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Audio Signal Processing in the 21st Century
Gaël Richard, Paris Smaragdis, Sharon Gannot, Patrick A. Naylor, Shoji Makino, Walter Kellermann,

Akihiko Sugiyama

I. INTRODUCTION

Audio signal processing has seen many landmarks in its development as a research topic. Many are well-known,

such as the development of the phonograph in the second half of the nineteenth century and technology associated

with digital telephony that burgeoned in the late twentieth century and is still a hot topic in multiple guises.

Interestingly, the development of audio technology has been fuelled not only by advancements in the capabilities of

technology but also by high consumer expectations and customer engagement. From surround sound movie theatres

to the latest in-ear devices, people love sound and soon build new audio technology into their daily lives as an

essential and expected feature.

Some of the major outcomes of the research in Audio and Acoustic Signal Processing prior to 1997 were

summarized in the landmark paper published on the occasion of the 50th anniversary of the signal processing society

[1]. At that time, the vast majority of work was driven by the objective to build models that capture the essential

characteristics of the analyzed audio signal and to represent it with a limited set of parameters or components.

The field has now evolved beyond the essential characteristics explored in the past. For instance, a wide variety of

speech/audio signal models have since been proposed and in particular around signal decomposition/factorization

models and sparse signal representations.

Nevertheless, the entire research domain covered by the IEEE Technical Committee (TC) on Audio and Acoustic

Signal Processing (AASP), is recently witnessing a paradigm shift towards data-driven methods based on machine

learning and especially deep learning.

In many applications, such data-driven models obtain state-of-the-art results if appropriate data is available to

train the models. This has accompanied sustained efforts to gather highly valuable and public data collections

(and in particular annotated data) which are in fact essential for data-driven algorithms. Concurrently, to promote

reproducible research and to identify the state-of-the-art methods, a number of challenges were launched, for instance

in Acoustic Characterisation of Environments (ACE), Reverberant speech processing (REVERB), Acoustic Source

Localization and Tracking (LOCATA), source separation (SiSEC), Acoustic Echo Cancellation Challenge (AEC),

Deep Noise Suppression (DNS) dedicated to single-microphone noise reduction, or Detection and Classification of

Acoustic Scenes and Events (DCASE) which is a yearly event since 2016.1,2,3,4

1Signal Processing society’s data challenges: https://signalprocessingsociety.org/publications-resources/data-challenges
2DCASE challenges: https://dcase.community/challenge2022
3REVERB challenge: http://reverb2014.dereverberation.com
4SiSEC challenge: https://sisec.inria.fr
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Without aiming for exhaustiveness, the paper provides a view of the important outcomes of the field in the last

25 years illustrating also the emergence of purely data-driven models. In particular, the paper covers the research

addressed in signal models and representations, in the modeling, analysis, and synthesis of acoustic environments

and acoustic scenes, in signal enhancement and separation, in Music Information Retrieval (MIR), and Detection

and Detection and Classification of Acoustic Scenes and Events (DCASE).

The overall structure of the paper is as follows: we discuss in Section II the main axes of progress and highlights

of the domain underlining the evolution and breakthroughs of the field. We then focus in Section III on the new

topics that have mostly emerged in the last 25 years before suggesting some conclusions and perspectives.

II. ADVANCES AND HIGHLIGHTS (EVOLUTION AND BREAKTHROUGH)

Building upon the achievements prior to 1997 already discussed in [1], we summarize in this section the key

advances and highlights of recent years.

A. Modeling and representation

We first discuss herein the developments in audio coding and signal modeling with a focus on multichannel

audio channel coding. We then describe some of the important work pursued in modeling, analysis, and synthesis

of acoustic environments with specific highlights on room impulse response analysis and synthesis.

1) Coding and signal modeling: Audio coding is a long-standing topic in the field and has led to several

international standards.5

The field had its golden age in the ’90s with the first international standard of audio coding; MPEG1 Audio

(11172-3: 1993) and its extension to multichannel signals up to 5 channels; MPEG2 Audio (13818-3; 1995). MPEG2

Audio was developed for multichannel and multilingual applications such as digital radio broadcasting in Europe

with backward compatibility with MPEG1.

Though, without the backward compatibility constraint, much higher subjective quality was successfully achieved

with MPEG2 AAC (Advanced Audio Coding, 13818-7: 1997). It is still the foundation of today’s audio coding

algorithms and is employed in terrestrial TV broadcasting in Japan and Latin America. From a viewpoint of

applications, MPEG4 AAC (14496-3: 2009) and MPEG4 HE-AAC (14496-3:2009/Amd 7:2018) achieve sufficient

audio quality at 64 kbit/s and 32 kbit/s, respectively, for mobile applications and are most widely used today.

One of the major improvements is brought by bandwidth extension (BWE) also known as subband replication

(SBR) which encodes only the low-frequency subband plus high-frequency power envelope information thereby

reducing the bitrate with inaudible quality degradation. The decoder copies the low-frequency spectrum to the high-

frequency band and adjusts the envelope by the transmitted envelope information to reconstruct the fullband audio

(see Fig. 1). MPEG4 AAC and HE-AAC are used in various consumer products such as PCs, tablet PCs, mobile

phones, and car navigation systems to name a few.

5The ISO/IEC audio coding standards are accessible at https://www.iso.org/standards.html by providing the search window with the number

and the year in the parenthesis.
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Fig. 1. Bandwidth extension (BWE) principle.

The history of MPEG1 Audio through MPEG4 HE-AAC was to remove redundancy of the input audio in the

frequency domain (transform coding), time domain (prediction), and spatial domain (multichannel coding). The next

stage of MPEG Audio, MPEG Surround (23003-1: 2007), also known as MPS, exploits further redundancy in the

spatial domain based on binaural cue coding [2]. A multichannel audio signal is decomposed into a monaural signal

and additional spatial information in the form of interaural level difference (ILD), and interaural time difference

(ITD) in multiple time-frequency tiles (segments). The monaural data are encoded by MPEG4 AAC with a little side

information representing ILD and ITD. MPEG Surround achieves comparable quality to MPEG4 AAC at one-third

of the MPEG4 AAC bitrate. The absolute subjective quality is transparent to the source signal that is suitable for

content delivery between geographically distributed studios. MPEG SAOC (Spatial Audio Object Coding, 23003-2:

2010) removes redundancy of the input audio based on the composition of each audio object. The input audio signal

consists of multiple audio objects which are independent audio sources such as individual musical instruments. Each

audio object is expressed in multiple frequency tiles by an Object Level Differences (OLD) and an Inter-Object

Cross Coherences (IOC). The OLD is the relative energy to the energy of the downmix signal that is a combination

of the audio objects. The IOC is the cross-correlation to the downmix signal. The downmix signal of multiple

objects is encoded by MPEG4 AAC whereas the OLD and the IOC of each object are encoded as side information.

The decoder recovers each object from the downmix signal, OLD, and IOC. A direct link to MPEG SAOC can also

be made with the line of work developed simultaneously in parallel on (coding-based) informed source separation

[3].

Until MPEG SAOC, speech-dominant audio signals and more general audio signals had been encoded with

different algorithms. MPEG USAC (Unified Speech and Audio Coding, 14496-3:2009/Amd 3:2012) is the first

audio coding framework which automatically switches between the speech-oriented algorithm and the audio-oriented

algorithm based on the input-signal analysis result in multiple time-frequency tiles. The most recent member of

the MPEG Audio family is MPEG-H (23008-3: 2019) which is a generic coding including 3D audio (HOA or

higher-order ambisonics).
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The most successful application of audio coding is portable audio players represented by Apple’s iPod. The first

prototype was the Silicon Audio developed in 1994 which is a precursor of iPod first put in the market in 2001.

Audio players were later extended to include video-data processing. The iPhone released in 2007 was the first in the

world, which was combined with a large display to make a tablet PC or with a tiny display to make a smart watch.

A history of these personal handy terminals can be found in [4]. Nevertheless, despite their immense success, audio

players are now gradually being replaced by music streaming.

2) Acoustic environments modeling, analysis, and synthesis:

a) Modeling and analysis of acoustic impulse responses: Sound propagation in acoustic enclosures is char-

acterized by multiple reflections and the addition of noise, both associated with the acoustic environment. When

an acoustic signal propagates in an echoic environment it is reflected by the room facets and the objects in the

enclosure, resulting in the reverberation phenomenon. The acoustic impulse responses (AIRs) that relate sound

sources and microphones are usually a few hundred milliseconds in duration, corresponding to a few thousand taps

in discrete-time filtering at typical sampling rates. The decay rate of acoustic energy in an acoustic environment

is measured by the reverberation time, T60, the time it takes for the exponentially decaying power profile of the

reverberation tail to decay by 60 dB from its initial value. Typical offices have T60 around 300-400 ms and larger

rooms can approach 1 s, depending on the volume, shape, and materials. The perceived reverberation also depends

on the ratio between the direct path (including the early reflections) and the power of the tail, denoted direct-to-

reverberant ratio (DRR). In the same environment, distant sources will exhibit lower DRR and will be perceived as

more reverberant.

Reverberation can degrade the quality of a speech signal and, in severe cases, particularly in noise, also its

intelligibility. The word error rate (WER) of automatic speech recognition (ASR) systems is usually severely

impacted by high reverberation levels, especially for low DRR.

An AIR encompasses the entire reflection pattern, comprising the direct path, the early reflections (consisting

of several distinguishable arrivals), and the late reflection tail, with an exponentially decaying power profile. The

latter part is the main cause of the reverberation phenomenon.

When an acoustic environment is a room, its AIR is referred to as a room impulse response (RIR). Room

acoustics, even in mild reverberation conditions, should be taken into account when designing acoustic signal

processing algorithms, and failing to do so may severely degrade their performance. Modeling and accurately

analyzing the properties of the RIR is therefore of crucial importance.

b) Room simulators, RIR datasets, and sound field generators: Acoustic signal processing algorithms should

be evaluated under reverberant conditions. This can be achieved by either using recorded RIRs or using room

simulators. The outcome of such simulators may indeed be less accurate, but using them allows researchers in the

field to generate a vast number of examples. This has recently become extremely important with the emergence

of machine learning algorithms that require a large volume and diversity of training data. The field has evolved

from the pioneering work in acoustics by Schröder (frequency-domain modeling), Polack (time-domain modeling),

and Allen and Berkely (the image method) [5]. Based on these models (especially the image method), many RIR
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generators were developed: the RIR generator,6 PyRoomAcoustics,7 and gpuRIR.8 Using these generators, one

can evaluate the performance of audio processing algorithms and also train data-driven methods. Recent advances

improve the RIR generation using data-driven methods, usually generative adversarial networks (GANs).

Databases of real-world RIRs are also available, facilitating reliable evaluation of algorithms.9,10,11 In parallel,

noise field generators were also proposed, including isotropic noise12 and wind noise.13

c) Inference of room characteristics: The parameters characterizing the acoustic properties of an enclosure can

be inferred from the AIR or from the reverberant sound itself. These parameters can be used in the development

of audio processing algorithms and also in rendering acoustic scenes. Reverberation time, T60, and DRR were

already mentioned above. The coherent-to-diffuse power ratio (CDR) is another attribute of the sound field that

determines the impact of the reverberation and depends on the source-microphone distance and the reverberation

time. If the direct path and early reflections are dominant, the sound is perceived as more coherent, less diffuse, and

less reverberant. The Acoustic Characterisation of Environments (ACE) challenge14 was dedicated to developing

and benchmarking estimation procedures for the above room acoustic parameters. A recent database of RIRs with

annotated reflections (“dEchorate”) can be used to advance research further in this direction.15

d) Generation of artificial reverberation: Another thriving research direction is the generation of artificial

reverberation, with the most popular method being feedback delay networks [6]. Traditionally (from the pioneering

work of Schröder), these algorithms have been widely used in music production, and now find applications in new

fields, such as game audio including virtual and augmented reality.

A different angle of research would rather consider geometric approaches which rely on physics-based models.

The image method remains untractable for modeling late reverberation, especially of large rooms. The Radiance

Transfer Method (RTM) was introduced to overcome this limitation as it can model diffuse reflections and sound

energy decay of the late reverberation [7]. Although complex, it was later shown that RTM can be linked to feedback

delay networks to build efficient geometry-based reverberators [8].

B. Analysis of acoustic scenes

Here we explore the field of acoustic scene analysis, using microphone arrays that are either arranged in

structured constellations (e.g., spherical or circular) or arbitrarily distributed in the acoustic enclosure. We discuss

6https://github.com/ehabets/RIR-Generator
7https://pyroomacoustics.readthedocs.io/en/pypi-release/pyroomacoustics.room.html
8https://github.com/DavidDiazGuerra/gpuRIR
9https://www.dreams-itn.eu/index.php/dissemination/science-blogs/24-rir-databases
10https://github.com/RoyJames/room-impulse-responses
11https://asap.ite.tul.cz/downloads/mirage
12https://github.com/ehabets/INF-Generator
13https://github.com/ehabets/Wind-Generator
14http://www.ee.ic.ac.uk/naylor/ACEweb
15https://zenodo.org/record/4626590#.Y1cMoOxByAQ
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the localization of sound sources and basic concepts of data-independent spatial filtering. We further discuss wave-

domain representations using the cylindrical or spherical harmonics domain [9]. While originating from soundfield

rendering and microphone array beamforming, these representations are now frequently used for, e.g., source

localization, echo cancellation, active noise control, and blind source separation which are discussed below.

1) Acoustic sensor networks: Recent technological advances in the design of miniature and low-power devices

enable the deployment of so-called wireless acoustic sensor networks (WASNs). A WASN consists of multiple (often

battery-powered) microphone nodes, each of which is equipped with one or more microphones, a signal processing

unit, and a wireless communication module. The large spatial distribution of such microphone constellations yields

a large amount of spatial information and consequently increases the probability that a subset of the microphones

(node) is close to a relevant sound source. Many daily-life devices are now equipped with multiple microphones

and considerable audio processing capabilities. These technological advancements significantly pushed the research

forward. WASNs find applications in hearing devices, speech communication systems, acoustic monitoring, ambient

intelligence, and more.

However, new challenges arise in these new ad hoc architectures. Typically, for a spatially extended network,

the utility of sensors for a given task should be assessed, and for coherent signal processing of multiple sensor

nodes, the signals must be synchronized. In particular, when data centralization is not possible, either due to the

lack of a dedicated central processing device or due to overly demanding transmission/processing requirements, one

must rely on distributed processing, where nodes only share compressed/fused microphone signals with each other.

The according modifications for the various algorithms, e.g., for beamforming, will be discussed along with their

non-distributed versions below. First steps have also been taken to consider a moving robot as part of an acoustic

sensor network.

2) Localisation and tracking: Speaker localization algorithms, mainly time-difference of arrival (TDoA) and

direction of arrival (DoA) estimation emerged already in the ’70s, with solutions based on normalized cross-

correlation between the signals received by a pair of microphones, the so-called generalized cross-correlation (GCC),

and were later extended to multi-microphone solutions, most notably the steered response power phase transform

(SRP-PHAT) [10], which steers a beam toward all candidate directions. Especially for simultaneously localizing

multiple sources, generic frequency estimation or direction-finding algorithms (such as MUSIC (MUltiple SIgnal

Classification) or ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques)) were also adapted

to acoustic applications, most prominently to the cylindrical and spherical harmonics domain. While TDoA and

DoA estimation dominate localization efforts, efficient range estimation based on soundfield characteristics, e.g.,

the CDR, has been demonstrated and applied for position estimation in WASNs [11].

In later years there were many attempts to incorporate statistical methods that can also facilitate tracking of sources

in dynamic scenarios, including Bayesian methods, e.g., nonlinear extensions of the Kalman filter, particle filters and

probability hypothesis density (PHD) filters, and non-Bayesian methods, e.g. recursive expectation-maximization

(REM).

Acoustic reflections may degrade the performance of localization and tracking algorithms, especially in highly

reverberant environments and when multiple speakers are concurrently active. There are two paradigms in the
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literature to mitigate the effects of reverberation on localization accuracy. The first focuses on extracting the direct

path of the sound propagation from the source to the microphones while trying to minimize the effects of the long

AIR. Under the second paradigm, more general features are extracted from the microphone signals. These features

characterize sound propagation. Then, a mapping from these high-dimensional features to the source location is

learned. Manifold-learning based methods adopt this paradigm.16 This is part of the trend towards data-driven

methods, specifically DNN-based algorithms, that infer the source location from a feature vector [12]. A recent

survey [13] explores many of these methods.

Under the same paradigm, simultaneous localization and mapping can be used in the acoustic domain (Acoustic

SLAM) to enable devices equipped with microphones, such as robots, to move within their environment in order

to explore, adapt to, and interact with sound sources of interest [14].

3) Spatial filtering: Essentially all multichannel algorithms, implicitly or explicitly, use the spatial diversity of

the sensor arrangement for spatially selective signal processing. Referring to later sections for the treatment of

other spatial filtering methods such as data-dependent beamforming or multichannel source separation and signal

extraction, we limit here the consideration to data-independent linear spatial filtering, which was portrayed as

an active area of research already in [1]. Since then, notable advances in this area include the exploitation of the

spherical harmonics domain [9], [15], as well as differential microphone arrays [16], [17] due to their high directivity.

These also included the introduction of polynomial beamforming for efficient and flexible beamsteering, the use of

powerful optimization algorithms for non-iterative designs of beamformers that meet robustness constraints, e.g.,

on white noise gain, and the incorporation of object-related transfer functions (ORTFs), e.g., head-related transfer

functions, into the beamformer design. While these data-independent techniques were conceived for microphone

array signal processing, they can also be used for sound reproduction by loudspeaker arrays. For the latter, more

reproduction-specific techniques are discussed below.

C. Synthesis of acoustic scenes

1) Listener-centric, binaural rendering: Binaural rendering usually refers to the process of spatial sound repro-

duction with headphones. One popular approach is based on the use of Head-Related Transfer Functions filters (or

HRTF). Such filters contain all the cues that allow a listener to localize a sound source (and in particular spectral

cues and interaural differences in time and intensity) [18]. The binaural signals are then obtained, for each ear, by

filtering the input monophonic signal by the HRTF corresponding to a given position in space. The rendering for

reverberant environments is more complex since it should superimpose different HRTFs for each direction of the

early reflections. This approach is, however, facing major challenges: the difficulty to acquire large databases of

HRTFs, the difficulty of obtaining generic or non-individualized HRTFs, and the necessity to limit the computation

complexity for high-quality rendering. These challenges have fueled extensive research in several complementary

directions: a) obtaining more generic HRTFs, b) obtaining means to adapt generic HRTFs to individuals (for instance

16See EUSIPCO2019 tutorial: https://sharongannot.group/wp-content/uploads/2021/06/Speaker-Localization-on-Manifolds.pdf
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by either averaging sets of HRTFs, or by using anthropometric measurements or by resorting to physical models),

and c) selecting an appropriate set of HRTFs from a large database by, e.g., subjective tests [19].

2) Soundfield rendering: Beyond the universal numerical methods based on finite elements and finite differences,

signal processing of soundfields started to take advantage of wave-domain representations especially using the

cylindrical or spherical harmonics domain [9], and has been applied now to address many key challenges in sound

field rendering.

An important class of sound rendering techniques relies on a specific setting of distributed loudspeakers sur-

rounding the listening area. Specific formats were developed based on stereophonic principles for a variety of

configurations: 6 channels including one additional for low-frequencies (5.1), 8 channels (7.1), 12 channels (10.2)

or 24 channels (22.2). These formats are associated with directional sound field encoding which imposes strict

constraints on the loudspeaker positions. Also, in practice, the spatial illusion is correct only in a rather small area

around the center of the room (called the sweet spot). Outside this sweet spot, the sound is perceived as coming from

the closest loudspeaker. The approaches based on sound field reproduction, such as Ambisonics originally proposed

by Gerson in 1973, wave field synthesis, introduced in the ’80s by Berkhout or in a more general representation

in the spatial frequency domain [20], solve some of these constraints by taking into account the actual position of

the speakers and by creating virtual speakers for each required direction. In practice, these approaches can rely on

object-based coding and have a much wider sweet spot. Since their introduction, these methods have received much

attention and have led to many extensions for sound field reproduction with parametric or non-parametric methods

with potentially small-size microphone arrays for the recording to arbitrary loudspeaker layouts [21]. Once sound

field rendering should also account for the acoustic environment, room equalization techniques become necessary,

which have been studied already in [22].

D. Acoustic Signal Enhancement

In this section we explore both single- and multi-microphone approaches for acoustic signal enhancement,

addressing multiple sources of interference, namely, echo, feedback, reverberation, noise, and competing signals. A

generic view of an acoustic signal processing architecture, together with sound field synthesis that was discussed

above, is depicted in Fig. 2.

1) Echo cancellation: Echo cancellation emerged already in the ’60s but has seen radical progress in the last

50 years.

Many of the advances in the field of acoustic echo cancellation (AEC) were already explored at the SPS 50th

anniversary [1], including recursive least squares (RLS), affine projection, subband, and frequency-domain adaptive

filters, and double-talk detectors. AECs became the enabling technology of hand-free telecommunication systems,

especially modern video conference systems.

Several important challenges were then tackled to take into account the nonlinearities of the reproduction system

[23], [24], the latter also harnessing DNNs to improve performance. A global approach for combining (residual)

echo cancellation, dereverberation, and noise reduction, usually by applying a postfiltering stage, was also a topic

of extensive research. The classical spectral postfiltering may be substituted with modern structures such as DNNs
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Fig. 2. A typical multichannel sound system. On the analysis side, a spatially and/or spectrally selective acquisition is applied, including noise

reduction, speaker separation (using either beamforming or ICA), and dereverberation. Echo signals are also removed and sources may be

localized. On the synthesis side, a spatially selective rendering is applied and noise can be actively canceled.

to further improve performance. In multi-microphone settings with additive noise present, it is important to design

the AECs and the beamforming stages such that their cross-interference is minimized. Stepsize control continued

to develop from double-talk detection [25] to Kalman-filter based, and more recently to Kalman-filter with Deep

Learning based step-size optimization. Stereophonic AEC, as discussed in Sondhi’s seminal work, was extended to

the multichannel case [26] and to multi-input multi-output (MIMO) AEC in the wave domain.

Comprehensive surveys of the AEC field, its achievements, and remaining challenges can be found in [27], [26].

The International Workshop on Acoustic Echo and Noise Control (IWAENC),17 started in 1989 and held in two

years intervals, was originally dedicated to Acoustic Echo Cancellation (AEC), but its scope was rapidly extended

to other audio signal processing domains and the name was accordingly changed to International Workshop on

Acoustic Signal Enhancement (IWAENC).

2) Acoustic feedback and active noise control: Acoustic feedback occurs when a microphone signal is played

back by a loudspeaker (e.g., in public announcement systems or in hearing aids). This creates a closed loop that

limits the amount of amplification that can be applied in the loop before the system becomes unstable and produces

the howling effect [28]. This problem is well known to hearing-aid wearers who report it as one of the main

drawbacks, especially for those requiring high gain due to moderate to severe hearing impairment. In the first step,

a good ‘closed’ fitting of a hearing aid can usually provide for a stable increase in useful gain. To go beyond

this, adaptive processing was introduced in the ’90s to cancel the feedback components and this approach has

been advancing in recent years through the use of better models of the feedback path and better methods to control

feedback-cancelling algorithms. Usable gains have risen by as much as 10 dB in some cases providing corresponding

benefits to the hearing impaired.

Active noise control (ANC) systems are based on microphones that capture the sound outside a volume and

render “anti-sound” in order to create a quiet zone. Research in the field was boosted by commercial products,

e.g., noise-canceling headphones and aircraft and automotive applications. Aside from just suppressing noise in a

given zone, multizone rendering became a topic of significant, both theoretical and practical, interest [29]: here, in

17https://www.iwaenc.org
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each zone, only one of multiple simultaneously active sources should be audible, i.e., form a ‘bright’ zone, whereas

all others should be suppressed, i.e. form a ‘dark’ zone each. This technology finds applications in entertainment,

business, and health applications. For example, the sound from multiple TVs in the same hospital room may be

zoned separately to each patient’s bed. Also, the sound level or rendering strategy of a movie may be zoned

differently to different seats in the listening room, creating a ‘bright zone’ and a ‘dark zone’. Different languages

for the dialogue may also be rendered in specific zones.

Note that, as soon as the reference information on the undesired sound in a certain zone does not need to be

acquired by microphones, but can be estimated from an observable sound source and modeled or measured sound

propagation path characteristics (e.g., impulse responses), then the creation of dark and bright zones reduces to a

spatial filtering task.

3) Dereverberation: Related to the objective of AEC, the topic of dereverberation has received growing attention

due to the clear need to remove reverberation from audio signals, particularly in speech-processing tasks. Dere-

verberation, as opposed to AEC, is a blind estimation problem, as no reference signal for the anechoic signal is

available. While only a few dereverberation algorithms were available in the late ’90s, dereverberation has become

a flourishing field of research and has reached some level of maturity as reflected by a dedicated and highly cited

book, summarizing a decade of intensive activity [30], and later by the community-wide REVERB Challenge. Both

single- and multi-microphone dereverberation algorithms have been proposed and evaluated. Statistical modeling of

the decaying tail of the RIR has been used to derive spectral methods for single-microphone dereverberation [31].

In the multichannel case, dereverberation can be treated as a blind equalization problem. Hence, either the RIR

coefficients or, alternatively, the inverse of a matrix of impulse responses should be estimated. Estimation procedures

for the multichannel equalization system include subspace methods, i.e., extracting the RIRs from the null subspace

of the spatial correlation matrix of the received microphone signals, and least-squares (LS) methods for (partially)

equalizing the multichannel RIRs, and consequently the reverberation effects. The anechoic signal and the (time-

varying) RIRs can be also jointly estimated by applying a (recursive) expectation-maximization algorithm in parallel

to Kalman filtering.

The weighted prediction error (WPE) method [32] realized blind dereverberation of time-varying colored audio

sources, such as speech, based on multichannel linear prediction (MCLP). To enable MCLP to handle such a source,

WPE introduced two necessary extensions into it, a nonstationary Gaussian source model and a delayed prediction

that protects inherent source correlation from being whitened by MCLP. WPE established a new effective MCLP

algorithm called variance-normalized delayed linear prediction. Several extensions to this method, including joint

blind source separation and dereverberation and the incorporation of DNNs were also proposed.

In recent years, several successful data-driven methods based on DNNs were proposed [33]. We believe that

this research direction will continue, exploring aspects including the noisy and time-varying nature of real-world

scenarios, probably combining model-based and data-driven paradigms.

4) Noise suppression: Noise reduction algorithms gained momentum in the late ’70s with the pioneering single-

channel spectral subtraction method published by Boll and by Berouti et al. A few years later, with the introduction

of the seminal papers by Ephraim and Malah on the estimation of the spectral amplitude and the log-spectral
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amplitude (LSA), statistically-optimal methods became dominant. Beyond the statistically optimal estimation under

the Gaussian assumption on the speech spectral components, these papers also introduced novel concepts related to

the estimation under signal presence uncertainty, as well as the decision-directed approach for the a priori signal to

noise ratio (SNR) estimation. Extensions to other probability distributions, e.g., super-Gaussian, were later presented.

Comprehensive surveys of the state-of-the-art in the first decade of the 21st century can be found in [34], [35].

While it was assumed for many years that the estimation of the phase is unimportant and that it is sufficient to

estimate the amplitude spectrum of the speech and augment it with the noisy phase, recent findings have shown

that it is beneficial to estimate the phase as well [36].

All-pole modeling of the speech signal, widely used in traditional speech compression algorithms, was adopted

by Lim and Oppenheim to develop an iterative scheme, alternating between the estimation of the speech auto-

regressive coefficients and enhancing the speech signal using Wiener filtering. The same speech model was later

used under the expectation-maximization (EM) framework with Kalman filter substituting the Wiener filter.

An early data-driven model for speech enhancement was proposed in [37]. In this work, rather than using a

specific model for the log-spectral amplitude of the speech, a Mixture of Gaussians (MoG) model is inferred in a

training stage using the entire TIMIT database. In recent years, the field of single-microphone speech enhancement

(including noise reduction) is dominated by DNN-based algorithms. Many of these algorithms recast the noise

reduction problem as a mask estimation. The ideal binary mask (IBM) determines for each T-F bin whether it is

dominated by speech or noise. Another popular mask is the ideal ratio mask (IRM), which is a softer version of the

IBM. A survey of many noise reduction algorithms can be found in [38], where other masks, e.g., the complex ideal

ratio mask (cIRM), which is also sensitive to the phase, are explored and compared. Although already achieving

remarkable results, there are still many challenges left. Many of the algorithms require huge amounts of speech and

noise data for training and the resulting models are usually very large. There is a growing interest in developing

“thin” models that can be deployed in edge devices such as cellular phones or even simpler devices that are used as

nodes in WASNs. Moreover, in most telecommunication applications low latency is mandatory, rendering utterance-

level algorithms inadequate. There are many challenging acoustic environments that require further algorithmic

improvements. One example is busy cafés and bars, usually characterized by babble noise. Another example is

factories and mines, characterized by extreme noise levels. A third example is transient noise, e.g., keyboard typing

or wind noise.

5) Spatial filtering (Beamforming): The enhancement and separation capabilities offered by multichannel inter-

faces are usually greater than those of single-channel interfaces, although DNN-based single-microphone solutions

offer now competitive performance. We have explored data-independent beamformers earlier. This section is ded-

icated to data-dependent beamformers, namely beamformers that adapt to the received microphone signals. Early

multi-microphone speech enhancement and speaker separation solutions adopted beamforming techniques with free-

field propagation models [1]. Early attempts to incorporate statistically optimal solutions in the beamformer design,

as well as advanced speaker localization algorithms, are summarized in [39].

As discussed above, sound fields in acoustic enclosures are typically characterized by high-order multipath

propagation. If the number of microphones is too small to form narrow beams, using only the direct path of the
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AIR may provide insufficient sound quality. It, therefore, became common to take into consideration the entire AIR

in the beamformer design. The concept of designing a matched filter towards multiple reflections of the sound was

first introduced by Jan and Flanagan in 1996, but without discussing AIR estimation procedures.

In [40], the acoustic transfer function (ATF) relating the speaker and a microphone array was estimated using a

subspace tracking procedure and was used in the design of a minimum variance distortionless response (MVDR)

beamformer. The relative transfer function (RTF) was later introduced and used in the MVDR design, as a substitute

for the ATF. The RTF encompasses the relevant information regarding the acoustic propagation between the source

and a pair of microphones. Multiple optimal design criteria were used in the literature of microphone arrays, namely

the MVDR, the multichannel Wiener filter (MWF), and its variant the speech distortion weighted (SDW)-MWF

[41], the maximum SNR, and the linearly constrained minimum variance (LCMV). The latter addresses the speaker

extraction problem, which is closely related to (semi-) blind speaker separation as discussed in the next subsection

of this paper. Here we only briefly note that microphone array processing and blind source separation paradigms

are now strongly interrelated and routinely borrow ideas from each other. Further elaboration on spatial processing

algorithms can be found in [42], [43], including spatial processing criteria and algorithms, and the relation to blind

speaker separation.

While general-purpose multi-microphone speech enhancement algorithms aim at selectively enhancing the desired

speech source and suppressing interfering sources and ambient background noise, the objective of binaural algorithms

is also to preserve the auditory impression of the acoustic scene. This can be achieved by preserving the so-called

binaural cues of the desired speech source, the interfering sources, and the background noise, such that the binaural

hearing advantage of the auditory system can be exploited and confusions due to a mismatch between acoustic and

visual information are avoided. A range of multichannel filters to achieve this goal is surveyed in [43] (Chapter

18).

All criteria discussed above were designed for centralized processing. In WASNs, when such processing becomes

too expensive, either optimal or sub-optimal distributed algorithms should be applied instead. The outcome of the

optimal distributed algorithms should be identical to their centralized counterparts, while for sub-optimal algorithms

some performance degradation may result. The advantage of the latter family of algorithms is reduced communication

bandwidth and sometimes even lower local computational load. The challenges typical to WASN processing, several

important applications, and several efficient node-fusion schemes can be found in [44]. Distributed versions of many

of the above criteria can be found in the literature. In WASNs processing, sampling rate synchronization may be

crucial for guaranteeing the proper operation of the system. Multiple re-synchronization schemes can be found in

the literature.

A large number of DNN-based spatial processing algorithms were proposed in recent years. Three main trends

can be found in the current literature. In the first line of work, the DNN is used for estimating the building blocks

of the statistically-optimal beamformers. In the second line of work, e.g., in [45], the DNN is directly estimating

the multichannel weights of the beamformer. The advantage of the latter is the ability to go beyond the conventional

second-order statistics and to implement a beamformer with perceptually more meaningful cost functions (or with

WER as a loss function in ASR applications). However, it may not be as robust as the DNN-controlled beamformers.
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In the third line of work, the DNN is directly applied to the multichannel data, and the beamformer structure is not

preserved.

6) Audio-visual signal enhancement: The visual modality can clearly support the enhancement task. As an

example, focusing on the face of the speaker, and particularly the lips, can be used to extract the desired speaker

from background noise and competing speakers [46].

E. Signal separation

Source separation and blind source separation (BSS) was a topic of growing interest in the mid-90s and gradually

moved from the determined or overdetermined cases to the more challenging underdetermined case where there are

potentially more sources than observed mixtures [47]).

1) Determined case: Blind source separation (BSS) started as an application of Independent Component Analysis

(ICA). A series of ICA conferences started in 1999 and was held in 1.5 years intervals, played an important role

in promoting the field. Audio signals are, due to time differences of arrival of the source signals arriving at

different sensors and reverberation, convolutively mixed in a room. Because a convolutive mixture in the time

domain can be converted to instantaneous mixtures in the frequency domain, the frequency domain ICA approach

converts time-domain signals into the time-frequency domain by using a short-time Fourier transform (STFT). ICA

theory inherently includes two ambiguities; namely output order (permutation) and output amplitude (scaling). Both

become serious problems in frequency-domain ICA. To solve the permutation problem, spatial information and

spectral information of the sources are key information. It was further shown that ICA-based BSS forms a null

directivity pattern toward the interfering source and suppresses it [48].

An interesting framework for multichannel blind signal processing for convolutive mixtures, known as TRINI-

CON, [49] defines an information-theoretic cost function and enables the utilization of three fundamental signal

properties, namely nonwhiteness, nongaussianity, and nonstationarity. Nonnegative matrix factorization (NMF) [50]

separates sources by using common frequency patterns as frequency bases. Independent low-rank matrix analysis

(ILRMA) [51] separates sources by using spatial information of ICA and spectral information of NMF. As in

most fields of audio processing, deep learning methods are now widely used, and some of them are improved

variants of classical algorithms. For instance, the multichannel variational autoencoder (MVAE) [52] combines

spatial information of ICA and spectral information of DNN. Audio source separation methods and algorithms are

surveyed in [53], [43].

2) Monophonic separation: Although multi-channel separation provided a way to invert mixing, the case in which

the input mixture is presented in a single channel only, known as monophonic separation, posed a new challenge.

Techniques that emerged in this area utilized either generative modeling or variations of masking approaches in

order to recover the intended source. This problem also brought into the spotlight the idea of trained separation

algorithms as opposed to blind methods.

An early successful approach along these lines came from models based on Nonnegative Matrix Factorization

(NMF) [50]. These models were pre-trained using sound examples, learned a target-specific spectral dictionary, and

were able to isolate and reconstruct such a target from an input mixture. Variations of this approach included multi-
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Fig. 3. Examples of approaches for monophonic separation. NMF models (top) decompose inputs based on trained dictionaries and then use that

information to reconstruct selected parts of the input. Deep clustering (bottom left) projects the time-frequency points of a mixture to a latent

space adapted such that different sources cluster separately, and then uses the cluster labels to reconstruct each source. Finally, discriminative

separation, mostly based on neural networks, predicts masking functions directly from input signals such that it can mute interference and isolate

target sounds.

channel versions, convolutional models, models trained on a variety of spectro-temporal representations, Markov

models, probabilistic formulations, and more [54], [55].

Although generative models performed well at the time, an alternative approach came from a technique that

was first used for multichannel separation. The W-disjoint orthogonality [56] took advantage of sparsity in the

time-frequency representation of most sounds, to directly apply a binary mask on a spectrogram and isolate the

desired sound. First formulated for stereo recordings, this idea became a cornerstone for approaches based on neural

networks and resulted in a discriminative approach to solving the separation problem, where each time-frequency

point is classified as useful or not. A popular neural network model that made use of this idea was Deep Clustering

[57], which projected mixtures in a space where time-frequency bins could be clustered and labeled accordingly as

belonging to independent sources. Other neural network models dispensed with the clustering step, thereby losing

some generality, and directly attempted to predict a mask given just an input mixture [38]. The latter approach

has dominated the source separation research as of lately, providing many approaches with impressive sounding

results, ranging in their application from small and efficient on-device speech enhancers that are commonly used for

most voice communication today, to larger high-quality offline models such as those used for the award-winning

restorations of historical Beatles recordings. Models along these lines have explored many of the new neural
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architectures (U-net, transformers, etc.), and span a wealth of extensions, such as the use of soft masks, models that

learn a latent space as opposed to using an STFT [58], models that resolve ambiguity in the order of output sources

(permutation invariant training - PIT), conditional models that are guided towards a target by a user, models that

directly optimize perceptual metrics, and more. In Fig. 3 several examples of approaches for monophonic separation

are depicted.

A special case of these models has had a significant impact on music processing. The release of easy-to-use

music-oriented source separation models18 has resulted in a wealth of free and commercial software that allows

users to decompose a music recording into its constituent instrument tracks, and freely remix or manipulate. Aside

from being a very useful tool, this has enhanced the way we interact with recorded music and has opened new

avenues of media interactivity which are still being explored.

Although the discriminative models offer superior performance with relative ease of use, their downside as

compared to generative methods is that they are prone to over-specialization and cannot be easily extended or

redeployed for alternative uses. Some open questions still remain on how to make universal separators, how to learn

with limited training data, how to extend a trained model to work out-of-distribution, etc. Despite the impressive-

sounding demos, there is still a lot of work to be done in this space.

III. EMERGING TOPICS

Another viewpoint of the evolution & breakthrough discussed above is the emergence of new topics, almost

absent in the ’90s and which are today amongst the most popular fields.

A. Objective evaluation

Objective evaluation of speech and audio quality has emerged as a highly relevant topic in the last 25 years. If

the ultimate means for speech/audio quality evaluation or intelligibility assessment is a human perceptual test, it is

also known that it is costly and tedious to organize. This has motivated the community to develop objective metrics

for sound quality which are better correlated with perception. For instance, led by the speech coding community,

several speech quality metrics were developed (and standardized), including PESQ (Perceptual Evaluation of Speech

Quality), POLQA (Perceptual Objective Listening Quality Assessment or VISQoL (Virtual Speech Quality Objective

Listener). An overview of objective perceptual measures is provided in [59]. There is also a widespread adoption

of speech intelligibility measures for hearing aids such as STOI (Short-Time Objective Intelligibility) together with

binaural extensions - MBSTOI (Modified Binaural STOI). These measures are the de facto standard for assessing

the impact of speech enhancement algorithms in human interface devices. Similarly, several metrics were proposed

to evaluate the audio quality (such as PEAQ Perceptual Evaluation of Audio Quality - or PEMO-Q - Perception

Model-Based Quality -) or the performance of an audio source separation algorithm (SI-SDR - Scale Invariant Signal

to Distortion Ratio -, SAR - Signal to Artifact Ratio -, SIR - Signal to Interference Ratio) [60]. Other interesting

objective measures were also proposed, in particular for hearing impaired listeners (see [61] for an overview).

18https://research.deezer.com/projects/spleeter
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More recently, we have also seen the incorporation of trained models that output perceptual scores [62]. These

models can be trained on audio inputs to directly predict user responses and provide a rapid alternative to listener

tests, or otherwise slow-to-compute evaluation methods. When used with differentiable models, these evaluation

methods can also be directly incorporated into algorithm optimization, providing new possibilities for training

perceptually-relevant systems.

Finally, when any of the approximations above are not deemed sufficient, audio algorithm designers can resort

to modern crowdsourcing tools that can reach thousands of listeners and conduct experiments with unprecedented

sample sizes. The ability to do this has revolutionized how audio products are evaluated today and provides stronger

statistical results than ever before.

B. Music Information Retrieval

MIR is defined as a field that covers all the research topics involved in the understanding and modeling of music

and that uses information processing methodologies.19 It is in essence an interdisciplinary domain involving machine

learning, signal processing, and/or musicology. The nature of the processed music can also be very diverse ranging

from the raw audio signal, a symbolic representation of the music score or recording (for example in MIDI format),

as an image (for example as a scanned version of the music score) or even as 3D trajectory movements (for example

as gestures of performers). If the MIR domain has initially focused on symbolic music processing, some early studies

have paved the way for many subsequent works on raw audio signals for example in speech/music discrimination,

beat tracking [63] or music analysis and recognition [64], to name a few. The early approaches were often taking

inspiration from speech recognition methods, mostly using Mel-Frequency Cepstral Coefficients (MFCC) as features

with statistical models such as Gaussian Mixture Models (GMM), Hidden Markov Models (HMM), Support Vector

Machines (SVM), and more. Similarly to underdetermined source separation, major progress was obtained in using

dedicated low-rank or sparse decomposition such as based on Nonnegative Matrix Factorization (NMF) or Matching

Pursuit and variants. With the exception of some early papers which exploited neural networks (see for example

[65] for multipitch estimation), the advent of deep learning is rather recent (see Fig. 4). Today, the major trend

is to consider deep learning for nearly all applications with remarkable achievements in polyphonic music source

separation, music transcription (estimation of melody, harmony, rhythm, lyrics, etc.), music style transfer, and music

synthesis, for instance, [66]. As in speech recognition, the field has also received a great interest towards end-to-end

deep learning approaches which even replace the traditional feature extraction step with a data-driven representation

learning paradigm.

The variety and complexity of music signals also motivate the development of new tailored methods for repre-

sentation learning and unsupervised learning to avoid the particularly cumbersome stage of music signal annotation.

A particularly interesting approach was recently introduced for self-supervised pitch estimation [67]. Besides the

main historic domains of MIR, music synthesis is becoming a stronger field with impressive results, especially

around new generative models. In recent years, we have witnessed the emergence of approaches at the crossroads

19Roadmap for Music Information Research (MIReS), 2013. http://www.mires.cc/wiki/index1a1d.html?title=Roadmap&oldid=2137
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Fig. 4. MIR: A rather early adoption of deep neural networks

of DNNs and classical generative models in so-called deep generative models. Some of the most popular models

include different forms of autoencoders (including Variational Auto-Encoders (VAEs), auto-regressive models, and

Generative Adversarial Networks (GANs)). A concurrent trend, especially for music generation, revisits the use

of classic audio signal models such as, for instance, the source-filter model of speech production or the harmonic

+ noise model. In fact, such models have great potential in hybrid neural architectures integrating audio models

under the form of differentiable signal processing blocks (DDSP) [68]. Hybrid architectures are indeed particularly

attractive and already show great promise. For instance, the use of differentiable source generative models opens

the path to data-efficient, fully unsupervised music source separation paradigms [69].

C. Detection and Classification of Acoustic Scenes and Events

Nevertheless, the most recent and strongest growth has been in the field of Detection and Classification of Acoustic

Scenes and Events (or DCASE) [70]. This growing interest is tangible in the increase of the DCASE community

and the success of its DCASE workshop, a series launched in 2016 (attendance from 68 in 2016 to 201 in 2019

with an average of 50% from the industry) and of its companion international challenge (a continuous growth of

the number of submitted systems from 84 in 2016 to 470 in 2020).20 This steady increase of interest is clearly

visible in the number of submissions to ICASSP: in 2022, DCASE was by far the field with the highest number

of submissions with up to 23.5% of all submissions in Audio. Although very important work on the perception of

sound objects was reported by Schaeffer in his treatise on musical objects in the ’60s, one often refers to CASA

(Computational Auditory Scene Analysis) and the work on Acoustic Scene Analysis by Bregman in the early ’90s

as the most emblematic initial work in DCASE.

As illustrated in Fig. 5, this field has seen a similar (although much faster) evolution from speech recognition-

inspired methods to fully data-driven deep learning methods with a particularly strong axis on weakly supervised

approaches [71].

20Note though that the very first DCASE challenge was organized in 2013 and reported at the workshop WASPAA’13, but it became an

annual event only from 2016.
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Fig. 5. DCASE: from perceptual auditory sound analysis to large scale deep learning algorithms

With the notable exception of work by Schawney and Maes in 1997 which exploited neural networks, most of

the studies until 2015 relied on more traditional clustering and machine learning paradigms for instance based on

SVM, GMM or HMM. Also, similarly to the domains of audio source separation and Music Information Retrieval

at the dawn of the 21st century, many works have exploited approaches to obtain compact or informative audio

signal representations. Sparse decomposition methods, image-based features, and nonnegative matrix factorizations

have been particularly popular. Then, since 2014, deep learning gained strong momentum and became very rapidly

the mainstream architecture. In the DCASE 2016 challenge, all submitted systems for acoustic scene classification

but four involved neural networks, even if they were not yet defining the state of the art. Two years later in the

challenge DCASE 2018 the top 30 performing systems were DNN-based confirming the indisputable supremacy

of neural networks for such a task. Although DCASE is often referring to a single domain, it considers in practice

multiple applications which have their own specifics and constraints. In acoustic scene recognition, a more mature

application, numerous approaches were proposed to operate at low complexity, and in that regard, the use of network

compression, pruning, and knowledge distillation for instance exploiting teacher-student frameworks, are amongst

the most successful developments. For the task of acoustic events detection and localization, there is easy access

to huge weakly-annotated databases. This has obviously accompanied the emergence of an anthology of weakly-

supervised or few-shot learning approaches, for instance around prototypical networks or mean-teacher architectures

which are particularly efficient for few-shot learning, weakly supervised learning, or domain adaptation. Finally,

it is worth mentioning the wide use of data augmentation techniques which have proved in many domains to be

very efficient to reduce model overfitting. Popular data augmentation techniques include Specaugment (with feature

warping, time-frequency masking), pitch shifting, time stretching, mixup and channel confusion in the case of

multichannel recordings, random noise addition, and many more.

D. Powerful consumer electronics devices and fast internet connections

Finally, recent years are witnessing a very fast deployment of powerful consumer electronics devices with audio

processing capabilities, and usually with more than a single microphone. Example devices are: laptops, tablets,
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cellular phones, smartphones and smartwatches, smart speakers, hearing devices and hearables, smart loudspeakers,21

and virtual and augmented reality glasses. Dedicated multi-microphone hardware, e.g., spherical microphone arrays,

is also available.22

Concurrently, the rapid deployment of fast internet connections, specifically with data over the cellular network,

dramatically changed the way we communicate. Rather than communicating over the wired telephone network

and later over the cellular network, we now widely used voice-over IP (VoIP) as a cheap and reliable alternative.

Moreover, teleconferencing tools, e.g., Skype, Zoom, Meets, have become very popular, as was recently demonstrated

during the COVID-19 pandemic, allowing everyone to work from home and remotely communicate with colleagues

and co-workers. The VoIP technology promoted research on audio coding, packet loss concealment or echo

cancellation over IP. Similarly, the widespread use of the internet has revolutionized the consumption of music with

new applications such as audio and music retrieval and music identification (e.g., the popular Shazam service)23 or

around streaming services with automatic recommendation or automatic playlist generation.

IV. CONCLUSIONS AND PERSPECTIVES

The domain of Audio and Acoustic Signal Processing (AASP) experiences a clearly growing interest with a broad

range of specific and interdisciplinary research and development. This growth was accompanied by the IEEE-AASP

TC whose “mission is to support, nourish and lead scientific and technological development in all areas of audio

and acoustic signal processing”. Over the years, and especially recently, the domain has shifted towards more

data-driven methods for nearly all speech and audio applications. In some cases, the methods developed are pure

end-to-end approaches where all the “knowledge” is extracted from data. We believe that this is a very strong trend

which will be further developed in the future, but probably with a different angle. In fact, pure end-to-end deep

neural approaches are complex, often over-parametrized, and in many cases remain rather unexplainable. There is

thus an interest to go towards more frugal data-driven and interpretable or controllable systems. A potential path

is to combine the strength of data-driven paradigms with efficient signal models to build new model-based (or

hybrid) deep neural architectures. For example, in MIR it is possible to associate differentiable sound production

models and deep learning architectures to design interpretable, more frugal, and yet efficient methods. This may

be one of the future paths towards developing new algorithms and technologies which will be in accordance with

sustainable and ecological development, and compliant with high ethical standards which we believe will become

general concerns of major importance.

Another future research direction that should receive a growing interest in audio processing is Federated (or

Collaborative) Learning [72]. In fact, massive amounts of data are now stored on devices. As a result, more models

can now be directly trained on the devices (often referred to as on the edge). This allows us to better take into account

privacy concerns (recorded data is not stored centrally) but also brings a number of challenges for audio applications

in particular on global optimization with communication constraints, on learning with heterogeneous data (audio

21e.g., Amazon Echo, Google Home, Apple Home-pod
22See Eigenmike https://mhacoustics.com
23https://www.shazam.com

This article has been accepted for publication in IEEE Signal Processing Magazine. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MSP.2023.3276171

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TC-AASP - 25 YEARS 20

data recorded from diverse and heterogeneous recording devices) and on learning with partial or missing data.

Federated learning which gathers techniques for machine learning and statistical signal processing using multiple,

distributed devices then appears as a particularly promising framework for future audio processing applications.

Stronger edge devices, with more powerful processing units and faster communication capabilities, will certainly

support this trend.

We also expect that multi-modal processing will become more prominent and that we will witness in the near

future more algorithms that utilize vision to support speaker localization and separation. Beyond audio-visual

processing, other modalities will be more extensively used, e.g., brain-informed speech separation using the EEG

signal [73].
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[6] V. Välimäki, J. D. Parker, L. Savioja, J. O. Smith, and J. S. Abel, “More than 50 years of artificial reverberation,” Journal of Audio

Engineering Society, Jan. 2016.

[7] E. Nosal, M. Hodgson, and I. Ashdown, “Improved algorithms and methods for room sound-field prediction by acoustical radiosity in

arbitrary polyhedral rooms,” Journal of Acoustic Society of America, vol. 116, no. 2, pp. 970–980, 2004.

[8] H. Bai, G. Richard, and L. Daudet, “Late reverberation synthesis: From radiance transfer to feedback delay networks,” IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 23, no. 12, pp. 2260–2271, 2015.

[9] B. Rafaely, Fundamentals of Spherical Array Processing. Springer, 2015.

[10] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust localization in reverberant rooms,” in Microphone Arrays. Springer, 2001,

pp. 157–180.

[11] A. Brendel and W. Kellermann, “Distributed source localization in acoustic sensor networks using the coherent-to-diffuse power ratio,”

IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 1, pp. 61–75, 2019.

[12] S. Chakrabarty and E. A. Habets, “Multi-speaker DOA estimation using deep convolutional networks trained with noise signals,” IEEE

Journal of Selected Topics in Signal Processing, vol. 13, no. 1, pp. 8–21, 2019.
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