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Abstract
Side-channel attacks aim at extracting secret keys from cryptographic devices. Randomly mask-
ing the implementation is a provable way to protect the secrets against this threat. Recently,
various masking schemes have converged to the “code-based masking” philosophy. In code-based
masking, different codes allow for different levels of side-channel security. In practice, for a
given leakage function, it is important to select the code which enables the best resistance,
i.e., which forces the attacker to capture and analyze the largest number of side-channel traces.
This paper is a first attempt to address the constructive selection of the optimal codes in the context
of side-channel countermeasures, in particular for code-based masking when the device leaks infor-
mation in the Hamming weight leakage model. We show that the problem is related to the weight
enumeration of the extended dual of the masking code. We first present mathematical tools to study
those weight enumeration polynomials, and then provide an efficient method to search for good codes,
based on a lexicographic sorting of the weight enumeration polynomial from lowest to highest degrees.

Keywords: Side-Channel Analysis, Masking Scheme, Information-Theoretic Metric, Linear Code, Security
Formalization, Weight Distribution.

1 Introduction
Cryptographic devices are prone to side-channel
attacks. These attacks consist in the analysis
of unintentional leakages, arising from within
the computation of the cryptographic algorithms.
Leakages are captured as execution traces by fast
sampling apparatus, such as high bandwidth oscil-
loscopes. In a typical side-channel attack, numer-
ous traces are gathered into a dataset, referred to
as an acquisition campaign. In the recent years,
strong efforts have been deployed for devising

∗ This work is an extended version of [12], which has been
published in PROOFS’21.

techniques to extract as much information as pos-
sible about the secret key. Up-to-date exploits con-
cern template attacks, including machine learning
and artificial intelligence empowered attacks.

It is thus extremely important to ensure some
reliable protection against those attacks. Coun-
termeasures are optimized accordingly, favoring
those whose implementation has mathematically
provable security. For this reason, random mask-
ing [17, 28] has turned out to be the countermea-
sure of reference.

Recently, the generalized code-based masking
(GCM) [8, 33] has been promoted as a coding-
theoretic way to unite several masking schemes.
The peculiarities of inner product masking, direct
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sum masking, etc. can indeed be united into the
GCM framework. This framework is amenable to
encoding algorithms employing data units as bit
strings of ℓ bits — where for instance, ℓ = 8 for
AES (a byte-oriented block cipher) and ℓ = 4
for PRESENT (a nibble-oriented block cipher).
Therefore, the corresponding linear codes in GCM
are naturally built with F2ℓ as the base field.

However, optimizing the linear codes which
underlie the GCM implementation is still an open
question not fully resolved. Indeed, as of today,
two leakage models co-exist:

• The probing leakage model (at word-level, in
F2ℓ);

• The bounded moment leakage model (at bit-
level, in F2).

Accordingly, these two leakage models are con-
cerned with two different adversarial strategies,
namely:

• The probing model considers an attacker who
can place a limited number of probes to acquire
a linear dump of the consecutive values taken
on by the probed variables. This model is an
extension of the one proposed in the seminal
paper from Ishai, Sahai and Wagner [17] which
only considered bits. Current probing models
encompass probing of full-width registers [28].

• The bounded moment model [2] considers the
realization of a (high-order) correlation analy-
sis, whereby different signals are combined so
as to weaken, or eventually canceled out com-
pletely, the effect of the masking. These attacks
exploit the signals arising from any bits manip-
ulated in the netlist, and the order of the attack
is the limiting complexity factor.

Now, in the context of the practical security evalu-
ation of a device, both models are to be considered
at once. The commonality between both models
is that the masking strength relates to the dual
distance of the masking code [7, 24]. Also, the
bit-level security relates to the extension of the
code into the base field [7, 9]. Putting everything
together,

• The probing model is limited by the number of
probes t: The masking code in F2ℓ must have a
dual distance strictly greater than t.

• The bounded moment model requires that the
subfield extension of the masking code from F2ℓ

to F2 has a dual distance as high as possible. It
is of course at least as large as that of the code
on F2ℓ , but can (and ideally should) be strictly
larger.

Essentially, two leakage models are connected
with each other. Indeed, given a linear code over
F2ℓ , it is always feasible to extend it into the sub-
field F2. However, this extension depends on both
the irreducible polynomial used in F2ℓ and the
basis used for the extension. In this paper, we
focus on the latter since the finite field is fixed
for a specific cryptographic algorithm like AES
or PRESENT. Furthermore, another benefit of
extending codes from F2ℓ to F2 is that it sets the
same baseline for all linear codes over F2, result-
ing that their coding-theoretic properties can be
fairly compared.

Contributions. In this paper, we show how
to build codes with length n = t + 1 which
have a good bit-level security order. We revisit
the code extension from F2ℓ to F2 by using sub-
field representation with trace-orthogonal bases
(TOBs), which brings the commutative relation-
ship between subfield representation and duality
of the code. Next, we connect the side-channel
resistance of a code-based masking to the whole
weight distribution of corresponding linear codes.
With the lexicographical order of weight distri-
bution, we show how to choose the best one
among them, and validate our approach by an
information-theoretic assessment. In summary,
our findings empower the code-based masking
by providing optimal linear codes which can
maximize the side-channel resistance from an
information-theoretic perspective.

2 Background

2.1 Preliminaries
We first introduce several definitions which will be
used throughout this paper.

Definition 1 (Linear code parameters [21]) A linear
code C is a set of vectors, called codewords, which
form a vector space over some finite field F2ℓ . The
parameters of the linear code C is a triple [n, k, d],
where n is the code length, k is its dimension, and d is
its minimum (Hamming) distance. They are denoted
by [n, k, d]2ℓ to refer to the field on which the code is
defined.
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Definition 2 (Complement of a linear code) Two
linear codes C1 and C2 are complementary to one
another if C1 ∩ C2 = {0}, where 0 is the all-zero
codeword.

It is always possible to build a complement of
a code C: The generating matrix GC of C can be
complemented by vectors (e.g., randomly, one by
one) until it forms a basis of the vector space. The
complemented vectors form the generating matrix
of a complement code of C.

Definition 3 (Dual code [21] and dual distance) The
dual code of a code C is the linear code consisting of
the set of all vectors orthogonal to all codewords of
C. The dual distance d⊥C = dC⊥ of the code C is the
minimum distance of its dual code C⊥.

Definition 4 (Weight distribution [21] and kissing
number) The (Hamming) weight distribution of a
code C of length n is the (n+ 1)-tuple of integers Ai,
0 ≤ i ≤ n, such that Ai = #{c ∈ C,wH(c) = i}
(where wH is the Hamming weight).

In particular, the kissing number Ad is the number
of codewords at minimum distance d to any codeword.

Definition 5 (Subfield extension of a code [21]) The
subfield representation of x ∈ F2ℓ is its vector of coor-
dinates [x] ∈ Fℓ2, which depends on the choice of the
basis of F2ℓ over F2. For a vector c ∈ Fn2ℓ , we shall
note [c] the broadcast extension of every component,
meaning [c] = ([c1], . . . , [cn]).

The subfield extension [C] is the set of all vec-
tors obtained from the codewords of C by taking the
subfield representation, i.e., [C] = ([c], c ∈ C).

Considering a generator matrix of a linear code
C of size k×n in F2ℓ , the generator matrix of the
extended code [C] has a size of kℓ× nℓ in F2.

As demonstrated in [8, 9], a linear code is all
the better (in the sense of side-channel resistance
of the code-based masking) that it has a larger
dual distance, and also a lower kissing number
for the same dual distance. Therefore, we intro-
duce an ordering of different codes relying on
their weight distributions as follows, that inte-
grates both the minimum distance and the kissing
numbers.

Definition 6 [Prefix-based lexicographical order of
sequences] Let (Ai) and (A′

i) (0 ≤ i ≤ n) be two
sequences of integers of length n. The sequence (Ai)
is (strictly) smaller than the sequence (A′

i) if there

exists 1 ≤ j ≤ n, such that Ai = A′
i for all 0 ≤ i < j,

and Aj < A′
j .

Definition 7 (Best weight distribution) A linear code
C is said to be better than a linear code C′ if its
weight distribution is (prefix-based) smaller than that
of C′. A code has the best weight distribution if it is
better than any other linear code with the same code
parameters n and k.

Thus, to obtain the best weight distribution,
we apply the following three principles:

1. maximize the minimum distance d (recall that
d = min{i ̸= 0, Ai > 0})

2. (in case of a tie) minimize the kissing number
Ad

3. (in case of a tie) minimize the following coeffi-
cients Ai, i > d in lexicographical order.

Regarding the first principle, it is feasible to
construct a maximum distance separable (MDS)
code which maximizes the minimum distance. We
have the following Delsarte’s lemma for the dual
of an MDS code.

Lemma 1 (Dual of an MDS code [15]) The dual of
an MDS code is also an MDS code.

Corollary 1 The dual distance of a linear MDS code
of parameters [n, k]2ℓ is d = k + 1.

Proof of the corollary. The dual distance of a linear
MDS code is equal to the minimum distance of the
dual of the code. which has parameters [n, n − k]2ℓ .
By Lemma 1, it is MDS. Therefore, the Singleton
bound [31] is tight and we have that n−(n−k)+1 = d.
Hence d = k + 1. □

We finally introduce the optimal linear codes
over F2ℓ given parameters n and k as follows.

Definition 8 ((d,Ad)-Optimal linear code) A linear
code C of parameter [n, k] over F2ℓ is said to be
(d,Ad)-optimal if its subfield extension [C] has the
largest minimum distance d and the lowest kissing
number Ad.

The important case is that of a (d,Ad)-optimal
binary linear code over the binary field F2. For
instance, two optimal binary linear codes are:
[8, 4, 4]2, that is (4, 14)-optimal, and [16, 8, 5]2 that
is (5, 24)-optimal, respectively. While there are
constructions of MDS codes over F2ℓ under condi-
tion n < 2ℓ, the determination of (d,Ad)-optimal
linear codes is still an open problem except for
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trivial cases like repetition codes or parity check
codes (both of them being trivial MDS codes).

In this paper, we focus on the binary
extensions over F2 for two reasons. First, the
side-channel leakage originates from bits (e.g.,
wires, registers, memory elements, etc) of run-
ning devices. Secondly, as demonstrated by
information-theoretic evaluations [9] and attack-
based evaluations [10], the two ingredients of
(d,Ad)-optimal linear codes indeed indicate the
side-channel resistance of code-based protections.

Remark 1 A linear code with the best weight distribu-
tion is also a (d,Ad)-optimal code, but the converse is
not always true in the sense that not all binary linear
codes can be mapped into a linear code over F2ℓ .

Remark 2 The kissing number in Definition 8 should
be replaced by the adjusted kissing number [8] when
the two linear codes C and D in code-based masking
are not complementary.

2.2 State-of-the-Art Results
Recall the communication channel-based setting
of side-channel analysis [11, 14] shown in Figure 1,
with the following notations.

• K, K̂ denote the secret and guessed key, respec-
tively.

• T denotes the plaintext/ciphertext that can be
accessed by an adversary.

• U is the sensitive variable which is encoded as V
after code-based masking using an independent
random mask M .

• The device leaks under leakage function f (typ-
ically Hamming weight leakage model f =
wH) so that X = f([V ]), where [V ] denotes
element-wise subfield representation when V is
a vector.

• The side-channel leakage is modeled as Y = X+
N where typically N ∼ N (0, σ2) is an additive
white Gaussian noise (AWGN). In addition, N
shall be a multivariate Gaussian variable, e.g.,
in the presence of masking, when V is a vector.

The Figure 1 makes use of the symbol “⊕” to
denote finite field addition, and “+” for addition
of reals. In the sequel, we focus on finite field oper-
ations: there is therefore no possible confusion.
Hence we simply use “+” even in finite fields.

We consider the code-based masking of
Figure 1 for which

V = UGC +MGD (1)

where U and M are the sensitive variable and ran-
dom mask, respectively. Two linear codes C and
D with respective generator matrices GC and GD

encode U and M into V .
It follows that from the perspective of side-

channel resistance, the word-level security is only
captured by the minimum distance of D⊥ [7, 24].
By contrast, the bit-level security of a code-based
masking is related to both the minimum distance
and the kissing number of D⊥ [8, 9] under the
Hamming weight leakage model.

Rather than searching from all possible can-
didates as in [8], we aim at constructing optimal
linear codes for GCM by an efficient algorithm. To
the best of our knowledge, this is an open problem.
It is known that a good code (for masking coun-
termeasure) has a large minimum distance and a
low kissing number [9]. However, we recall from
Definition 4 that such kissing number is only one
coefficient of the weight distribution polynomial.
As we demonstrate in the sequel, the entire weight
distribution is to be considered to assess the side-
channel resistance of a code-based masking. As a
consequence, we found that the best masking code
for GCM is determined by Algorithm 1. In par-
ticular, the difference comparing with [8, 9] lies in
line 4, which indicates the better code in case of a
tie in Ai for d ≤ i ≤ n.

Algorithm 1: Conceptual process for find-
ing the best masking code for GCM.

Input : Masking order t (at word-level over
F2ℓ)

Output : Codes for GCM over F2ℓ

1 Construct an MDS code D: [n, n− k]2ℓ with
d⊥D = t+1 // Use Corollary 1, d⊥D = n−k+1

2 Apply subfield extension on D to get [D]
// Use Def. 5

3 Compute the dual code [D]⊥ // Use Def. 3
4 if [D]⊥ has the best weight distribution

then // Use Def. 7
5 return D
6 else
7 goto Line 1
8 end
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Crypto
Leakage
Function

AttackMasking Channel

Fig. 1 Side-channel leakage setup and subsequent analysis modelization (modified from [11]).

3 Orthogonal Bases and
Subfield Representations

In a code-based masking scheme, the side-channel
security order at bit-level is related to the weight
distribution of the codes in the subfield represen-
tation [8, 9]. Particularly, given a code D in (1)
defined over F2ℓ , we wish to evaluate the weight
distribution of the dual extended code [D]⊥, and
the natural question is to assess whether this is
equivalent to evaluate the weight distribution of
extended dual code [D⊥]. However, as shown in
Figure 2, the commutative relationship does not
hold in general because depending on the choice
of basis of F2ℓ over F2, the two codes [D]⊥ and
[D⊥] are not always equivalent to each other.

D D⊥

[D] [D]⊥
?
= [D⊥]

Subfield

Dual

Subfield

Dual
Fig. 2 Commutative connection between sub-field repre-
sentation and duality.

As it turns out, the commutative relationship
will hold true if the basis used in subfield represen-
tation is a trace-orthogonal basis. Therefore, we
first show how to construct trace-orthogonal bases
and then investigate the subfield extension of the
code.

3.1 Construction of
Trace-Orthogonal Bases

Let ℓ > 1 and F2ℓ be the extension field of F2.
By the Frobenius conjugacy property, the trace
function tr : F2ℓ → F2, defined as tr(x) =∑ℓ−1

i=0 x
2i , is linear. The (trace-)orthogonality and

orthonormality is defined as follows.

Definition 9 Elements a1, a2 in F2ℓ are orthogonal if
tr(a1a2) = 0. A basis {a1, a2, . . . , aℓ} of F2ℓ over F2

is orthonormal if tr(a2i ) = tr(ai) = 1 and tr(aiaj) = 0
for all i ̸= j.

Notice that, as mentioned in [30], we have the
following result:

Lemma 2 A (trace-)orthogonal basis in F2ℓ is always
orthonormal.

Proof Let ai be elements in a basis, where i ∈
{1, . . . , ℓ}. We need to show that it satisfies tr(ai) = 1.

The trace takes values in F2, which consists in
two elements, namely 0 and 1. Therefore, it must be
proven that tr(ai) ̸= 0. This means that ai is not
self-orthogonal, since tr(a2i ) = tr(ai)

2 = tr(ai) in F2.
Assume on the contrary that ai is self-orthogonal.

Then, not only ai is orthogonal to all vectors aj
(j ̸= i), but also to itself. Therefore, it belongs to
the dual of the space vector E generated by the basis
{a1, a2, . . . , aℓ} (the universe code), whose dual is the
singleton {0}. Consequently ai = 0, which contradicts
the fact that ai is a basis vector. □

Remark 3 Incidentally, we notice that the condi-
tion (36) in [19, Chap 5, p. 182] is superfluous, since
already implied by condition (37).

By [20, Note 3, page 75] (which points to the
original paper [19]), we know that an orthonormal
basis always exists. Although [19] gives a for-
mal construction meant to provide the existence
result, the resulting implementation is double-
exponential in 2ℓ, which is far too complex to
implement in practice.

In this paper, we consider instead a fast, but
probabilistic, trace-orthogonal basis construction
given by Algorithm 2. For ℓ = 8, it works most of
the time in one iteration (e.g., about 70.20% over
2000 times of randomly running Algorithm 2).
Examples are provided below.

Remark 4 Strictly speaking, Algorithm 2 does not nec-
essarily converge with a basis of full rank. We observed
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Algorithm 2: Randomized construction of
an orthonormal basis in F2ℓ .

Input : ℓ ≥ 1, the extension order of F2
Output : An orthonormal basis of F2ℓ

1 (b1, . . . , bℓ)← (0, . . . , 0) // Basis, initialized
with 0s

2 for i ∈ {1, . . . , ℓ} do // Find the ith element
of the orthonormal basis

3 for a ∈ (F2ℓ)
∗ do // Candidate next

vector in the basis (chosen randomly)
4 if tr(a) = 1 then // Test for

tr(a2) = tr(a)2 ̸= 0 (only element ̸= 0
is 1 in F2)

5 is_orthogonal← true
6 for j ∈ {1, . . . , i− 1} do
7 if tr(abj) ̸= 0 then // Test

whether a and bj are
orthogonal

8 is_orthogonal← false
9 end

10 end
11 if is_orthogonal then
12 bi ← a
13 end
14 end
15 end
16 end
17 return (b1, . . . , bℓ)

that depending on the scanning order of field elements
at line 3, the algorithm can succeed or fail to return
a basis. Therefore, we introduced a randomization at
this line, and repeated the algorithm until it returns
a (full rank) basis.

In viewing of Definition 9, the elements in a
basis must satisfy tr(ai) ̸= 0. Therefore, we can
improve Algorithm 2 by removing zero-trace ele-
ments with a preliminary check of all traces. The
new procedure is shown in Algorithm 3.

Table 1 presents the comparison on efficiency
between Algorithms 2 and 3. The performance
metric is the execution time, measured on a server
which runs the Magma system. This clearly shows
the advantage of using Algorithm 3 when the
order of the finite field is large. For instance, when
ℓ = 16, Algorithm 3 have a speedup by a factor of
5 compared to Algorithm 2.

We shall use the following two examples of
trace-orthogonal bases throughout the rest of this
paper:

Algorithm 3: The improved construction
of orthonormal bases in F2ℓ .

Input : ℓ, the extension order, and α, a
primitive element of F2ℓ

Output : An orthonormal basis of F2ℓ
1 list← {} // Create an empty list
2 for i ∈ {1, . . . , 2ℓ − 1} do // Check the trace

of elements in F∗2ℓ
3 if tr(αi) = 1 then
4 list← list ∪ {i} // Put the power in

list if trace equals 1

5 end
6 end
7 B ← {αlist[1]} // Create a set with one element
8 start← 2 // Set the start position of searching

(can be changed)
9 while #B ̸= ℓ do

10 n← start //
11 for k ∈ {2, . . . , ℓ} do // Find the kth

element of the orthonormal basis
12 for s ∈ {n+ 1, . . . ,#list} do
13 is_orthogonal← true
14 for j ∈ {1, . . . , k − 1} do // Test

whether the candidate is
orthogonal with elements in B

15 a← B[j] · αlist[s]

16 if tr(a) ̸= 0 then
17 is_orthogonal← false
18 end
19 end
20 if is_orthogonal then
21 B ← B ∪ a
22 n← s

23 end
24 end
25 if #B < k then // Start again if we

cannot find next base
26 break
27 end
28 end
29 start← start+ 1 // Change a start

position (if we do not get enough basis)
30 end
31 return B

• B0 = {α252, α156, α122, α203, α5, α126, α71, α65},
• B1 = {α121, α252, α202, α20, α242, α15, α126, α44}.

where α is the first primitive element in the finite
field F28 . Note that the irreducible polynomial
used in this paper is: g(X) = X8+X4+X3+X2+1.
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Table 1 The comparison on efficiency of two algorithms for constructing trace-orthogonal bases. Note that with our
Magma server is with Intel Xeon CPU@2.0GHz, 4 processors (only one is used), and with 16GB Memory.

ℓ 4 8 12 16 20 24

Run time (sec)
Alg. 2 0.0001 0.0038 0.1150 1.5034 36.0350 1146.1685

Alg. 3 0.0001 0.0019 0.0334 0.3065 4.7267 267.7467

Moreover, we also investigate the default basis
used in Magma, which is a non-orthogonal basis:

• B2 = {1, α1, α2, α3, α4, α5, α6, α7}.

3.2 Subfield Representation and
Duality of Codes

We therefore specify the representation in Defini-
tion 5 by showing how to transform an element
over F2ℓ into F2. The subfield representation [a] of
a field element a is defined as follows.

Definition 10 Let b = (b1, . . . , bℓ) an orthonormal
basis of F2ℓ . The subfield representation of a ∈ F2ℓ is
[a] = (tr(ab1), . . . , tr(abℓ)).

The subfield representation code [D] can be
seen a concatenated code (as per Forney [16]) with
D of parameters [n, k]2ℓ as the outer code, and the
universal [ℓ, ℓ, 1]2 as the inner code. As a conse-
quence, the side-channel security at bit-level and
word (ℓ-bit string) level are related by the sub-
field representation as follows: The security order
at word-level is the dual distance of the code in
F2ℓ , whereas the security order at bit-level is the
dual distance of the subfield representation in F2.

A nice feature of trace-orthonormal bases is
that duality and subfield representation commute:

Theorem 1 Let D be a linear code. Then under a
trace-orthogonal basis, we have:

[D]⊥ = [D⊥]. (2)

Said equivalently, the duality and the sub-field repre-
sentation form a commutative diagram:

D D⊥

[D] [D]⊥ = [D⊥]

Subfield

Dual

Subfield

Dual

Proof Given x, y ∈ Fn
2ℓ and their subfield representa-

tions are [x], [y] ∈ Fnℓ2 , respectively. Then the inner
product ⟨x|y⟩ = 0 implies that 0 = tr(⟨x|y⟩) =∑

i tr(xiyi) =
∑

i

∑
j [xi]j [yi]j = ⟨[x]|[y]⟩ where the

third equality holds because of the property of the
trace-orthogonal basis. Therefore, we obtain [D⊥] ⊆
[D]⊥.

Inversely, two linear codes [D⊥] and [D]⊥ are sub-
spaces of Fnℓ2 that have the same length 2nℓ and
dimension 2(n−k)ℓ, implying the same number of code-
words in both codes. As a consequence, we have
[D⊥] = [D]⊥. □

As a straightforward consequence of
Theorem 1, the order of two transformations in
lines 2 and 3 of Algorithm 1 is interchangeable.
Therefore, the selection of the best codes can
be achieved from the code D to the dual code
D⊥ and then to the subfield extension [D⊥].
Section 3.3 illustrates the gain in terms of speed
of this method.

Remark 5 We notice that the resulting distances are
not the same depending on:

• which basis is used,
• the code itself.

We provide several examples of properties of
codes D⊥ of parameters [5, 3]256 (for ℓ = 8). The
Magma scripts are given in Appendix A). The
difference between the tables are the bases:

• B0 is used in Table 2,
• B1 is used in Table 3.

Therefore, the main takeaway point is that
the bases have significant impact on the coding-
theoretic properties of the extended codes.

3.3 Optimized Searching Method
We notice that the Subfield extension oper-
ation is “one-way”. Namely, it is easy to
extend a code from F2ℓ to Fℓ

2 (see Magma
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Table 2 The dual distances for two seeds when drawing
10 random codes D, using B0 of F256.

SetSeed(0) SetSeed(1)

dD⊥ d[D]⊥ dD⊥ d[D]⊥

4 8 4 6
3 6 4 7
4 8 4 6
4 6 4 6
4 8 4 8
4 7 4 8
4 7 4 8
4 7 4 8
4 8 4 7
4 7 4 8

Table 3 The dual distances for two seeds when drawing
10 random codes D, using B1 of F256.

SetSeed(0) SetSeed(1)

dD⊥ d[D]⊥ dD⊥ d[D]⊥

4 8 4 7
3 6 4 7
4 7 4 7
4 7 4 8
4 8 4 7
4 7 4 7
4 7 4 8
4 6 4 7
4 7 4 7
4 7 4 8

SubfieldRepresentationCode command), but
the inverse operation is not trivial. Moreover, not
all codes of parameters [nℓ, kℓ]2 can be interpreted
as codes [n, k]2ℓ . On the contrary, taking the dual
of a linear code is invertible, and even involutive,
as (C⊥)⊥ = C.

Thus, leveraging trace-orthogonal bases, one
can simplify the search for good codes by trading
Alg. 4 (which is a realization of Alg. 1) by Alg. 5,
in particular, saving the computation of the dual
codes.

Algorithm 4: Bounded search for an effi-
cient code

Input : Number of iterations N
Output : Best found GCM code over F2ℓ

1 w ← (2n, 0, . . . , 0) // Worst case for a weight
enumeration polynomial

2 Dbest ← RandomCode [n, k]2ℓ
3 for i ∈ {1, . . . , N} do
4 Select a random code D

5 if enumerationPolynomial ([D]⊥) is better
than w then

6 w ← enumerationPolynomial ([D]⊥)
7 Dbest ← D

8 end
9 end

10 return Dbest

Algorithm 5: Optimized (compared to
Alg. 4) bounded search for an efficient code

Input : Number of iterations N
Output : Best found GCM code over F2ℓ

1 w ← (2n, 0, . . . , 0) // Worst case for a weight
enumeration polynomial

2 Dbest ← RandomCode[n, k]2ℓ
3 for i ∈ {1, . . . , N} do
4 Select a random code D′

5 if enumerationPolynomial ([D′]) is better
than w then // No computation of dual
code for all candidates

6 w ← enumerationPolynomial ([D′])
7 Dbest ← D⊥ // This operation has

been procrastinated
8 end
9 end

10 return Dbest

4 Characterizing Side-Channel
Security by Weight
Distribution

Mutual information (MI) is commonly used in
tasks related to measuring side-channel leakage as
an information-theoretic metric. Essentially, MI
measures the statistical dependencies between the
key-dependent variables and the leakage, which
considers the full distributions of corresponding
variables.
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Consider a linear leakage model including the
Hamming weight model. Since the weight distri-
bution determines how weights of codewords in a
linear code are distributed, it therefore determines
the leakage distribution of the masked variable
from a coding-theoretic perspective [9].

In view of the above reasoning, we have the
following conjecture.

Conjecture 1 MI between the sensitive variable
and side-channel leakage under linear leakage mod-
els (e.g., Hamming weight model or weighted sum of
bits model) depends on the weight distributions of the
corresponding codes in the code-based masking ∗.

It is well-known that for a code of dual dis-
tance d, any tuple of d−1 coordinates is uniformly
distributed, and some tuples of d coordinates
are linearly dependent [21, Theorem 10]. There-
fore, the side-channel security order under probing
model is t = d − 1, and an attack of order d,
corresponding to codewords of Hamming weight
equal to d, brings some mutual information that
depends on σ−2d, where σ2 is the variance of
the AWGN channel that characterized the leakage
model [9]. Moreover, since not all codewords have
the same Hamming weight d, other codewords of
weights > d should bring more information when
considering mutual information as an information-
theoretic metric.

Said differently, as inspired by [9, Theorem 4]†,
the mutual information is related to

∑nℓ
i=0

Ai

σ2i , or
more precisely (removing the useless 1 constant
arising from i = 0), it is related to:

nℓ∑
i=d

Ai

σ2i
, (3)

where nℓ is the length of the extended code over
F2 and Ai is the number of codewords of weight
i (in the dual of the code employed to mask the
information). Hence the lexicographical order of
the Ai to compare the amount of leakage is indeed
associated with the masking code.

∗It is worth noting that, in theory, MI is not restricted to
rely on specific assumption on the leakage model. However, we
focus on the linear leakage model in this paper.

†Note that Theorem 4 in [9] only focuses on the first Ai

for non-zero codewords.

4.1 Illustrating the Impact of
Weight Distributions

An illustration of the terms Ai/σ
2i for 0 ≤ i ≤

16 (recall (3)), in the case two masking schemes
corresponding to ℓ = 8 and n = 2, is provided in
Fig. 3. The two represented codes are:

• Boolean masking, and
• Masking using the first code in Tab. 4.

The values which are represented are Ai/σ
2i; the

value for which i is equal to the minimum distance
is an approximation of the mutual information.
Such dominating coefficient is shown in Fig. 3 with
larger symbol × or +. The figure shows the val-
ues in logarithmic scale; the null values are not
represented (for the Boolean masking case, weight
coefficient is equal to zero for even values of i).
It is recalled from [9] how the code impacts the
security. Consider the largest symbol:

• its abscissa corresponds to the leakage order
(e.g., with different weights), whereas

• its ordinate corresponds to the leakage ampli-
tude (approximate information leakage) for that
leakage order.

It is clear from Fig. 3 that code-based masking
performs better than Boolean masking on both
metrics.

The impact of non-linear masking, such as (6)
below, is to introduce combination(s) of bits
before the attacker tries himself to further com-
bine bits in his high-order attack. Therefore, the
attacker needs to combine less bits (since some are
already combined) to perform a successful attack.

Now, the Leakage Function box in Fig. 1 may
consist in two physical phenomena:

1. Upfront (at its inputs): the design features
cross-talks for instance, bits are combined. The
combination is often non-linear (e.g., the con-
crete example discussed in Sec. 4.4), in that
for instance the leakage of one bit is strength-
ened when another (nearby) bit is having a
given value or experiencing a given transition.
Hence a non-linear leakage model, even before
any “noisy leakage” has occurred.

2. Downstream (at its outputs): the side-channel
antenna is large, some aggregation (under the
form of a linear combination) is performed and
turns Boolean values into a real number.
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The probing model operates at the input of
the Leakage Function box, whereas the bounded
moments leakage model operates at the output of
the Channel box. Both models should be consid-
ered simultaneously in evaluating practical secu-
rity of cryptographic implementations, since the
attacker has the choice of its weapon.

4.2 Connecting with Attacks
When evaluating with side-channel attacks, par-
ticularly in the optimal multivariate attacks
(using higher-order optimal distinguishers) [6], the
weight distribution also plays a significant role.
More precisely, we have the following conjecture.

Conjecture 2 The success rate of optimal multivari-
ate attack under linear leakage models is determined
by the weight distributions of the corresponding codes
in the code-based masking.

Informally, as shown in Figure 1, given the
same U , wH([V ]) is distributed as wH([V ′]), where
M and M ′ are uniformly drawn from two equiva-
lent codes (because of the Hamming weight, which
is coordinate-wise independent). Therefore, side-
channel distinguishers should perform similarly
when extracting key-dependent information from
leakages under the Hamming weight model.

4.3 Numerical Results
In the following, we consider a typical case of
GCM by setting the generator matrices of the two
codes C and D as follows:

GC =( 1 0 ) , (4)

GD =
(
α1 α2

)
=
(
αi αj

)
. (5)

Clearly, the code D is an MDS code of parameters
[2, 1, 2]. Considering equivalent linear codes over
F28 , we can fix αj = 1 in GD. Hence there are
only 254 candidates for the second element in GD,
corresponding to 254 linear codes.

As a common setting in side-channel analysis,
we take the Hamming weight leakage model with
the Gaussian noise. The setup is shown in Figure 1
in a communication channel viewpoint. Consid-
ering different bases, we launch an information-
theoretic evaluation on all linear codes under
different noise levels. The results are shown in

Figure 4, 5 and 6 for the three bases, respectively.
In particular, we add Figure 4(a) for the purpose
of comparison, which illustrates the effectiveness
of our lexicographical order based sorting of all
codes.

Note that the two vertical red dashed lines are
for indicating the different dual distances d⊥D ∈
{2, 3, 4}. For instance in Figure 4(b), the first ver-
tical line marked 48 means there are 48 linear
codes with d⊥D = 4, and 202 − 48 = 154 linear
codes with d⊥D = 3, and remaining 52 linear codes
with d⊥D = 2.

An interesting observation from Figure 4, 5
and 6 is, the bases have a significant impact
on the distribution of linear codes. The mutual
information increases (in most cases, except for
some local minima) with the code lexicographic
order on their weight enumeration polynomial.
This justifies Conjecture 1. However, the num-
ber of exceptions (local minima) decreases when
the noise increases, and the curves become indeed
strictly increasing. Particularly, the first basis B0

gives the best weight distribution among the three
bases, which will be investigated further in the
next subsection.

4.4 Classifying Linear Codes
In order to find the best weight distributions
under different bases, we classify linear codes as in
Table 4. Specifically, in Table 4, we first show the
distribution of the minimum distance of all 254 lin-
ear codes under the three bases, and then present
the best weight distribution in the last column.
The takeaway point for the three bases is that
the basis has a significant impact on the distribu-
tion of the minimum distances. Under condition
of the prefix-based lexicographical order of weight
distribution (Definition 6), we focus on the num-
ber of codes with the minimum distance equal to
4, resulting that B2 gives more codes with d = 4
(among the three cases). On the contrary, the first
basis B0 gives the best weight distribution among
all three bases where A4 = 2.

Secondly, we randomly generate 1,000,000 lin-
ear codes over F2 by fixing n = 16 and k = 8
for comparison. The distribution of the minimum
distances are listed in the fourth row of Table 4.
One interesting observation is that this random
approach gives a better weight distribution than
all three bases over F28 .
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σ = 1 σ = 2 σ = 4

Fig. 3 Value of Ai/σ
2i per weight (or equivalently, per attack order). Largest symbol indicates leading term.
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(a) Linear codes without sorting.

0 50 100 150 200 250
Sorted linear codes

10

8

6

4

2

0

M
ut

ua
l i

nf
or

m
at

io
n 

(lo
g 1

0)

48 202

2 = 0.00
2 = 0.50
2 = 1.00
2 = 4.00

2 = 9.00
2 = 16.00
2 = 64.00

(b) Sorted linear codes in the lexicographical order.

Fig. 4 Information-theoretic evaluation of all 254 candidates under the trace-orthogonal basis B0.

However, all above cases do not recover the
best known linear code (referred to as BKLC in
Magma) given n = 16 and k = 8. We know
that there is a unique linear code with param-
eters [16, 8, 5], which has the minimum distance
equal to 5 [9]. Among all linear codes over F2,
this BKLC code gives us the best weight distri-
bution according to our lexicographical sorting,
since it has A4 = 0 while A4 > 0 for other cases.
From a perspective of side-channel analysis, this

BKLC code provides us a masking code with the
bit-level security order t = d⊥D − 1 = 4, that is
higher than all other linear codes. Unfortunately,
this code cannot be constructed by the subfield
extension approach from F28 to F2 (e.g., by using
bases like Bi for i ∈ {0, 1, 2}). This is also the
reason why the direct sum masking can be bet-
ter than the inner product masking in the sense of
side-channel resistance [7, 9].
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Fig. 5 Information-theoretic evaluation of all 254 candidates under the trace-orthogonal basis B1 sorted in the lexico-
graphical order.
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Fig. 6 Information-theoretic evaluation of all 254 candidates under the default basis B2 sorted in the lexicographical order.

Table 4 Classifying linear codes under different bases. Note that the float number in parenthesis is the ratio between the
number of codes in a class and the total number of candidates.

Subfield
Number of linear codes with different d

Best weight distribution Optimal codes
#{d = 1} #{d = 2} #{d = 3} #{d = 4} #{d = 5}

B0 F28 → F2 0 52 (0.2047) 154 (0.6063) 48 (0.1890) 0
[ 1, 0, 0, 0, 2, 22, 40, 44, 45,

40, 32, 20, 8, 2, 0, 0, 0 ]
(4, 2)-optimal

B1 F28 → F2 0 52 (0.2047) 174 (0.6850) 28 (0.1102) 0
[ 1, 0, 0, 0, 3, 21, 38, 46, 45,

40, 34, 18, 7, 3, 0, 0, 0 ]
(4, 3)-optimal

B2 F28 → F2 0 36 (0.1417) 152 (0.5984) 66 (0.2598) 0
[ 1, 0, 0, 0, 4, 22, 35, 42, 47,

46, 36, 14, 4, 4, 1, 0, 0 ]
(4, 4)-optimal

Random
codes

F2
60688

(0.0607)
357539
(0.3575)

528070
(0.5281)

53703
(0.0537)

0
[ 1, 0, 0, 0, 1, 23, 42, 42, 45,

40, 30, 22, 9, 1, 0, 0, 0 ]
(4, 1)-optimal

BKLC F2 0 0 0 0 1
[ 1, 0, 0, 0, 0, 24, 44, 40, 45,

40, 28, 24, 10, 0, 0, 0, 0 ]
(5, 24)-optimal

Evaluation of the best weight distributions
under different bases. In Table 4, we present
five best cases of the weight distribution. In
order to have a fair comparison, we launch an
information-theoretic evaluation by using mutual
information. The results are depicted in Figure 7.

As shown in Figure 7, the main observation is
that our lexicographical order-based sorting still
works when comparing linear codes extended by

using different bases. Note that for the best weight
distribution under B1 and B2, the curve for B1

is slightly higher than that of B2. The reason is
that other elements (e.g., Ad+1, Ad+2, etc) in the
weight distribution under B1 have more impact on
mutual information.

The generator matrices of the optimal codes in
Table 4 are listed in Appendix B.
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Fig. 7 Information-theoretic evaluation of the best weight distributions (WD) under different bases as shown in Table 4.

4.5 On Another Leakage Model
Although we mainly focus on the linear leakage
models in this work, our analysis on using good
linear codes can also be applied to other leakage
models like the Hamming distance (HD) model.
Let V = (V1, V2) be the two shares in 2-share
masking. Consider that V1 and V2 are manipulated
consecutively, e.g., loaded in one register, we shall
have the following HD leakage:

dH(V1,V2) = wH(V1 ⊕ V2)

= wH(V1) + wH(V2)− 2wH(V1 ∧ V2)
(6)

where dH is the Hamming distance function, and
∧ is the bit-wise AND operator.

Therefore, the HD leakage as in (6) is a
kind of second-order leakages, resulting in a
decreased (effective) security order of the cor-
responding masking. For instance, a first-order
(2-share) Boolean masking can be compromised
under this HD leakage because the dual distance
of the corresponding linear codes is only 2.

Fortunately, the code-based masking with the
best linear codes can still work. Specifically, taking
those linear codes with the dual distance equal
to 3 or 4 in Table 4 can very well resist to the
above HD leakage since HD leakage is a kind of
second-order leakages [9]. Another similar scenario
can happen with the transitional leakage caused
by physical defaults like couplings [1, 13]. More
general leakage models shall also be included and
characterized as in [9, Theorem 1].

From an evaluation perspective, practical
attack-based investigations in [35] demonstrate

the advantages of utilizing the best linear codes,
against both the template attack and higher-
order correlation attacks. Moreover, this work also
shows that code-based masking with good linear
codes can resist transitional leakages in practice.
To summarize, even with different leakage mod-
els, our approach can provide better choices in
enhancing the side-channel resistance of masked
cryptographic implementations.

5 Discussion: Related Works
In this section, we first review the selection of
optimal linear codes in code-based masking and
then give some examples of optimal codes in the
literature, particularly with one upper bound on
the minimum distance of the extend binary linear
codes.

5.1 Linear Codes in Code-based
Masking

The problem of selecting optimal linear codes orig-
inates from [22] when choosing good codes for
leakage squeezing (LS) scheme. It is latter con-
sidered in other schemes like low-entropy masking
scheme (LEMS) [23] and direct sum masking
(DSM) [5]. The problem also emerges in choosing
good public parameters in IPM [1], since different
parameters play a significant role in the side-
channel resistance of IPM. Note that LS, IPM and
DSM schemes are special cases of GCM as shown
in [8]. Therefore, it is preferable to seek a solution
to the problem in GCM as it is the most general
case.



Springer Nature 2021 LATEX template

14 Towards Finding Best Linear Codes

From the perspective of solution, using the
dual distance as an indicator to choose good codes
(in the sense of side-channel resistance) is pro-
posed firstly in [5, 7, 23, 24]. In particular, DSM
and IPM are connected to each other over F2ℓ and
F2 in [7, 24]. Then the kissing number proposed
as the second indicator along with the dual dis-
tance is investigated in [8, 9]. In viewing of the
state-of-the-art results, this paper further extends
the idea by using the full weight distribution and
illustrate the exact conversion from F2ℓ to F2 by
giving the best weight distribution. In particu-
lar, we show how to use trace-orthogonal bases
to obtain the extend codes over F2 irrespective to
the order of two transformations, namely apply-
ing subfield representation first or computing dual
codes first.

More generally, when the code-based mask-
ing is redundant [8], our approach also works in
selecting optimal weight distribution. Considering
the polynomial masking [25], which is based on
Shamir’s Secret Sharing (SSS) scheme, the kissing
number should be replaced by the adjusted one
(defined in [8], depending on both codes C and
D in GCM). As a consequence, the selection of
optimal linear codes should also use the adjusted
weight distribution of C and D, rather than the
weight distribution of D only in non-redundant
cases like in IPM, etc.

5.2 An Upper Bound on the
Minimum Distance

The investigation of coding-theoretic properties of
the extended linear codes over the subfield has
been the topic of several works [3, 4, 18, 26, 27,
29, 34]. The subfield extension of a linear code
over F2 is usually called its binary image. As we
show in this paper, the coding-theoretic properties
(e.g., the minimum distance, weight distribution,
etc) usually depend on both the code itself and the
bases that used for subfield extension [4, 26, 27],
while under certain conditions [3], the minimum
Hamming weight shall be independent of the
bases.

As our aim is the selection of optimal lin-
ear codes, one natural question that raises is
how to (upper) bound the minimum distance of
the binary images. Interestingly, Rabizzoni [26,
Theorem 1] propose both the upper and lower

bounds in this respect (applied to F2ℓ):

d ≤ d′ ≤
⌈
d · ℓ · 2ℓ−1

2ℓ − 1

⌉
, (7)

where d and d′ denote the minimum distances of
the linear code and its binary image, ⌈x⌉ is the
greatest integer less than or equal to x. In partic-
ular, r.h.s of (7) is smaller than d · ℓ when ℓ > 1,
where the latter is a trivial upper bound on d′.

In Table 5, we present several examples of the
optimal linear codes with ℓ = {4, 8} for F24 and
F28 , respectively. Note that dBKLC denotes the
minimum distances of the best known linear codes
over F2 given by Magma database; dup is for the
upper bound from r.h.s of (7). From Table 5, one
can observe that the upper bound (by r.h.s) will
be looser when ℓ gets larger, while interestingly,
when ℓ = 4, the upper bound is very close, or even
exact when n = 3 and k = 2.

Table 5 Validation of the upper bound on the minimum
distance of binary images. The detailed constructions of
those codes can be found in [9, 10].

Code
Parameters

F2ℓ d d′ dBKLC dup by (7)

n = 2, k = 1
ℓ = 4 2 3 4 4

ℓ = 8 2 4 5 8

n = 3, k = 2
ℓ = 4 3 6 6 6

ℓ = 8 3 8 8 12

However, the upper bound by (7) is only
related to d and the degree of the finite field F2ℓ ,
while it is independent of code parameters n and
k. Intuitively, it shall be tighter by considering
these parameters. We leave this problem open for
further investigations.

5.3 Impacts of Linear Codes on
Efficiency

One main disadvantage of code-based masking is
its higher overhead compared with the simplest
Boolean masking since more operations like finite
field multiplication are involved in code-based
masking. Taking real-world implementation-based
evaluations on an embedded AVR microcon-
troller [1] and an ARM Cortex M4 board [35], the
number of clock cycles of IPM is about 1.2 to 1.5
times to the Boolean counterpart with the same
number of shares.
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However, the different choices of linear codes in
IPM have no significant impact on the efficiency,
except the trivial case of Boolean masking is con-
sidered. For instance, setting the four linear codes
in IPM [35] leads to the same clock cycle counts
since this software implementation is designed to
be constant time. Similarly, taking the best lin-
ear codes as we proposed in this work should have
no significant impact on software-based implemen-
tations. Still, the hardware-based implementation
shall be improved by carrying out operations over
F2, and we leave this problem open for future
investigation.

6 Conclusion and Perspective
In this work, we built a link between weight dis-
tribution of a linear code and the side-channel
resistance of the corresponding code-based mask-
ing scheme. We first revisited the subfield exten-
sion of a linear code from word to bit-level, which
is related to word- and bit-level probing security.
Using trace-orthonormal bases allowed us to have
a commutative relationship of subfield representa-
tion and duality of a code. We then connected the
side-channel resistance of the code-based masking
to the weight distribution of corresponding lin-
ear codes. We have shown that the lexicographical
ordering of the weight distribution can be used
to find the best codes. More precisely, the lexi-
cographic order on weight enumerators coincides
with the information the corresponding codes
leak as additive white Gaussian noise increases.
Thus, the information-theoretic evaluation con-
firms the interest of the lexicographic sorting on
weight distributions, which can be readily used
to construct optimally resistant linear codes to
side-channel attacks in our framework. As a per-
spective, we intend to consider practical applica-
tions in designing efficient masked cryptographic
implementations of high-order security.
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Appendix A Magma Scripts
The Magma script used to generate results in
Table 2 and 3 is given in Listing 1.
Listing 1 Obtaining random linear codes, in Magma [32]
language.

1 l := 8 ; // In t h i s example , we cons ide r
the f i n i t e f i e l d GF(2 ,8 )

2 n := 5 ;
3 k := 3 ;
4 Nc := 10 ; // Obtain 10 random l i n e a r

codes
5 SetSeed (0) ;
6 [ { MinimumDistance (D) , MinimumDistance (

SubFieldRepresentat ionCode (D) ) } :
7 D in [ Dual (RandomLinearCode (GF(2 , l ) ,n , k ) )

: i in { 1 . . Nc } ] ] ;
8 SetSeed (1) ;
9 [ { MinimumDistance (D) , MinimumDistance (

SubFieldRepresentat ionCode (D) ) } :
10 D in [ Dual (RandomLinearCode (GF(2 , l ) ,n , k ) )

: i in { 1 . . Nc } ] ] ;

Appendix B Generator
Matrices of
Optimal Codes

The generator matrices of five instances optimal
linear codes are detailed as follows.

• The (4, 2)-optimal codes with TOB B0:

GD1
=



1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0
0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1


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• The (4, 3)-optimal codes with TOB B1:

GD2 =



1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1
0 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0


• The (4, 4)-optimal codes with the basis B2:

GD3 =



1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1
0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1
0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1


• The (4, 1)-optimal binary codes by random

draws over F2:

GD4
=



1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0
0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 1


• The (5, 24)-optimal binary codes from Magma

BKLC database:

GD5
=



1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1


.
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