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Abstract—A common countermeasure against side-channel
attacks on secret key cryptographic implementations is dth-
order masking, which splits each sensitive variable into d + 1
random shares. In this paper, maximal leakage bounds on the
probability of success of any side-channel attack are derived for
any masking order. Maximal leakage (Sibson’s information of
order infinity) is evaluated between the sensitive variable and the
noisy leakage, and is related to the conditional “min-entropy”
(Arimoto’s entropy of order infinity) of the sensitive variable
given the leakage. The latter conditional entropy is then lower-
bounded in terms of the conditional entropies for each share
using majorization inequalities. This yields a generalization of
Mrs. Gerber’s lemma for min-entropy in finite Abelian groups.

I. INTRODUCTION

When a cryptographic device is operating, any kind of
physical leakage (time, power, electromagnetic emanations,
etc.) can be exploited by an attacker. The attacker queries
the device multiple times, and measures the corresponding
leakages to infer the secret key. The security of devices against
side-channel attacks has become a major concern.

To evaluate the probability of success for any side-channel
attack, information-theoretic metrics turn out to be effective
and have been used in many studies. Using conditional mutual
information and Fano’s inequality, de Chérisey et al. [6]
established several universal bounds on the probability of
success for a given number of queries, or equivalently, the
minimum number of queries required to achieve a given level
of success. This approach has been extended to conditional
Sibson’s α-information by Liu et al. [15]. However, both [6]
and [15] were restricted to unprotected cryptographic devices.

Masking is one of the most well-established countermea-
sures. The main issue in this context is the fact that a direct
evaluation of the information leakage requires data and com-
putational complexities that increase rapidly with the masking
order [5]. Therefore, it is important to derive bounds in terms
of the individual information leakages for each share. Duc et
al. [7] conjectured a general form of such bounds. Rigorous
bounds were obtained in two independent recent works by
Ito et al. [13] and Masure et al. [18]. Even more recently,
Béguinot et al. [3] improved these results using Mrs. Gerber’s
lemma [14], [27] to derive sharp bounds in terms of mutual
information for masking in additive groups of order 2n.

In the case of unprotected implementations (without mask-
ing), it is shown by simulation in [15] that the probability of

success of a side-channel attack is evaluated using Sibson’s α-
information all the more accurately as α increases. Therefore,
the case of mutual information, which corresponds to α = 1
is not optimal. This motivates the derivation of new bounds
in the limiting case α = +∞.

The usual setup of masking countermeasures involves bit-
wise XOR (exclusive or) operations, which are particularly
well suited to symmetric cryptographic algorithms like AES.
However, modern cryptography also relies on operations per-
formed in groups of prime order, and masking can also be
multiplicative [1] and not only additive [9]. For all these
reasons, there is a strong incentive to extend the previous
bounds to arbitrary finite Abelian groups. This motivates the
generalization of Mrs. Gerber’s lemma to any such Abelian
group.

Mrs. Gerber’s lemma was initially derived by Wyner and
Ziv [27] to lower bound the entropy of a modulo 2 addition
of binary random variables in terms of the entropies of each
summand. It was extended by Jog and Anatharam [14] to the
case of additive groups of order 2n, and by Hirche [10] to
the case of Rényi entropy of binary variables. The general
case of additive groups was only considered by Tao [23]
for Shannon entropy and independent copies of two shares,
in relation to sumset theory. While the original binary Mrs.
Gerber’s lemma was used to derive a binary version of the
entropy power inequality [21], a generalization of the entropy
power inequality to any prime cyclic additive group and Rényi
entropy was investigated by Madiman et al. [16], but does not
reduce to an explicit “Mrs. Gerber’s lemma”-type inequality.
Therefore, it appears that the case of min-entropy (Rényi
entropy of order ∞) and additive groups of any order has
not been investigated yet in our context.

Contributions

In this paper, we show that when evaluating the performance
of side-channel attacks of masked implementations using
conditional Sibson’s α-information, the exact performance
of optimal maximum likelihood attacks is attained in the
limiting case α = +∞. This motivates the investigation of
Mrs. Gerber’s lemma for conditional min-entropy (Arimoto’s
conditional entropy of order ∞). We derive a variation of such
Mrs. Gerber’s lemma for any finite Abelian group and for any
masking order.



The remainder of this paper is organized as follows.
Section II gives some notations and preliminaries on α-
informational quantities. Section III shows that the optimal
evaluation of side-channel attack success by Fano’s inequality
is achieved in the limiting case α = +∞ and derives the
corresponding bound in terms of the information between
the sensitive variable and the leakage, which is linear in the
number of queries. Section IV derives Mrs. Gerber’s lemma
for min-entropy, first for two summands in any finite Abelian
group, then extends it to the general case of d+1 summands.
Section V concludes and gives some perspectives.

II. PRELIMINARIES AND NOTATIONS

A. Framework and Notations

Let K be the secret key and T be a public variable (usually
plaintext or ciphertext) known to the attacker. It is assumed
that T is independent of K, and K is uniformly distributed
over an Abelian group G of order M . The cryptographic algo-
rithm operates on K and T to compute a sensitive variable X ,
which takes values in the same group G and is determined by
K and T , in such a way that X is also uniformly distributed
over G.

In a masking scheme of order d, the sensitive variable X is
randomly split into d + 1 shares X0, X1, . . . , Xd and cryp-
tographic operations are performed on each share separately.
Thus, X = X0 ⊕ X1 ⊕ · · · ⊕ Xd, where each share Xi is
a uniformly distributed random variable over G and ⊕ is the
group operation in G. For this group operation, we let ⊖g
denote the opposite of g ∈ G. A typical example is “Boolean
masking”, for which ⊕ ≡ ⊖ is the bitwise XOR operation.

During computation, shares X = (X0, X1, . . . , Xd) are
leaking through some side channel. Noisy “traces,” denoted
by Y = (Y0, Y1, . . . , Yd), are measured by the attacker,
where Y is the output of a memoryless side channel with
input X . Since masking shares are drawn uniformly and
independently, both X and Y are i.i.d. sequences. The attacker
measures m traces Y m = (Y1,Y2, . . . ,Ym) corresponding to
the i.i.d. text sequence Tm = (T1, T2, . . . , Tm), then exploits
her knowledge of Y m and Tm to guess the secret key K̂.
Again, since the side-channel is memoryless, both Xm and
Y m are i.i.d. sequences.

Let Ps = P(K = K̂) be the probability of success of the
attack upon observing Tm and Y m. In theory, maximum
success is obtained by the MAP (maximum a posteriori
probability) rule with success probability denoted by Ps =
Ps(K|Y m, Tm). The whole process is illustrated in Fig. 1.

Crypto Masking Side-channel Attack
Xm XmK Y m K̂

Tm Tm

Fig. 1. Side-channel analysis as a (unintended) “communication” channel.
“Crypto” can be any sensitive computation (encryption or decryption). T is
a public random variable (e.g., a plain or cipher text byte).

B. Rényi’s α-Entropy and Arimoto’s Conditional α-Entropy

Assume that either 0 < α < 1 or 1 < α < +∞ (the limiting
values 0, 1,+∞ can be obtained by taking limits). We consider
probability distributions P,Q with a dominating measure µ,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q. We follow the notations
of [15] in the following

Definition 1 (Rényi α-Entropy and α-Divergence):

Hα(P ) = α
1−α log ∥p∥α (1)

Dα(P∥Q) = 1
α−1 log⟨p∥q⟩

α
α (2)

with the special notation:

∥p∥α =
(∫

|p|αdµ
)1/α

(3)

⟨p∥q⟩α =
(∫

pαq1−αdµ
)1/α

. (4)

The usual Shannon entropy and Kullback-Leibler divergence
are recovered by letting α → 1. The α-entropy is nonincreas-
ing in α and achieves its min-entropy H∞ at the limit α = ∞:

Definition 2 (Min-Entropy): For a probability distribution P
over a finite alphabet, the min-entropy is

H∞(P ) = − log(max p). (5)

Many different definitions of conditional α-entropy
Hα(X|Y ) were proposed in the literature. We use Arimoto’s
definition, which is argued to be the most promising one [8]:

Definition 3 (Arimoto’s Conditional α-Entropy [2]): The
conditional α-entropy of X given Y is defined as

Hα(X|Y ) =
α

1− α
logEY ∥pX|Y ∥α. (6)

Assuming X takes values in a finite alphabet, the conditional
min-entropy can be obtained by letting α → ∞ in Hα(X|Y ):

Definition 4 (Conditional Min-Entropy [24]):

H∞(X|Y ) = − log(EY max
x

pX|Y ) = − logPs(X|Y ) (7)

where Ps(X|Y ) is the maximum average probability of suc-
cess in estimating X having observed Y , by the MAP rule.

C. Sibson’s α-Information and Liu et al.’s Conditional Version

Again, several different definitions of α-information
Iα(X;Y ) have been proposed, and Sibson’s α-information is
perhaps the most appropriate one because it satisfies several
useful properties that other definitions do not [26].

Definition 5 (Sibson’s α-Information [22], [26]):

Iα(X;Y ) = min
QY

Dα(PXY ∥PX ×QY ) (8)

= α
α−1 logEY ⟨pX|Y ∥pX⟩α. (9)

Definition 6 (Max-Information [11, Thm. 4]): Assuming
X,Y are discrete random variables, one has

I∞(X;Y ) = log
∑
y

sup
x:pX(x)>0

pY |X(y|x). (10)

Max-information is also studied in [12] as maximal leakage.



Again, there are many different proposals for conditional
α-information. We use the following definition which seems
most appropriate in the context of side-channel analysis [15]:

Definition 7 (Conditional α-Information [15]):

Iα(X;Y |Z) = min
QY Z

Dα(PXY Z∥PX|ZQY Z) (11)

= α
α−1 logEY Z⟨pX|Y Z∥pX|Z⟩α. (12)

III. FANO’S EQUALITY FOR ORDER ∞: LINEAR BOUND

A. Fano Inequality for Conditional α-Information as α → ∞
Using conditional α-information, Liu et al. [15] derived a

universal bound on the probability of success as follows.
Theorem 1 (Generalized Fano’s Inequality [15, Thm. 1]):

Iα(K;Y m|Tm) ≥ dα(Ps(K|Y m, Tm)∥(Ps(K))) (13)

where dα(p∥q) is the binary α-divergence:

dα(p∥q) = 1
α−1 log(p

αq1−α + (1− p)α(1− q)1−α). (14)

When α → 1, this bound recovers the previous bound in [6].
The simulation results in [15] show that (13) is tighter as α
increases.

In this section, we prove that Fano’s inequality for condi-
tional α-information becomes an equality in the limiting case
α = ∞. Thus, conditional max-information can accurately
characterize the probability of success.

Theorem 2 (Generalized Fano’s Inequality at α = +∞):
For a uniformly distributed secret K,

I∞(K;Y m|Tm) = d∞(Ps(K|Y m, Tm)∥(Ps(K)))

= log(MPs)
(15)

where d∞(p∥q) = lim
α→∞

dα(p∥q) = log max
x,q(x)>0

(p(x)/q(x)),

Ps = Ps(K|Y m, Tm) is the optimal probability of success,
and Ps(K) = 1/M is the corresponding probability of success
in the case of blind estimation (without any observation).
To prove this theorem, we need the explicit expression of
conditional max-information.

Proposition 1 (Conditional Max-Information): Assuming X
takes values in a finite alphabet, one has

I∞(X;Y |Z) = logEZ

∫
y

( max
x:pX|Z(x|z)>0

pY |XZ) dµY . (16)

This result easily follows from the following Lemmas 1 and 2,
which are proved in Appendices B and C respectively. In [12],
conditional maximal leakage is defined as a maximum over Z,
while our conditional max-information is averaged over Z—
which is less than or equal to the conditional maximal leakage
of [12].

Lemma 1: Given any fixed y, z, we have

lim
α→∞

pY |Z · ⟨pX|Y Z∥pX|Z⟩α = max
x:pX|Z(x|z)>0

pY |XZ . (17)

Lemma 2:

lim
α→∞

log EY Z⟨pX|Y Z∥pX|Z⟩α

= logEZ

∫
y

lim
α→∞

pY |Z · ⟨pX|Y Z∥pX|Z⟩α. (18)

Proof of Theorem 2: Under the MAP rule, the probability
of success writes

Ps = EY mTm(max
k

pK|Y m,Tm)

= ETm

∫
ym

(max
k

pY m|K,TmpK|Tm)dµY m . (19)

Recall K is uniformly distributed and independent from Tm.
Therefore, (19) becomes

Ps =
1

M
· ETm

∫
ym

(
max

k
pY m|K,Tm

)
dµY m . (20)

Combining (16) and (20) we have I∞(K;Y m|Tm) =
log(MPs). Since Ps ≥ 1/M , one has Ps · M ≥ (1 − Ps) ·
M/(M−1) and d∞(Ps(K|Y m, Tm)∥(Ps(K))) = log(MPs),
which proves (15).
B. Linear Bound Using Maximal Leakage I∞(X;Y)

Evaluating I∞(K;Y m|Tm) directly turns out to be cumber-
some (see Remark 1 below). Instead we use the unconditional
max-information measure, i.e., maximal leakage I∞(X;Y) to
bound the probability of success, which is linear in the number
m of measurements:

Theorem 3 (Linear Bound):

log(MPs) ≤ mI∞(X;Y ). (21)

Proof: By Definition 6,

I∞(K,Tm;Y m) = log

∫
ym

max
k,tm

pY m|K,TmdµY m . (22)

Because max
k,tm

pY m|K,Tm ≥ ETm (maxk pY m|K,Tm), by (15)

and (16) we have

I∞(K,Tm;Y m) ≥ I∞(K;Y m|Tm) = log(MPs). (23)

Because (K,Tm) ↔ Xm ↔ Y m forms a Markov chain,
using the data processing inequality (DPI) for Sibson’s α-
information [19], [20] we have

Iα(K,Tm;Y m) ≤ Iα(X
m;Y m). (24)

Also, when Tm is not observed, each component of Xm is
i.i.d., and since the side-channel is memoryless, (Xm;Y m) is
an i.i.d. sequence. It easily follows from the definition that

Iα(X
m;Y m) = mIα(X;Y ). (25)

Letting α → ∞ in (24) and (25) we have I∞(K,Tm;Y m) ≤
mI∞(X;Y ).

Remark 1: For conditional α-information we have the in-
equality Iα(K;Y m|Tm) ≤ Iα(X

m;Y m|Tm) similar to (24).
However, one does not have an equality similar to (25) when
Tm is observed.



Remark 2: This proof cannot use the result in [12, Theo-
rem 1] because in this theorem Y m is not on a finite alphabet.
What’s more, if we use Definition 1 and Theorem 1 in [12]
we will have

I∞(Xm;Y m, Tm) ≥ log(M · Ps(K|Y m, Tm)) (26)

but I∞(Xm;Y m) is less than I∞(Xm;Y m, Tm).

IV. MRS. GERBER’S LEMMA FOR MIN-ENTROPY IN ANY
FINITE ABELIAN GROUP

To benefit from Theorem 3 it remains to upper bound
I∞(X;Y ). Since X is uniformly distributed, it is easily seen
from the definition that I∞(X;Y ) = logM − H∞(X|Y ).
Thus, it remains to lower bound the conditional min-entropy
H∞(X|Y ). This can be seen as an extension of Mrs. Gerber’s
lemma to min-entropy in finite additive groups.

A. Mrs. Gerber’s Lemma for Two Random Variables

Wyner and Ziv [27] lower bounded the entropy of a sum of
binary random variables with the entropies of each summand.
This is known as Mrs. Gerber’s lemma.

Theorem 4 (Mrs. Gerber’s Lemma [27]): Let X0, X1 be two
independent Z2-valued random variables with side information
Y = (Y0, Y1) and sensitive bit X = X0 ⊕X1. Then

H(X|Y) ≥ h(h−1(H(X0|Y0)) ⋆ h
−1(H(X1|Y1))) (27)

where h(p) = −p log p−p̄ log p̄, a⋆b = ab̄+āb and x̄ = 1−x.

Jog and Anatharam [14] extended Mrs. Gerber’s lemma
to additive groups of order 2n. Hirche [10] extended Mrs.
Gerber’s lemma for binary random variables to the case
of Rényi entropies. In particular for min-entropy, one has
equality:

Theorem 5 (Christoph Hirche [10, Lem. IV.7]): Let X0, X1

be two independent Z2-valued random variables with side
information Y = (Y0, Y1) and X = X0 ⊕X1. Then

H∞(X|Y) = h∞(h−1
∞ (H∞(X0|Y0)) ⋆ h

−1
∞ (H∞(X1|Y1)))

(28)
where h∞(p) = − logmax{p, p̄}.

In this section, Mrs. Gerber’s lemma is extended for the
min-entropy in any additive finite group:

Theorem 6: Let X0, X1 be two independent G-valued ran-
dom variables with side information Y = (Y0, Y1) and sensi-
tive variable X = X0⊕X1. Then for k = max{⌊p−1⌋, ⌊q−1⌋},
one has the optimal bound

exp(−H∞(X|Y))≤

{
kpq +(1−kp)(1−kq) if 1

k+1 ≤ p, q ≤ 1
k

min{p, q} otherwise,
(29)

where p = exp(−H∞(X0|Y0)) and q = exp(−H∞(X1|Y1)).
Remark 3: Since kpq+(1−kp)(1−kq)= 1

k+1+
k

k+1 ((k+1)p−
1)((k+1)q−1), 1

k+1 ≤ p, q ≤ 1
k implies 1

k+1 ≤ kpq+(1−kp)(1−
kq) ≤ 1

k . Thus, if both H∞(X0|Y0) and H∞(X1|Y1) lie in
the interval [log k, log(k+1)], then so does the corresponding
bound on H∞(X|Y).

Proof: We first prove the inequality in the unconditional
case. The probability mass function of X0⊕X1 is given by the

convolution with respect to G of the probability mass functions
of X0 and X1. That is, for any x ∈ G,

P(X0 ⊕X1 = x) =
∑
i∈G

P(X0 = x⊕ i)P(X1 = ⊖i). (30)

In particular,
exp(−H∞(X0⊕X1)) = max

x∈G

∑
i∈G

P(X0 = x⊕ i)P(X1 = ⊖i).

(31)Hence the problem reduces to upper-bound

max
x∈G

∑
i∈G

P(X0 = x⊕ i)P(X1 = ⊖i). (32)

Since exp(−H∞(X0 ⊖ x)) = exp(−H∞(X0)) we can assume
without loss of generality that the maximum is reached for
x = 0 and the problem reduces to the maximization of∑

i∈G
P(X0 = i)P(X1 = ⊖i). (33)

Let (1), . . . , (M) ∈ G be an ordering of the group elements
so that P(X0 = (1)) ≥ P(X0 = (2)) ≥ . . . ≥ P(X0 = (M)).
The problem is to maximize

M∑
i=1

P(X0 = (i))︸ ︷︷ ︸
p(i)

P(X1 = ⊖(i))︸ ︷︷ ︸
q(i)

. (34)

The min-entropy of X1 is invariant under any permutation of
its probability mass function. Furthermore, by the rearrange-
ment inequality (Lemma 5 in Appendix A) a permutation of
the probability mass function of X1 maximizing the sum is
such that P(X1 =⊖(1)) ≥ P(X1 =⊖(2)) ≥ . . . ≥ P(X1 =
⊖(M)). Finally the problem is reduced to

max
p,q

ϕ(p,q)≜
∑

p(i)q(i) (35)

under the constraint that exp(−H∞(X0)) = p(1) = p and
exp(−H∞(X1)) = q(1) = q. Moreover, h is Schur-convex in p
when q is fixed and vice-versa (see Lemma 3 in Appendix A).
Hence the maximum in (35) is reached for the least spread out
probability mass function under the min entropy constraints.
That is (Lemma 4 in Appendix A),{

(p(1), . . . , p(M)) = (p, . . . , p, 1− kp, 0, . . . , 0)

(q(1), . . . , q(M) ) = (q, . . . , q, 1− l q, 0, . . . , 0)
(36)

where k = ⌊p−1⌋ and l = ⌊q−1⌋. Hence we obtain the bound

exp(−H∞(X)) ≤

{
kpq + (1− kp)(1− kq) if k = l

min{p, q} otherwise.
(37)

It remains to prove that (37) carries over to the conditional
case. Note that the bound is concave in p for a fixed q and vice-
versa. Indeed, let 1

k+1 ≤ q ≤ 1
k be fixed. Then the inequality

is piecewise linear in p, equal to
p if p ≤ 1

k+1

kpq + (1− kp)(1− kq) if 1
k+1 ≤ p ≤ 1

k

q otherwise.
(38)

The three successive slopes are 1, k(k+1)q− k and 0. Since
k(k+1)q−k ∈ [0, 1], these slopes are in decreasing order and
the function is indeed concave. Therefore, applying Jensen’s
inequality (twice) proves (29).



B. Extension to d+ 1 Summands

Jog and Anatharam [14] extended their generalization of
Mrs. Gerber’s lemma (for Shannon entropy) for random vari-
ables in group of order 2n with two summands by repeating
their inequality. In the same fashion, Theorem 6 is extended
to d+ 1 summands by repeated application of Theorem 6:

Theorem 7 (Extension to d + 1 summands): Let pi =
exp(−H∞(Xi|Yi)), without loss of generality assume p0 ≤
p1 ≤ . . . ≤ pd. Let k = ⌊p−1

0 ⌋, r = max{i|pi ≤ 1
k}. Then

Hd = H∞(X|Y) is lower bounded as

Hd ≥ − log

(
1

k + 1
+

kr

k + 1

r∏
i=0

((k + 1)pi − 1)

)
. (39)

Proof: See Appendix D.
In the side-channel context, it is particularly interesting to

characterize the behavior of the inequality in the high entropy
regime in terms of maximal leakage. This corresponds to the
high noise regime of Theorem 3.

Theorem 8 (Asymptotic for High Noise): Let Id =
I∞(X;Y) in bits, then as I∞(Xi;Yi) → 0,

Id ≤ Cd

d∏
i=0

I∞(Xi;Yi) + o

( d∏
i=0

I∞(Xi;Yi)

)
(40)

where Cd = (M − 1)d(ln 2)d.
Proof: See Appendix E.

C. Refined Unconditioned Extension to d+ 1 Summands

In contrast to Theorem 6, Theorem 7 is not guaranteed to
be optimal when d > 1. The inequality can be improved
by exploiting the structure of the sum of multiple random
variables. We derive an improved bound which is optimal for
entropies in the range [log(k−1), log(k)] provided that there
is a subgroup of G of order k. In particular, it is optimal in
the high entropy regime [log(M−1), log(M)] (since the group
itself is a subgroup of order M ).

Theorem 9 (Refined extension): Let pi = exp(−H∞(Xi)),
without loss of generality we assume p0 ≤ p1 ≤ . . . ≤ pd.
Let k = ⌊p−1

0 ⌋, r = max{i|pi ≤ 1
k}. Let Hd = H∞(X),

Hd≥


−log

(
1

k+1+
1

k+1

r∏
j=0

((k+1)pi−1)
)

if r is even,

−log
(

1
k+1+

k
k+1

r∏
j=0

((k+1)pi−1)
)

if r is odd.

(41)
Proof: See Appendix F.

Contrary to Theorem 7, Theorem 9 does not apply to condi-
tional min-entropy in general. In fact, when all the variables
are fixed except one, the bound inside the logarithm is piece-
wise linear but discontinuous in 1

k when r is even. This
discontinuity breaks the convexity of the inequality. Ensuring
continuity for the desired convexity, we are led back to the
expression of Theorem 7. However, under the assumption that

1

M
≤ exp(−H∞(Xi|Yi = y)) ≤ 1

M − 1
(42)

for all i and y, the bound of Theorem 9 inside the logarithm is
linear and we do obtain a conditional inequality. Fortunately,

assumption (42) makes sense in the side-channel context. In
fact, a common leakage model is Yi = fi(Xi) + σN (0, 1)
where fi is a fixed (possibly unknown) leakage function, such
as the Hamming weight or a linear combination of the bits of
the variable Xi. In particular (42) holds for large enough σ
(high noise regime). Then we have the following

Theorem 10 (Taylor Expansion): Assume (42) and let Id =
I∞(X;Y) in bits, then as I∞(Xi;Yi) → 0,

Id ≤ Cd

d∏
j=0

I∞(Xi;Yi) + o

( d∏
j=0

I∞(Xi;Yi)

)
(43)

where
Cd =

{
(ln 2)d if d is even,
(M − 1)(ln 2)d if d is odd.

(44)

Proof: Taylor expansion of the exponential about 0 and
of the logarithm about 1.
Theorem 10 is particularly interesting because it suggests that,
with respect to the worst case leakage distribution, masking
of odd order d is not useful compared to masking with order
d−1 at high noise. In practice, however, for observed leakages
this phenomenon may not apply. Theorem 10 is different from
Theorem 8 as the constant Cd is improved largely. Though
Theorem 10 requires the high noise assumption (42) to hold.

Finally, combining Theorem 10 and Theorem 3 yields a
bound on the probability of success

Corollary 1 (Bound on Ps): For m traces, as Ps → 1
M ,

Ps ≤
exp(mI∞(X;Y))

M
≈ 1

M
+

mCd

M

d∏
i=0

I∞(Xi;Yi). (45)

This is to be compared with the bound of [3, Eqn. 8]:
Proposition 2: As Ps → 1

M ,

Ps ≤
1

M
+

√
mAd

( d∏
i=0

I(Xi, Yi)

) 1
2

(46)

where Ad =
√
M − 1(2 ln 2)

d+1
2 M−1.

Proof: See Appendix G.
As expected both bounds decrease exponentially in d to the

minimum value 1
M . Although I and I∞ are different metrics,

we observe that

• the constant factor Cd/M for I∞ in (44) is exponentially
lower in d than the factor Ad for I;

• the exponential decay in d is twice higher for I∞;
• the inequality scales better for I than for I∞ in terms of

number m of traces (since we compared both bounds for
Ps ≈ 1

M , m is not necessarily taken large).

Finally, we can contrast both bounds on a toy example. Let
Yi be uniformly distributed in {x ∈ G|x ̸= Xi}. Then it is
easily seen that I(Xi, Yi) = I∞(Xi, Yi) = log( M

M−1 ). In this
case, the bound of this paper outperforms the bound of [3] in
the high noise regime (Ps → 1

M ). Both bounds are compared
numerically in Figs. 5 and 6 in Appendix I for d = 1 and 2,
respectively, and M = 256.



V. CONCLUSION AND PERSPECTIVES

We have shown that maximal leakage for masked imple-
mentations can be used to bound the probability of success
of any side-channel attack. Maximal leakage is bounded by
an efficiently computable bound based on a new variation of
Mrs. Gerber’s lemma for min-entropy. The bound tightness is
commented with some example groups and probability mass
function with figures in Appendix H.

Improving the inequality when there is no subgroup of order
k+1 in G is an interesting perspective. Indeed, groups of prime
order which have no subgroup except the trivial ones are of
major interest for their application to masking in asymmetric
cryptographic schemes (especially post-quantum schemes).
Besides, it would also be of interest to check whether the parity
of d does play a practical role in the efficiency of masked
implementations.
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APPENDIX

A. Background on Majorization
We recall definitions and basic results of majorization

theory. An extensive presentation can be found in the reference
textbook [17].

Definition 8 (Statistical Ordering): If p = (p1, . . . , pM ) is
a probability mass function, an arrangement (1), (2), . . . , (M)
of p so that p(1) ≥ . . . ≥ p(M) is said to be the statistical
ordering of p. The associated cumulative mass function is
noted P(i) = p(1) + . . .+ p(i) where P(0) = 0 by convention.

Definition 9 (Majorization): Let p,q be two probability
mass functions. We say that q majorizes p and write p ⪯ q
if

P(i) ≤ Q(i) (i = 1, . . . ,M). (47)

This partial order on the probability mass functions quantifies
whether a distribution is more spread out than the other.

Definition 10 (Schur-Convexity): f : p 7→ f(p) ∈ R is
said to be Schur-convex if it is increasing with respect to
majorization i.e. p ⪯ q =⇒ f(p) ≤ f(q).

Lemma 3 (Schur-Convex Combination): If α1 ≥ . . . ≥ αM

then (p1, . . . , pM ) 7→
∑M

i=1 αip(i) is Schur-convex.
Proof: This can be shown by an Abel transform as pointed

out in [4, Remark 2].∑
αip(i) =

∑
αi(P(i) − P(i−1)) (48)

= αMP(M) − α1P(0) −
M−1∑
i=1

(αi+1 − αi)P(i)

(49)

= αM −
M−1∑
i=1

(αi+1 − αi)P(i). (50)

Since αi+1 − αi ≤ 0 the Schur-convexity follows from the
definition.

Lemma 4 (Majorization and min-entropy): Let p be a
probability mass functions whose min-entropy is equal to
− log p and k = ⌊p−1⌋ then

(p,
1−p

M−1
, . . . ,

1−p

M−1
) ⪯ p ⪯ (p, . . . , p, 1−kp, 0, . . . , 0).

(51)

Lemma 5 (Rearrangement Inequality): Let (a1, . . . , an),
(b1, . . . , bn) ∈ R+n be two sequences in descending order.
Then for all permutations σ of {1, . . . , n} it holds that∑

aibn+1−i ≤
∑

aibσ(i) ≤
∑

aibi. (52)

Proof: See [17] for a proof using majorization.

B. Proof of Lemma 1
Method 1:

By Theorem 6 of [25] we have

lim
α→∞

⟨pX|Y Z∥pX|Z⟩α = exp
(
D∞(PX|Y Z∥PX|Z)

)
(53)

= max
x:pX|Z(x|z)>0

pX|Y Z

pX|Z
. (54)

Because pY |Z · pX|Y Z/pX|Z = pY |XZ , the proof is finished.
Method 2:
We use L∞-norm to prove this lemma.

pY |Z⟨pX|Y Z∥pX|Z⟩α = pY |Z
(∑
x∈X

pαX|Y Z p1−α
X|Z

) 1
α

=
(∑
x∈X

pαXY |Z p1−α
X|Z

) 1
α =

(∑
x∈X

(
pXY |Z p

1−α
α

X|Z
)α) 1

α

=
(∑
x∈X

(
pY |XZ p

1
α

X|Z
)α) 1

α

. (55)

For any ε > 0, there exists a sufficiently large α > 0 such that

pY |XZ − ε ≤ pY |XZ p
1
α

X|Z ≤ pY |XZ . (56)

Because X is finite, one always has a sufficiently large α > 0
such that (56) holds for any x ∈ X . By L∞-norm we have

lim
α→∞

( ∑
x:pX|Z(x|z)>0

(
pY |XZ − ε

)α) 1
α

= max
x:pX|Z(x|z)>0

pY |XZ − ε

(57)
Since ε > 0 is arbitrary, combined with the squeeze theorem,
the proof is finished.

C. Proof of Lemma 2

By definition we have

lim
α→∞

logEY Z⟨pX|Y Z∥pX|Z⟩α
= lim

α→∞
logEY Z exp

(
α−1
α Dα⟨pX|Y Z∥pX|Z⟩α

)
. (58)

This value is bounded because I(X;Y |Z) ≤ logM . Since
α−1
α Dα⟨pX|Y Z∥pX|Z⟩α is increasing in α, the lemma follows

from the monotone convergence theorem.

D. Proof of Theorem 7

We prove the inequality by induction. Theorem 6 settles the
case of d+ 1 = 2 variables. We assume it is true for all sets
of at most d+ 1 variables and show it is true for all set of at
most d + 2 variables. Let k, rd+1 be the value of k, r in the
theorem associated to X0, . . . , Xd, Xd+1. If rd+1 < d+1 we
lower bound the min-entropy of the sum X0 ⊕ . . .⊕Xd+1 by
the entropy of X0 ⊕ . . . ⊕Xd. We conclude by applying the
induction hypothesis to this sum of d random variables. Else
rd+1 = d+1. Since X0⊕. . .⊕Xd⊕Xd+1 = (X0⊕. . .⊕Xd)⊕
Xd+1, we apply the induction hypothesis Hd to X0, . . . , Xd

then we apply Theorem. 6 to Xd+1 and X0 ⊕ . . . ⊕Xd. Let
K = exp(−H∞(X0 ⊕ . . .⊕Xd+1|Y0 . . . Yd+1)).

K
(a)

≤ 1− k(pd+1 + exp(−H∞(X0⊕. . .⊕Xd|Y0. . .Yd)))

+ k(k + 1)pd+1 exp(−H∞(X0⊕. . .⊕Xd|Y0. . .Yd)) (59)

(b)

≤ 1− k(pd+1 +
1

k + 1
+

kd

k + 1

d∏
i=0

((k + 1)pi − 1))

+ k(k + 1)pd+1(
1

k + 1
+

kd

k + 1

d∏
i=0

((k + 1)pi − 1))

(60)



=
1

k + 1
+

kd+1

k + 1

d∏
i=0

((k + 1)pi − 1))((k + 1)pd+1 − 1)

(61)

=
1

k + 1
+

kd+1

k + 1

d+1∏
i=0

((k + 1)pi − 1)) (62)

where (a) holds by H1 and (b) holds by Hd. As a repeated
application of Theorem 6 the inequality naturally extends to
the conditional case.

E. Proof of Theorem 8

We upper bound Id = logM −H∞(X|Y) using the lower
bound on the min entropy. At high entropy k = M − 1 hence

logM − Id ≥ − log

(
1

M
+

(M − 1)d

M

d∏
i=0

(Mpi − 1)

)
(63)

where
pi =

exp(I∞(Xi;Yi))

M
. (64)

Id ≤ log

(
1 + (M − 1)d

d∏
i=0

(
exp(I∞(Xi;Yi))− 1

))
(65)

= (M−1)d(ln 2)d
d∏

i=0

I∞(Xi;Yi)+o

( d∏
i=0

I∞(Xi;Yi)

)
(66)

F. Proof of Theorem 9

We first prove the following usefull lemma. It intuitively
tells that to minimize the min-entropy the pmf should not
spread out to other values. For instance when the summed
random variables are in a sub-group the value of their sum is
confined in this sub-group.

Lemma 6: If X0 and X1 have pmfs up to permutation
(q, . . . , q, 1−kq, 0, . . . , 0) and (p, . . . , p, 1−kp, 0, . . . , 0) then
the pmf of X0 ⊕ X1 is majorized by the pmf (r, . . . , r, 1 −
kr, 0, . . . , 0) where r = p + q − (k + 1)pq. There is equality
when X0, X1 are supported on the coset of a subgroup of G
of order k + 1.

Proof: The convolution involves (k+1)2 strictly positive
terms. Namely

pq k2 times
p(1− kq) k times
q(1− kp) k times
(1− kp)(1− kq) once

. (67)

Further, in each mass of the results they are at most k+1 terms
that are added and at most once an expression containing (1−
kp) and (1−kq). Let us assume that q ≥ 1−kq and p ≥ 1−kp
or 1 − kq ≥ q and 1 − kp ≥ p. By rearrangement inequality
(Lemma 5), kpq + (1 − kp)(1− kq) is the largest terms that
can be obtained. The 2nd to (k+1)-th largest terms are (k−
2)pq+ p(1−kq)+ q(1−kp) = p+q−(k+1)pq. This majorizes

all possible results since each term of the statistical ordering is
maximized the sequence of cumulative mass function is also
maximized. If q ≥ 1− kq and 1− kp ≥ p or 1− kq ≥ q and
p ≥ 1 − kp the proof is the same but the 1st to k-th largest
terms are (k−2)pq + p(1−kq) + q(1−kp) = p+q−(k+1)pq
and the k+1-th largest term is kpq+(1− kp)(1− kq) which
is the same pmf up to a permutation. The case of equality is
clear.

We derive the inequality of Thm. 9. The proof is composed
of three steps. The first step is to prove that the inequality
is achieved for pmf of the form pj = (pj , . . . , pj , 1 −
kjpj , 0, . . . , 0). The second step is to majorize the resulting
convolution by induction. The final steps is to conclude the
majorization argument. As in the case of two summands the
problem is to maximize

max
x∈G

∑
i0,i1,...,id−1∈G

(d−1∏
j=0

P(Xj = ij)

)
P(Xd = x⊖

d−1⊕
j=0

ij).

(68)
Without loss of generality, we can assume that the maximum

is reached in x = 0, it remains to upper bound

ϕ(p0, . . . ,pd) ≜
∑

i0,i1,...,id−1∈G

(d−1∏
j=0

P(Xj= ij)

)
P(Xd = ⊖

d−1⊕
j=0

ij).

(69)
We fix p1, . . . ,pd. The maximization can be written as∑

i0∈G
P(X0 = i0)αi0 (70)

where

αi0 =
∑

i1,...,id−1∈G

(d−1∏
j=1

P(Xj = ij)

)
P(Xd = ⊖

d−1⊕
j=0

ij). (71)

This is equivalent to maximize

M∑
i=1

P(X0 = (i))α(i) (72)

where (1), . . . , (M) are such that P(X0 = (1)) ≥ . . . ≥
P(X0 = (M)). By rearrangement (Lemma 5), (72) is max-
imum when α(1) ≥ . . . ≥ α(M). By lemma 3 this mapping
is Schur-Convex in p0 hence by lemma 4 it is maximized for
statistical ordering of the probability mass function of X0 of
the form

p0 = (p0, . . . , p0, 1− k0p0, 0, . . . , 0) (73)

where k0 = ⌊p−1
0 ⌋. Equation (73) does not depend on the fixed

probability mass functions of X1, . . . , Xd. By symmetry, we
also obtain that the for j = 0, . . . , d the statistical ordering of
the probability mass function of Xj is of the form

pj = (pj , . . . , pj , 1− kjpj , 0, . . . , 0) (74)

where kj = ⌊p−1
j ⌋. This concludes the first step of the proof.

As previous proof we can further assume without loss of
generality that kj is constant equal to k for all j. It remains



to determine for which permutation of these probability mass
function we obtain the lowest min-entropy.

Now we fix the pmf p2, . . . ,pd. And we consider the
maximization with respect to the pmf of X0+X1. By lemma 3,
the expression is Schur-convex. Hence it is maximized for the
least spread out pmf. By lemma 6, the pmf is majorized by
(r, . . . , r, 1− kr, 0, . . . , 0) where

r = p+ q − (k + 1)pq. (75)

We can proceed by induction to majorize the sum of d+ 1
random variables. Let Hd be the induction hypothesis: The
probability mass function of the sum of d+1 random variables
is majorized by (r, . . . , r, 1− kr, 0, . . . , 0) where

(k + 1)r = 1 + (−1)d
d∏

i=0

((k + 1)pi − 1). (76)

The initialization H1 is true from (75). We assume Hj holds
and proves Hj+1 holds. Using (75) with Hj we obtain that the
convolution is majorized by (r, . . . , r, 1− kr, 0, . . . , 0) with

r = pj+1 +
1

k + 1
+

(−1)j

k + 1

j∏
i=0

((k + 1)pi − 1) (77)

− (k + 1)pj+1

(
1

k + 1
+

(−1)j

k + 1

j∏
i=0

((k + 1)pi − 1)

)
(78)

=
1

k + 1
+

(−1)j

k + 1

j∏
i=0

((k + 1)pi − 1)(1− (k + 1)pj+1)

(79)

This proves Hj+1 and we conclude by induction. This con-
cludes the second step of the proof and it remains to conclude.

We proved that the probability mass function of the sum
of d + 1 random variables is majorized by (r, . . . , r, 1 −
kr, 0, . . . , 0) where

(k + 1)r = 1 + (−1)d
d∏

i=0

((k + 1)pi − 1). (80)

This shows that

exp(−Hd) ≤

{
r if d is even
1− kr if d is odd

=

{
1

k+1+
1

k+1

∏d
j=0((k+1)pi−1) (d even)

1
k+1+

k
k+1

∏d
j=0((k+1)pi−1) (d odd)

.

G. Proof of Proposition 2

Using Fano’s inequality, de Chérisey et al. [6, Eqn. 11] have
shown that

mI(X;Y) ≥ log(M)− h(Ps)− (1− Ps) log(M − 1). (81)

This can be explicited by computing a Taylor expansion of
degree two of the binary entropy function in Ps =

1
M ,

h(Ps) = h( 1
M ) + h′( 1

M )(Ps − 1
M )

+
h′′( 1

M )

2
(Ps − 1

M )2 + o((Ps − 1
M )2) (82)

= log(M)−(1− 1

M
) log(M−1)+log(M−1)(Ps− 1

M )

− M2 log(e)

2(M − 1)
(Ps − 1

M )2 + o((Ps − 1
M )2). (83)

In particular (81) reduces to

mI(X;Y) ≥ M2 log(e)

M − 1
(Ps − 1

M )2 + o((Ps − 1
M )2), (84)

where we leveraged the following equalities

h( 1
M ) = log(M)− (1− 1

M
) log(M − 1), (85)

h′( 1
M ) = log(M − 1) and h′′( 1

M ) =
−M2 log(e)

M − 1
. (86)

In particular, (84) shows that,

Ps ≤
1

M
+

√
2 ln 2(M − 1)m

M2
I(X,Y) (87)

≈ 1

M
+

√
mAd

√√√√ d∏
i=0

I(Xi, Yi) (with [3, Eqn. 8])

(88)

where

Ad =

√
(M − 1)(2 ln 2)d+1

M
. (89)

H. Discussion on the Bound Optimality

To investigate the bound tightness we compute and plot in
Figs. 2, 3, and 4 the sequence pd of pmf supported on a finite
additive group G given by a fixed pmf p0 and the equation
pd+1 = pd ∗p0 where ∗ is the convolution with respect to the
group G. In other words, pd is the pmf of the sum of d + 1
i.i.d. G-valued random variables with a law given by p0.

Figs. 2 and 4 show that the presented bound is tight in two
situations:

1) When the support of the random variables is in the coset
of a sub-group of order k+1 the inequality is tight. This
is the case in Fig. 2 as {0̄; 7̄} is a finite sub-group of
Z14 with two elements.

2) In the high entropic regime, k = M − 1 and there is
always a sub-group, the group itself. This is the case in
Fig. 4.

However, when there is no finite sub-group of order k + 1
the inequality can be strictly violated as shown by Fig. 3.
Figs. 3 and 2 differs only by their group structure changed
from Z14 to Z13, though the effect is huge on the actual
entropy of the sum. Indeed {0̄; 7̄} is not the coset of a sub-
group of Z13, it is even spanning the whole group. As reported



in [16] the Cauchy-Davenport inequality shows that for A,B
two subsets of Zp (p prime), |A+B| ≥ min{|A|+ |B|−1, p}.
As a consequence, the support of the sum must spread to the
whole group very quickly. The investigation of this results may
improve the presented inequalities.

In Fig. 4, we observe that the min-entropy does not increase
visibly neither from d = 0 to d = 1 nor from d = 2 to d = 3.
This supports the observation of Theorem 9 that masking with
odd order might not be relevant with respect to the worst case
leakages as measured by the min-entropy.
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Fig. 2. Probability mass function of the sum of d+1 i.i.d. Z14-valued random
variables with probability mass function p0 with p0 = 0.8 and p7 = 0.2.
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Fig. 3. Probability mass function of the sum of d+1 i.i.d. Z13-valued random
variables with probability mass function p0 with p0 = 0.8 and p7 = 0.2.

I. Bound Comparison

Figs 5 and 6 compare both bounds for the toy example
introduced. Though the bound obtained with I∞ does not
change significantly from d = 1 to d = 2. The new bound
performs better for this leakage. Especially for moderate (less
than 105) number of traces. The main limitation of this bound
is that it relies on a high noise assumption.
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Fig. 4. Probability mass function of the sum of d+1 i.i.d. Z5-valued random
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Fig. 5. Comparison of the two upper bounds (ours, Corollary 1, versus state-
of-the-art, namely [3, Eqn. 8]) for d = 1 and M = 256
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Fig. 6. Comparison of the two upper bounds (ours, Corollary 1, versus state-
of-the-art, namely [3, Eqn. 8]) for d = 2 and M = 256


