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Abstract—Analog-to-Feature (A2F) conversion based on Non-
Uniform Wavelet Sampling (NUWS) has demonstrated the ability
to drastically reduce the energy consumption in wireless sensors
while employed for electrocardiogram (ECG) anomaly detection.
The underlying idea is to extract relevant features from the
analog signal and perform the classification in the digital domain.
We adopt the same approach for a human activity recognition
(HAR) task, considered as a second application for a proposed
generic A2F converter. By extracting only 16 features from the
inertial signals of the UCI-HAR data set and using these features
as inputs for a simple Neural Network, we achieved an 87.7%
accuracy in multiclass classification. From the simulation results,
we defined the relevant features and the hardware specifications
required for a complete circuit design and chip fabrication.

Index Terms—Analog-to-Feature converter, Smart sensors,
Non-Uniform Wavelet Sampling, Human activity recognition.

I. INTRODUCTION

Increasing wireless smart sensors’ autonomy is one of
the most challenging and necessary tasks in the context of
new Internet of Things (IoT) and Wireless Sensor Networks
(WSN) applications. The energy used to transmit samples
acquired at the Nyquist rate constitutes a significant part
of the sensor’s total consumption budget. Hence, it reveals
crucial to reduce the amount of data sent from the sensor
to the aggregator. For this purpose, a compressive sensing
(CS) technique for Analog-to-Information (A2I) conversion
has been proposed [1]. However, it has a limited compression
ratio and needs to perform a full signal reconstruction, which
is useless in specific applications and requires complex sparse
recovery algorithms [2]. In contrast, Analog-to-Feature (A2F)
conversion further reduces the amount of transmitted data by
extracting only useful features from the analog signal [3] and
using them as inputs for Machine Learning (ML) algorithms
for further classification at the sensor or aggregator level.

This work aims to design a generic, reconfigurable A2F
converter for various low-frequency signals. A2F conversion
based on Non-Uniform Wavelet Sampling (NUWS) [4] has
already been proposed for binary arrhythmia detection in ECG
signals in [5], showing benefits over the A2I approach and
conventional sampling in terms of energy consumption. Herein
we adopt arrhythmia detection as the first application and
use the same methodology to build a classification model.
The ML algorithms were reimplemented using Python and
TensorFlow library instead of MATLAB® tools, allowing for
more efficient ML models, especially Neural Networks (NNs),
and accelerated calculations on graphics processing units.

With the intensive development of IoT, the widespread
edge devices equipped with inertial sensors have provided
researchers with collections of raw physiological signals for
analyzing simple or complex human activities [6]. Human
activity recognition (HAR) based on this data has recently
gained a strong research interest due to a rapidly increasing de-
mand for various human-centric applications, including health
monitoring, sports tracking, smart homes, and human-machine
interaction [7], [8]. Traditional ML approaches, i.e., decision
trees [9], [10] and support vector machines [11], have already
achieved impressive results (more than 94% of accuracy) in
HAR. Nevertheless, deep learning techniques [12], especially
convolutional neural network (CNN) models, avoiding hand-
crafted feature extraction [13], [14], have become dominant in
this field. Being a typical pattern recognition task, HAR is well
suited as a second application to demonstrate the genericity of
the proposed A2F converter, which extracts only a few useful
features to reduce the amount of transmitted data, thus making
the use of CNN redundant. With the help of HAR simulation
results and those of ECG arrhythmia detection, we will define
the relevant features for extraction and the system’s parameters
necessary for the complete circuit design and chip fabrication.

The main contributions of this paper are: (1) HAR simula-
tions for the generic A2F converter with NUWS-based feature
extraction, (2) determination of the relevant features and the
hardware specifications for the converter’s implementation.

The rest of the paper is organized as follows. In section II,
we briefly introduce the architecture of the proposed A2F
converter, the details of NUWS-based feature extraction, and
the 2-stage feature selection. Section III presents a setup and
simulation results of ECG arrhythmia detection and HAR.
Section IV deduces the specifications required for a complete
A2F converter’s circuit design from the simulation results.
Finally, we summarize our conclusions in section V.

II. ANALOG-TO-FEATURE CONVERSION

The architecture of the proposed acquisition system con-
taining the generic and reconfigurable A2F converter [15] is
shown in Fig. 1. It performs the following operations:

• extraction of NUWS-based analog domain features [4]
• analog-to-digital conversion of extracted features
• application-specific binary or multiclass classification
• context detection, which activates the required feature ex-

tractors and configures their internal wavelet generators,
depending on the application or desired precision.
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Fig. 1. Architecture of the acquisition system with the reconfigurable A2F
NUWS-based converter

For the extraction of NUWS-based features, the analog sig-
nal is mixed with tunable wavelets (WLs) and then integrated
within the analysis window. Figure 2 illustrates the examples
of Haar and Gabor WLs, the two families of WLs used in
this work. Haar WLs represent the square functions taking
values ±1 and 0, while Gabor WLs are the product of a
complex exponential with a Gaussian window. One of the
main advantages of the NUWS is that it allows for obtaining
temporal and frequency information of the input signal simul-
taneously. It provides several degrees of freedom during a WL
generation: its oscillation frequency, support size, and temporal
position in the analysis window. Thus, the number of possible
WLs, i.e., features, is enormous, which makes a proper feature
selection process necessary to determine a reduced set of
relevant features required for a given classification task.

Following the adopted methodology [5], a combination of
two feature selection algorithms is applied during simulations.
Firstly, only the 100 best features are chosen according to
the Information Gain (IG) criterion without building an ML
model. It considerably reduces the time to perform the follow-
ing selection step, Sequential Forward Search (SFS), which
scales quadratically with the number of features. It evaluates
the classification performances of NN classifiers built with
different subsets of these features as inputs. The features
leading to the highest value of a classification metric are
gradually added to the set, which is initially empty. A new
NN classifier is trained and evaluated for each new subset.

The basic SFS algorithm, maximizing the classification
accuracy, can be modified to account for the A2F converter’s
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Fig. 2. Examples of Haar and Gabor wavelets

hardware complexity and power consumption. First of all, as
each extractor is capable of extracting multiple features that do
not superpose in the analysis window (e.g., produced by two
Haar WLs from Fig. 2), it is possible to limit the maximum
number of parallel extractors. The resulting algorithm is called
the adapted SFS. The optimized SFS algorithm, in addition to
this, takes into account the energetic cost during the extraction
of each feature to minimize the total energy consumption while
maximizing the classification accuracy.

III. SIMULATION RESULTS

A. Arrhythmia detection

Thanks to more advanced software used, the reproduced
simulation results of binary arrhythmia detection in ECG
signals are slightly better than those shown in [5]. The opti-
mized SFS algorithm limited to three parallel feature extractors
achieves a 98.17% classification accuracy with eight extracted
features and 2.6 µJ energy consumption, whereas 3.35 µJ were
previously required to extract 10 features for a 98% accuracy.
The setup details for these simulations are given in Table I.
As indicated, only Haar WLs are used, reducing the digital
WL generator’s complexity and allowing the deployment of
a simple mixer, with negligible loss in classification accuracy
in contrast to Gabor WLs. These similar results validate the
new simulator that can be used for a second application of the
proposed A2F converter in the form of HAR.

B. Human activity recognition

In contrast to arrhythmia detection, HAR has been explored
for both multiclass and binary classifications of Activities of
Daily Living (ADL). Also, as shown in Table I, the NUWS
exploited Haar and complex-valued Gabor WLs.

Since static activities (sitting, standing, and laying) are rep-
resented by constant values of acceleration and angular veloc-
ity, the integration of such signals with any WLs (zero average
functions by definition) results in zero. Thus, a ”constant”
WL, equal to one in the whole analysis window, has been
added to the Haar WL dictionary. Otherwise, the confusion
between static activities is significant, abruptly reducing the
overall classification accuracy. Moreover, this ”constant” WL
does not require the use of the WL generator, as the feature
produced by it results from a raw signal integration, which
gives a value proportional to a signal’s average.

1) Multiclass classification: The performances of multi-
class HAR with basic SFS are shown in Fig. 3. The ac-
curacy is plotted against the number of selected features.
The simulations for Haar WLs have been conducted with
three simple structures of NN classifier: one hidden layer
of 10 neurons, two layers of 10 neurons, and one layer
of 20 neurons. Then the best classifier’s structure has also
been tested with Gabor WLs, which require more complex
hardware for generation and usually outperform Haar WLs
but provide a significantly lower classification accuracy here.
The preferable configuration (Haar WLs, NN classifier with
one hidden layer of 20 neurons) achieves 88.1% accuracy
with 17 features extracted by 10 extractors. Performing the



TABLE I
SETUP FOR SIMULATIONS

Arrhythmia detection HAR

Database (signals) MIT-BIH Arrhythmia [16] (single channel from
48 ECG recordings of 30min each, sampled at 360Hz)

UCI-HAR [17] (3-axial acceleration and angular velocity
signals from a waist-mounted smartphone, sampled at 50Hz)

Classes 2 (normal, abnormal) 6 (walking, upstairs, downstairs, sitting, standing and laying)
Type of features NUWS with Haar WLs NUWS with Haar or Gabor WLs (generated for all 6 signals)
Feature selection IG + SFS (optimized) IG + SFS (basic, adapted)
Type of learning supervised learning with a 70/30% proportion between learning and test sets

Analysis window 256 samples of one annotated heartbeat segment
(R-peak located at 100th sample) => 0.711 s

128 samples of one annotated ADL segment
(50% overlap with adjacent segments) => 2.56 s

Classifier NN binary classifier (1 hidden layer of 10 neurons,
Adam optimizer) trained during 1500 epochs

NN binary or multiclass classifier (1 or 2 hidden layers of
10 or 20 neurons, Adam optimizer) trained during 1500 epochs

multiclass HAR for the same configuration with adapted SFS
(limit of parallel extractors) leads to the results given in Fig. 4
for four different values of a maximum number of extractors
nExtmax. For each curve, the square marker shows the point
when the maximum number of extractors is reached. As seen,
the curve with nExtmax = 10 attains lower accuracy (87.8%
with 15 features) than basic SFS with the same number of
extractors in the trade-off point mentioned above. This is
caused by a random initialization of parameters during a NN
classifier’s training, affecting each evaluated feature subset’s
performance and subsequent choice of the relevant features.
Moreover, the converter with the number of extractors reduced
to eight achieves a slightly lower classification accuracy of
87.7% (round marker) by extracting 16 features. An analysis
of the selected features showed that among all six available
signals, only two axes of acceleration and one axis of angular
velocity are needed to produce the WLs required in this case.
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Fig. 3. Performances of multiclass HAR with basic SFS
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Fig. 4. Performances of multiclass HAR with adapted SFS

2) One-vs-all binary classification: The Matthews correla-
tion coefficient (MCC) is known to be more informative than
the accuracy in evaluating binary classification problems [18].
The reason is that MCC takes into account the size of the
four categories of the confusion matrix (true positives TP ,
true negatives TN , false positives FP , false negatives FN )
and is given by:

MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

(1)

This advantage is especially prominent in the case of
imbalanced data sets. This condition is particularly true for
one-vs-all binary classification performed here with the UCI-
HAR data. Occurrences of each class in this data set are almost
equal, making it balanced only for the multiclass classification.

The performances of binary HAR with adapted SFS are
depicted in Fig. 5, where the same configuration with Haar
WLs and one hidden layer of 20 neurons has been used.
Different values of a maximum number of parallel extractors
nExtmax have been considered, but only the best cases for
each classification are shown. Curve markers indicate the
trade-off points between the achieved MCC values and the
number of required features. Laying activity is not shown in
Fig. 5 as it is distinguished perfectly from other activities with
the help of only one feature produced by the ”constant” WL
and the acceleration along the x-axis.

Table II summarizes the best trade-off points from binary
and multiclass HAR simulation results. As the relevant fea-
tures in certain classifications include those produced by the
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TABLE II
SUMMARY OF HAR SIMULATIONS

Classification LAY vs ALL SIT vs ALL STD vs ALL WALK vs ALL UP vs ALL DOWN vs ALL Multiclass
N° of features 1 5 11 14 12 15 16
Metric (MCC/Accuracy∗) 1.0 0.822 0.804 0.867 0.861 0.804 0.877∗

N° of extractors 1 4 5 5 8 7 8
N° of WL generators 0 2 4 4 7 7 6

TABLE III
COMPARISON OF MULTICLASS HAR PERFORMANCES

Model Accuracy Input size Parameters
CNN [14] 96.98% 1152

(9x128:
3 axes for

-acceleration,
-ang. velocity,
-acceleration
w/o gravit.
component)

0.342M
CNN [19] 97.21% 0.45M
CNN [20] 96.98% 0.35M
CNN [21] 91.67% 0.424M

CNN-LSTM [21] 94.48% 3.5M
vLSTM [21] 90.80% 0.084M
sLSTM [21] 91.82% 0.61M

BiLSTM [21] 93.91% 0.168M
iSPLInception [21] 95.09% 1.33M

This work:
Feedforward NN
(1 hidden layer
of 20 neurons)

87.72%
16 (features

from 3 signals:
accx, accy , gyrz)

466

”constant” WL, the number of WL generators is less than the
number of required feature extractors. The multiclass HAR
classification is preferred over its binary counterpart because
it is more common in the HAR domain and completes the
distinction of all activities with one NN and fewer features,
extractors, and WL generators. In contrast, to distinguish all
six activities from each other in a binary way, six different
NNs with 58 features in total would be required.

Table III compares the performances of the different models
from the literature with the results we obtained for the multi-
class HAR on the UCI-HAR data set. Although our classifier
provides a lower accuracy, it requires at least hundreds of times
fewer parameters and a much smaller input size. Such a simple
artificial NN with a digital architecture can be implemented at
a sensor level to reduce further the sensor’s consumption by
sending only the classification results. Moreover, memristors-
based analog, reconfigurable NN [22] will allow digitizing
only the classifier’s decision and also being able to adapt to
the application or context.

IV. SPECIFICATIONS FOR A HARDWARE IMPLEMENTATION

Based on the obtained results, for the A2F converter to be
suitable for both applications, it should consist of eight parallel
extractors: three are enough for ECG arrhythmia detection, and
all eight are needed for multiclass HAR (two of them without
a WL generator). The configuration of WLs will be stored in
memory blocks of digital WL generators, which also have to
provide a programmable clock signal with databases’ sampling
frequencies (50Hz or 360Hz).

Using Haar WLs reduces the digital WL generator’s com-
plexity and simplifies a mixer’s schematic to four CMOS trans-
mission gates in the case of the differential amplification stage.
To process at least two types of signals, the amplification stage

requires a variable gain. Hence, it should be composed of a
low noise amplifier (LNA) and a programmable gain amplifier
(PGA), e.g., from a bio-sensing front-end circuit [23]. The
integrator, which is essentially a first-order LPF, requires a
cut-off frequency much lower than the minimum frequency of
a signal to be integrated, i.e., Fmin ≪ 1/2.56 s = 0.39Hz
(two samples in the analysis window of HAR). Besides the
multiplexer providing the values for an ADC, the feature
extractors should be equipped with multiplexers to select the
inertial signals before amplification during the HAR task.

So far, all the simulations have been executed on floating
point double precision 64-bit data. However, the extracted
analog features are digitized by an ADC to reduce the amount
of data used for further classification either at the sensor level
or after transmission to an aggregator. In the case of ECG
arrhythmia detection, 6-bit precision appeared to be enough
to maintain the same classification accuracy while performing
the feature selection by the SFS on digitized data [5]. Similar
studies should be performed for HAR to determine the ADC
specifications. In terms of speed, the highest conversion rate
will not exceed the databases’ sampling frequencies (50Hz or
360Hz). Hence, a 10-bit SAR ADC with a 40 kHz maximum
sampling frequency [23] will probably meet the requirements.

V. CONCLUSION

In this paper, we worked on designing a generic, reconfig-
urable A2F converter capable of extracting only relevant fea-
tures from different low-frequency analog signals and perform-
ing the corresponding classification tasks in the digital domain,
either at the sensor or aggregator level. NUWS-based con-
verter’s architecture has previously shown its efficiency over
other acquisition approaches in terms of power consumption
and hardware complexity while employed for ECG arrhythmia
detection. We adopted the same classification methodology
but reimplemented the ML algorithms with more advanced
software to carry out the simulations for arrhythmia detection,
as well as for a newly proposed HAR application to prove
the converter’s genericity. In particular, by extracting only 16
features from the acceleration and angular velocity signals of
the UCI-HAR data set with the help of eight parallel extractors
and using these features as inputs for a simple NN classifier,
we achieved an 87.7% multiclass classification accuracy. The
simulation results of both applications allowed us to determine
the relevant features for extraction and the specifications for
a physical implementation of a whole transmission system
incorporating the A2F converter. Future work will focus on
the design of a chip and the first physical demonstration of
the converter’s performance.
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