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Abstract—Embedded cryptographic devices are usually pro-
tected against side-channel attacks by masking strategies. In this
paper, the security of protected cryptographic implementations
is evaluated for any masking order, using alpha-information
measures. Universal upper bounds on the probability of success
of any type of side-channel attack are derived. These also provide
lower bounds on the minimum number of queries required to
achieve a given success rate. An important issue, solved in this
paper, is to remove the loss factor due to the masking field size.

I. INTRODUCTION

When a cryptographic device is operating, any kind of
unintended leakage (time, power, electromagnetic, etc.) can
be exploited by an attacker. By querying the device multiple
times, measuring the corresponding leakages, and correlating
them with internal sensitive values, the attacker is able to guess
the secret key with a given success probability.

Therefore, evaluating the security of cryptographic devices
against side-channel attacks has become a major concern.
Information-theoretic metrics turn out to be effective and has
been used in many studies: Using classical metrics such as
mutual information and Fano inequality, de Chérisey et al. [6]
established several universal bounds on the probability of
success and minimum number of queries required to achieve
success. This approach has been extended to conditional α-
informational quantities in [15]. Both [6] and [15], however,
were restricted to unprotected cryptographic devices.

Masking is one of the most well-established protection
with provable security. Some research [4], [7], [13], [16] was
conducted to evaluate the security of masked implementations
against side-channel attacks. To review the state-of-the-art, we
follow the framework and notations from [4], [6], [12].

A. Background and Notations

Let K be the secret key and T be a public variable (usually,
plain or cypher text) known to the attacker. Both K and T are
n-bit variables, uniformly distributed, and independent of each
other. The field size is M = 2

n. The cryptographic algorithm
operates on K and T to compute an n-bit sensitive variable
V = f(K,T ). In a masking scheme of order d, the sensitive
variable is randomly split into d + 1 shares and cryptographic
operations are performed on each share separately. Thus V =

X0 ⊕X1 ⊕⋯⊕Xd, where each share Xi is a n-bit variable
and ⊕ is the additive operation in the underlying field (or

Abelian group). A typical example is “Boolean masking,” for
which ⊕ is the bitwise XOR operation. During computation,
side-channel information X = (X0, X1, . . . , Xd) is leaking
and can be measured as a noisy “trace” by the attacker, denoted
by Y = (Y0, Y1, . . . , Yd). We assume that Y is the output of a
memoryless side-channel with input X . Since masking shares
are drawn uniformly and independently, both and X and Y
are i.i.d. sequences.

The attacker measures m traces Y
m
= (Y1,Y2, . . . ,Ym)

corresponding to the independent text sequence
T
m
= (T1, T2, . . . , Tm)—assumed independent of the

secret K—and exploits her knowledge of Y
m and T

m to
estimate the secret key K̂. Again, since the side channel
is memoryless, X

m and Y
m are i.i.d. sequences. Let

Ps = P(K = K̂) be the probability of success of the attack
upon observing Tm and Y

m. In theory, maximum success is
obtained by the MAP (maximum a posteriori probability) rule
with success probability denoted by Ps = Ps(K∣Y m

, T
m).

The whole process is illustrated in Fig. 1.
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Fig. 1. Side-channel analysis as a (unintended) “communication” channel.

B. State-of-the-art

Duc et al. [7] derived a lower bound on the minimum
number m of queries required to achieve a given probability
of success Ps:

m ≥
log(1 − Ps)

log (1 − (M√
2
)d+1 ∏d

i=0 I(Xi;Yi))
(1)

where d + 1 is the number of shares, M is the field size, and
I(Xi;Yi) is the mutual information between each share and its
corresponding leakage. They also showed that this bound was
quite loose in practice and conjectured that when the leakage
of shares is sufficiently noisy (and independent among shares),
the lower bound on m should take the approximate form

m ≳
β(Ps)

∏d
i=0 I(Xi;Yi)

(2)

where β is a “small constant depending on Ps” [8, p. 1279].



The bound (1) was improved recently in [16]:

m ≥

d(Ps∥ 1
M

)

log (1 +M ⋅∏d
i=0(2 log 2)I(Xi;Yi))

. (3)

A very similar bound was derived independently in [13].
Although this greatly improves (1) for small M , when the
field size M is large, the M factor in the denominator loosens
the bound by an substantial amount. Therefore, an important
issue is to find out whether this factor M can be removed.

C. Outline

In this paper, we have two main contributions. First, we
generalize the “linear bound” d(Ps∥ 1

M
) ≤ mI(V ;Y ) in [6]

to α-informational quantities where the usual linear bound is
recovered by letting α → 1. Second, we derive the following
novel bound which removes the loss caused by the field size:

m ≥

d2(Ps∥ 1
M

)

log(1 +∏d
i=0(eI

R
2 (Xi;Yi) − 1))

. (4)

Here, instead of using usual Kullback–Leibler divergence and
mutual information, we consider the α-divergence and the
Rényi α-mutual information for α = 2: d2 and I

R
2 . This

particular value of α allows one to link Ps to α-information
via a quadratic version of the total variation distance.

Our bounds are particularly useful under the usual “high
noise assumption,” that is, when the side channel of Fig. 1 has
low capacity. Then, values of IR2 (Xi;Yi) will be small, and
the lower bound on m is approximately equal to:

m ≳

d2(Ps∥ 1
M

)
∏d

i=0 I
R
2 (Xi;Yi)

. (5)

This is very similar to the conjectured bound (2), except for
the use of IR2 instead of I . Additionally, we show that when
M is large, the numerator does not lose tightness compared
that of (3).

In the remainder of the paper, we first recall some definitions
and properties of α-informational quantities in Section II, and
then derive the α-extension of the main inequality (“linear
bound”) in Section III. The main result is then derived in
Section IV and illustrated by numerical simulations. Section V
gives some perspectives.

II. α-INFORMATION MEASURES

A. α-Entropy and α-Divergence

Assume that either 0 < α < 1 or 1 < α < +∞ (the limiting
values 0, 1,+∞ will be obtained by taking limits). We consider
probability distributions P,Q with a dominating measure,
with respect to which they follow densities denoted by the
corresponding lower-case letters p, q.

We follow the notations of [15] in the following

Definition 1 (Rényi α-Entropy and α-Divergence).

Hα(P ) = α
1−α

log∥p∥α (6)

Dα(P∥Q) = 1
α−1

log⟨p∥q⟩αα (7)

with the following special notation:

∥p∥α = (∫ ∣p∣αdµ)1/α (8)

⟨p∥q⟩α = (∫ pαq1−αdµ)1/α (9)

The usual entropy and Kullback-Leibler divergence are recov-
ered by letting α → 1.

B. Conditional α-Entropy

Many different definitions of conditional α-entropy
Hα(X∣Y ) were proposed in the literature (see, e.g., [9]). Any
reasonable definition should at least yield the classical definition
of conditional entropy as α → 1, and satisfy the property that
conditioning reduces entropy (CRE): Hα(X∣Y ) ≤ Hα(X),
where equality holds if and only if X and Y are independent.
At least four definitions are often used:

1) H̃(o)
α (X∣Y ) = Hα(X,Y ) −Hα(Y )

2) H̃(i)
α (X∣Y ) = EYHα(X∣Y = y)

3) H̃(ii)
α (X∣Y ) = 1

1−α
logEY ∥PX∣Y ∥αα

4) H̃α(X∣Y ) = α
1−α

logEY ∥PX∣Y ∥α
The first two definitions appear in [14, § 2.2] (see also [10,
equation (2.10)]) and in [3, equation (2.15)]. However, both
violate the CRE property [9]. The last two definitions were
proposed by Hayashi [11] and Arimoto [1] respectively. Both
satisfy the CRE property. In the sequel, we use Arimoto’s
definition which we simply denote as Hα(X∣Y ).

C. α-Information

Again, many different definitions of α-informtion Iα(X;Y )
were proposed in the literature. Any reasonable definition
should at least yield the classical definition of mutual informa-
tion as α → 1, and possibly also satisfy the following useful
properties:

• independence: Iα(X;Y ) ≥ 0 with equality if and only if
X and Y are independent;

• data post-processing inequality (post-DPI): if X − Y −
Z forms a Markov chain, then post-processing cannot
increase the information, i.e., Iα(X;Z) ≤ Iα(X;Y );

• data pre-processing inequality (pre-DPI): if X − Y − Z
forms a Markov chain, then pre-processing cannot increase
the information, i.e., Iα(X;Z) ≤ Iα(Y ;Z).

• monotonicity: Iα(X;Y ) is nondecreasing as α increases;
• closed-form expression amenable to efficient numerical

estimation.
At least four definitions are used in the literature:

1) IAα (X;Y ) = Hα(X) −Hα(X∣Y )
2) ICα (X;Y ) = minQY EX(Dα(PY ∣X∥QY ))
3) IRα (X;Y ) = Dα(PXY ∥PX × PY )

=
1
α−1

logEY ⟨pX∣Y ∥pX⟩αα.

4) Iα(X;Y ) = minQY Dα(PXY ∥PX ×QY )
=

α
α−1

logEY ⟨pX∣Y ∥pX⟩α.
which somehow parallel the corresponding ones for conditional
entropy. The first definition was proposed by Arimoto [1]. It



is easily seen to satisfy both the independence and post-DPI
property because of the CRE property of Arimoto’s conditional
entropy. However, it does not satisfy monotonicity because
I
A
α (X;X) = Hα(X) can be decreasing in α. The second

definition is from Csiszár [5]. It does not seem to admit a
closed-form expression, and the minimization is hard to solve
analytically even in simple examples [21]. However, one can
prove monotonicity and the independence property, based on
the properties of the α-divergence.

The third definition requires no minimization and appears
in [20, equation (50)]. We call it Rényi’s α-mutual information
because it is a natural definition from Rényi’s divergence, just
as in the classical case α = 1. Also, it is mutual in the sense
that IRα (X;Y ) = I

R
α (Y ;X). From the nonnegativity of α-

divergence: Dα(P∥Q) ≥ 0 with equality if and only if P = Q,
it is easily seen that IRα (X;Y ) satisfies the independence
property. From the monotonicity property of α-divergence, it
also satisfies monotonicity. One can also check post-DPI and
pre-DPI properties, by same reasoning line as in the proof
of [15, Property 12], replacing QY ∣T , QZ∣T by PY ∣T , PZ∣T ,
respectively.

Finally, the fourth definition is due to Sibson [19] (see
also [21]). In contrast to Rényi α-mutual information, symmetry
does not hold in general: Iα(X;Y ) ≠ Iα(Y ;X). However, it
is known to satisfy the independence property, monotonicity,
and the pre and post-DPI [17] (see also [18]). See Table I for a
summary of all properties. In the sequel, we often use Sibson’s
definition, which we simply denote as Iα(X;Y )

TABLE I
SUMMARY OF PROPERTIES FOR VARIOUS DEFINITIONS OF α-INFORMATION.

Def. Independence Post-DPI Pre-DPI Monotonicity Closed-form

I
A
α yes yes — no yes

I
C
α yes — — yes no

I
R
α yes yes yes yes yes

Iα yes yes yes yes yes

Remark 1. Since minQY Dα(PXY ∥PX × QY ) ≤

Dα(PXY ∥PX × PY ), Sibson’s α-information can not
exceed Rényi mutual information:

Iα(X;Y ) ≤ IRα (X;Y ), (10)

III. LOWER BOUND ON SIBSON’S α-INFORMATION

The first result of this paper is based on the following
generalized Fano inequality [18]. Assume K is discrete
and estimated from Y using the MAP rule, with (maximal)
probability of success Ps = Ps(K∣Y ) = E supk pK∣Y (k∣Y ).
Also let Ps(K) = sup pK be the probability of success when
guessing K without even knowing Y .

Lemma 1 (Generalized Fano Inequality [18, Thm. 1]).

dα(Ps(K∣Y )∥Ps(K)) ≤ Iα(K;Y ) (11)

where dα(p∥q) is the binary α-divergence:

dα(p∥q) = 1
α−1

log(pαq1−α + (1 − p)α(1 − q)1−α). (12)

A. Bound Probability of Success by Sibson’s α-Information

In Fig. 1, the sensitive variable V m is a function of K and
T
m; K̂ is a function of (Y m

, T
m). It is easily seen from the

figure that the following Markov chains hold:

K⟷ (Y m
, T

m)⟷ K̂ (13)

(K,Tm)⟷ V
m
⟷ Y

m (14)

The probability of success of the side-channel attack is
Ps = Ps(K∣Y m

, T
m). Using Lemma 1, one has dα(Ps∥ 1

M
) ≤

Iα(K;Y
m
, T

m). Now, the following lemma is proved in
Appendix A:

Lemma 2. Iα(K;Y
m
, T

m) ≤ Iα(K,Tm;Y
m). (15)

It follows that the generalized Fano inequality implies

dα(Ps∥
1

M
) ≤ Iα(K,Tm;Y

m). (16)

Because (K,Tm) ↔ V
m
↔ Y

m forms a Markov chain,
using the DPI of Sibson’s α-information we have

Iα(K,Tm;Y
m) ≤ Iα(V m;Y

m). (17)

Also, when T
m is not observed, each component of V m is

i.i.d., and since the side-channel is memoryless, (V m;Y
m) is

an i.i.d. sequence. It easily follows from the definition that

Iα(V m;Y
m) = mIα(V ;Y ). (18)

From (16), (17), and (18), we arrive at the main result of this
section:

Theorem 1. dα(Ps∥ 1
M

) ≤ mIα(V ;Y ). (19)

Note that since dα(p∥q) is increasing in p when p ≥ q,
Theorem 1 gives an upper bound on Ps.

B. Comparison with the Classical Bound

A natural question is to compare (19) with the classical
bound for α = 1, especially in terms of how it depends on M .
Since dα and Iα are non-decreasing in α, a precise answer is
not obvious. One can argue as follows. Assume Ps is fixed in
(0, 1). For α = 1, one has at first order

d(Ps∥
1

M
) = logM−(1−Ps) log(M−1)−h(Ps) ≈ Ps logM

(20)
where h(Ps) is the binary entropy function. For α < 1,
dα(Ps∥ 1

M
) ≤ d(Ps∥ 1

M
) does not grow faster than O(logM).

For α > 1, one has at first order

dα(Ps∥
1

M
) = logM+

1

α − 1
log (Pαs+

(1 − Ps)α

(M − 1)α−1 ) ≈ logM

(21)
Thus the O(logM) term applies for any α, and the lower
bound in (19) will not become less tight as the classical bound
as the field size M increases.



IV. UPPER BOUND ON RÉNYI MUTUAL INFORMATION

A. Euclidean Distance to the Uniform

In the field of cryptography, the total variation distance
∥P − U∥1 of a given M -ary distribution P to the uniform
distribution U ∼ U(M) is a common criterion to evaluate
randomness. For α ≠ 1 we have the following

Definition 2 (α-Distance). Let X be an M -ary random vari-
able. The “α-distance” between PX and a uniform distribution
U ∼ U(M) is defined as

∥PX − U∥α = (∑
x

»»»»»»pX(x) − 1

M

»»»»»»
α

)
1
α . (22)

In this section we focus on the Euclidean distance (α = 2)
because of the following

Lemma 3. With the same notations, one has

D2(PX∥U) = log(1 +M ⋅ ∥PX − U∥2
2) (23)

Proof. One has ∥PX − U∥2
2 = ∑x(pX(x) − 1

M
)2 =

∑x p
2
X(x) − 1

M
. Since D2(PX∥U) = log(M ⋅ ∑x p

2
X(x)),

the result follows.

The following important Lemma is known as the XOR
Lemma in the case of Boolean Masking [16]. The general
proof is given in Appendix B:

Lemma 4 (Group Lemma). Let X1, X2 be independent random
variables over a finite Abelian group X of size M , and U ∼

U(X ). Let V = X1⊕X2, where ⊕ denotes the group operator
in X . One has

∥PV − U∥2
2 ≤M ⋅ ∥PX1

− U∥2
2 ⋅ ∥PX2

− U∥2
2. (24)

By finite induction, if V is split into d + 1 independent
shares: V = X0 ⊕X1 ⊕⋯⊕Xd, one has

∥PV − U∥2
2 ≤M

d∥PX0
− U∥2

2∥PX1
− U∥2

2⋯∥PXd − U∥2
2.

(25)
Using Lemma 3 this can easily be written as

e
D2(PV ∥U)

≤ 1 +
d

∏
i=0

(eD2(PXi∥U)
− 1). (26)

B. Upper Bound of Rényi 2-Information for Each Share

Since Sibson’s α-information does not exceed Rényi mutual
information (inequality (10)), Theorem 1 implies

dα(Ps∥
1

M
) ≤ mIRα (V ;Y ). (27)

We now upper bound IRα (V ;Y ) by noting that, by definition
since V is uniformly distributed,

e
I
R
2 (V ;Y )

= EY e
D2(PV ∣Y ∥U)

. (28)

Since {Xi, Yi}i=0,...,d are mutually independent, (26) applies
for V ∣Y and we have

e
I
R
2 (V ;Y )

≤ EY (1 +
d

∏
i=0

(eD2(PXi∣Yi∥U)
− 1)) (29)

= 1 +
d

∏
i=0

(EYie
D2(PXi∣Yi∥U)

− 1) (30)

= 1 +
d

∏
i=0

(eI
R
2 (Xi;Yi) − 1) (31)

Putting all inequalities together yields the main result of this
paper:

Theorem 2 (Main Result). The number of traces m can be
lower bounded by

m ≥

d2(Ps∥ 1
M

)

log(1 +∏d
i=0(eI

R
2 (Xi;Yi) − 1))

. (32)

Note that from Subsection III-B with α = 2, the numerator
does not lose tightness compared the case α = 1 (compare (3)).

C. Numerical Results

In this subsection, we validate our results by simulation. The
side-channel settings of § I-A are as follows:

• the field of variables is the AES (Advanced Encryption
Standard) field with n = 8, thus M = 256;

• side-channel information is generated by taking the Ham-
ming weight leakage model and additive white Gaussian
noise (one of the most commonly adopted models);

• the Boolean masking is considered with orders d ∈ 0, 1, 2.
The Shannon and Rényi mutual informations (MI) are evaluated
by Monte-Carlo simulation In particular, we compare Rényi
MI in (31) with the following

I(V ;Y ) ≤ log(1 +M ⋅
d

∏
i=0

(2 log 2 ⋅ I(Xi;Yi))) (33)

used in (3). Fig. 2 compares MI and Rényi MI for d = 0, 1, 2.
Our result based on Rényi MI significantly narrows the gap
between the direct evaluation and the estimation. This leads to
more accurate prediction of number of queries m to achieve
certain success rate Ps.

Fig. 3 confirms this on the performance bounds on the
success rate as a function of m, for d = 1 and 2. Our new
bounds are significantly more accurate than the state-of-the-art:
For Ps = 80% and d = 1, the ML attack gives about m ≥ 60,
our new bound gives m ≥ 25, while (3) gives only m ≥ 1.
Much improvement can also be observed for d = 2.

V. PERSPECTIVE

Similar improved bounds (removing the field size loss) can
also be obtained in the cases of Boolean masking and arithmetic
masking modulo a power of two, using “Mrs. Gerber’s lemma”,
see [2]. Extending this work to α-information is left for future
work.
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(a) d = 0 without masking.
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Fig. 2. Comparison of various bounds for M = 256 under Hamming weight
leakages with Gaussian noise. The plain curves show the direct evaluation
of I(V ;Y ) and IR2 (V ;Y ); dash curves show the corresponding estimations
in (33) and (31), respectively.

APPENDIX

A. Proof of Lemma 2

Iα(K;Y
m
, T

m) = α

α − 1
logEY m,Tm⟨pK∣Y m,Tm∥pK⟩α

=
α

α − 1
logETm ∫

Y m
pY m∣Tm(∑

k

p
α
K∣Y m,Tmp

1−α
K )

1
α

=
α

α − 1
logETm ∫

Y m
(∑
k

p
α
K,Y m∣Tmp

1−α
K )

1
α
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Fig. 3. Ps vs m in attacks and the corresponding bounds for noise variance
σ
2
= 8. The plain curves show the results of direct maximum likelihood (ML)

attacks [12]; the dotted curves show the predictions by Theorem 2; the dashed
curves are for the state-of-the-art bound (3).

(⋆)
=

α

α − 1
logETm ∫

Y m
(∑
k

p
α
Y m∣K,TmpK∣Tm)

1
α

(⋆⋆)
≤

α

α − 1
log∫

Y m
(ETm ∑

k

p
α
Y m∣K,TmpK∣Tm)

1
α

=
α

α − 1
log∫

Y m
( ∑
k,tm

p
α
Y m∣K,TmpK,Tm)

1
α

=
α

α − 1
log∫

Y m
pY m( ∑

k,tm
p
α
K,Tm∣Y mp

1−α
K,Tm)

1
α

=
α

α − 1
logEY m⟨pK,Tm∣Y m∥pK,Tm⟩α

= Iα(K,Tm;Y
m)

where (⋆) holds since pK = pK∣Tm (K and T
m are

independent) and p
α
K,Y m∣Tmp

−α
K∣Tm = p

α
Y m∣K,Tm ; (⋆⋆) is

Jensen’s inequality: when α > 1, x
1
α is concave and α

α−1
is

positive; when 0 < α < 1, x
1
α is convex and α

α−1
is negative.

In both cases the inequality holds in the same direction.

B. Proof of Lemma 4

Let ⊖ denote the inverse operation of ⊕ in the Abelian
group. By independence of X1, X2, one has

∥PV − U∥2
2 =∑

v

»»»»»»pV (v) −
1

M

»»»»»»
2

=∑
v

»»»»»»∑x1

pX1
(x1)pX2

(v ⊖ x1) −
1

M

»»»»»»
2

=∑
v

»»»»»»∑x1

(pX1
(x1) −

1

M
)(pX2

(v ⊖ x1) −
1

M
)»»»»»»

2

(⋆)
≤ ∑

v

(∑
x1

(pX1
(x1) −

1

M
)2)(∑

x1

(pX2
(v ⊖ x1) −

1

M
)2)

= (∑
x1

(pX1
(x1) −

1

M
)2)∑

v

(∑
x1

(pX2
(v ⊖ x1) −

1

M
)2)

= ∥PX1
− U∥2

2 ⋅M ⋅ ∥PX2
− U∥2

2

where (⋆) is the Cauchy-Schwarz inequality.
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