
HAL Id: hal-04082578
https://telecom-paris.hal.science/hal-04082578

Submitted on 26 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

SeqDQN: Multi-Agent Deep Reinforcement Learning for
Uplink URLLC with Strict Deadlines

Benoît-Marie Robaglia, Marceau Coupechoux, Dimitrios Tsilimantos,
Apostolos Destounis

To cite this version:
Benoît-Marie Robaglia, Marceau Coupechoux, Dimitrios Tsilimantos, Apostolos Destounis. SeqDQN:
Multi-Agent Deep Reinforcement Learning for Uplink URLLC with Strict Deadlines. EuCNC & 6G
Summit, Jun 2023, Gothenburg, Sweden. �hal-04082578�

https://telecom-paris.hal.science/hal-04082578
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

SeqDQN: Multi-Agent Deep Reinforcement
Learning for Uplink URLLC with Strict Deadlines

Benoı̂t-Marie Robaglia
and Marceau Coupechoux

LTCI, Telecom Paris
Institut Polytechnique de Paris

Email: robaglia@telecom-paris.fr

Dimitrios Tsilimantos
and Apostolos Destounis

Advanced Wireless Technology Lab
Paris Research Center

Huawei Technologies Co. Ltd.

Abstract—Recent studies suggest that Multi-Agent Reinforce-
ment Learning (MARL) can be a promising approach to tackle
wireless telecommunication problems and Multiple Access (MA)
in particular. The most relevant MARL algorithms for dis-
tributed MA are those with “decentralized execution”, where
an agent’s actions are only functions of their own local ob-
servation history and agents cannot exchange any information.
Centralized-Training-Decentralized-Execution (CTDE) and Inde-
pendent Learning (IL) are the two main families in this category.
However, while the former suffers from high communication
overhead during the centralized training, the latter suffers from
various theoretical shortcomings. In this paper, we first study
the performance of these two MARL frameworks in the context
of Ultra Reliable Low Latency Communication (URLLC), where
MA is constrained by strict deadlines. Second, we propose a
new distributed MARL framework, namely SeqDQN, leveraging
the constraints of our URLLC problem to train agents in a
more efficient way. We demonstrate that not only does our
solution outperform the traditional random access baselines, but
it also outperforms state-of-the-art MARL algorithms in terms
of performance and convergence time.

Index Terms—Distributed Multiple Access, Deep Multi-Agent
Reinforcement Learning, Internet of Things, Wireless sensor
networks, URLLC.

I. INTRODUCTION

The next generation wireless networks need to address high-
performance use cases related to industrial automation [1] with
the Internet-of-Things (IoT). A few examples are factory au-
tomation, motion control and vehicular networks. For instance,
IoT sensors can monitor a factory and can be required to
communicate an emergency event as fast as possible so that
devices can react accordingly. Therefore, it is necessary that
the communication of these extreme events is done reliably
and in a very short delay. This type of communication is called
Ultra-Reliable Low-Latency Communication (URLLC) [2].
However, traditional protocols fail to meet these requirements.
The authors in [3] highlight the various sources of latency in
cellular networks, the random access delay between a user and
the Base Station (BS) being a major one (which can go up to
10 ms). Grant-free random access protocols such as Slotted
ALOHA [4] can reduce this kind of delay, but the latency
exponentially increases with the number of users, which makes
them incapable of dealing with the URLLC constraint.

A new generation of “intelligent algorithms”, leveraging the
latest advances in Machine Learning and more particularly

in Reinforcement Learning (RL) has emerged to tackle the
URLLC constraint for MA in IoT [5]. In the same direction,
the objective of this paper is to tackle a fully distributed MA
problem with the URLLC constraint by applying Multi-Agent
RL (MARL). We propose SeqDQN, a distributed algorithm
that outperforms MA baselines and the state-of-the-art MARL
algorithms for URLLC communications with strict deadlines.

A. Related Work

RL is a branch of Machine Learning where agents learn a
policy by interacting with an environment [6]. The develop-
ment of Deep Neural Networks (DNN) allowed RL to solve
high dimensional Markov Decision Processes (MDPs) [6] and
thus, to explore their potential use in wireless communications
and MA in particular [7]. The most natural way of applying
single-agent RL to MA is to model the BS with an RL
algorithm that decides which device to schedule at every
slot. The main issue in this case is the heavy communication
between the BS and the devices as the RL agent needs to
know if a device has a packet to transmit before scheduling
it. A way to alleviate this issue is proposed by [8], where
the authors propose to reduce the communication overhead
by assuming partial observability and learning the packet
arrival distribution with a Recurrent Neural Network (RNN).
However, this approach is not always appropriate as the BS
is not aware of the packet arrivals and may miss transmission
opportunities causing large delays and packet losses. Another
promising RL approach to address the MA problem is MARL.
MARL is a paradigm where at least two agents concurrently
interact with an environment. The main MARL frameworks
that have been applied to a MA problem are:

Independent Learning (IL): introduced by [9], IL is the
most straightforward way to expand the RL framework to
multiple agents. The idea is to equip each agent in the MARL
problem with a single-agent RL algorithm, considering the
actions of the other agents as part of the environment. Even
if this approach has the benefits of being fully distributed
and decentralized by construction, it suffers from various
theoretical limitations that can result in instabilities during
training and convergence to suboptimal policies [9]. The main
shortcoming of this method is the non-stationarity from the
perspective of one agent created by the actions of the others.

One of the first algorithms used is independent Q-learning
with DNNs, namely independent DQN (iDQN) [6]. Because
of its ability to train fully decentralized agents, IL is the most
used framework in MA. For instance, [10]–[12] apply IL to
Dynamic Spectrum Access (DSA), where secondary users use
RL to learn a transmission protocol. Yet, none of these papers
take into consideration the theoretical shortcomings mentioned
earlier. Furthermore, no previous work has applied IL to tackle
a URLLC problem on the uplink with strict deadlines.

Centralized Training with Decentralized Execution (CTDE):
recent research has been focusing on addressing the short-
comings of IL. One of the most common ways of achieving
this is to use a centralized critic during training, taking
advantage of the fact that a lot of MARL problems can be
trained in a centralized way (in a factory for example) before
being deployed in the real world. This approach reduces or
removes the issues of non-stationarity and partial observabil-
ity raised by IL, while still learning decentralized policies.
One of the main frameworks using CTDE is called value
factorisation. For cooperative problems (assuming a single
collective reward), value factorisation aims to decompose the
joint state-action value function into individual observation-
action value functions. Two of the most famous algorithms
are Value Decomposition Network (VDN) [13] that learns
a linear decomposition of the joint Q-function and QMIX
[14] that learns a more complex monotonic factorisation of it,
and has demonstrated better performance. The authors of [15]
justify the use of the centralized training by leveraging mobile
edge computing. They apply the QMIX algorithm to tackle the
DSA problem, modelling it as a Decentralized-POMDP (Dec-
POMDP) problem [16]. In spite of the potential of CTDE for
MA, it has not been applied to a problem with a strict latency
constraint and the way to train a centralized critic remains an
issue for the IoT because of the high communication overhead.

Based on this literature study, MARL methods have not
been applied to a URLLC problem where the communication
is on the uplink and with strict deadlines. The performance
of IL and CTDE thus needs to be assessed in this context. In
addition, both frameworks have strengths and weaknesses that
led us to formulate our own algorithm for MA: SeqDQN.

B. Our contribution

In this paper, we formulate a URLLC problem by con-
sidering heterogeneous devices that need to transmit short
packets on the uplink to a BS within a given strict deadline.
We equip each device with a deep MARL algorithm in
order to learn a transmission protocol by interacting with
the other devices and the environment. We propose SeqDQN,
a distributed MARL algorithm where agents do not update
their Q-functions simultaneously. Instead, they update their Q-
function sequentially, starting with the devices with the most
stringent latency requirement. The advantages of this method
are: 1) We reduce the non-stationarity caused by multiple
agents learning concurrently, which is a major drawback of
IL, 2) our proposed method is more scalable to a large number
of agents than CTDE and 3) training is much faster than the

IoT devices

Base station (BS)

Feedback information

Uplink Communication

Fig. 1: System model with heterogeneous devices.

existing MARL algorithms (iDQN and QMIX). We show that
SeqDQN outperforms both the standard MA baselines and
MARL algorithms on the traffic models we consider.

II. PROBLEM FORMULATION

A. System model

We consider a network of N devices communicating with
a BS over a wireless shared channel on the uplink (Fig. 1).
Time is slotted and at every slot, devices can choose to
transmit a packet or to remain idle. All packets are supposed
to require the same transmission time of one time slot and
the propagation delay is assumed to be negligible. Moreover,
each device has an individual air interface latency constraint
δi, such that a packet is dropped if it has not been transmitted
within δi slots after its arrival in the buffer. We assume slot
synchronization, i.e. all devices are aligned on a common start
of each slot. Finally, we consider a collision channel model:
if a collision occurs, the packets are not delivered to the BS
but can be re-transmitted until their deadline is reached. After
each slot, the users have access to what happened in the slot,
i.e., whether a transmission was successful, the channel was
idle or a collision occurred. This information is obtained by a
feedback signal (ACK/NACK) broadcast from the BS to all the
devices. In order to evaluate the different MARL algorithms,
we define a URLLC score as the number of packets delivered
before expiry divided by the number of generated packets.

B. Traffic model

We study the performance of MARL using 2 traffic models
based on the framework of [17] and the 3GPP [18].

Probabilistic periodic traffic: Inspired by [17], we first
consider a framework where the traffic pattern of every device
is periodic, i.e., every period of Ti time slots, device i receives
a packet with probability pi. We allow the devices to be
heterogeneous in the sense that they can have different packet
arrival probabilities pi, different periods Ti and they are not
synchronous: Each device is assigned an offset parameter
fi ∈ [0, Ti], so that packet arrivals can occur only at time
instants fi +mTi, where m is an integer. At every slot t ≥ 0,

the probability for a device i ∈ [1, N] of having a new packet
is qi(t|fi, pi, Ti) = 1{t[Ti]=fi}pi, where 1{·} is the indicator
function and [·] is the modulo operator.

Deterministic periodic traffic: Defined in [18, Annex A],
the deterministic periodic traffic is a special case of the
previous framework with all arrival probabilities equal to 1.
The main challenge of this framework is for the devices to
learn the optimal schedule. This optimal schedule can be used
subsequently by a contention-free grant-free access algorithm
as standardized in 3GPP Release R15 for URLLC [18]. In
the probabilistic and deterministic periodic traffic models, we
assume that δi ≤ Ti for all i and thus all devices have a
one-packet buffer.

C. Decentralized Partially Observable Markov Decision Pro-
cess (Dec-POMDP)

We formulate our URLLC problem as a Dec-POMDP [16].
A Dec-POMDP is a cooperative stochastic team game with
partial observability. This framework can be regarded as an
extension, for multiple agents, of an MDP where a team of
agents collaborate in order to maximize the same objective.
Besides, it is partially observable, meaning that agents cannot
see the full state and take actions based on their own obser-
vations.

In our case, let S = S1 × S2 × · · · × SN be the set of
environmental states where st = (s1t , s

2
t , . . . s

N
t) ∈ S is the

concatenation of all individual states. The devices have a buffer
of size 1 and the local state of a device i at slot t is sit =
(dit, ct−1), where dit ∈ N is the time in number of slots that
the packet has already spent in the buffer and ct−1 is the last
feedback from the BS. We set ct−1 = 1 if at t − 1 a packet
was successfully transmitted, −1 if a collision occurred and 0
if the channel was idle.

A local action of a device i is ait ∈ Ai = {0, 1}, where
ait = 1 if the device transmits and 0 otherwise. A device
i makes an action according to a policy function πi : Si →
∆(Ai). This function can be probabilistic or deterministic. We
use the index −i to refer to all agents different from i. For
example, the joint action a = (a1, a2, . . . , an) ∈ A can be
written a = (ai, a−i).

We now specify the reward function R : S× A → R. In a
Dec-POMDP, agents have identical interests, which means that
they have the same reward function. Users collectively want
to maximize the URLLC score by maximizing the number
of successful transmissions. At each slot t, agents get as
reward rt = R(st,at) the ACK/NACK feedback from the BS
(+1 if a packet is successfully transmitted, −1 if a collision
occurred, 0 if the channel was idle). In other words, rt = ct.
The objective for each agent i is to find a policy πi that
maximizes the expected cumulative discounted reward over
a finite horizon T :

Est+1∼P,a−i∼π−i

[
T∑

t=0

γtR(st, (ait, a−i
t)|ait ∼ πi(·|sit), s0

]
(1)

with γ ∈ (0, 1] the discount factor that allows the agents to
balance immediate rewards with future ones, and P : S×A 7→

S the transition function. In our problem, we consider a finite
horizon Dec-POMDP where an episode is of length T slots.

Note that it is also possible to model this system with a more
general framework where agents have individual interests.
However, we have chosen the Dec-POMDP framework as:
1) The main CTDE algorithms have been designed for Dec-
POMDP only [13], [14], [19]; 2) We experimentally have
observed that the performance of IL algorithms with our
system model is very similar whether we use an individual
or a collective reward.

III. ALGORITHMS

Among the existing MARL algorithms, we restrict our
approach to the ones with “decentralized execution” where an
agent can only choose an action based on its local observation.

A. Independent DQN (iDQN)

Deep Q-learning is one of the most used framework in RL.
It aims at learning a state-action value function Q(s, a) with a
neural network. A Q-learning agent then selects the action that
maximizes the Q-function, i.e. π(a|s) = argmaxa∈A Q(s, a).
In Deep Q-Networks (DQN) [6], an agent stores the system
transitions (s, a, r, s′) in a replay buffer where the agent
observes the next state s′ after taking the action a in the state s
and receiving the reward r. The neural network’s parameters θ
are learnt by sampling batches of b transitions from the replay
buffer and minimizing the following loss, called TD-error:

L(θ) =
b∑

i=1

[yi −Q(si, ai; θ)]
2 (2)

where yi = ri + γmaxa′ Q(s′i, a
′; θ−) is the TD target and

θ− are the parameters of what the authors call the target
network that are used to stabilize the training procedure. These
parameters are an old version of the parameters θ and are
periodically updated.

The most natural way to adapt DQN to a multi-agent sce-
nario is independent Q-learning [9]. The idea is to decompose
a n-agent problem in n single agent problems, where each
agent considers the others as part of the environment. When
users model their Q-function with a DNN, we get iDQN.

iDQN has the advantage of being a fully distributed algo-
rithm in the sense that training and execution are decentralized,
which makes it a good candidate for a distributed MA problem.
However, this framework does not address the non-stationarity
caused by the learning of other agents and thus has no
convergence guarantees.

In order to be fair in the comparison with the other MARL
algorithms, we equip each Q-network with a Gated Recurrent
Unit (GRU) layer [20]. Thus, the local state sit of an agent
i at step t is replaced by the action-observation history
hi
t = (sit, s

i
t−1, a

i
t−1, . . . , s

i
0, a

i
0). This way of handling partial

observability in Deep RL is described in [21].
Moreover, we noticed that without the use of a recurrent

architecture, the iDQN algorithm fails to converge when the
number of devices increases.

B. QMIX

QMIX [14] is a value decomposition algorithm that relies on
the factorization of the global Q-function Qtot by individual
Q-functions Qn to enable distributed execution. In practice,
each agent estimates a Q-value with a neural network that is
going to be passed through a neural network called the mixing
network. It combines all these individual Q-values into a joint
Q-value Qtot = Mixing_Network(Q1, Q2, . . . , Qn). The
latter is used to minimize the DQN loss (2) and the gradient
is backpropagated to the individual Q-functions. In practice,
we want to factorize the total Q-value such that maximizing
the total Q-value gives the same result as maximizing the
individual Q-values:

argmax
a

Qtot(h,a) =

[
argmax

an
Qn(h

n, an)

]
n=1,...,N

(3)

To do so, the mixing network enforces a monotonic constraint
between Qtot and Qn:

∂Qtot

∂Qn
≥ 0, ∀n (4)

which is fulfilled by constraining the parameters of the mixing
network to be positive. The advantage of this approach is that it
tackles the non-stationarity issue during training thanks to the
centralized Q-function. However, the communication overhead
during the training phase may be a problem for IoT scenarios
when we increase the number of devices.

C. Sequential DQN (SeqDQN)

Our proposed algorithm, called SeqDQN, is inspired by
the idea of two-timescale training [22] which tries to take
advantage of iDQN without the non-stationarity issue. In
SeqDQN, n DQN agents update their Q-function sequentially
on different exploration phases (EP). During one EP, only
one agent updates its policy while the others take actions
according to their last learnt policy. Thus, we remove the non-
stationarity caused by the other learning decision makers and
each agent solves a POMDP problem during each EP in order
to learn a best response to the others. The authors of [22] show
that this methodology provides a decentralized Q-learning
framework where algorithms converge to equilibrium policies
almost surely in fully observable weakly acyclic games.

To tackle our MA problem, we combine the two-timescale
training with three elements. First, we use a GRU [20] to
address partial observability in POMDP [21]. Second, we
create clusters of devices with the same deadline. Clusters
are then trained sequentially from the smallest deadline to the
largest one. When a cluster is trained, the users it includes
update their policy one after the other until convergence. Third,
devices that have not been trained so far do not transmit to
remove stochasticity during the EP and speed up the learning.

The pseudo-code of SeqDQN is shown in Algorithm 1.
Inside a cluster, agents are trained sequentially K cycles. In
an EP, when the policy of the learning agent has not improved
in L episodes, we consider that the agent has converged and
end the EP. We set the Q-function of the agent to the best

one learnt during this EP in terms of total reward. We train
the clusters J rounds so that the first trained clusters can
adjust their policies to the ones with a larger deadline. At
each round, the learning rate is decreased by a factor α. In
practice, we set up the training sequence and clusters of users
once at the beginning of the experiment. The BS groups the
users by deadline and assigns them an ID corresponding to an
EP where a device is allowed to update its Q-network. When
an EP is finished, the BS communicates what device starts its
EP via the feedback signal. There is no additional information
exchange during an episode. The sequential training is a pre-
processing set up that does not need to be repeated once the
network is in operation. During the network operation, the
decisions are fully decentralized.

Algorithm 1: SeqDQN for distributed multiple access

1 Initialize the Q-networks Q1, Q2, . . . , Qn;
2 Cluster the users in subsets C1, C2, . . . Cd with users

in Ci having a deadline δi such that δi < δi+1∀i.
3 for j = 1, 2, . . . , J do
4 η ← η × α
5 for i = 1, 2 . . . , d do
6 if i = 1 then
7 Set the policies of clusters c > i to not

transmit.
8 Fix the policies of clusters c < i to their

current policy.
9 for cycle = 1, 2, . . . ,K do

/* Sequentially train the users of Ci

K times */

10 for m ∈ Ci do
/* EP of agent m */

11 Run DQN for agent m and fix π−m.
12 Update Qm with (2) and learning rate η.
13 if πm has not improved in L episodes

then
14 End EP
15 Set the policy of πm to the best one.

D. Baselines

We compare the above algorithms to two baselines:
• Contention-based grant-free access (GF) [23]: All devices
with a packet to transmit access the channel with the same
probability p. We optimize the transmission probability p
experimentally for every number of agents such that the
URLLC score is maximised. We consider the reactive scheme
so that when a device receives a NACK feedback from the
BS after transmitting, it will re-transmit the same packet with
probability p until the reception of an ACK feedback or the
expiry of the packet.
• Round Robin scheduler (RR): This algorithm schedules
devices in a cycle, so that the time resource is fairly shared
between them. Devices are ranked in ascending order with
deadlines plus offsets.

TABLE I: Parameters of the traffic models

Parameters Probabilistic Probabilistic Deterministic
Dense Sparse

Arrival U{0.2, 0.4, 0.6, 0.8} U{0.05, 0.1} 1
Probabilities

Deadlines U{5, 10, 15, 20} U{2, 4} U{4, 6, 8, 10}
Periods (Ti) U{10, 20} U{5, 10} U{8, 10}

Offsets U [0, 4] U [0, 4] U [0, 4]

IV. EXPERIMENTS

A. Simulation settings

We consider the three different settings for our experiments:
a dense probabilistic periodic traffic, a sparse probabilistic
periodic traffic and a deterministic periodic traffic from 4 to
28 users depending on the scenario. The parameters of these
traffic models are given in Table I and the parameters of
the MARL algorithms are given in Table II. These numbers
of devices are in line with the 3GPP recommendations for
URLLC [18], where the use cases consider up to 10 users per
cell. For every traffic model, periods Ti are chosen uniformly
under the condition δi < Ti. In Table I, U designates the
uniform distribution over a finite set or an interval. The hyper
parameters have been optimized with grid search.

TABLE II: Parameters of the Q-learning algorithms

Parameter Value
Discount factor (γ) 0.9

Initial learning rate (η) 10−3

Learning rate decrease factor (α) 0.2

Batch size 128
History length 20

Episode length (T) 200 slots
Training length 50k episodes

Final exploration rate (ϵ) 0.1
Number of cycles (K) 5

Convergence criterion (L) 300
Training rounds for clusters (J) 3

Q-network architecture 1 GRU layer + 3 Linear layers
Activation functions ReLU

Linear layer 100 neurons
GRU layer 100 neurons

Number of seeds 5

B. Convergence speed of MARL algorithms

We analyze in Fig. 2 the evolution of the performance
of the three MARL algorithms during the training phase for
the dense probabilistic periodic traffic with 12 devices. The
conclusions are similar for other traffic models and numbers
of devices. Instead of comparing the algorithms as a function
of the number of episodes, we present results as a function
of the number of gradient updates in the x-axis. The reason
is that iDQN and QMIX perform as many updates as the
number of devices in every episode, whereas SeqDQN trains

0.0 0.2 0.4 0.6 0.8 1.0
Number of gradient updates 1e8

0.2

0.4

0.6

0.8

1.0

UR
LL

C
sc

or
e

iDQN
QMIX
Grant Free Access
Round Robin
SeqDQN

Fig. 2: Evolution of the URLLC score during the training for
the dense probabilistic periodic traffic with 12 devices.

a single device. The number of gradient updates is thus more
representative of the convergence speed.

First, we can see that SeqDQN manages to reach a better
optimum at the end of the training. Second, we can see that
it is the fastest algorithm to converge. This can be explained
by two arguments. When a cluster of devices is being trained,
the devices with a higher deadline are inactive. Therefore, the
stochasticity of the environment is removed so it is easier for
the learning devices to converge. Moreover, as only one agent
explores at the same time, exploration is not affected by the
noise caused by the concurrent learning of other agents as it
is the case for iDQN and QMIX. Third, we observe that the
training of SeqDQN has more variance than QMIX’s. This
can be explained by the fact that training is not centralized
and devices are not trained simultaneously. Additionally, when
a new agent starts its EP, it needs to adapt to the new
policies of the other devices which creates variance. Reducing
the learning rate at every round helps mitigating this effect.
Finally, we notice that QMIX outperforms iDQN in terms of
convergence speed and optimum attained, which is expected
as centralized training is supposed to encourage cooperation.

C. URLLC score

We run simulations with a dense probabilistic periodic
traffic (Fig.3a), a sparse probabilistic periodic traffic (Fig.3b)
and a periodic deterministic traffic (Fig. 3c). We show the
evolution of the URLLC score as a function of the number of
devices. First, it is clear that the MARL algorithms outperform
the MA baselines (GF and RR) in every scenario. We observe
that the GF protocol performs very poorly in dense settings
when the load is high (Fig 3a and Fig 3c) while it performs
very well in a sporadic traffic when the load is lower (Fig 3b).
Indeed, the larger the number of packets to transmit, the larger
the number of collisions, thus the lower the performance of
the GF protocol. On the contrary, we can see in Fig 3a and
Fig 3c that the RR scheduler performs better when the load is
high as 1) it schedules one packet at a time and thus avoids

4 6 8 10 12 14 16
Number of devices

0.5

0.6

0.7

0.8

0.9

1.0

UR
LL

C
sc

or
e

Round Robin
Grant Free access
QMIX
iDQN
SeqDQN

(a) Dense periodic probabilistic traffic.

5 10 15 20 25
Number of devices

0.2

0.4

0.6

0.8

1.0

UR
LL

C
sc

or
e Round Robin

Grant Free access
QMIX
iDQN
SeqDQN

(b) Sparse periodic probabilistic traffic

4 5 6 7 8 9 10
Number of devices

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

UR
LL

C
sc

or
e

Round Robin
Grant Free access
QMIX
iDQN
SeqDQN

(c) Periodic deterministic traffic.

Fig. 3: Evolution of the URLLC score with respect to the number of devices for various traffic models.

collisions; 2) the probability of scheduling a user with a packet
is higher. Nevertheless, it performs very poorly in the sparse
periodic traffic (Fig 3b) as it is not aware when a device has
a packet to transmit. Furthermore, we can notice that in all
three scenarios, SeqDQN not only outperforms iDQN and
QMIX, but it also has less variance when we change the
initialization of the neural networks. This can be explained
by the fact that in SeqDQN, only one agent explores at a time
whereas in iDQN and QMIX, all agents explore concurrently
which makes an equilibrium harder to reach. We also observe
that the variance of iDQN increases with the number of
devices. Indeed, positive rewards become quite sparse as they
are obtained when one device is active while all other ones
remain idle. This problem is known in the literature on MARL,
see e.g. [19]. Finally, we note that in some cases, QMIX’s
performance is similar to SeqDQN’s. The centralized training
that encourages agent coordination can explain this. However,
it necessitates a lot of communication during training, whereas
SeqDQN avoids this problem because training is decentralized.

V. CONCLUSION

In this paper, we consider an uplink multiple access problem
with strict deadlines. We study the most commonly MARL
approaches to learn a transmission protocol in this URLLC
context. We assess the performance of iDQN and QMIX and
propose a new distributed algorithm, called SeqDQN, which
addresses the issues of scalability and non-stationarity caused
by the other learning agents. We show that SeqDQN has three
major advantages compared to the existing MARL algorithms:
1) It can reach a better operating point when we allow the
devices with the most time-critical information to learn a
transmission protocol first, 2) Training the agents one at a time
significantly speeds up the training time, 3) Training agents
progressively and fixing the policies of the already trained
agents allow us to handle a larger number of devices.

REFERENCES

[1] G. Brown et al., “Ultra-reliable low-latency 5g for industrial automa-
tion,” Technol. Rep. Qualcomm, vol. 2, p. 52065394, 2018.

[2] J. J. Nielsen, R. Liu, and P. Popovski, “Ultra-reliable low latency com-
munication using interface diversity,” IEEE Trans. Commun., vol. 66,
no. 3, pp. 1322–1334, 2017.

[3] H. Chen et al., “Ultra-reliable low latency cellular networks: Use cases,
challenges and approaches,” IEEE Commun. Mag., vol. 56, no. 12, pp.
119–125, 2018.

[4] L. G. Roberts, “ALOHA packet system with and without slots and
capture,” ACM SIGCOMM Comput. Commun. Rev., vol. 5, no. 2, pp.
28–42, 1975.

[5] M. A. Al-Garadi et al., “A survey of machine and deep learning methods
for internet of things (IoT) security,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 3, pp. 1646–1685, 2020.

[6] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[7] A. Feriani and E. Hossain, “Single and Multi-Agent Deep Reinforce-
ment Learning for AI-Enabled Wireless Networks: A Tutorial,” IEEE
Commun. Surveys Tuts., vol. 23, no. 2, pp. 1226–1252, 2021.

[8] B.-M. Robaglia, A. Destounis, M. Coupechoux, and D. Tsilimantos,
“Deep Reinforcement Learning for Scheduling Uplink IoT Traffic with
Strict Deadlines,” in IEEE GLOBECOM, 2021.

[9] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” in ICML, 1993.

[10] H.-H. Chang et al., “Distributive dynamic spectrum access through deep
reinforcement learning: A reservoir computing-based approach,” IEEE
Internet Things J., vol. 6, no. 2, pp. 1938–1948, 2018.

[11] Y. Xu, J. Yu, and R. M. Buehrer, “The application of deep reinforcement
learning to distributed spectrum access in dynamic heterogeneous en-
vironments with partial observations,” IEEE Trans. Wireless Commun.,
vol. 19, no. 7, pp. 4494–4506, 2020.

[12] Y. Xu, J. Yu, W. C. Headley, and R. M. Buehrer, “Deep reinforcement
learning for dynamic spectrum access in wireless networks,” in IEEE
MILCOM, 2018.

[13] P. Sunehag et al., “Value-decomposition networks for cooperative multi-
agent learning,” in AAMAS, 2018.

[14] T. Rashid et al., “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in ICML, 2018.

[15] X. Tan et al., “Cooperative multi-agent reinforcement learning based
distributed dynamic spectrum access in cognitive radio networks,”
arXiv:2106.09274, 2021.

[16] F. A. Oliehoek, Decentralized POMDPs. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 471–503.

[17] I.-H. Hou and P. R. Kumar, “Packets with deadlines: A framework for
real-time wireless networks,” Synth. Lect. Commun, vol. 6, no. 1, pp.
1–116, 2013.

[18] 3GPP, “Study on physical layer enhancements for NR ultra-
reliable and low latency case (URLLC),” 3rd Generation
Partnership Project (3GPP), TR 38.824. [Online]. Available:
http://www.3gpp.org/DynaReport/38824.htm

[19] R. Lowe et al., “Multi-agent actor-critic for mixed cooperative-
competitive environments,” in NeurIPS, 2017.

[20] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
CoRR, vol. abs/1409.1259, 2014.

[21] M. Hausknecht and P. Stone, “Deep Recurrent Q-learning for Partially
Observable MDPs,” in AAAI Fall Symposeum, 2015.

[22] G. Arslan and S. Yüksel, “Decentralized Q-Learning for Stochastic
Teams and Games,” IEEE Trans. Autom. Control, vol. 62, no. 4, pp.
1545–1558, 2017.

[23] N. H. Mahmood, R. Abreu, R. Böhnke, M. Schubert, G. Berardinelli,
and T. H. Jacobsen, “Uplink grant-free access solutions for urllc services
in 5g new radio,” in 2019 16th International Symposium on Wireless
Communication Systems (ISWCS). IEEE, 2019, pp. 607–612.

