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Unsupervised Music Source Separation Using
Differentiable Parametric Source Models

Kilian Schulze-Forster “, Gaél Richard

and Roland Badeau

Abstract—Supervised deep learning approaches to underdeter-
mined audio source separation achieve state-of-the-art perfor-
mance but require a dataset of mixtures along with their corre-
sponding isolated source signals. Such datasets can be extremely
costly to obtain for musical mixtures. This raises a need for unsu-
pervised methods. We propose a novel unsupervised model-based
deep learning approach to musical source separation. Each source
is modelled with a differentiable parametric source-filter model. A
neural network is trained to reconstruct the observed mixture as
a sum of the sources by estimating the source models’ parameters
given their fundamental frequencies. At test time, soft masks are
obtained from the synthesized source signals. The experimental
evaluation on a vocal ensemble separation task shows that the
proposed method outperforms learning-free methods based on
nonnegative matrix factorization and a supervised deep learning
baseline. Integrating domain knowledge in the form of source
models into a data-driven method leads to high data efficiency: the
proposed approach achieves good separation quality even when
trained on less than three minutes of audio. This work makes
powerful deep learning based separation usable in scenarios where
training data with ground truth is expensive or nonexistent.

Index Terms—Unsupervised learning, audio source separation,
signal processing, model-based, deep learning.

I. INTRODUCTION

UDIO source separation is the task of estimating the
A individual signals of several sound sources when only
their mixture can be observed. When the sources are musical
instruments (including singing voice), we refer to the task as
Musical Source Separation (MSS) [1]. It has many applications,
for example in up-mixing or re-mixing of recordings whose
individual source signals are not accessible. It is also used to
create play-along tracks for students of musical instruments.
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Furthermore, MSS is an important pre-processing step for
several music information retrieval tasks such as automatic lyrics
transcription [2]. Music mixtures are especially challenging be-
cause the source signals are usually highly correlated in time and
frequency as opposed to speech or speech-noise mixtures [3].
Beyond, certain instruments may be present multiple times as
distinct sources in music mixtures, e.g. several singers in a
choir. Hereafter, we refer to this issue as homogeneous sources.
State-of-the-art performance in MSS is achieved by Deep Neural
Networks (DNNs) which are trained in a supervised fashion [4],
[5], [6]. However, they have two shortcomings which we address
in this paper.

Firstly, they are not able to separate homogeneous sources.
For example, the methods in [4], [5], [6] are able to separate all
singing voices from an instrumental accompaniment but provide
only the mixture of these voices instead of further separating
them into the different singer signals. Hence, they can neither
be used to obtain only the lead vocals nor to separate vocal
ensembles or violin quartets, for example.

Secondly, they require training data with available ground
truth, i.e. mixtures for which target source signals are available in
isolation. However, such isolated signals are difficult, sometimes
impossible, to obtain for music mixtures. If the instruments
were recorded separately, the ground truth signals exist but are
usually not distributed. This is usually the case for pop music.
For most other genres such as jazz, classical music, or folk,
it is common practice that the musicians perform together in
the same room and only the mixture of the instrument signals
is recorded. Hence, no isolated signal recordings exist. Special
recording sessions may be arranged in order to record signals in
isolation [7], however, this is not only extremely costly but also
leads to unnatural conditions for the musicians.

Therefore, there is a need for separation methods that do not
require ground truth signals for training. Such methods may be
learning-free or unsupervised.

Learning-free methods estimate all parameters directly from
the test mixture [3]. Hence, they do not require any training
data. Nonnegative Matrix Factorization (NMF) [8] and its nu-
merous extensions have successfully been used for learning-free
MSS [3]. Using side information such as musical scores [9], [10]
or fundamental frequency (FO) [11], NMF-based methods can
separate homogeneous sources.

Unsupervised methods have a training stage and require
only mixtures (no isolated sources) for learning. At test time,
their parameters are fixed. They have the potential to provide
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superior performance similar to supervised methods while being
less demanding regarding data. Recently proposed unsupervised
deep learning methods for audio source separation are based on
assumptions such that the sources are uncorrelated [12], [13] or
not homogeneous [14], [15]. Therefore, they are not applicable
to music mixtures where sources are correlated and possibly
homogeneous.

In this work, we propose and evaluate a novel approach
to unsupervised source separation which does not make such
assumptions. It is hence also applicable but not limited to music
mixtures. The approach is inspired by the recent line of research
which integrates signal processing models in DNNS to incorpo-
rate domain knowledge [16], [17]. Each source is modeled with a
differentiable parametric source model. During training, the task
of the DNN is to re-synthesize the observed mixture as a sum
of the sources by estimating the source parameters. Separation
is achieved because the FOs for all sources are estimated from
the mixture and assigned to the sources beforehand. This can be
done using existing methods such as [18], [19].

Besides being unsupervised and able to separate homoge-
neous sources, the approach has further advantages: high data
efficiency as well as parametric, hence interpretable and modi-
fiable, source estimates. Briefly, the contributions of this work
are:

® a novel unsupervised deep learning approach for audio

source separation,

¢ the integration of parametric source models in deep learn-

ing based audio source separation,

® a new differentiable procedure to estimate stable time-

varying all-pole filters with a DNN using line spectral
frequency parameterization,

® an extensive experimental evaluation of the proposed

method on a musical source separation task and compari-
son to learning-free and supervised baselines,

e the open source code' for the proposed method and exper-

iments.

The rest of the paper is structured as follows: In Section IT we
review related work on audio source separation and model-based
deep learning. The proposed method is explained in Section III
and its experimental evaluation is outlined in Section IV. We
present and discuss results in Section V and conclude in Sec-
tion VL.

II. RELATED WORK

In this section we review work on homogeneous musical
source separation, learning-free and unsupervised source separa-
tion, and, finally, on the integration of signal processing models
in deep neural networks.

Homogeneous audio sources are not easily distinguishable
in the time-frequency domain and pose a permutation prob-
lem [20], [21]. While permutation-invariant training is used
for supervised speech separation [21], [22], methods for mu-
sical homogeneous source separation exploit side-information
such as FO estimates [11], [23] or a musical score [9], [10],
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[24] to guide the separation. Two deep learning approaches
for supervised choir separation were proposed recently. In this
context, a choir is composed of four homogeneous sources: a
soprano, alto, tenor, and a bass singer. Petermann et al. [23]
modified the conditioned U-Net [25] so that the target source
can be selected and separated using its FO information. Results
show that this leads to improved objective separation qual-
ity compared to using non-informed source-specific models.
However, ground truth source signals are needed for training
and they are rare for choir recordings. This motivated Gover
and Depalle [24] to synthesize choir singing from MIDI files
and to use this synthetic data for training of a score-informed
DNN. When tested on real choir recordings, the model is out-
performed by the learning-free, score-informed NMF proposed
in [9]. This shows that the performance of supervised DNNs
depends strongly on the quality and quantity of the training
data.

Therefore, learning-free methods are a powerful alternative in
limited data settings. Several separation methods based on NMF
are learning-free and can exploit side-information to separate
homogeneous sources. NMF approximates a spectrogram with
a matrix product of two low-rank matrices containing spectral
templates and their activations, respectively [3]. Ewert and
Miiller [9] proposed to initialize both templates and activations
using musical score information. This leads to improvements
compared to random initialization. Using the score allows even
to separate notes played by the left and the right hand in piano
recordings. Similarly, Hennequin et al. [10] used a musical score
to initialize the activations whereas the templates consist of
parametric frequency atoms. Durrieu et al. [11] formulated an
advanced signal model using multiple NMF decompositions.
The predominant source is modeled with a source-filter model
and all other sources are captured by an unconstrained NMF.
First, the FO of the predominant target source is estimated using
the signal model. Then, the FO is used to guide the separation.
Nakamura and Kameoka [26] proposed a powerful signal model
combining NMF and harmonic-temporal clustering and inte-
grated a source-filter model. It allows for blind, learning-free
separation of harmonic sounds. A drawback of NMF-based
methods is the low degree of flexibility because only a fixed
number of spectral templates is used to describe a signal. This
limits their performance, especially when inherent assumptions
are violated. Recently, efforts have been made to make more
flexible deep learning based source separation also usable in
cases where no mixture-target pairs are available for training.
Most works focus on creating learning targets artificially from
mixtures or side-information in order to train DNNSs in a super-
vised way in the absence of real targets. Seetharaman et al. [15]
obtain targets for singing voice/accompaniment separation by
clustering time-frequency bins of mixtures using several simple
perceptual cues. Hung et al. [27] obtain harmonic target masks
from well-aligned musical scores and further support the training
process using score transcription models. Also deep clustering
models [20] have been trained for speaker separation without
ground truth signals [28], [29]. The targets are obtained by
clustering the mixture based on spatial information. The meth-
ods above yield good results but require substantial amounts
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of (unlabeled) training data and cannot separate homogeneous
correlated sources.

As an alternative, it has been proposed to train deep generative
models on isolated source signals to use them subsequently for
source separation [14] or speech enhancement [30]. However,
this strategy is challenging for MSS because it requires a large
amount of isolated source signals and uncorrelated sources.

Lastly, mixture invariant training has been proposed recently
in [12] and refined in [13] for unsupervised learning of audio
source separation without a need for artificial targets. During
training, the sum of two mixtures is given as an input and the
DNN has to separate all sources so that, given the respective
optimal binary mixing matrices, the two mixtures can be recon-
structed individually. Since it is necessary that the sources are
uncorrelated [13], this approach is not an option for MSS.

The method proposed in this paper uses FO information to
separate the (possibly homogeneous) sources like the learning
free-methods of [9], [11] and the supervised methods of [23],
[24]. It provides better performance than learning-free methods
and does not require expensive labeled data like supervised
methods. Our learning strategy is fundamentally different from
other unsupervised methods: it is not limited to uncorrelated
sources like [13] and does not rely on artificial source targets
which require the availability of aligned scores [27], suffi-
cient spatial information in the mixture [28], [29], or non-
homogeneous sources [15]. The proposed training objective is to
re-synthesize the mixture with differentiable parametric source
models. The only assumptions are that the number of sources
is known and that their FOs can be estimated. In contrast to the
unsupervised methods reviewed above, the proposed one can
separate homogeneous sources, requires only a small amount
of unlabelled data, and provides interpretable and modifiable
source estimates.

There is arecent line of research that explores the combination
of data-driven and knowledge-based methods to take advantage
of both paradigms [16], [17], [31]. The integration of differ-
entiable source models in the DNN-based source separation
process is inspired by this model-based deep learning research.
Specifically related to our work are recent speech synthesis
methods which use differentiable parametric voice models and
estimate their parameters using DNNs [32], [33]. We use similar
voice models but in a different context. Engel et al. [17] imple-
mented a code library for differentiable digital signal processing
and show the advantages of model-based deep learning for
tasks such as synthesis, timbre transfer and dereverberation.
The DNN architectures and the differentiable signal processing
implementations we use in our experiments are inspired by their
work. To the best of our knowledge, the proposed method is the
first one that uses model-based deep learning for MSS.

II. METHOD
We observe the single-channel mixture m(t) = Z;-]:l s;(t)
of J monophonic source signals s;(t) where t € {1,...,T}

indexes discrete time samples. Our goal is to estimate all source
signals s;. We propose a novel approach to train a DNN for this
task without access to any isolated source signal. The sources
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Fig. 1. Overview of the proposed unsupervised training procedure of a Deep
Neural Network (DNN) for audio source separation.
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are modeled with differentiable parametric source models which
we describe in Section III-A. The DNN estimates the source
parameters given the FO as explained in Section III-B. The
objective of the unsupervised training strategy is to re-synthesize
the mixture. Details are given in Section III-C and an overview of
the procedure is presented in Fig. 1. At test time, the synthesized
source signals can either be used directly as source estimates or
soft masks can be derived from them for Wiener filtering of the
mixture. Implementation details are described in Section III-D

A. Source Model

The proposed method is not specific to any particular source
model and any parametric model may be used as long as it can
be formulated in a differentiable way. This is often facilitated
by automatic differentiation software such as TensorFlow [34]
or PyTorch [35]. In this work, we use the source-filter model
of speech production [36]. It describes a signal as an excitation
signal from a sound source (e.g. the glottis) which is modified
by a time-varying filter (e.g. the vocal tract) [36]. It is used to
model a wide range of signals such as human voice [33], [36],
[37] and musical instruments [11], [38]. An visualization of our
source-filter model is presented in Fig. 2. In the following, we
assume that the true source signal s;(¢) is segmented into N
frames of length 7" samples. The n-th frame is given by

sj(n,t) =s;(t+nB), te{l,...,T'} (D)

where B is the hop size between frames in samples and n €
{1,..., N}. We denote the estimate of the source signal frame
generated by the source model using a tilde: §;(n, ). The source
model may be formulated in the z-domain as

i 1
G\,

E;(n, z) is the z-transform of the excitation signal e;(n,t) and
m is the transfer function of a time-varying all-pole filter
of order K. We drop the source index j for brevity hereafter but
we would like to emphasize that each source is modeled with its

dedicated model. The filtering process in (2) is best described
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excitation source filter

ak(n)
filter coefficients

Overview of the source-filter model decomposition. The model parameters are denoted in blue font. The ‘o’ denotes element-wise multiplication. Although

most components are visualized through magnitude spectrograms, processing is not necessarily done in the time-frequency domain.

by the difference equation

M=

5(n,t) =e(n,t) — > ar(n)-s(n,t—k) 3)

k=1

where ag(n) are the filter coefficients for frame n and ’-’
denotes scalar multiplication. We explain how to deal with frame
boundaries and other implementation details in Section III-D.

A sinusoids plus noise model is employed to generate the
excitation signal e(n, t). It is an expressive synthesis model for
music [39] and speech signals [40], [41], [42] which synthesizes
sound as a sum of sinusoids and filtered white noise. A differen-
tiable version was recently implemented by Engel etal. [17], [43]
who showed impressive results using it for model-based deep
learning. Since we model a monophonic source, we constrain
the sinusoid frequencies to be integer multiples of a fundamental
frequency. The model thus reduces to the harmonics plus noise
model [17], [40] which we formulate as

e(n,t) = [a(n,t) - h(n, )]+ r(t) + [w(t) * d(t)] - g(n) 4)

where * denotes the convolution operator, c(n,t) is the time-
varying amplitude of the harmonic signal h(n,t), and r(¢) and
d(t) are Impulse Responses (IR) of time-invariant finite impulse
response (FIR) filters. w(¢) is a uniform white noise signal and
g(n) is the constant noise gain for frame n.

The harmonic signal h(n, t) is defined as

I
h(n,t) = > sin(¢i(n,1)) )
=1
t
Gi(n,t) =21y i+ fo(n,v)/fs (6)
v=1

where ¢; is the instantaneous phase of the i-th harmonic, fj is
the fundamental instantaneous frequency, and f; is the sampling
frequency. The initial phase is assumed to be zero. Equation (6)
is a numerical approximation of integration based on sample
and hold [44, Ch. 4]. Note that the signal h(n,t) is fully
parameterized by the time-varying fundamental frequency fy.

The filter r(¢) imposes a fixed spectral shape on h(n,t).
Without 7(t), all sinusoids have the same amplitude. However,
for certain sound sources a specific time-invariant spectral shape
can be assumed, e.g. the spectral roll-off of the glottal signal [36].
Alternatively, a specific amplitude parameter may be used for
each sinusoid in h(n, t) [39], [40]. However, we choose to make
the gain dependent on the frequency and not on the harmonic
number. Similarly, d(¢) determines the spectral shape of the
noise component. Both filters are time-invariant so that they only
account for the global spectral shape. Short term variations, e.g.
due to articulations of words, are modeled by the all-pole filter

The source model parameters are {ax(n),«(t), fo(t),r(t),
g(n),d(t)}. In the next section, it is explained how they are
obtained. o and fj need to vary slowly enough over time for
the model to be mathematically identifiable. This is indirectly
enforced by the way these parameters are estimated which leads
to smooth trajectories.

B. Parameter Estimation

We assume that the fundamental frequencies for each of the J
sources can be obtained from the mixture signal with a multiple
FO estimation system. Given that many such systems exist [18],
[45], [46] and that it is still an active research area, we are
confident that this is a reasonable assumption. When all FOs
are obtained, each FO value needs to be assigned to one spe-
cific source. Various solutions for the FO-to-source assignment
problem have been proposed [19], [47], [48]. Most of them
are based on principles such as temporal pitch continuity, low
voice crossing probability, and minimal temporal gaps within a
voice [48]. In our experiments we use a heuristic based on these
principles, cf. Section IV-B. FO estimates are usually provided at
aframe rate which is smaller than the sample rate [ 18], [45], [46].
Therefore, following [17], the source specific FO time series are
upsampled to the sample rate using bilinear interpolation. This
leads to smooth trajectories.

In the following, we describe how the remaining synthesis
parameters are estimated with a DNN for each source given its
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Fig. 3. Overview of the processing steps for the parameter estimation. Trans-
formations with learnable parameters are shown in green, predefined processing
steps in gray, (intermediate) outputs in white boxes. The output shape of a
transformation is shown in the right part of the box.

FO. The task the DNN has to solve is similar to the one of NMF
in the context of learning-free FO-informed source separation
in [9], [11]. Note that the differentiable source models do not put
any constraints on the neural network type or architecture which
is used to estimate the parameters. Here we use a simple DNN
as in [17] and focus on the advantages of including parametric
source models in deep learning based separation.

The mixture signal is represented by the logarithmic mag-
nitude of its spectrogram obtained by a Short Time Fourier
Transform (STFT) of m(t). The spectrogram has F frequency
bins and N time frames. Each spectrogram is normalized by
subtraction of its mean and division by its standard deviation.
Then, each frequency bin is scaled and shifted by dedicated
learned scalars. The DNN architecture is similar to the one used
in [17]. An overview of the DNN and further processing steps
for the parameter estimation is presented in Fig. 3. We use linear
layers and unidirectional Recurrent Neural Networks (RNN)
with Gated Recurrent Units (GRUs) [49]. The Multi-Layer
Perceptron (MLP) consists of three repetitions of linear layer,
layer normalization [50], Leaky ReLU activation [51].

The mixture encoder learns a latent representation of the
mixture and then creates as many duplicates as there are
sources. Each latent mixture copy is then combined with the FO

information of one source by the decoder. The FO is provided at
the frame rate of the mixture STFT. The FO values are converted
from Hertz to MIDI note numbers which are then normalized
to the interval [0, 1]. The decoder computes a separate latent
representation for each source. The source model parameters are
obtained from this source representation by one last transforma-
tion with learned parameters (linear layer or GRUs) followed
by some predefined processing steps. The frame-wise harmonic
amplitude «(n) and the noise gain g(n) are computed with a
linear layer with an exponential sigmoid activation function [17]
defined as

Y = Ymax - Sigmoid(m)bg(lo) +10°7 %

where x and y are the input and output value, respectively, and
Umax 18 @ scalar determining the upper bound of y. Following [17],
the harmonic amplitude is then upsampled to the sample rate
using overlapping Hann windows which yields a smooth «/(t).
The noise gain is only required at frame rate.

The filter with impulse response d(t) is time-invariant. There-
fore, the network output from which d(¢) is computed should
summarize information about the whole source signal. We obtain
such an output by processing the latent source representation
with a unidirectional RNN with GRUs and then using only
the output at the last time frame for further processing. This
last output frame is processed with the exponential sigmoid
presented in (7) which results in a tensor of shape (J, 1, L). The
tensor contains L samples of the magnitudes of the single-sided
frequency responses of the noise filters for J sources. The
samples define a zero-phase FIR filter according to the frequency
sampling method [52]. Using the window method [53], we
obtain the impulse response d(t) as it is also done in [17].

The impulse response 7(t) of the time-invariant harmonics
filter can be obtained in the same way as d(t) from a DNN output.
One may also wish to make the filters time-varying by using a
linear layer for the last transformation or using all GRU outputs.
However, for the scope of this work, we fix r(¢) manually. More
details about r(¢) are given in Section IV-B where we describe
the experimental setup.

For the estimation of the parameters we addressed so far,
practical ways have already been proposed by Engel et al. [17].
More care needs to be taken when obtaining Infinite Impulse
Response (IIR) filters such as ( ) from DNN outputs because

itmust be avoided that the filter becomes unstable. The filter W
of order K is fully defined by the filter coefficients a; with k €
{1,..., K} (see also the difference equation in (3)). However,
no condition which guarantees stability can be formulated for
the filter coefficients directly.

Different parameterizations of all-pole filters exist which
allow for the formulation of stability criteria. One option would
be to estimate K reflection coefficients [54] with the DNN.
Stability is guaranteed if the coefficients are within the interval
] — 1,1[. They can be converted to the filter coefficients with a
simplified version of the Levinson-Durbin algorithm [55], [56],
see also [54]. This approach was used in [33] to define the
all-pole vocal tract filter with a DNN for speech synthesis. The
drawback of this method is that conclusions about the filter’s
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frequency response can neither be drawn from the reflection
coefficients nor the filter coefficients.

Therefore, we choose to parameterize the all-pole filter with
Line Spectral Frequencies (LSFs) [57]. LSFs are related to
the positions of the filter poles and thus to the frequency re-
sponse [54]. Hence, they provide an interpretable parametriza-
tion. They also allow the formulation of constraints to control
the filter response and can be interpolated [58]. LSFs were
introduced in [57] as an alternative representation of linear
prediction coefficients. Below, we briefly explain their definition
and how we use them. For a comprehensive overview of LSFs,
we refer the reader to [58], [59], [60].

The polynomial A(z) =1 — Zszl arz® can be decom-
posed into the symmetric and antisymmetric polynomials P(z)
and Q(z) of order K + 1 as

A(z) = 2B T EE) @®)

It can be shown that if the roots of P(z) and (Q)(z) alternate
on the unit circle, the corresponding filter ﬁ is stable and
minimum-phase [59]. The unit circle in the z-plane is described
by z = e 7% where w is the phase angle in radiants. Hence, w
describes the location of the roots. If K is even, P(z) has a root
at 2 = —1 and Q(z) has a root at z = +1. The remaining roots
occur in complex conjugate pairs. Therefore, it is sufficient to
consider only the roots on the upper semicircle. The angles wy,
defining the locations of these complex roots are called LSFs.
Two to three LSFs tend to be close together when a filter pole is
close to the unit circle in their proximity which corresponds to
a peak in the frequency response, hence their frequency domain
interpretation. If K is even, P(z) and (z) have K /2 complex
roots on the upper unit semicircle each, for which the following
relation holds:

0 <wp <wggr <. ©)]

When k is odd, wy, defines a root of P(z); when k is even, it
defines a root of Q(z) for k e {1,...,K}. In other words, a
stable minimum-phase filter — ) of order K is defined by K
LSFs fulfilling the relation in (9)

We obtain such LSFs as follows. The latent source represen-
tations are transformed by a linear layer which yields a tensor of
shape (J, N, K + 1).Itis processed by an exponential sigmoid
activation with 9,4 = 2. The resulting tensor can be viewed as
J - N vectors v € REF! The vectors are normalized so that
their entries v sum up to 7:

_ v
V= -

~K+1__
doke1 Uk

The K LSFs respecting (9) are then obtained by the cumulative
sum

(10)

k
wp =Y v for k=1, K.

i=1

(11)
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Algorithm 1: Compute filter coefficients aj, from wy, [60],
[61]
Input: (wg)p=1.x
Define: x;, = cos(wy)
Initialize: p' , = ¢, =0; py=¢,=1
Initialize: p) = —2x1; ¢} = —229
for k = 2to K/2 do
P’k = —2p),_1Tok-1 + 2p)_5
G = =2q) 102k + 203
fori = (k—1)to1do
P; =i — 2P %2k-1 + Py
¢ = 4 — 2¢;_1 %2k + ¢
end for
end for
for k = 1to K/2 do
Pk = D) + D)4
Qe =@ — G s
end for
for k =1to K/2do
ar = (Pk + qx) /2
acx/2+k) = (P(/2-k41) — QK /2-k+1))/2
end for
Output: (ag)r=1.x

Finally, the LSFs can be converted to filter coefficients using
Algorithm 1 [61],% [58], [60].

To sum up the parameter estimation, FOs are estimated from
the mixture and assigned to the sources using existing methods.
ai(n), a(t), g(n), and d(t) are obtained with a DNN and ()
is fixed manually in this work but may also be estimated by a
DNN.

C. Unsupervised Training

The proposed training procedure requires only mixture sig-
nals, no isolated source signals are needed. During training,
the task of the DNN is to reconstruct the observed mixture by
estimating the corresponding parameters of the source models.
A schematic overview of the training process is presented in
Fig. 1. The generated mixture estimate 1m(¢) is the sum of the
source signals generated by the source models:

J
= Z 5;(t)

j=1

12)

In theory, the source models make it possible to synthesize a
mixture estimate 7 (¢) which is perceptually identical to the
true mixture m(t). Since absolute phase offsets are irrelevant
for human perception, the true and estimated mixtures do not
need to have the same phase. Therefore, the reconstruction loss
L. is formulated as a multi-scale spectral loss [17]

Le=|M,— 1\7[6”1 + [[log(M..) — log(MC)||1 (13)

>The formulation of Algorithm 1 which we present in this paper has been
presented in [61]. Some equations in the main body of [61] contain errors but
the Matlab code in the Appendix is correct. A less general formulation is found
in [58, Ch. 8]. The conversion was formally introduced in [60].
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(14)

£rec = Z Ec

where M, and M, denote the magnitude spectrograms of
the input mixture and its estimate, respectively, and c =
[2048, 1024, 512, 256, 128, 64] indicates the FFT size used to
compute the STFT. The frames overlap by 75%.

The separation of the sources is essentially ensured by the as-
signment of the FOs to the sources similar to score/FO-informed
separation with NMF [9], [11]. The DNN has to estimate the
remaining parameters for each source in order to minimize the
loss. At test time, the DNN parameters are fixed and a soft
mask for source j is obtained by the element-wise division
S;/ Z}]:1 S; where S; is the magnitude spectrogram of the
generated source signal 5;. The final time-domain source esti-
mates, §; are obtained by Wiener filtering using the soft masks.

D. Implementation Details

We implemented the proposed method using the PyTorch
framework [35]. For the differentiable source models, we make
use of the DDSP library [17]. We re-implemented it in PyTorch
and added extensions such as Algorithm 1 and an all-pole filter.
The code is available online.?

Using an all-pole filter in the proposed framework entails
two challenges. Firstly, the autoregressive filtering process is
slow because it does not allow for precise parallel processing of
frames. Secondly, the filter is time-varying, i.e. its coefficients
are different at every frame. Therefore, extra care must be taken
to ensure a smooth transition between frames to avoid artefacts.
The DNN operates at a frame rate which is determined by the
FFT size T" and hop size B used to compute the STFT of the
mixture. Hence, the DNN estimates a set of K filter coefficients
for each frame. We apply the all-pole filter to all frames in paral-
lel using the difference equation in (3) in order to make filtering
faster. The initial states 5(n,t) with ¢ < 0 are set to zero for
each frame. The output frames are then multiplied with a Hann
window and the final output signal is obtained by the overlap-add
method. It is therefore important that the hop size B is chosen
so that the Hann window respects the constant overlap-add
condition. We use B =T" / 2 in our experiments. Windowing
and 50% overlap make the transition between frames smooth.
The errors that are introduced by setting the initial states to zero
instead of taking samples of the previous frame into account
(which is not possible in parallel processing) are negligible:
Firstly, the errors are larger at the start of each frame where
their importance is mitigated by the window. Secondly, since
the filter coefficients are different at each frame, the importance
of samples from the previous frame is reduced.

We found it to be critical to implement Algorithm 1 with dou-
ble precision (64-bit floating point) because it is more sensitive
to rounding errors with increasing filter order, which can lead to
unstable filters.

The excitation signal e(t) is computed as follows. The har-
monic component «(t) - h(t) and the noise w(t) are generated

3[Online]. Available: https:/github.com/schufo/umss
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in the time domain for the entire signal length 7'. The time-
invariant FIR filters r(¢) and d(¢) and the noise gain g(n)
are applied frame-wise in the frequency domain followed by
overlap-add.

IV. EXPERIMENTS

We evaluate the proposed approach on an a cappella vocal
ensemble separation task. The goal is to estimate the individual
signals of .J singers from their mixture. This task is a good choice
for evaluation because sources in vocal ensembles are homoge-
neous and correlated. Moreover, singing voice is a challenging
musical source. It has a strongly time-varying spectral envelop
and also produces sounds without any harmonic content such
as unvoiced consonants. Also, only small amounts of data for
supervised training are available for vocal ensemble separation.
This makes unsupervised learning an important alternative.

A. Data

As training and validation data, we use the Bach Chorals (BC)
dataset* and the Barbershop Quartet (BQ) dataset®. The BC set
contains 26 chorals sung by a vocal quartet with the voices
Soprano, Alto, Tenor, Bass (SATB). The BQ set contains 22
songs performed by a vocal quartet comprising the voices tenor,
lead, baritone and bass. All voices are available in isolation for
both sets. This allows us to compare the proposed unsupervised
approach to supervised baselines.

We combine the BC and BQ sets to generate what we call the
full training and validation sets. The full validation set comprises
songs 8 and 9 of the BC set and songs 8 and 9 of the BQ set and
has a total length of 9 minutes and 10 s. The remaining songs
build the full training set with a total length of 91 minutes and
20 s. We also build a small training set consisting of BC song
1 with a length of 2 minutes and 40 s and a small validation
set consisting of BC song 2 with a length of 2 minutes and 20
s. When mixtures with less than four singers are created from
the individual voice recordings, all possible combinations of the
four voices with the desired number of singers are used with the
constraint of using only one singer per voice.

As test data, we use the Choral Singing Dataset [7]. It com-
prises three songs performed by an SATB choir with four singers
per voice. All 16 singer signals are available in isolation which
allows to evaluate the separation with objective metrics. We add
the signals of individual singers (max. one per voice) to produce
the test mixtures. For mixtures of J = 4 singers, the test set has
a length of 6 minutes and 48 s. For mixtures of .J = 2 singers,
the test set has a length of 40 minutes and 48 s due to more
possible voices combinations.

We resample the training, validation, and test data to a sample
rate of 16 kHz. The training examples are excerpts of 4 s length
which are randomly drawn from the training set. The validation
and test set are split into fixed excerpts of 4 s length. There is no
overlap regarding singers, songs, or recording setup between
the test and training data. While the training data contain a

4[Online]. Available: https://www.pgmusic.com/bachchorales.htm
3[Online]. Available: https://www.pgmusic.com/barbershopquartet.htm
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considerable amount of reverberation, the test recordings are
much less reverberant.

B. Experimental Setup

We perform two sets of experiments: one using mixtures
of J = 2 singers for training and testing, and the other using
mixtures of J = 4 singers.

The FOs are obtained from the mixture signals using the
multiple FO estimation model of Cuesta et al. [18]. We use
the pre-trained “Model 3” which is available online.® For the
FO-to-source assignment on the given data, we found that a
simple heuristic is sufficient. It is based on the same principles as
more advanced solutions such as temporal pitch continuity, low
voice crossing probability, and minimal temporal gaps within a
voice [19], [48]. The FO estimator provides x FO values at each
time frame. First, we process all frames where x = J. The FO
values are sorted according to magnitude and assigned to the
voices assuming they do not cross. Subsequently, the remaining
frames are processed. Whenz < .J we assume that some voices
are silent. We assign each FO value to the source which has
the closest FO value in a previous or subsequent frame (pitch
continuity principle). The zero value is assigned to silent sources.
In the rare case that x > J, we sort the values according to
magnitude and select .J FOs using the pitch continuity principle
and assign them to the sources.

The mixture spectrograms are computed using an FFT size
of 7" = 512 and a hop size of B = 256 samples. Hence, they
have F' = 257 frequency bins and N = 250 time frames. We fix
the impulse response 7 () so that the frequency response of the
FIR filter falls off with a rate of 6 dB/octave, with a reference
frequency of 200 Hz below which the response is flat. We chose
this rate because it accounts for the combined spectral charac-
teristics of the glottal source and lip radiation [36]. Estimating
r(t) with the DNN instead did not lead to improvements. We
set the order of the all-pole filter to K = 20. The spectrograms
of the synthesized source signals S ;j to compute the soft masks
are computed with an FFT size of 2048 and a hop size of 256
samples.

Training is done with the ADAM optimizer [62], a batch size
of 16 and a learning rate of 0.0001. Training is stopped after 200
consecutive epochs without improvement of the validation loss.

We train the model with the proposed unsupervised approach
on the full and on the small training set. We call the experiments
UnSupervised-Full (US-F) and UnSupervised-Small (US-S),
respectively. As areference, we also train the same model in a su-
pervised way on the same data. In this case, the loss is computed
for each source estimate individually using its target. The total
loss is the sum of the “source losses”. We call these experiments
SuperVised-Full (SV-F) and SuperVised-Small (SV-S).

Since the proposed method is dependent on available FO
estimations, we also evaluate its robustness to FO estimation
errors. The corresponding experiments and results are explained
in Section V-B.

Shttps://github.com/helenacuesta/multif0-estimation-polyvocals

1283

C. Baselines

We compare the proposed unsupervised approach to two
learning-free methods and one supervised approach. The base-
lines also exploit FO information and compute soft masks for
Wiener filtering. The first learning-free baseline was proposed
by in [9]. It approximates the mixture magnitude spectrogram
with a simple NMF decomposition:

M~ M = WH (15)
where W € RF*% is a matrix of R spectral templates and
H < RPN contains their activations over N time frames.
In [9], W and H are initialized using information from an
aligned musical score. One spectral template per semitone is
used. In our experiments, we have FO information available,
which is more precise than a semitone scale. Therefore, we use
a scale with a precision of % of a semitone. The FO values are
converted from Hertz to MIDI numbers which are rounded to one
decimal place for this purpose. The FOs are used for initialization
and for the separation to determine which activations belong to
which source. After testing different combinations, we obtained
the best results with an FFT size of 2048 and a hop size of
256 samples to compute the spectrograms. We call this method
NMFI.

The second learning-free baseline is the method proposed
by Durrieu et al. [11]. The target source is modeled with a
source-filter model and the residual sources are modeled with a
conventional NMF. The method approximates the power spec-
trogram of the mixture M, as

Mpow & Moy = (WTH'H®) o (WOH?) + (WOHO)
——
residual

16)
where o denotes element-wise multiplication. WI' € R¥*F
contains P spectral atoms consisting of shifted Hann windows
with 75% overlap so that the whole frequency range is covered
across W', The matrix H'' € R”*X contains their activations
to combine them to smooth filters and H® € RX*Y contains
activations to combine the smooth filters. W0 € RF*U con-
tains a fixed set of U spectral templates defined by the glottal
source model KLGLOTTS88 [63]. There is one spectral template
for each FO in steps of % semitone between a minimum and
a maximum frequency. H? € RV*Y contains the activations
of the spectral templates. In [11], H'" is initialized using FO
information of the predominant source estimated using the signal
model in (16). We initialize H"" using the FO information
we obtained from the multi-pitch estimation [18]. In [11], the
spectral templates of the residual sources W© € R¥*% and
their activations HO € R®*N are initialized randomly. We ini-
tialize them using the FO information for the corresponding
sources as done in NMFI. This leads to improvements. We
call this baseline NMF2. The parameters to be estimated are
{HY, H® HI° WOHC}. For NMF2, we obtained the best re-
sults using an FFT size of 1024 and a hop size of 128 samples. To
the best of our knowledge, these two baselines are among the best
learning-free, informed methods for musical and homogeneous
source separation.

filter source
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marked with a black horizontal line. The box plot whiskers (dark blue) extend from the first to the 99th percentile. The violin plots extend over the whole data
range. In (b), NMF2 has five outliers between -60 and -80 dB which are not shown.

Furthermore, we train the FO-informed supervised deep learn-
ing approach for vocal ensemble separation proposed by Pe-
termann et al. [23] on our data. They use a classical U-Net
architecture with a control mechanism [25]. The FO information
is used to select the target source and to guide the separation.
For this baseline, mixture and target source spectrograms are
computed using an FFT size of 1024 and a hop size of 256
samples. Wiener filtering is applied at test time using all .J source
estimates to compute soft masks. It is trained with the ADAM
optimizer [62], a batch size of 16 and a learning rate of 0.001.
We train this baseline on the full and the small training set and
call the experiments Unet-F and Unet-S, respectively. Note that
all baselines make use of the FO information for the separation.

V. RESULTS AND DISCUSSION

A. Experimental Results

The separation quality was evaluated using the objective
metric Scale-Invariant Source-to-Distortion ratio (SI-SDR) [64].
It is computed on evaluation frames of one second length
without overlap as usually done for musical source separation
evaluation [65]. The results for the cases of J =2 and J =4
sources are shown in Fig. 4(a) and (b), respectively. The data
points for the box plots and violin plots are the SI-SDR values
in dB for all evaluation frames in the test set. Target source
frames, in which the sum of squares of the samples is below a
threshold of 10, are considered to be silent and thus excluded
from the evaluation. For methods in which random numbers are
involved, the evaluation was run with five different seeds to ini-
tialize the pseudorandom number generator. These methods are
NMF2 (random initialization of H" and H®) and the proposed
approach (random white noise) used in experiments US-F, US-S,
SV-F, and SV-S.

We conducted two-sided t-tests [66] to assess whether the
means of the SI-SDR score distributions are significantly differ-
ent for each pair of experiments in our study. We used a Levene
test [67] to assess whether a pair of SI-SDR score distributions
has the same variance or not. If true, the comparison was made

with a Student’s t-test. If false, Welch’s t-test [68] was used.
The resulting p-values [66] are shown in Fig. 5(a) and (b) for
J =2 and J = 4, respectively. Most p-values are extremely
small being in the order of 10~* or smaller. This indicates that
the corresponding means are significantly different. It can be
seen that a few p-values are considerably larger. In this case it
is more likely that the true means are not different.

In general, the SI-SDR is higher for the separation of mixtures
of two sources compared to the four sources case. However, the
relative performance of the methods is the same for both cases
with the exception that Unet-F outperforms NMF1 and NMF2
when J = 2 but not when J = 4. This is related to the small
amount of training data for a supervised deep learning model.
Listening examples are available online’.

The proposed unsupervised method (US-F, US-S) performs
better than the baselines. Its performance is very close to the
one which is reached by the same model trained in a supervised
way: SV-F is only slightly better than US-F, while SV-S and
US-S have the same performance (p-values of 0.9507 and 0.164
for J =2 and J = 4). This means that the proposed method
achieves almost the same performance whether isolated target
sources are available for training or not. This can be explained
by the fact that the FO information is used very efficiently by
the proposed method. The FO fully parameterizes the harmonic
source component h(t) and, hence, defines the corresponding
source to a large extent. The DNN has to determine the remaining
parameters which, given the FO, can be inferred from the mix-
ture. Hence, isolated source targets do not carry major additional
information.

Another interesting observation is that the performance of the
proposed method does not drop drastically when the amount of
training data is decreased by 97% (US-F vs. US-S and SV-F
vs. SV-S). For J = 2, a decrease in SI-SDR can be seen but it
is smaller than for the supervised baseline (Unet-F vs. Unet-S).
For J = 4, the performance difference of the proposed approach
is very small when comparing training on the full and the

7https://schufo.github.io/umss/
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Fig. 5.

small training set. For the unsupervised version the difference
is probably not significant since the p-value of 0.0335 for the
comparison of US-F and US-S is larger than most other p-values.
In contrast, the SI-SDR of the Unet baseline drops strongly for
J = 4 as well. This shows that it is beneficial to integrate domain
knowledge in the form of explicit source models in the separation
model.

We believe that the main difference in performance between
US-S and Unet-S is indeed related to the usage of the FO
information. In Unet, the FO information is globally used. In
our case, the FO information is directly exploited to produce
harmonic signals using the explicit source production models.
The neural network only infers the remaining information (vocal
tract filter, noise content, etc). This makes the task easier for
the neural network which can explain the substantially higher
performance.

To sum up, the proposed unsupervised model-based deep
learning approach to source separation performs better than
learning-free and supervised purely data-driven baselines. It is
also extremely efficient in learning from data. The method is
useful in many scenarios where homogeneous sources need to
be separated and/or only a very small amount of data (possibly
without ground truth) is available for training. Besides choir
separation as in our experiments, such scenarios may be the
separation of lead from background vocals or of traditional
music with less common instrumentation. Since only mixtures
are needed for training, the proposed model may also be trained
directly on the mixtures at hand which are to be separated. Given
sufficient computational resources, parameter optimization may
also be done directly on each test mixture individually, which
would make the method learning-free.

B. Robustness to FO Estimation Errors

We propose herein two experiments to analyse the impact of
multi-FO estimation errors on the performances of our models,
for the more complex case of 4 sources.

1) Building a Reference multi-FO Annotation: For this anal-
ysis study, we built a reference multi-FO annotation for each
time frame (16 ms) of the test set. Since we have access to the
individual solo music tracks for each mixture signal, we opted for
an automatic annotation of the solo tracks using a state-of-the-art
pitch estimator (CREPE) [69]. Our proposed models are named
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The p-values of pair-wise t-tests between the distributions of SI-SDR values for all experiments.

Means
--== SV-F
US-F
us-s
=== SV-§
---- NMF1

Unet-F
Unet-S

SI-SDR in dB

-30 4 L ¥
US_F

0 10 20 30 40 50 60 70
Absolute FO estimation error in Hz

Means
-=== SV-F
US-F
Us-s
=== SV-§
---- NMF1

Unet-F
Unet-S

SI-SDR in dB

—30 4 + *
+ " US_F

6 1'0 2‘0 3’0 4’0 Sb 60
Number of VAD errors

Fig. 6. Separation performance for the US-F model for each evaluation frame
of 1 s of the test set (4 sources) as a function of FO precision (top) and VAD
errors (bottom).

oracle models when they are run using this reference multi-FO
annotation.

2) Experiment 1: Analysis of FO Estimation Errors: This
experiment aims at analysing further the evaluation results ob-
tained in Section V-A for the model US-F. Using the reference
multi-FO annotation described above as ground truth, we can
identify the errors made by our multi-FO estimator [18] in our
experiments for each time frame of 16 ms. A Voice Activity
Detection (VAD) error is observed where one of the sources is
declared active in the reference multi-FO annotation and not by
our multi-FO estimator or vice-versa. When there are no VAD
errors, it is possible to evaluate the FO-precision which is defined
as the absolute deviation in Hertz between the value given by
the reference multi-FO annotation and our multi-F0 estimator.

Each evaluation frame of 1 s of the test set can then be
labelled with the number of effective VAD errors and the mean
FO-precision for the correctly detected voices. The computed
SI-SDR obtained by our model US-F for each of these frames
are displayed on Fig. 6. It can be observed that the performances
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Fig. 7. Comparison of the separation performances for the US-F and Unet-F
models for each evaluation frame of 1 s of the test set (4 sources) as a function
of FO precision (top) and VAD errors (bottom).

are, as expected, impacted by FO estimation errors. The degrada-
tion of performances remains limited for frames with moderate
amount of errors and the algorithm is more robust to VAD errors.
The performances distribution for the supervised methods are
similar overall but, in the case of the Unet methods, there are
more frames with low SI-SDR when there are no VAD/FO errors
(see Fig. 7). The unsupervised approaches seem to benefit more
than the supervised approaches from a correct estimation of VAD
and FO, as already discussed in Section V-A, but they are slightly
more fragile in the case of severe estimation errors.

Note that the level of SI-SDR = —7.23 dB corresponds to the
result obtained on the test set by a “dummy” separator where all
estimated sources are attenuated replicas of the mixture. It can
then be noticed that our model is inoperative or detrimental (SI-
SDR < —7.23 dB) only on a very limited number of evaluation
frames, which mostly correspond to frames with particularly
high numbers of VAD errors or high FO estimation deviations.

3) Experiment 2: Robustness to Noisy multi-FO Estimations:
We evaluate the impact of noisy FO estimations on the perfor-
mance of our models by manually degrading the reference FO
annotations. Two different alterations are considered, namely:

® Transposition: All reference FO frequencies are shifted

upwards or downwards by a predefined number of Hertz
or by one or several octaves

® Voice-muting: All voices for a given time frame of 16 ms

have a given probability to be muted (the corresponding
multi-FO values are set to zero) forcing as a consequence a
predefined VAD error rate.

The results obtained for the effect of transposition are given in
Fig. 8. First, it can be seen that the oracle models (our proposed
models using the reference FO values without degradation)
obtain better results than the same models using FO values
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given by our multi-FO estimator (more than +3 dB on average).
Second, the degradation of the performance is smoothly varying
with the precision in Hz of the FO values demonstrating the
degree of tolerance of the algorithm with respect to multi-FO
estimation errors. Third, for a perturbation of less than 5 Hz, the
model is still outperforming all baseline models. And finally,
the models do not increase the mean SI-SDR (= —7.23 dB)
of the “dummy” separator only when the shift exceeds roughly
23 Hz (which corresponds to at least a semi-tone for all notes
below A4 (440 Hz) which can be considered a severe error). For
octave errors, the degradation is very rapid when the FO values
are transposed upwards but remains moderate when transposing
downwards. This may be explained by the fact that when the
fundamental frequency is twice as low as the true value, every
even harmonic of the source falls exactly at the position of the
true target source.

Fig. 9 gives the results when one or several voices are locally
muted. The models remain efficient when the percentage of VAD
errors is below 20%. The roughly linear shape of the degradation
curve underlines the robustness of the model to such detection
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errors. The models trained on the full training set (US-F and
SV-F) are more robust, but the supervised model seems more
fragile than the unsupervised model when trained with the small
dataset.

C. Limitations and Perspectives

The experimental evaluation showed many advantages of the
proposed approach compared to various alternatives. Neverthe-
less, there are some limitations. First, our approaches assume
that the number of sources is known. Although we have shown
that our methods are somewhat robust to moderate VAD er-
rors, they are currently limited in cases where the number of
sources is unknown. However, the most striking limitation is
more precisely that the method requires FO estimates which
are assigned to the sources. As for all FO-informed separation
methods, the sources should exhibit mainly harmonic content
and be monophonic so that the separation can be guided by the FO
information. It requires that good FO estimates can be obtained
for all sources from the mixture. As shown in the experiments,
this is possible with existing methods. Progress in research
on multiple FO estimation may lead to further improvements.
An extension of our method to polyphonic sources as well as
estimating the FO jointly with the other source parameters may
be an interesting direction for future work. In its current form,
the model would not perform well on more diverse mixtures
of music sources as are for example contained in the popular
MUSDB dataset [70] which includes drums, inharmonic and
polyphonic sources. Moreover, audio effects such as reverbera-
tion or distortion, which may have been applied to the sources,
should be explicitly modeled in the source models and must
hence be known beforehand. Lastly, the space complexity grows
linearly with the number of sources to be modeled.

In the experiments above, the final source estimates were
obtained by Wiener filtering of the mixture. To this end, soft
masks were obtained from the source signals 5; generated by the
source models. We also evaluated the quality of the generated
signals 5 as source estimates. The metric used for this evaluation
was the spectral source-to-noise ratio [71]. It can be seen as a
SI-SDR which is computed on magnitude spectrograms. We
used this spectral metric because the phase of the generated
signals is known not to be the same as the one of the ground truth
signals. This makes a time-domain evaluation not applicable.

In terms of this metric, the quality of such source estimates
was inferior to the baselines and to 5; obtained using soft masks.
This is because the synthesis of the signals $; is less constrained
than masking of the mixture. The output of masking is limited
by the frequency content of the mixture, since masking can only
keep or remove such content. In contrast, frequency content
which is not present in any source can be contained in 5;. In
fact, the DNN tends to overestimate the noise content of the
sources. While this is clearly audible in 5;, no noise is added in
55.

Nevertheless, we believe that source estimates generated by
parametric models are a worthwhile goal for future research.
They provide a complete parameterization of the mixture signal
which can be exploited for tasks such as timbre or style transfer,
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transposition, and melody editing of single sources. We included
the generated source signals 5; and their sum /2 in the audio
examples®. Moreover, we provide two examples of melody
editing for which the mixture parametrization was exploited.

VI. CONCLUSION

In this work, we presented a method for (musical) audio source
separation which overcomes two limitations of state-of-the-art
supervised deep learning methods: They do not separate homo-
geneous sources and require large datasets of mixtures with the
corresponding sources in isolation for training. We proposed
a novel unsupervised model-based deep learning approach. It
integrates domain knowledge in the form of differentiable para-
metric source models in a data-driven method and exploits FO
information. Experiments show that it outperforms learning-free
and supervised baselines. Furthermore, the method performs
well even when trained on less than three minutes of audio data.
It allows to apply powerful deep learning based separation in
domains where training data is expensive or nonexistent.
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