network-fits-all MuLoG approach, deep-learning-
based polarimetric despeckling will be more routinely applied
in a wide range of applications of SAR imaging.
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