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ABSTRACT

Identifying cirrhosis is key to correctly assess the health of the
liver. However, the gold standard diagnosis of the cirrhosis needs
a medical intervention to obtain the histological confirmation, e.g.
the METAVIR score, as the radiological presentation can be equivo-
cal. In this work, we propose to leverage transfer learning from large
datasets annotated by radiologists, which we consider as a weak an-
notation, to predict the histological score available on a small an-
nex dataset. To this end, we propose to compare different pretrain-
ing methods, namely weakly-supervised and self-supervised ones, to
improve the prediction of the cirrhosis. Finally, we introduce a loss
function combining both supervised and self-supervised frameworks
for pretraining. This method outperforms the baseline classification
of the METAVIR score, reaching an AUC of 0.84 and a balanced
accuracy of 0.75, compared to 0.77 and 0.72 for a baseline classifier.

Index Terms— Deep Learning, Contrastive Learning, Medical
Image Classification, Cirrhosis Prediction, Liver.

1. INTRODUCTION

Cirrhosis diagnosis is important for radiologists, as it can support
the differential diagnosis of liver masses, such as hepatocellular car-
cinoma, a liver primary cancer [1]. The presence - or absence - of
cirrhosis can more generally be a signal for hepatic pathologies. In
clinical routine, the diagnosis of cirrhosis can be performed with
three different approaches. First, the gold standard method is the
histological analysis obtained by biopsy (or following a resection).
However, this method is clinically invasive, hence risky and expen-
sive. Secondly, a clinical examination is done to detect the potential
signs of a terminal cirrhosis stage (an interrogation about alcohol
consumption, visible signs of jaundice or ascites, related to a swollen
belly). Thirdly, CT-scans in portal venous phase can be analyzed by
radiologists to find imaging features of the disease, but the task re-
mains difficult and mainly uneven as the diagnosis can change from
one radiologist to another, with typically low inter-rate agreement
scores [2].

Several methods have been proposed for automatic cirrho-
sis prediction from medical images. These methods use mainly
Deep Convolutional Neural Networks (DCNN) for cirrhosis pre-
diction, considered as a classification or a regression problem
[3]. While some methods use large backbones with millions of
parameters as encoder such as DenseNet-121 or ResNet-Inception-
v2 [4, 5], lighter networks have proved to provide very good results
in terms of accuracy [6]. However, these state-of-the-art meth-
ods rely on histopathological diagnosis as label features [4], us-
ing the METAVIR score classification corresponding to different

stages of fibrosis (F0/F1/F2/F3/F4), or the Inuyama score classifi-
cation, which is close to the METAVIR one. The majority of these
studies use large labeled datasets with hundreds or thousands of
histologically-diagnosed patients [7]. Replicating these approaches
requires large volumes of images with corresponding biopsy, which
are difficult to obtain. By contrast, obtaining large volumes of CT-
scans without annotations is much easier, and getting a posteriori
annotations from radiologists is still possible because no medical in-
tervention is needed. To cope with the limited data availability, deep
learning studies have demonstrated the possibility of advantageously
pre-training models on large databases to prepare their transfer on a
deployment database [8]. Pretraining databases can be labeled (and
used in transfer learning [9]), unlabeled (used in self-supervised
learning, for instance with SimCLR [10]), or weakly-labeled like in
[11], i.e. annotated with a label that is close to the reference one, and
hence that can be regarded as a proxy for the latter. Pre-training can
be beneficial when there are few labeled images and many unlabeled
(or weakly/noisily labeled) images.

In this work, we propose to explore several pretraining meth-
ods to improve the prediction of a binarized METAVIR score from a
small CT-scan dataset, using a large weakly-labeled CT-scan dataset.
We compare three different approaches; first, we explore the effect of
a standard transfer learning method to improve the prediction of the
METAVIR score, i.e. we pretrain a supervised model on a weak (or
noisy) label and then re-use the weights to predict the strong label.
The second part presents the impact of self-supervised pretraining
(SimCLR [10]) for the same purpose. Finally, we study the introduc-
tion of the radiological label within the self-supervised framework,
first using the existing Supervised Contrastive Learning model (Sup-
Con, [9]), then enhancing the latter by proposing a weighted sum of
SimCLR and CrossEntropy loss functions. In this article, we denote
the radiological labels as “weak” labels, as we suppose that they can
be seen as noisy approximations of the reference histological labels.

2. METHOD

Dataset. Two datasets are leveraged in this study. First, Dhisto,
contains 106 CT-scans from different patients in portal venous phase,
with an identified histopathological status obtained by a histologi-
cal analysis, designated as Yhisto. The latter is binarized to indi-
cate the absence or presence of advanced fibrosis [4] obtained by
the separation F0/F1/F2 vs. F3/F4. The pathological class con-
tains 78 patients while the healthy one includes 28 patients. The
second dataset, Dradio, consists of 2,799 CT-scans of patients in
portal venous phase with a radiological annotation, i.e realized by
a radiologist, indicating four different stages of cirrhosis: no cir-
rhosis, mild cirrhosis, moderate cirrhosis and severe. We also bi-



narize this label to obtain no cirrhosis versus mild/moderate/severe
(Yradio). This dataset contains 919 pathological (supposedly cir-
rhotic, i.e. mild/moderate/severe) subjects and 1,880 healthy ones.

All images have a 512x512 size, and we clip the intensity values
between -100 and 400. We work with 2D slices rather than 3D vol-
umes. Moreover, we select the slices based on the liver segmentation
of the patients. We keep the top 70% most central slices with respect
to automatically-computed liver segmentation maps.

Architecture and optimization.

Backbone. Inspired by [6], we propose a baseline backbone
based on a simple architecture, illustrated in Figure 1. The 512x512
input images are passed through five convolutional layers, each of
them using a 5x5 kernel, followed by a ReLU activation function
before a 2x2 MaxPooling operation. The first layer has 32 chan-
nels, and the number of channels is doubled at every layer. It then
generates a 512x20x20 feature map that is pool-averaged, ending in
a 512-dimensional flat vector. Two dense layers end the network,
mapping the 512-dimensional vector to a 256-dimensional vector,
then to a binary output followed by a softmax. For self-supervised
learning, we replace the last linear layer by another one with an
output dimension of 128 to be consistent with the original SimCLR
method [10]. We denote by f(.) the backbone encoder preceding
the dense layers, and p(.) the projector composed of the two dense
layers. We obtain either a 128-dimensional or a 2-dimensional out-
put, z = p(f(x)). This architecture is used as a basis for all our
experiments.
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Fig. 1: The DCNN used in our method.

Sampling strategy and loss functions. For the baseline perfor-
mance, the proposed encoder (Figure 1) is learned on Dhisto. In a
preliminary experiment, the ratio of leveraged training data is artifi-
cially reduced from 100% to 80%, 60% and 40% in order to assess
the impact of the number of cases on classification performance.
Then, four pretraining experiments are led to improve the baseline
performance for cirrhosis classification.

First, we train a supervised model (backbone architecture, Fig-
ure 1) to predict the binarized radiological labels present in Dradio,
which we consider as a weak label for the gold standard Yhisto, and
then use a transfer learning strategy to predict the binarized histo-
logical labels in Dhisto. This first pretraining experiment can be
regarded as weakly-supervised for our purpose, hence we denote the
binary cross entropy used there as Lweak.

As a second experiment, we leverage a self-supervised pretrain-
ing approach, SimCLR, using the original NTXentLoss [10, 12]:

LSimCLR = − 1

2N

2N∑
i=1

log
exp(sim(zi, zj(i))/τ)∑2N

k=1 1[k ̸= i] exp(sim(zi, zk)/τ)

with j(i) denoting the positive with respect to i, i.e. the second aug-
mented version of the original image xi, N denoting the batch size
and zi = p(f(xi)), zj(i) = p(f(xj(i))) denote the output vectors

of the image augmentations xi and xj(i) passed through two ran-
dom augmentations modules, T and T ′. The similarity is defined as
sim(zi, zj) = z⊤i zj . We fix the temperature parameter at τ = 0.1.

For the third experiment, we explore SupCon [9] using Yradio

to pair samples from the same class together:

LSupCon =
2N∑
i=1

−1

|P (i)|
∑

j∈P (i)

log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸= i] exp(sim(zi, zk)/τ)

where P (i) denotes the set of all the indices of samples belonging to
the same class as the input image.

Fourth, to maximize the potential information given by Yradio

as well as the representation power offered by SimCLR, we pro-
pose a new loss function for pre-training, Lweak−SimCLR, a simple
weighted sum of the binary cross entropy and the NTXentLoss:

Lweak−SimCLR = βLweak + (1− β)LSimCLR (1)

where β ∈ [0, 1] is an hyper-parameter. To compute this function,
the only change in the training process is that the original image is
passed through a third data augmentation module T ′′, before be-
ing passed to the backbone and two dense layers, mapping the 512-
dimensional representation vector to a 256-dimensional then to a 2-
dimensional one. Note that all the weights are shared between the
supervised and unsupervised branches, only the last dense layers,
due to the difference in output dimensions, differ between both (see
Figure 3).

Finally, for sampling, we observe a class imbalance which we
try to fix using a weighted sampling during training, and we report
the results of the balanced accuracy scores. As we work with 2D
slices rather than 3D volumes, we compute the average probability
of having the pathology per patient. The evaluation results presented
later are based on the patient-level aggregated prediction.

Data augmentation and optimization setting. Unsupervised con-
trastive learning methods such as SimCLR [10] typically require
heavy data augmentations on input images, in order to strengthen
the association between positive samples in the representation space
[13]. In our work, we leverage three specific types of augmentations:
crops, flips and rotations. During our experiments, we also inspected
the effect of CutOut [14], which proved not to increase the perfor-
mances of our models. Data augmentations are computed on the
GPU, using the Kornia library [15]. During inference, we remove
the augmentation module to only keep the original input images.

We run our experiments on a Tesla V100 with 16GB of RAM
and a 6 CPU cores and we used the PyTorch-Lightning library to
implement our models. All the models share the same random data
augmentation module, with a batch size of N = 92 and a fixed
number of epochs nepochs = 200. For the pretraining experiments,
i.e. the models trained on the large dataset Dradio, we fix a learning
rate (LR) of α = 10−4 and a weight decay of λ = 10−4. For
the classification experiments, i.e. the models trained on the small
dataset Dhisto, we fix a learning rate (LR) of α = 10−5 and a weight
decay of λ = 10−3. For all the experiments, we added a cosine
decay learning rate scheduler. Finally, we fix the hyper-parameter β
of weak-SimCLR at 0.5, unless otherwise specified.

Evaluation protocol. We evaluate our methods using two differ-
ent procedures. First, we extract the 512-dimensional vectors f(x)
from the representation space (see Figure 3) and train a simple logis-
tic regression on the frozen representations with a default regulariza-
tion parameter of λ = 1, using scikit-learn. This procedure can be



thought as a linear evaluation in the representation space. Hence, we
can denote this first evaluation method a “cross-validated (CV) lin-
ear evaluation”, as introduced in Table 1. Secondly, we fine-tune the
whole network initializing the latter with the pretrained weights. For
both evaluation procedures, we validate the results with a stratified
5-fold cross-validation.

3. RESULTS
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Fig. 2: Evolution of the averaged cross-validation AUC with respect
to the percentage of the training data.

We first report in Figure 2 the evolution of the averaged cross-
validation AUC with respect to the percentage of the training data
kept during training, as well as the associated standard deviations.
As a reference, [3, 6] reported respectively an AUC of 0.76 for 186
patients and 0.89 for 202 patients in their training sets, while Dhisto

presents 85 patients for training and 21 for validation.

Pretraining
method

AUC Balanced Accuracy
CV linear
evaluation Fine-tuning CV linear

evaluation Fine-tuning

None / 0.77 (±0.07) / 0.72 (±0.07)
Supervised 0.64 (±0.19) 0.65 (±0.10) 0.56 (±0.10) 0.64 (±0.09)
SimCLR 0.78 (±0.09) 0.78 (±0.11) 0.68 (±0.04) 0.69 (±0.08)
SupCon 0.61 (±0.05) 0.65 (±0.13) 0.59 (±0.05) 0.67 (±0.14)

Ours 0.84 (±0.05) 0.81 (±0.03) 0.75 (±0.06) 0.73 (±0.08)

Table 1: Results AUCs and balanced accuracies of our experiments,
with a value of β = 0.5 for weak-SimCLR. Best results by col-
umn are underlined. The standard deviations come from the AUCs
within the folds and the AUCs are averaged by fold.

Transfer learning results. Table 1 gathers the AUC and balanced
accuracy performance measures for each transfer learning configu-
ration. It first provides results of the supervised classifier directly
trained on Dhisto, from random initial weights, which is the base-
line result. Next, it presents the performances of the four pretraining
experiments that were led, ending with the proposed model, weak-
SimCLR. First, it shows that both SimCLR and weak-SimCLR over-
come the baseline AUC. In particular, weak-SimCLR presents an in-
crease of 7% in cross-validated linear evaluation, and 5% in fine-
tuning, which confirms that the representation space built by the
proposed model can provide a globally relevant separation. It can be
noted that the first evaluation method, training a logistic regression
on the frozen representation vectors previously trained on Dradio, is
faster and less computationally demanding than the full fine-tuning.
For the accuracy, the proposed method slightly outperforms the base-
line score, in fine-tuning and transfer learning with respectively 0.75
and 0.73 for balanced accuracy scores, compared to 0.72 for the su-
pervised classifier.

β
AUC Balanced Accuracy

CV linear
evaluation Fine-tuning CV linear

evaluation Fine-tuning

/ 0.77 (±0.07) / 0.72 (±0.07)
0 (SimCLR) 0.78 (±0.09) 0.78 (±0.11) 0.68 (±0.04) 0.69 (±0.08)

0.2 0.75 (±0.08) 0.78 (±0.10) 0.67 (±0.05) 0.73 (±0.13)
0.4 0.82 (±0.10) 0.81 (±0.07) 0.71 (±0.09) 0.75 (±0.07)
0.5 0.84 (±0.05) 0.81 (±0.03) 0.75 (±0.06) 0.73 (±0.08)
0.8 0.74 (±0.06) 0.79 (±0.09) 0.68 (±0.07) 0.66 (±0.11)

1 (Supervised) 0.64 (±0.19) 0.65 (±0.10) 0.56 (±0.10) 0.64 (±0.09)

Table 2: Results AUCs and balanced accuracies of the proposed
model, weak-SimCLR, with respect to the value of β (supervision)
incroporated in the model. Best results by column are underlined.

Robustness study. Table 2 gathers the AUC and balanced accu-
racy performance measures for each value of β of the proposed
method, weak-SimCLR. For the cross-validated linear evaluation, the
value of β = 0.5 reaches the best AUC and balanced accuracy per-
formances. For the AUC, it can be noted that SimCLR and both
β = 0.4 and β = 0.5 of weak-SimCLR outperform the baseline
score of 0.77. Moreover, all the tested values of β, except 0 and
1, provide a better AUC result for fine-tuning. In terms of accuracy,
only the value of β = 0.5 gives a better result than the baseline score
with a gain of 3%. For the fine-tuning part, the scores are stable with
respect to the CV linear evaluation ones.

4. DISCUSSION AND CONCLUSION

We explored four pretraining methods to improve the cirrhosis clas-
sification on a small histologically-labeled dataset, using a large
radiologically-labeled dataset. We proposed a method to improve
the automatic diagnosis of cirrhosis, using radiological (weak) an-
notations for pre-training models. To the best of our knowledge, no
other work using radiological annotation to improve the automatic
prediction of the histological one for cirrhosis prediction with deep
learning has been proposed in the literature. The proposed method
relies on the combination of weakly-supervised and self-supervised
approaches, with the share of each model being a hyper-parameter
that can be tuned. It improved the automatic diagnosis of cirrhosis,
based on both AUCs and balanced accuracies. Notably, it outper-
forms two state-of-the-art methods in contrastive learning [10, 9],
as well as the baseline classification realized on our small histolog-
ically labeled dataset. We obtain a competitive performance with
respect to the literature [6], reaching an AUC of 0.84, with only 106
annotated CT-scans.

The first limit of our work is the baseline performance which
may be improved by testing different backbones, other than the one
we proposed (see Figure 1), such as ResNet-50. The self-supervised
block in the proposed model could also be tested with other con-
trastive or non-contrastive methods (e.g. SimSIAM [16] or BYOL
[17]). Second, it could be interesting to evaluate our method on an
external public dataset such as the Liver Hepatocellular Carcinoma
(LIHC) dataset from the Cancer Genome Atlas [18]. Finally, more
evaluation procedures could be added to assess the robustness of the
proposed strategy regarding the small number of patients in Dhisto.
Indeed, the standard deviations in our results are important, due to
some disparities between the folds. K-fold cross validation with
higher values of K could be tested, or even Leave-One-Out cross-
validation.

Compliance with ethical standards. This research study was
conducted retrospectively using human data collected from various
medical centers, whose Ethics Committees granted their approval.
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Fig. 3: The proposed pretraining strategy, weak-SimCLR, which loss function is a sum of the binary cross-entropy computed with Yradio

(Lweak) and of the SimCLR loss function (LSimCLR).
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