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Abstract

In a theoretical context of side-channel attacks, optimal bounds between
success rate, guessing entropy and statistical distance are derived with a
simple majorization (Schur-concavity) argument. They are further theoreti-
cally refined for different versions of the classical Hamming weight leakage
model, in particular assuming a priori equiprobable secret keys and additive
white Gaussian measurement noise. Closed-form expressions and numerical
computation are given. A study of the impact of the choice of the substitution
box with respect to side-channel resistance reveals that its nonlinearity tends
to homogenize the expressivity of success rate, guessing entropy and statistical
distance. The intriguing approximate relation between guessing entropy and
success rate GE = 1/SR is observed in the case of 8-bit bytes and low noise.
The exact relation between guessing entropy, statistical distance and alphabet
size GE = M+1

2
− M

2
SD for deterministic leakages and equiprobable keys is

proved.
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1. Introduction

Side-Channel analysis (SCA) is a well-known threat for secure chips in
embedded symmetric crypto-systems. They aim at recovering the key, byte by
byte in a divide-and-conquer approach, by exploiting the leakage information.
The attacker guesses one key byte K from several side-channel observations Y
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(modeled as a random vector) knowing the corresponding plain or cipher text
bytes T = t and leveraging a (noiseless or noisy) leakage model.

There are two main figures of merit in order to characterize the efficiency
of the secrets’ recovery: success rate SR and guessing entropy GE. Roughly
speaking, SR is the empirical success probability that the best ranked (most
likely) key happens to be the correct one, while GE relates to the number of
tries that the attacker has to make before finding the actual secret, thereby
estimating the brute force effort to find the correct key by exhaustive search.
On one hand, GE is more informative insofar as it depends on the whole
key ranking distribution for a given number of leakage traces. On the other
hand, SR computation scales easily to the whole multibyte key (the global
SR being the byte-wise product of SRs) while GE is much harder to estimate
in a multibyte context.

In principle, it is desirable to evaluate both SR and GE during the attack
because it gives a trade-off between the required number of observations
(traces) and the remaining effort for key enumeration. Of course, there is a
clear strong correlation between SR and GE: a lower GE will generally mean
higher SR and vice versa. This is true not only for a given attack on a given
device as the number of traces increases, but also to compare different attacks
or different devices endowed with different countermeasures against SCA. In
this respect, these metrics are relevant both for the “black hat” attacker or
the “white hat” evaluator, and the “blue hat” defender.

Another ubiquitous metric in the cryptographic community is the sta-
tistical distance (SD) to the uniform distribution. This quantifies how far
a cryptographic object differs from an ideal randomness. While guessing
entropy and success rate are explicitly related to the ranking distribution
of an attacker, statistical distance lacks some operational interpretation in
terms of attack performance. Still, it can be used as a measure of information
leakage. In particular, a small statistical distance ensure that no statistical
test can distinguish the considered distribution from the uniform distribution.
As a consequence, this implies that no attack performs better than random
guess.

However, there remains a missing theoretical link between SR, GE and SD
that could be exploited to estimate one metric knowing the other. Obviously
there is no one-to-one relation between them, but we show that one metric can
be lower and upper bounded as a function of the other, which can be optimally
determined for a given leakage model. This extended version complements the
conference version [1] with results from Rioul [2][3] applied for the statistical
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distance that we discuss in the side-channel context.

State-of-the-art. Some previous approaches attempted to bridge the gap by
extending the definition of SR to the probability SRi that the correct key
belongs to the list of the first i best key guesses [4]. For instance [5] compares
various key enumeration algorithms that allow to estimate SRi based on the
knowledge of the key bytes’ likelihoods. In [6] the authors try to link statistical
distance, euclidean norm, relative error and average relative error. They derive
approximations for Hamming weight leakage models, large number of bits
and large noise.

While computing GE can be intractable in practice, [7] heuristically
approximates GE by considering “security graphs” summarizing both SR and
GE for a given number of traces in the same visual representation.

Chérisey et al. [8] evaluate side channel attacks through SR with inequali-
ties derived from mutual information. They also improve an inequality on
GE yet the relation between the two metrics is not investigated.

A very different approach in [9] derives fairly tight mathematical bounds
to estimate GE from entropy or Rényi entropy of order 1/2. From a purely
theoretical viewpoint, [10] derives optimal bounds in very generic settings for
the “guessing moments” with Rényi entropies of various orders. In this respect,
considering entropy of infinite order and first order guessing moment yields
optimal bounds between SR and GE. In a similar approach, [2][3] derives
optimal inequalities for all randomness measures using majorization theory.

Contribution. In this paper, we first present simple and intuitive arguments
to derive the optimal bounds between the three metrics SR, GE and SD.
Such bounds are all the more tighter as the key space is small. We then
refine the relationship in various SCA scenarios and leakage models, providing
closed-form expressions for GE in these scenarios. We observe that the bounds
are all the more tight as the leakage model is nonlinear (property of an S-Box
in a block cipher), which tends to explain why the expressivity of SR and GE
gets similar. This accounts for their interchangeable use as an attack working
factor in the SCA literature.

Outline. The remainder of this paper is organized as follows. The notions of
SR, GE and SD are introduced in Section 2 with emphasis on their similar
properties such as data processing inequalities. Section 3 establishes the
Schur-concavity of GE using majorization theory which allows one to derive
simple and intuitive bounds between GE and SR. Further SR and SD are
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recalled to be Schur-convex which permits to obtain all optimal relations
between the three metrics. Section 4 derives the optimal inequalities between
the three metrics. The important cases of Hamming weight leakage model,
with an S-Box, and with noise, are mathematically developed in Section 5.

Section 6 concludes the paper.

2. Definitions and Basic Properties

In this section, we define success rate, guessing entropy and statistical
distance with emphasis on their similar properties.

Basic Notations. We consider an M -ary secret K ∈ {1, 2, . . . ,M} taking
M = 2n values and some side-channel observation Y used to guess the key
K̂. Observation Y gathers several measurements with known plain or cipher
text bytes T = t. Since K̂ depends on the actual secret key K only through
Y , the triple K − Y − K̂ forms a Markov chain. The guess K̂ is said to be
blind if it does not depend on the observation Y . For any finite set A, |A|
denotes its cardinality.

2.1. Success Rate
Definition 1 (Success Rate (SR)). The success rate of K̂ denoted Ps is the
probability that K̂ guesses the secret,

Ps = P(K̂ = K). (1)

Theorem 1 (Optimal SR). The maximal success rate is attained with the
MAP rule k̂(y) ∈ argmaxk P(K = k|Y = y) and is given by

Ps(K|Y ) = EY

(
max

k
P(K = k|Y )

)
. (2)

In particular, for a blind guess, we write

Ps(K) = max
k

P(K = k) ≥ 1

M
. (3)

Proof. Since K−Y −K̂ is a Markov chain, P(K̂ = k̂|Y,K) = P(K̂ = k̂|Y )
so that

Ps = EY

(
P(K̂ = K|Y )

)
(4)

= EY

(∑
k
P(K = k|Y )P(K̂ = k|Y )

)
(5)

≤ EY

(
max

k
P(K = k|Y )

)
(6)
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with equality if and only if P(K̂ = k̂|Y ) = 1 for some k̂ ∈ argmaxk P(K =
k|Y ).

Theorem 2 (Data Processing Inequality for Ps). One has

Ps(K) ≤ Ps(K|Y ) (7)

(observing side channel information always increases success). More generally,
if K − Y − Z is a Markov chain, then

Ps(K|Z) ≤ Ps(K|Y ) (8)

(data processing can only reduce success).

Proof. Since P(K = k|Y ) ≤ maxk P(K = k|Y ), taking the expectation
over Y gives EY P(K = k|Y ) ≤ EY maxk P(K = k|Y ) for every k, hence

max
k

EY P(K = k|Y ) ≤ EY max
k

P(K = k|Y ) (9)

which is (7). This in turn implies Ps(K|Z) ≤ Ps(K|Y, Z) by considering each
fixed value Z = z and taking the expectation over Z. Finally, Ps(K|Y, Z) =
Ps(K|Y ) because K|Y, Z is distributed as K|Y since K − Y −Z is a Markov
chain.

2.2. Guessing Entropy
In a guessing problem, key candidates are guessed one by one in a sequence

(1), (2), . . . , (M). Such a sequence is a permutation of {1, 2, . . . ,M} where
(i) denotes the ith ranked key for i = 1, 2, . . . ,M . Thus, first (1) is guessed,
then (2), etc. The number of key guesses before the actual secret K = (I) is
found is I, a random variable which depends upon the observation Y . Hence,
K − Y − I forms a Markov Chain.

Definition 2 (Guessing Entropy (GE)). The guessing entropy is the average
number of guesses:

G = EK,Y (I) (10)

Notice that some previous works define GE as I itself [9, 11].
Let p(i)|y = P(K = (i)|Y = y) be the probability of the ith ranked key

given observation Y = y.
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Theorem 3 (Optimal GE). The minimal guessing entropy is attained with
the ranking rule

p(1)|y ≥ p(2)|y ≥ · · · ≥ p(M)|y (11)

and is given by
G(K|Y ) = EY

( M∑
k=1

k p(k)|Y

)
. (12)

In particular, for a blind guess, this reduces to G(K) =
∑M

k=1 kp(k), where the
p(k) = P(K=(k)) are in descending order.

Often G(K) is simply referred to as the guessing entropy of K while
G(K|Y ) is known as the conditional guessing entropy of K given Y .

Proof. By the law of total expectation,

G = EY EK(I|Y ) = EY

( M∑
i=1

i · P(K = (i)|Y )

)
. (13)

By the rearrangement inequality [12, Thm. 368], since (i) is an increasing
sequence, the minimum G is obtained when the probabilities P(K=(i)|Y )
are in descending order.

Theorem 4 (Data Processing Inequality). One has

G(K) ≥ G(K|Y ) (14)

(observing side channel information improves guessing).
More generally, if K − Y − Z is a Markov chain, then

G(K|Z) ≥ G(K|Y ) (15)

(data processing can only worsen guessing).

Proof. Without loss of generality assume that K’s probability distribution
is in descending order p1 ≥ p2 ≥ · · · ≥ pM so that I = K and G(K) = E(K).
Then by definition of minimum guessing, G(K|Y = y) ≤ E(K|Y = y).
Taking the expectation over Y gives G(K|Y ) ≤ EY E(K|Y ) = E(K) = G(K)
by the law of total expectation. This proves (14). This in turn implies
G(K|Z) ≥ G(K|Y, Z) by considering each fixed value of Z = z and taking
the expectation over Z. Finally, G(K|Y, Z) = G(K|Y ) because K|Y, Z is
distributed as K|Y since K − Y − Z is a Markov chain.
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2.3. Statistical Distance to the Uniform
Definition 3 (Distinguishability). Let A be an event. The distinguishability
of the random variable K from the uniform random variable U under event
A is defined as

∆A(K) = |P(K ∈ A)− P(U ∈ A)|. (16)

If ∆A(K) is significantly large then K can be distinguished from the uniform
distribution. In the following we consider the optimal distinguishability.

Theorem 5 (Optimal Distinguishability). The optimal distinguishability
corresponds to the statistical distance (SD) to the uniform random variable
i.e.

∆(K) = max
A

∆A(K) =
1

2

∑
k

|P(K = k)− 1

M
| (17)

=
∑
k

(
P(K = k)− 1

M

)+

≤ 1

where (x)+ = max(0, x) is the positive part function. In the conditional case
we write the average optimal distinguishability

∆(K|Y ) = EY [∆(K|Y = y)]. (18)

Proof. The expression with the positive part is direct from Definition 3.
Equality with (17) is well known, we recall a simple proof for complete-
ness. Let A+ = {k|p(k) ≥ 1

M
}. Then

∑
k

(
P(K = k)− 1

M

)+
= P(K ∈

A+) − |A+|
M

= (1 − P(K ̸∈ A+)) − (1 − M−|A+|
M

) = M−|A+|
M

− P(K ̸∈ A+) =∑
k

(
1
M

− P(K = k)
)+. This concludes the proof since x+ + (−x)+ = |x|.

Duc et al. [13] uses the statistical distance to the uniform that we term
distinguishability as metric to measure the security of implementations against
side channel analysis. Sometimes the distinguishability is referred to as total
variation in the blind guess setting (no conditioning) and statistical distance
with side-channel information (conditional version).

This notion is relevant in the cryptographic context. A small statistical
distance means that the random variable is indistinguishable from the uniform
random variable. As is clear from its definition, the probability of success
minus the probability of success of a random guess in a statistical test is upper
bounded by the distinguishability. Hence a small distinguishability implies
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a probability of success close to a random guess. This notion is related to
the notion of distinguishing advantage of an adversary in a cryptographic
context.

Theorem 6 (Data Processing Inequality for SD).

∆(K|Y ) ≥ ∆(K) (19)

(observing side channel information increases distinguishability).
If K − Y − Z forms a Markov Chain

∆(K|Y ) ≥ ∆(K|Z). (20)

(data processing can only decrease distinguishability)

Proof.
The proof rely on the convexity of the absolute value combined with

Jensen’s inequality.

∆(K|Y ) = EY [
1

2

∑
k

|p(k|Y )− 1

M
|] (21)

=
1

2

∑
k

EY [|p(k|Y )− 1

M
|] (22)

≥ 1

2

∑
k

|EY [p(k|Y )− 1

M
]| (23)

=
1

2

∑
k

|p(k)− 1

M
| (24)

= ∆(K). (25)

This in turn implies ∆(K|Z) ≤ ∆(K|Y, Z) by considering each fixed value
of Z = z and taking the expectation over Z. Finally, ∆(K|Y, Z) = ∆(K|Y )
because K|Y, Z is distributed as K|Y since K − Y − Z is a Markov chain.

More generally [2] unified Thms. 2, 4, 6 by showing that all “randomness
measures” verify a data processing inequality where being a “randomness
measure” essentially means being a Schur-concave function.
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3. Schur Properties

3.1. Key Concepts of Majorization Theory
We first introduce some notations for the theory of majorization [14].

Hereafter we let p(1), p(2), . . . , p(M) denote the vector p = (p1, p2, . . . , pM) of
non-negative elements arranged in descending order p(1) ≥ p(2) ≥ · · · ≥ p(M).
We also use the cumulative sum notation

P(k) = p(1) + p(2) + · · ·+ p(k) (k = 1, . . . ,M) (26)

with the convention P(0) = 0.

Definition 4 (Majorization). We say that q majorizes p, and we write p ⪯ q
if

P(k) ≤ Q(k) (k = 1, . . . ,M − 1) (27)

and P(M) = Q(M). (Notice that this latter condition is always satisfied
when p and q are probability distributions since P(M) =

∑
k pk = 1 and

Q(M) =
∑

k qk = 1.)

The intuition behind majorization is that p ⪯ q means that p is more
“spread out” than q. Thus in the case of a probability distribution p, the
minimum spread is for a deterministic (but Dirac) distribution and the
maximum spread is for a uniform distribution. Indeed, it is easily checked
that

( 1
M
, 1
M
, . . . , 1

M
) ⪯ p ⪯ (1, 0, 0, . . . , 0) (28)

for any probability distribution p = (p1, p2, . . . , pM). More generally [14],

(
P(M)

M
,
P(M)

M
, . . . ,

P(M)

M
) ⪯ p ⪯ (P(M), 0, 0, . . . , 0) (29)

for any vector p = (p1, p2, . . . , pM).

Definition 5 (Schur-Concavity & Convexity). A function G is Schur-concave
if p ⪯ q =⇒ G(p) ≥ G(q). Similarly, G is Schur-convex if p ⪯ q =⇒
G(p) ≤ G(q).

In other words, a Schur-concave function is large for “spread out” dis-
tributions and small for “condensed” distributions, while inversely for a
Schur-convex function.
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3.2. Guessing Entropy is Schur-Concave, Probability of Success and Distin-
guishability are Schur-Convex

It is well known that entropy [14], and more generally the Rényi entropy
of any order [15] (e.g., min-entropy, collision entropy, etc.) is Schur-concave.
Perhaps lesser known is that guessing entropy is Schur-concave:

Theorem 7 (Schur-Concavity). One has

• Guessing entropy G(K) =
∑M

k=1 kp(k) is Schur-concave in p.

• Probability of Success Ps(K) is Schur-convex in p.

• Distinguishability ∆(K) is Schur-convex in p.

Proof. Using summation by parts,
M∑
k=1

kp(k) =
M∑
k=1

k(P(k) − P(k−1)) (30)

= MP(M) − P(0) +
M−1∑
k=1

(
k − (k + 1)

)
P(k) (31)

= M − P(1) − P(2) − · · · − P(M−1). (32)

The Schur-concavity of G(K) is now obvious from the definitions. The Schur-
convexity of the probability of success is immediate from the definitions.
Let p ⪯ q. Let t be the largest index such that p(t) ≥ 1

M
. Then the

distinguishability for p is P(t) − t
M

. Moreover the distinguishability for q is at
least Q(t) − t

M
. The Schur-convexity follows from the definition as Q(t) ≥ P(t).

Remark 1. Recent works on guessing such as [16] state Schur-concavity
of Rényi entropy but do not mention the same property for GE. During
the review process we became aware that the Schur-concavity of GE was
observed earlier by Khouzani and Malacaria [17] among many other types
of entropies. They established Schur-concavity by stating (without proof)
that G(K) is symmetric and concave in the probability distribution of K.
While symmetry is obvious here, concavity of GE is precisely established by
inequality (14) above. The Schur-convexity of ∆ is also shown in [2][3] by
stating it is symmetric and concave.

Remark 2. The proof of this Theorem carries over verbatim for any function
of the form

∑M
k=1 αkp(k) where (αk) is an increasing sequence. In particular

for guessing moments [18]:
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Corollary 1 (Schur-Concavity of Guessing Moments). Gρ(K) =
∑M

k=1 k
ρp(k)

is Schur-concave in p.

These results are in line with the known inequalities between guessing
entropy (or guessing moments) and entropy (or Rényi entropies) as established
in [18, 19].

Remark 3. Since guessing entropy is Schur-concave, it follows from (28) that
guessing entropy is minimized for the deterministic distribution and maximized
for the uniform distribution, which gives the trivial bounds 1 ≤ G(K) ≤ M+1

2
.

4. Optimal Bound Derivation

In this section, we present the optimal bounds for SR, SD and GE explicitly.
The results are recapped in Fig. 1, which depicts the overall connections among
SR, SD and GE.

SD

SR GE

Thm. 13 Thm. 11

Thm. 9

Figure 1: Relations Presented in this Article

4.1. Optimal Bounds between GE and SR
Theorem 8 (Optimal Lower and Upper Bounds for Blind Guess). For a fixed
success rate Ps(K), the optimal lower and upper bound on guessing entropy
G(K) are(

1 + ⌊ 1
Ps(K)

⌋
)(
1− 1

2
⌊ 1
Ps(K)

⌋Ps(K)
)
≤ G(K) ≤ 1 +

M

2
(1− Ps(K)). (33)
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Proof. From Theorem 7, for a fixed p(1), G(K) − Ps(K) =
∑M

k=2 kp(k)
is Schur-concave in (p(2), . . . , p(M)). It follows that this quantity is max-
imum for the uniform distribution (p(2), . . . , p(M)) = (1−Ps

M−1
, 1−Ps

M−1
, . . . , 1−Ps

M−1
)

and minimum for the least spread out distribution (p(2), . . . , p(M)) with
p(k) ≤ Ps. It is easily seen that the latter (least spread out) distribution is
of the form (p(2), . . . , p(M)) = (Ps, . . . ,Ps, x, 0, . . . , 0) where x < Ps is such
that

∑M
k=2 p(k) = 1, that is, x = 1 − ⌊1/Ps⌋Ps. Plugging these values of

(p(1), p(2), . . . , p(M)) into the expression of the guessing entropy gives the an-
nounced lower and upper bounds.

Fig. 2 illustrates the corresponding optimal regions (in blue) between Ps

and G for M = 2n with n = 2, 4, 8, respectively.

Remark 4. If X is a geometric random variable with parameter p = Ps

defined over N then the guessing entropy of X is exactly the inverse of the
optimal probability of guessing X. This suggests that if a random variable is
well approximated by a geometric random variable then the approximation
that the guessing entropy is the reciprocal of the probability of success holds.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
SR

20

21

22

GE

(a) Regions for M = 22
0.2 0.4 0.6 0.8 1.0

SR

20

21

22

23

24

GE

(b) Regions for M = 24
0.0 0.2 0.4 0.6 0.8 1.0

SR

21

23

25

27

GE

(c) Regions for M = 28

Figure 2: Regions G(K|Y ) vs. Ps(K|Y ) as given by Theorem 9. The red curve is the
improved upper bound (49) for the deterministic Hamming weight model. The four green
dots are the exact values computed for Q ∈ {1, 2, 3, 4} traces. The yellow curve corresponds
to the formula G = P−1

s and seems to approximate well the actual relation for n = 8 bits.

Theorem 9 (Bounds with Side-Channel Information).

(1 +
⌊

1
Ps(K|Y )

⌋
)(1−

⌊
1

Ps(K|Y )

⌋Ps(K|Y )

2
) ≤ G(K|Y ) ≤ 1 +

M

2
(1− Ps(K|Y )).

(34)

Proof. Applying Theorem 8 to the random variable K|Y = y for every
value y gives (1 + ⌊ 1

Ps(K|Y=y)
⌋)(1 − ⌊ 1

Ps(K|Y=y)
⌋Ps(K|Y=y)

2
) ≤ G(K|Y = y) ≤
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1+ My

2
(1−Ps(K|Y = y)) where My ≤ M is the number of possible keys given

Y = y. Taking the expectation over Y we obtain lower and upper bounds on
G(K|Y ) = Ey G(K|Y = y). By Theorem 1, Ps(K|Y ) = Ey Ps(K|Y = y), we
obtain the announced upper bound G(K|Y ) ≤ 1 + M

2
(1− Ps(K|Y )).

The lower bound, of the form ϕ(p) = (1 + ⌊1
p
⌋)(1 − ⌊1

p
⌋p
2
), is piecewise

linear and convex in p = Ps. Indeed, its value at p = 1
k

for positive integer
k is (1 + k)(1− k

2k
) = 1+k

2
, hence its successive slopes between p = 1

k−1
and

p = 1
k

are 1/2
1
k
− 1

k−1

= −k(k−1)
2

, which is increasing as p = 1
k

increases. Thus, by
Jensen’s inequality, we have Ey[ϕ(Ps(K|Y = y))] ≥ ϕ(Ey[Ps(K|Y = y)]) =
ϕ(Ps(K|Y )), which gives the announced lower bound.

At high noise when 1
M

≤ Ps(K|Y ) ≤ 1
M−1

this simplifies to

M+1
2

− M(M−1)
2

(Ps(K|Y )− 1
M
) ≤ G(K|Y ) ≤ M+1

2
− M

2
(Ps(K|Y )− 1

M
). (35)

At low noise when Ps(K|Y ) = 1− ϵ where ϵ ≤ 1
M

, this simplifies to

1 + ϵ ≤ G(K|Y ) ≤ 1 + M
2
ϵ. (36)

Remark 5. It is immediate from its proof that a refinement of the upper
bound of Theorem 9 is given by

G(K|Y ) ≤ 1 +
maxy My

2
(1− Ps(K|Y )). (37)

This is particularly interesting for deterministic (noiseless) leakage since, as
shown in the next Section, My decreases rapidly as the number of traces
increases.

4.2. Optimal Bounds on GE for a Given SD
Theorem 10 (Optimal Inequalities between GE and SD for a Blind Guess).
Let U(K) = M(1−∆(K)), then for a blind guess,

1 + ⌊U(K)⌋2U(K)− ⌊U(K)⌋ − 1

2M
≤ G(K) ≤ 1 + U(K)

2
. (38)

Proof. This is proved using majorization in [2][3]. This corresponds to
optimal Pinsker and reverse Pinsker inequalities.
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GE

(a) Regions for M = 22
0.0 0.2 0.4 0.6 0.8
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GE

(b) Regions for M = 24
0.0 0.2 0.4 0.6 0.8 1.0
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22

23

24

25
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27

GE

(c) Regions for M = 28

Figure 3: Regions G(K|Y ) vs. ∆(K|Y ) as given by Theorem 11. The 4 green dots are the
exact values computed for Q = 1, 2, 3, and 4 traces for deterministic Hamming weight
model. The red dots corresponds to subset of bits revealed. The yellow curve corresponds
to the formula G = M+1

2 − M∆
2 and is a one-to-one relationship for deterministic leakage

models and uniform secret.

Theorem 11 (Optimal Inequalities between GE and SD with Side-Channel
Information). Let U(K|Y ) = M(1 − ∆(K|Y )), then with Side-Channel-
Information Y ,

1 + ⌊U(K|Y )⌋2U(K|Y )− ⌊U(K|Y )⌋ − 1

2M
≤ G(K|Y ) ≤ 1 + U(K|Y )

2
. (39)

Proof. This is proved in [2][3]. The upper is linear and the lower bound
is convex, hence Jensen’s inequality can be applied.

We are often interested in the behavior of the metrics in the high noise
scenario. Hence we explicit the bound when ∆(K|Y ) < 1

M
,

M + 1

2
− (M − 1)∆(K|Y ) ≤ G(K|Y ) ≤ M + 1

2
− M∆(K|Y )

2
. (40)

As expected, we obtain a bound with a constant term M+1
2

corresponding to a
blind guess. Then a linear term in the statistical distance is subtracted from
it. Another interesting case is the noiseless scenario where ∆ = 1 − 1

M
− ϵ

where ϵ ≤ 1
M

,

1 + ϵ ≤ G(K|Y ) ≤ 1 +
M

2
ϵ. (41)

As expected we obtain a constant term 1 corresponding to a perfect guess.
Then a linear term in ϵ is added from it.

Fig. 3 illustrates the corresponding optimal regions (in blue) between ∆
and G for M = 2n with n = 2, 4, 8, respectively.

14



4.3. Optimal Bounds between SD and SR
Finally, we present the optimal Fano and reverse-Fano inequalities in

between the probability of success and statistical distance. Equivalently we
also use optimal Pinsker and reverse Pinsker inequalities to obtain the optimal
regions.

Theorem 12 (Optimal Relation between SD and SR for a Blind Guess). For
a blind guess,

∆(K) +
1

M
≥ Ps(K) ≥ 1

M
+

∆

⌊M(1−∆(K))⌋
(42)

or equivalently

Ps(K)− 1
M

≤ ∆(K) ≤ 1

2

(
M−1
M

+ (Ps(K)− 2
M
)⌊Ps(K)−1⌋

+|1− Ps(K)⌊Ps(K)−1⌋ − 1
M
|
)
.

(43)

Proof. This is also an application of majorization theory as shown in [2][3].
The application of optimal Pinsker and reverse Pinsker inequalities yields (42)
while the application of optimal Fano and reverse Fano inequalities yields (43).

Notice that (42) (43). are equivalent because they correspond to the same
regions which are optimally characterized. This equivalence would have been
difficult to derive directly.

In the high noise scenario where 1
M

≤ Ps ≤ 1
M−1

it simplifies to,

Ps(K)− 1

M
≤ ∆(K) ≤ (M − 1)(Ps(K)− 1

M
). (44)

In the noiseless scenario where Ps(K|Y ) = 1− ϵ(K) with ϵ(K) ≤ 1
M

it boils
down to

M − 1

M
− ϵ ≤ ∆(K) ≤ M − 1

M
− 2

M
ϵ(K). (45)

Theorem 13 (Optimal Relation between SD and SR with Side-channel Infor-
mation). Let U(K|Y ) = M(1−∆(K|Y )), then with side-channel information
Y ,

Ps(K|Y ) ≥ 1− U(K|Y )− 1 + ⌊U(K|Y )⌋⌊U(K|Y )− 1⌋
⌊U(K|Y )⌋⌊U(K|Y ) + 1⌋

(46)
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Figure 4: Regions ∆(K|Y ) vs. Ps(K|Y ) as given by Theorem 13 and Theorem 12. The
dashed blue line corresponds to the blind guess setting. With side-channel information it is
convexified with a region in darker blue. The 4 green dots are the exact values computed
for Q = 1, 2, 3, and 4 traces. The red dots corresponds to revealing a subsets of bits of the
secret key. The yellow curve corresponds to the formula P−1

s ≈ M+1
2 − M∆

2 and seems to
approximate well the actual relation for n = 8 bits.

or equivalently,

∆(K|Y ) ≤ M−1
M

− (⌊Ps(K|Y )−1 +1⌋Ps(K|Y )− 1)⌊Ps(K|Y )−1⌋ ⌊Ps(K|Y )−1⌋−1
M

− (1− ⌊Ps(K|Y )−1⌋Ps(K|Y ))⌊Ps(K|Y )−1 + 1⌋ ⌊Ps(K|Y )−1⌋
M

. (47)

Proof. The convex envelope of (42) yields (46). The concave envelope
of (43) yields (47).

Once again we know by construction that (46) and (47) are equivalent
which is not obvious from the formulas.

Fig. 4 illustrates the corresponding optimal regions (in blue) between Ps

and ∆ for M = 2n with n = 2, 4, 8, respectively.

5. Refined Bounds for Hamming Weight Leakage Model

5.1. Deterministic Leakage for One Observed Trace
A well-known leakage model of an embedded cryptographic device in a

noiseless scenario is the Hamming weight model

Y = wH(K ⊕ t) (48)

where wH is the bitwise Hamming weight operator [20], ⊕ denotes the XOR
operation and T = t is given value of plain or cipher text. Let Y = {0, 1, . . . , n}
be the set of all values taken by Y and Ky be the set of key values k for fixed
Y = y.
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Theorem 14. For the Hamming weight model, the region (34) reduces (im-
proves) to the following values of SR and GE:

G(K|Y ) ≤ 1 +
1

2

(
n

⌊n+1
2
⌋

)
(1− Ps(K|Y )) (49)

Ps(K|Y ) ≥
(

n

⌊n+1
2
⌋

)−1

. (50)

Proof. For observed Y = y, My = |Ky| is the number of n-bit vectors
having Hamming weight y, that is, My =

(
n
y

)
in the improved bound (37).

Since maxy My =
(

n
⌊n+1

2
⌋

)
, this gives (49).

Since K|Y = y has My possible values, Ps(K|Y = y) = maxk P(K =
k|Y = y) ≥ 1

My
≥ 1/

(
n

⌊n+1
2

⌋

)
. Averaging over Y gives (50). Equality holds if

and only if K is uniformly distributed over the largest class Ky.

Figure 2 illustrates the improvement for n = 2, 4, and 8 bits, where the
red curves correspond to the reduced upper bound (49). It can be observed
that the case of equality in (50) corresponds to the points where the upper
bound (49) (red curve) and the lower bound in (34) (blue curve) meet. In
particular for M = 22 our improved upper bound coincide with the lower
bound. This proves that in this case the SR and GE are in one to one
correspondence with a Hamming Weight leakage model.
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Figure 5: Sets Y of deterministic Hamming weight leakage values for t1 = 0 and t2 = 3 =
(00000011) for different S-Boxes.

5.2. Case of Equiprobable Keys
A usual assumption is that K is a priori uniformly distributed over M

values. In this case the following exact formulas hold. Similar formulas for
SR and GE can be found in [21].
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Figure 6: Number of keys My for given Y = y for t1 = 0 and t2 = 3 for different S-Boxes.
The x, y-axes represent the two coordinates of the 2-dimensional leakage Y = y = (y1, y2).
The z-axis corresponds to the number My of possible keys given Y = y, which tends to
decrease as the nonlinearity of the S-Box increases. In particular, maxy My is respectively
40, 20, 20 thereby improving the bound (37) for nonlinear S-Boxes.
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Figure 7: Numerical evaluation of SR and GE for various noise levels σ2 and increasing
number of traces, for various choices of S-Boxes. Each different subfigure corresponds to a
choice for the S-Box. The yellow curve corresponds to GE≈SR−1, indicating at least for
low noise, the GE is approximately the reciprocal of the SR. It can be observed that at
a fixed SR the GE increases with the noise. This effect is amplified in the presence of a
nonlinear S-Box.

18



0.0 0.2 0.4 0.6 0.8 1.0
SR

0.0

0.2

0.4

0.6

0.8

1.0

SD

= . 1
= . 5
= 1
= 2

(a) S1 (linear)

0.0 0.2 0.4 0.6 0.8 1.0
SR

0.0

0.2

0.4

0.6

0.8

1.0

SD

= . 1
= . 5
= 1
= 2

(b) S7

0.0 0.2 0.4 0.6 0.8 1.0
SR

0.0

0.2

0.4

0.6

0.8

1.0

SD

= . 1
= . 5
= 1
= 2

(c) S19

0.0 0.2 0.4 0.6 0.8 1.0
SR

0.0

0.2

0.4

0.6

0.8

1.0

SD

= . 1
= . 5
= 1
= 2

(d) S101

0.0 0.2 0.4 0.6 0.8 1.0
SR

0.0

0.2

0.4

0.6

0.8

1.0

SD
= . 1
= . 5
= 1
= 2

(e) S254 (AES – nonlinear)

Figure 8: Numerical evaluation of SR and SD for various noise levels σ2 and increasing
number of traces, for various choices of S-Boxes. Each different subfigure corresponds to a
choice for the S-Box. The yellow curve corresponds to 1/SR≈ M+1

2 − M
2 SD, indicating at

least for low noise the approximation holds. It can be observed that at a fixed SR the SD
decreases with the noise.

Theorem 15 (Exact Formulas of Equiprobable Keys).

Ps(K|Y ) =
|Y|
M

G(K|Y ) =
1

2
+

1

2M

∑
y∈Y

M2
y ,

(51)

∆(K|Y ) = 1− 1

M2

∑
y∈Y

M2
y .

More generally, these formulas hold when Y is any deterministic function of
K. It is interesting to remark that the statistical distance and the guessing
entropy are in one-to-one relationship in this case. Indeed,

∆(K|Y ) = 1− 2G(K|Y )− 1

M
. (52)

In the special case of the Hamming weight model (48), this gives

Ps(K|Y ) =
n+ 1

2n
, G(K|Y ) =

1 + 2−n
(
2n
n

)
2

, (53)
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Figure 9: Numerical evaluation of SD and GE for various noise levels σ2 and increasing
number of traces, for various choices of S-Boxes. Each different subfigure corresponds to a
choice for the S-Box. The yellow curve corresponds to GE≈ M+1

2 − M
2 SD, indicating at

least for low noise the approximation holds. It can be observed that at a fixed SD the GE
decreases with the noise. Because of the variance in the estimation some points exits the
region.

and ∆(K|Y ) = 1− 2−2n
(
2n
n

)
. (54)

If the leakage model is a subset of k bits this yields

Ps(K|Y ) = 2k/M, GE(K|Y ) =
1

2
+

M2−k

2
, ∆(K|Y ) = 1− 2−k. (55)

Proof. If K is equiprobable and Y = y is fixed (with probability P(Y =
y) = My

M
), then K|Y = y is equiprobable over My = |Ky| values so that

Ps(K|Y = y) = 1
My

. Taking the average over Y gives Ps(K|Y ) =
∑

y
My

M
1

My
,

which yields the announced expression for SR. Similarly G(K|Y = y) =
My+1

2
for a uniform guess, and taking the average over Y gives G(K|Y ) =∑

y
My

M

My+1

2
, which yields the announced expression for GE. If Y = y is fixed

then ∆(K|Y = y) = 1
2
(My(

1
My

− 1
M
) + (M −My)

1
M
) = 1− My

M
. Taking the

average over Y yields
∑

y
My

M
(1 − My

M
) = 1 − 1

M2

∑
y∈Y M2

y . The Hamming
weight case follows from the Vandermonde’s identity

∑n
k=0

(
n
k

)2
=

(
2n
n

)
.
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It is easily seen that we recover the well-known expressions Ps(K) = 1
M

,
G(K) = M+1

2
, and ∆(K) = 0 for a blind guess.

5.3. Deterministic Leakage for Multiple Observed Traces
Consider multiple observed traces (Q queries) Y = (Y1, Y2, . . . , YQ), where

Yi = wH(K ⊕ ti) (i = 1, 2, . . . , Q) (56)

for fixed and distinct plain or cipher texts t1, t2, . . . , tQ. In this case we
are faced with a combinational problem since letting Y = y determines the
intersection of Q Hamming balls.

To simplify the analysis we consider Q = 2 and the computation of SR.
Without loss of generality we can set t1 = 0 and consider variable t2 = t.

Theorem 16. Let w = wH(t). Then

Ps(K|Y ) =
(w + 1)(n− w + 1)

2n
(57)

In particular for 8-bit bytes (n = 8), one obtains:

Ps =


n+1
2n

for w ∈ {0, 8}
2n
2n

for w ∈ {1, 7}
3(n−1)

2n
for w ∈ {3, 6}

4(n−2)
2n

for w ∈ {4, 5}.

(58)

Proof. We show that |Y| = (w + 1)(n− w + 1) in (51) as illustrated in
Fig. 5 (a), where the set Y of points (y1 = wH(k), y2 = wH(k ⊕ t)) forms
a (rotated) (w + 1) × (n − w + 1) rectangle. Indeed, let t̄ be the binary
complement of t and write the decomposition wH(k) = wH(k · t) + wH(k · t̄)
where · denotes the bitwise product. For fixed wH(t) = w, wH(k · t) can
take w + 1 values and wH(k · t̄) takes (n− w) + 1 independent values. Since
wH(k ⊕ t) = wH(k) + wH(t)− wH(k · t) = w + wH(k · t̄), we have (y1, y2) =
(wH(k · t)+wH(k · t̄), w+wH(k · t̄)) which takes all possible (w+1)(n−w+1)
values.

More generally, the set Y can be determined by exhaustive enumeration
of Hamming weights. We computed numerically the resulting SR and GE
for Q = 1, 2, 3, and 4 traces. They are plotted as green dots in Fig. 2 for
different values of M .
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5.4. Role of the S-Box in the Hamming Weight Model
To prevent differential and linear cryptanalyses, block ciphers are composed

with non-linear operations. This non-linearity is performed by substitution
box (S-Box). We investigate different choices for the S-Box to observe its
effect on SR and GE with respect to SCA resistance. We consider

Si(x) = axi ⊕ b ∈ F2n (59)

for exponents i = {1, 7, 19, 101, 254}, constants a, b ∈ F2n .
As an illustration, Fig. 5 plots the various sets Y of Hamming weight

leakage values for S1 (linear), S7, and the AES standard S254 (highly nonlinear).
We observe that the cardinality |Y| increases as exponent i increases. This
shows that SR (as given by Theorem 15) increases as nonlinearity increases.
Fig. 6 (the 3-D extension of Fig. 5) also plots My as a function of y ∈ Y . Here
we observe that My tends to globally decrease as exponent i increases, which
shows that GE (as given by Theorem 15) decreases as nonlinearity increases.

Therefore, the non-linearity of the S-Box diminishes the side channel
resistance. The geometrical explanation of this phenomenon is that the
scatter plots of Fig. 5 and 6 tend to spread out for nonlinear S-Boxes. This
confirms the observation of [22] on the effect of the S-Box on the confusion
coefficient, which for monobit leakage relates to both SR and GE [23].

5.5. Hamming Weight Leakage Model With Gaussian Noise
In this section we derive the expression of SR and GE in an Hamming

Weight leakage scenario

Y = wH(K ⊕ t) +N (60)

in the presence of additive white Gaussian Noise (AWGN) N ∼ N (0, σ2).
Let fY and ϕσ denote the p.d.f. of Y and N , respectively. Thus ϕσ(x) =

1√
2πσ2

exp(− x2

2σ2 ). Let Q denote the standard Q-function Q(x) =
∫∞
x

e−
u2

2√
2π

du.
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Theorem 17 (Expression With Noisy Leakage).

Ps(K|Y ) =
n+ 1

M
− 2n

M
Q
( 1

2σ

)
, (61)

G(K|Y ) =
1

2
+

(
2n
n

)
2M

+
2
(

2n
n+1

)
M

Q
( 1

2σ

)
+

2n∑
i=2

fi(n)Q
( i

2σ

)
, (62)

∆(K|Y ) = 1−
(
2n
n

)
M2

− 2

(
1 +

1−M+(2n+1
n+1 )−2(2nn )
M2

)
Q(

1

2σ
) +O

(
Q(

3

2σ
)

)
(63)

where the latter sum is negligible at first order in σ and where the fi are
rational functions in n and M .

For low noise one recovers (53). The proof is left in Appendix A.

5.6. Validation by Simulation
We evaluated numerically the relation between SR and GE for different

noise levels σ2 and different number of traces. The evaluation has been
performed by 103 repetitions of maximum likelihood attacks on synthetically
generated leakages.

Figures 7, 8 and 9 plots the resulting values for various noise levels and S-
Boxes. We observe that for low noise the approximation G(K|Y ) ≈ Ps(K|Y )−1

still holds (yellow curve). As the noise increases, for a given SR, GE increases,
and the latter approximation is no longer valid. The S-Box nonlinearity
accentuates this effect because it decreases the minimum distance of points in
Y in Fig. 5 and, therefore, makes the maximum likelihood attack less robust
to noise. As expected, for low noise the approximation GE≈ M+1

2
− M

2
SD

holds.

5.7. Validation on real traces from DPA Contest V4.2
Figure 10 plots the results on values of SR and GE computed on the three

first folders of the DPA Contest V4.2 with a Hamming Weight template attack
with known mask. As expected from the simulation the guessing entropy is
lower bounded by SR−1.
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Figure 10: Results on Traces from DPA Contest v4.2

6. Conclusion

In this paper, optimal bounds between success rate, guessing entropy
and distinguishability are derived with a simple majorization argument, and
further improved for the Hamming weight leakage model—in particular for
the classical assumptions of a priori equiprobable secret keys and additive
white Gaussian measurement noise. Closed-form expressions and numerical
computations are given for various leakage scenarios. A study of the impact
of the choice S-Box with respect to SCA resistance confirms that nonlinearity
of the S-Box tends to tighten the bounds between SR and GE. We established
that distinguishability and guessing entropy are in one to one relationship for
uniform keys and deterministic leakage models. In particular for low noise
we have the approximation GE ≈ M+1

2
− M

2
SD. The approximate relation

GE = 1/SR holds in the case of 8-bit bytes and low noise. This in turns
imply that for 8-bit and low noise 1/SR ≈ M+1

2
−M

2
SD. We observed that for

the probability of success and distinguishability the optimal reverse Pinsker
inequality corresponds to the optimal Fano inequality and that the optimal
reverse Fano inequality corresponds to the optimal Pinsker inequality.

As a perspective, we notice that our methodology can be easily generalized
to the definitions of the ith order success rate [4] SRi vs. GE. However, as
pointed out in [11], such theoretical work assumes perfect knowledge on the
distribution of K given observation Y . This generally underestimates the
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practical GE for a non optimal attack because such a practical attack generally
gives a suboptimal key ranking. Thus the results of this paper should yield
adequate estimates only for optimal template attacks. The determination of
more precise regions SR vs. GE for other types of attacks is a topic for future
investigation.
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Appendix A. Proof of Thm. 17
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Figure A.11: πi(y) for i = 0, 1, 2, 3. We can observe that the πi are step functions. Their
are constant on the interval of the form [p2 ,

p+1
2 ) for all integer p.

For j = 0, . . . , n let πj(y) denote the (j + 1)-th closest point to y in Y . In
particular, π0(y) is the closest point to y in Y. It can be checked with the
help of Fig. A.11 that

π0(y) =


0 for y ≤ −1

2

i for y ∈ [i− 1
2
, i+ 1

2
)

n for y ≥ n+ 1
2
.

(A.1)
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From (2), one has

Ps =
1

M

∫
ϕσ(y − π0(y)) dy

=
1

M

(
2Q(

1

2σ
) +

n∑
i=0

i+ 1
2∫

i− 1
2

ϕσ(y − i)

)

=
1

M

(
2Q(

1

2σ
) + (n+ 1)

∫ 1
2

− 1
2

ϕσ(y)

)
=

1

M
(2Q(

1

2σ
) + (n+ 1)(1− 2Q(

1

2σ
)))

which after simplification proves (61).
Now from (12), one has

G(K|Y ) =

∫
fY (y)

M∑
k=1

k p(k)|y dy (A.2)

Since the noise is Gaussian, the p(k)|y are sorted by Euclidean distance.
Applying Bayes’ rule we obtain

p(k)|y = ϕσ(y − πj(y))
1/M

fY (y)
, k = Sj−1(y) + 1, . . . , Sj(y). (A.3)

where Sj(y) =
∑j

i=0

(
n

πi(y)

)
for j = 0, . . . , n with the convention S−1(y) = 0.

Therefore,

G(K|Y ) =

∫
fY (y)

n∑
j=0

Sj(y)∑
k=Sj−1(y)+1

k ϕσ(y−πj(y))
1/M

fY (y)
dy

=
1

M

n∑
j=0

∫ Sj(y)∑
k=Sj−1(y)+1

kϕσ(y − πj(y)) dy

=
1

M

n∑
j=0

∫
Cj(y)ϕσ(y − πj(y)) dy
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where

Cj(y) =
Sj(y)(Sj(y) + 1)− Sj−1(y)(Sj−1(y) + 1)

2
(A.4)

= 1
2

(
n

πj(y)

)(
2Sj−1(y) +

(
n

πj(y)

)
+ 1

)
. (A.5)

The j = 0 term can be written as∫
S1(y)(1 + S1(y))

2
ϕσ(y − wH(π1(y))) dy (A.6)

= [2

∞∫
1
2

ϕσ(y)dy +
n∑

i=0

i+ 1
2∫

i− 1
2

(
n
i

)
(1 +

(
n
i

)
)

2
ϕσ(y − i)

]
(A.7)

=

[
2Q(

1

2σ
) +

n∑
i=0

(
n
i

)
(1 +

(
n
i

)
)

2
(1− 2Q(

1

2σ
))

]
(A.8)

=
M

2
+

1

2

(
2n

n

)
−Q(

1

2σ
)(M +

(
2n

n

)
− 2). (A.9)

We now compute the j = 1 term. It can be checked with the help of Fig. A.11
that

π1(y) =


1 for y ≤ −1

2

i− 1 for y ∈ [i− 1
2
, i)

i+ 1 for y ∈ [i, i+ 1
2
)

n− 1 for y ≥ n+ 1
2
.

(A.10)

In the j = 1 term, the contribution of the integral from 1
2

to ∞ and −∞ to
−1

2
both yields a term of value n(n+3)

2
Q(3σ

2
). The contribution of the integral

over [i− 1
2
, i) yields

1

2

(
n

i−1

)
[2
(
n
i

)
+
(

n
i−1

)
+ 1](Q(

1

2σ
)−Q(

1

σ
)). (A.11)

and that over (i, i+ 1
2
] yields

1

2

(
n

i+1

)
[2
(
n
i

)
+
(

n
i+1

)
+ 1](Q(

1

2σ
)−Q(

1

σ
)). (A.12)

Summing the contribution yields, after some calculation,

n(n+ 3)Q(
3σ

2
) + [M − 2 + 2

(
2n+1
n+1

)
−
(
2n
n

)
](Q(

1

2σ
)−Q(

1

σ
)). (A.13)
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Here we have used the following Vandermonde identities:

n∑
i=0

(
n

i+1

)2
=

n∑
i=0

(
n

i−1

)2
=

(
2n
n

)
− 1

n∑
i=0

(
n
i

)(
n

i−1

)
=

n∑
i=0

(
n
i

)(
n

i+1

)
=

n∑
i=0

(
n
i

)
[
(
n+1
i

)
−
(
n
i

)
]

=
(
2n+1
n+1

)
−
(
2n
n

)
.

Summing the j = 0 and j = 1 terms simplifies to the first three terms in (62).
One can go further and compute terms corresponding to j = 2, 3, . . . , n.

It is easily seen from the above derivation that splitting the integral with
Chasles relation on the interval where πi is constant yields a sum of weighted
Q( i

2σ
) as shown in (62).

We first prove expression for the statistical distance.

∆(K|Y ) =

∫
R
fY (y)∆(K|Y = y)dy (A.14)

=

∫
R
fY (y)

∑
k

(p(k|y)− 1/M)+ dy (A.15)

=

∫
R

∑
k

(fY (y)p(k|y)− fY (y)/M)+ dy (A.16)

=
1

M

∫
R

∑
k

(ϕσ(y − wH(k))− fY (y))
+ dy (A.17)

=
1

M2

n∑
w=0

(
n

w

)∫
R
(

n∑
j=0

(
n

j

)
(ϕσ(y − w)− ϕσ(y − j))
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dy (A.18)

=
1

M2

n∑
w=0

(
n

w

)∫
R
(

n∑
j=0

(
n

j

)
(ϕσ(y)− ϕσ(y − (j − w)))

)+

dy. (A.19)

At this point it is hard to determine when the integrand is positive to simplify
the positive part. Hence we split the integral over multiple slices. Let

Ia,b(w) =

∫ b

a
(

n∑
j=0

(
n

j

)
(ϕσ(y)− ϕσ(y − (j − w)))

)+

dy (A.20)
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where we omit the subscript when a = −∞ and b = ∞. Then

∆(K|Y ) =
1

M2

n∑
w=0

(
n

w

)
I(w). (A.21)

If w = 0 then for σ small enough the integrand is positive on (−∞, 1
2
] and

negative elsewhere. Then using an Abel summation technique it follows that

I(0) = I−∞, 1
2
(0) (A.22)

= (M − 1)(1−Qσ(
1

2
))− nQσ(

1

2
)−

n−2∑
j=0
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n

j + 2
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Qσ(

3

2
+ j) (A.23)

= (M − 1)(1−Qσ(
1

2
))− nQσ(

1

2
) +O(Q(

3

2σ
)). (A.24)

If w = n for σ small enough the integrand is positive on [−1
2
,∞) and

negative elsewhere. It follows that I(0) = I(n). Else 1 ≤ w ≤ n− 1 and for
σ small enough the integrand is positive on [−1

2
, 1
2
] and negative elsewhere.

It follows that

I(w) = I− 1
2 ,

1
2
(w) (A.25)

= M
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−
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It only remains to sum the integrals over w up to an additive O( 3
2σ
) term.
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(A.32)

We compute the sum S =
∑n−1

w=1

(
n
w

)∑n−1
j=w−1
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j
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−
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j+1

))
Q
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to simplify the expression.
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Summing everything we obtain finally obtain up to O
(
Q
(
3
2

))
,
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