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Abstract. This article proposes a general purpose IoT framework usu-
ally applicable to all Edge-to-Cloud applications and provides an evalu-
ation study on a use-case involving automotive V2X architecture, tested
and verified on a toy smart-car in an emulated smart-car environment.
The architecture in study is finely tuned to mimic actual scenarios and
therefore the sensors available on the toy car encompasses almost all the
sensors that assist a regular ADAS in smart cars of today. The cloud
connectivity is maintained through the CoAP protocol which is a stan-
dard IoT connectivity protocol. Finally, the security solution proposed
is that of a smart Intrusion Detection System (IDS) that is built us-
ing Machine Learning (ML) technique and is deployed on the edge. The
edge IDS is capable of performing anomaly detection and reporting both
detection results as well as sensor collected big data to the cloud. On
the cloud side the server stores and maintains the collected data for
further retraining of ML models for edge anomaly detection which is
differentiated into two categories viz. sensor anomaly detection model
and network anomaly detection model. To demonstrate Software update
Over The Air (SW-OTA) the cloud in the evaluation setup implements
a ML model upgrade capability from the cloud to the connected edge.
This implementation and evaluation provides a Proof-of-Concept of the
choice of ML as IDS candidate and the framework in general to be ap-
plicable to various other IoT scenarios such as Healthcare, Smart-home,
Smart-city, Harbour and Industrial environments, and so on, and paves
way for future optimization studies.

Keywords— Edge Computing, Artificial Intelligence, Cybersecurity services, Em-
bedded security, Anomaly Detection, Intrusion Detection Systems, V2X, Internet of
Things, Advanced Driver Assistance Systems) (ADAS).

1 Introduction

The connected device market is getting flooded as technology becomes more scalable
and computing resources at the device level increased. Thus, the IoT is no longer a

https://www.secure-ic.com/
https://www.telecom-paris.fr/


2 R. Shrivastwa et al.

fancy concept and has become the need to solve the real-time crisis as researchers ob-
serve possibilities to optimize livelihood in every sector of human civilization through
a properly connected device infrastructure. This in turn is boosting the growth of stan-
dards and protocols to unify the development process which also, not so surprisingly, is
opening new attack surfaces. Autonomous cars are running along-side manual cars and
Artificial Intelligence is diagnosing medical symptoms in patients. The applications of
sensing and actuation and end nodes of a IoT network are in fact pushing the Data
Scientists to properly handle the generated Big Data streams and utilize it to improve
the services for the end customers. Implementing sophisticated features implies that
the security needs to be inherently robust to handle such complex system and therefore,
prevent from compromising the whole system since, depending upon the use-case, there
might be a safety risk involved. To prevent the exploitation of the smart solutions by
adversaries on the edge side which is exposed to threat actors, it is important to have
a smart solution that is able to track minute differences in operational environment
and alert the mother system at the edge or cloud level.

The motivation behind this work is to propose a smart Intrusion Detection System
(IDS) in a connected edge-to-cloud system that is capable of sensing from every sensory
node available on board and aggregate the results of anomaly detection from each and
report back to the cloud. This is achieved by mimicking the architecture of a smart car
(V2X) ecosystem (where the car is connected to the cloud and its locomotion greatly
depends on its on-board sensors) through a toy smart car and emulated environment
with dedicated threats with a nearly full coverage on all sensing equipment on the toy
smart car.

The idea is to emulate threats at both sensor and network level (all possible attacks
to disrupt the functionality of the smart car) and develop a system capable enough
to observe these differences in a real-time scenario. The experimental setup consists
of a toy smart car with on-board sensor array connected to the internal IDS which is
composed of two separate Machine Learning (ML) cores, one for detecting anomalies
through the sensor data and one for detecting anomalies through the network data
(packets). The toy smart car is connected to a cloud server through popular IoT con-
nectivity protocol CoAP and transmits detection signal back to the cloud along with
the collected data from the sensor and network. Through careful and lengthy evalua-
tion of a multitude of scenarios and through a rigorous experimentation process, we
find that the proposed IDS is suitable to a wide variety of input data and therefore
can be universally applied to any IoT use-case.

The rest of the paper is organized as follows: the section 2 provides a generic
background of topics linked with the proposed work by running through the problem
statement and navigating through the solution while talking about various aspects
of the system. It also provides some common standards that are (being) developed to
streamline IoT product development. Next, the section 3 provides the details about the
proposed method with details about the evaluation concept, experimental setup, and
results. It also talks about the implications of the same in the real world. Finally, the
section 4 presents other important topics that are extremely relevant, and acclaimed by
technology providers, to the edge-to-cloud ecosystem. Eventually, Section 5 concludes
the paper.
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2 General Background

2.1 Edge-to-Cloud

Today’s devices are clearly becoming smarter by having more and more interactions
with the outside world. Such interaction is offering much more capabilities and obvi-
ously opening new ways for new applications targeting most of technology ecosystems
such as connected vehicles, Industry 4.0, smart cities, healthcare, smart agriculture,
smart homes, etc. In the literature, those smart devices are often called edge devices
if they have the capability to ensure back-and-forth connectivity with other devices
or with a central system that we call Cloud server in the sequel. The edge device is
basically composed of a processing unit that can be an MCU with low resources or
an MPU with more power and computing resources. edge devices themselves can be
used as bridges between a server and Internet of Things objects (IoT). Typically, we
can define an edge-to-Cloud system as a technology composed of three main actors as
follows:

– Actor 1: the edge device that comes with a connectivity module, alongside a host
CPU for the software, and a hardware layer.

– Actor 2: the sever side is a machine with much more power and computing capa-
bilities. It is a central element that talks with a fleet of edge devices. The server
shall come with application services to manage and monitor the connected devices.

– Actor 3: the user interacting with the server to send requests to edge devices and
monitor the fleet of edge devices. Users could have different privileges and roles
with regards to the server.

An illustration of such system is depicted in figure 1.

Fig. 1. edge-to-cloud main nodes and actors.

Very often, any similar technology faces two basic challenges, namely security and
performance. Safety is a third challenge that shall be considered for related technologies
as automotive and avionics. In the sequel we focus only on security. In fact, security is
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the way how data is protected. The data is by default sensitive and can be everywhere,
at rest or in-transit. Based on the figure 1, we can distinguish 6 nodes where end-to-end
security shall be considered in edge-to-Cloud context as follows:

– Node 1: at the hardware layer of the edge device. The security here is
generally managed by a technology dependent secure layer as a Trusted Execu-
tion Environment (TEE), Trusted Platform Module (TPM), or a dedicated Secure
Element (SE), as described here [24]. Such layer ensures a strong security level
as per data isolation, secure storage of secrets, etc. A TEE consists in separating
the same Host processor into two spaces: normal space and secure space. All secu-
rity operations shall run within the secure space by ensuring an isolation with the
normal space. However, such security mechanism is less secure than a dedicated
hardware as TPM or SE. In fact, within a TEE, the shared components as internal
Host processor memories might leak sensitive data. The TPM is theoretically more
secure than TEE as it comes with a separated hardware chip. However, the leakage
might come from the link between the Host processor and the TPM. In fact, the
data in transit might be probed and stolen if not encrypted. Finally, an integrated
secure element shall be the most secure as it is embedded in the same SoC as Host
processor. That said, physical attacks such as Side-channel attacks (SCA) [17] or
Fault injection attacks (FIA) [5] are the first enemy against the hardware layer.
Fortunately, countermeasures like data hiding exist.

– Node 2: at the CPU Host layer of the edge device. The security of data shall
be considered by the Host processor that would implement a software bridge han-
dling a secure channel with the server side. The Host processor shall be able to use
cryptographic software engines if security hardware components are not available.
For this purpose, the processor shall manage the secure communication with the
server side by supporting software clients for security protocols as TLS and DTLS
alongside crypto libraries as OpenSSL [29]. The processor might use cryptographic
embedded hardware accelerators for performance purposes. Globally, the goal is to
ensure that the edge device is identified, authenticated, and authorized relatively
to the server side. For this purpose, the Host might hold and manipulate device
IDs considered to be sensitive and that need to be protected. Moreover, the Host
layer is in charge of all the software typically running at bare metal or OS level.
That software might be obfuscated or signed and encrypted for more security. In
fact, threats like malwares, binary reverse engineering are still redoubtable against
Host layer.

– Node 3: at the connectivity layer between the edge device and the
server. The connectivity layer is all about network stack ranging from the physical
channel to applicative protocols. Edge devices are basically communicating over
IP-based channels as Ethernet, WiFi, Cellular (4G, 5G, 6G, etc.), etc. Some RF
protocols use an encapsulation technique to allow IP-based communication. The
security shall consider all the layers of the network. The OSI model for instance
suggests securing the lowest layers with MACSec (for data link) or IPSec (for
transport). Then application protocols are proposed as TLS and DTLS. Higher
applicative frameworks for connectivity like LwM2M, MQTTS come with a set of
schemes to securely manage a device. As a matter of fact, LwM2M is based on
CoAP and DTLS protocols to initiate a communication with an edge device.

– Node 4: at the server core layer including its data storage components.
The server is the central element in the system. It manages the input and output
data from edge devices. Security is a big matter and should at least be ensured
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for the data at rest like edge devices’ logs and users’ credentials, often stored in
databases; data in transit like direct requests from users to edge devices; or also the
server components and interactions between those components themselves. In fact,
the server is the most impacted node as it is exposed to internet. In other words, it is
the target of a tremendous number of cyberattacks. As a matter of fact, a long list of
cyberattacks is regularly updated by the OWASP web pentesting framework group.
Hence, security shall be thoroughly checked from the server infrastructure level to
applicative micro-services. The literature has recently proposed a new approach
with several security requirements, called “zero-trust”, that aims at maximizing
the security at cloud server node.

– Node 5: at the connectivity layer between the server and the user ma-
chine. Same as for node 3, the connectivity here is more about the relationship
between the user and the server. The security of this node is crucial as it deals
with user credentials and devices registration initial inputs alongside secret data
as keys and certificates. Thankfully, a known approach called IAM that stands for
Identity Access Management, comes with a set of tools, protocols, and frameworks
to securely authenticate, and authorize users to access the server. We cite 0Auth2
[14] for instance. In addition to that, security could be reinforced by a double au-
thentication technique as it is proposed by FIDO2. Moreover, the security could be
maximal by combining such software-based solutions with hardware tokens. The
attack surface is about letting data to be transferred as plaintext without any mu-
tual authentication or privilege mechanism. The attacks are numerous like data
sniffing, probing, fuzzing, man-in-the-middle, etc.

– Node 6: at the user machine level. This node regards the user machine that
interacts with the server side. Most commonly known attacks are performed on
software web browsers and interfaces. Technically, this represents the front-side of
the server solution that can be a web interface, a web application, a command line
interface, an exposed API, etc. The security scope is about all the known attacks
as SQL injections against databases, cross-site scripting attacks (XSS), traversal
directory attacks, etc.

2.2 AI and Machine Learning for Anomaly and Intrusion Detection

Artificial Intelligence (AI) and particularly the Machine Learning (ML) subfield pro-
vide powerful prediction algorithms that constitute state-of-the-art techniques in sev-
eral research areas: image processing, natural language processing, medical diagnosis,
etc. Naturally, those methods are also drawing increasing interest in the cybersecurity
landscape. Indeed, the advanced modelling capabilities of ML algorithms allow to lever-
age on large quantities of available data and knowledge to improve security systems in
various fields of application. ML approaches are perfectly suited for attack or failure
detection applications as they allow creating a model of the normal predictable behav-
ior of a system [25]. After this profiling phase, it becomes possible to detect significant
deviations from the model. A typical example of application are intrusion detection
systems which analyse a network traffic to detect, block and report malicious packets.
A ”traditional” IDS uses a database of known malicious signatures that compares with
the incoming packets to detect attacks. This approach presents a significant drawback:
it detects attacks based on known threats and is unable to handle new attacks. On
the other hand, it is possible to use ML algorithms to create a model of the normal
behaviour of a network and to detect abnormal activities based on the observed devia-
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tions from the base profile. This approach has the advantage of detecting unknown or
zero-day attacks.

The same idea can be applied to sensor data analysis. Standard deployment of
fleet of sensors requires calibration, and threshold-based analysis is necessary to pro-
cess sensor values, which often leads to false positives. AI-based sensor aggregation
and analysis enable detection of fault injection attacks, anomalies and failures, and
advanced diagnosis [11], while reducing the number of false alerts. To build such a sys-
tem, a test chip is characterized in controlled environment, in order to generate sample
data and train a detection model to be deployed on the final chip. Then, in operation,
the model classifies new data, provide useful information (attack? anomaly? failure?
type of attack?) and report to upper layers. Based on desired security policy or user
feedback, the detection sensibility can also be adapted after deployment.

It is worth mentioning that AI techniques can also be used as tools to conduct
attacks or assist security evaluations. For example, in the field of side-channel analysis,
ML-based methods are employed to process measurements obtained during the exe-
cution of a security target to extract secret values such as private keys [21]. However,
Machine Learning systems can also be the target of attacks, Typically, fault injections
attacks can be used to fault the computation of a neural network and to bypass a secu-
rity verification. More recently, a whole new class of attacks, called adversarial attacks
[13], have been designed to fool ML algorithms by crafting malicious inputs which can
go through neural network-based detection.

2.3 Connectivity

Over the past years, the rise of IoT market highlighted the need for efficient commu-
nication layers with small footprint, allowing low end devices like sensors or cameras
to ensure low power consumption, low network bandwidth and a long living time if
powered by a battery.

In the edge-to-cloud context, some protocols emerged and were standardized by
the industry for machine to machine (M2M) communication. We can mention the
most commonly used ones:

– Message Queue Telemetry Transport (MQTT) [28], based on the publish-subscribe
methodology allowing one-to-many communication through brokers.

– Constrained Application Protocol (CoAP) [27], a client-server protocol offering a
RESTful interface allowing a client node to directly command another node.

Both protocols are IP-based and come with activable security features: MQTTS using
TLS for MQTT, and DTLS or IPSec for CoAP, ensuring transport encryption and
mutual authentication.

More recently, higher level protocols including an application layer have been pre-
sented as standards. OMA Lightweight M2M (LwM2M) [4] is a protocol for device
management and service enablement, defining the application layer communication
protocol between a server and a client, which is the IoT device. In the same way, the
Matter protocol (previously known as Project CHIP) [2] for home automation connec-
tivity is being standardized. It promises interoperability among smart home devices
from different vendors and IoT platforms.
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2.4 Security Standards and Frameworks

The aforementioned edge-to-cloud type IoT systems involve massive data transfer
through the network that includes sensitive information, unauthorized access to which
might jeopardize the whole system leading to security and even safety related hazards.
Therefore, such systems are equipped with state-of-the-art cyber-security mechanisms
to deal with security threats and intrusions. To ensure a secure development and assure
the consumer of the degree of competence and robustness of the systems in terms of
security features, it is essential to go through the certification process of such products.
Any edge-to-cloud system might fall under a typical IoT framework and therefore it
becomes quintessential to secure the system based on standard practices. The widely
acclaimed certification schemes that would help reach such standards of security are
listed below:

1. Common Criteria (CC) - The [7] (ISO/IEC 15408) provides seven assurance
levels based on which any general purpose product can be certified. The framework
is based on the IT product security but the presence of protection profiles makes
it more suited for different market verticals. Certification with CC is gaining mo-
mentum for IoT products as more and more companies enter to compete with this
product line, since IoT has already reached to our homes.

2. SESIP [12] is a platform-level certification scheme for IoTs, promoted by the
Global Platform association. It is meant to be similar in the rigor to the CC albeit
with a more simple applicability.

3. FIPS 140-3 - The FIPS 140-3 [19] (ISO/IEC 19790) from the NIST (USA) is an
upgrade over the extremely popular FIPS 140-2 standard. It provides a technical
baseline for security products and can be easily framed around IoT ecosystem. With
four distinct levels of security, the Cryptographic Module Verification Program
(CMVP) ensures that the security of the product is optimized as per the security
scope.

4. ENISA Cloud certification scheme ENISA [9] is a popular and respected
European agency for cybersecurity that provides useful standards from time to
time. In 2020, it provided a draft certification scheme for cloud based applications
targeting the IoT edge-to-cloud products.

5. Eurosmart IoT certification scheme This standard [10] based on the European
Cybersecurity Act, provides a targeted framework for IoT products with three
different levels of security such as basic, substantial, and high.

6. PSA Certified Similar to the CC, the PSA Certified [22] provides third-party lab
evaluation for security assurance for IoT product vendors and manufacturers with
three distinct assurance levels.

3 Monitoring Cyber Use-Case

This section describes our proposed embedded IDS architecture and implementation,
designed to be deployed on fleets of devices in the context of IoT monitoring.

3.1 Typical Architecture

The proposed IDS is comprised of multiple anomaly detection cores, each one being
in charge of processing a different type of inputs. The IDS can be deployed with a
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variable number of detection cores, depending on the target device. The architecture
described in this paper contains two cores: for WLAN connectivity and for sensors.
Additional cores can be plugged, for CAN intrusion detection for instance. Each core
has access to a local storage where a detection model is stored. The global architecture
is summarized in Figure 2 for an automotive use-case which we chose for the evaluation
in our work.

A COAP server is used for bi-directional communication with the cloud server
side: on one hand, for sending notifications to the cloud and on the other hand, for
configuring the edge IDS from the cloud server. The cloud is equipped with tools for
monitoring real-time data from the connected device and displays anomaly notification.

The edge, along with the telemetry of core anomaly detectors, also uploads the
aggregated sensor data. This data is collected in the cloud in a desired format which
is later used for offline-training to further tune the Machine Learning core. Finally,
the cloud has the capability, through the CoAP channel, to push a new ML model
with newly trained/tuned parameters based on more collected data on the edge, and
update the Intrusion Detection System. This is a typical Software update Over The
Air (SW-OTA).

Fig. 2. Typical edge-to-cloud architecture.

3.2 Security Threats and Attack Surface

The attack surface of an edge device varies from case to case, depending on its con-
nectivity features (WiFi, Bluetooth, etc), its hardware and software architectures (OS,
bare metal, microcontroller or pure hardware) but in most cases, we can identify the
following threats:

– Fault Injection Attacks (FIA). This class of attack consists in actively stressing a
system in order to compromise its security. In short, when perturbing a security
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system, an attacker can induce faults during a computation or generate bit-flips in
memory cells. Those effects can then be exploited for sensitive variable recovery,
for example with differential fault analysis (DFA) [8] or to skip specific instruc-
tions in order to bypass a security mechanism. There are several physical channels
that can be used to generate the perturbation: power glitching, clock glitching, by
temperature, electromagnetic injection, laser injection, etc, as well as software or
hybrid methods [23].
Fault tolerant systems can be designed at the cost of performance: those systems
use redundancy as countermeasure for fault injection attacks, in various ways: stat-
ically (e.g. second order statements, step counters), or dynamically (e.g. checksums,
control-flow graph redundancy). Active defense against fault injection consists of
analysing sensors values to detect attacks at runtime: this approach, enhanced with
machine learning, is one of the focus of the IDS presented in this paper.

– Connectivity related cyberattacks: these attacks target communication interfaces
of the devices. Multiple attacks can be realized, with various objectives and few
examples are detailed here.
Denial of Service (DoS) attacks aim at flooding a service with traffic in order
to prevent the device to operate correctly, for example by occupying all the avail-
able bandwidth, consuming all the device resources, making the system crash or
preventing legitimate traffic to reach its destination.
Address Resolution Protocol (ARP) spoofing is a different type of attack
where the attacker aims at impersonating a valid host device, causing the target
device to send any traffic meant for the true host to the attacker instead. The
attacker can then listen to the packets, discard them, or falsify them before sending
them to the true host, achieving a Man-in-the-Middle (MiTM) position. ARP is
a protocol used in Ethernet and WiFi to resolve a MAC address given an IP
address. Devices can broadcast ARP requests to a network when they need the
MAC address associated to a certain IP (in this case, the IP of the host). Anyone
connected to the network can reply with an ARP response. Since ARP does not
support any authentication mechanism, an attacker can send fake ARP responses
containing its own MAC address, causing the target to send packets to the attacker
instead of the host. However, during such an attack, the attacker generates unusual
activity on the network which can be detected by an intrusion detection system.
Lastly, port scanning consists in scanning each port in a network in order to
discover which ports are open and whether they give access to vulnerable applica-
tions. While actually not an attack, this malicious behaviour can be detected by
an intrusion detection system.
The IDS framework presented in this paper is designed to handle connectivity
related cyberattacks with a focus on the TCP/IP network interface.

– Side Channel Attacks (SCA). Side Channel Attacks are a type of passive attacks
where the attacker ”listens” to a system during a sensitive computation, through
a physical channel like the power consumption or EM emanations, in order to dis-
cover the sensitive information being processed. This often implies using physical
equipment to generate measurements and employing statistical tools to process
those traces and extract the secret values. Some side-channel attacks can be con-
ducted entirely by software, with no physical access to the device [1].
Side-channel attacks, because they passive, are not in the scope of the detection
framework presented in this paper. However, runtime detection of cache-based side
channel attacks is an area of research as the malicious processes performing those
attacks have observable side effects on hardware performance counters, which can
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be characterized as abnormal behavior. In future works, it could be considered to
extend the scope of the proposed IDS to specific types side channel attacks.

– Application level attacks. On rich edge devices containing an operating system
and applications, attacks can target directly vulnerabilities present in software
applications, such as stack buffer overflows. This part of the attack surface is not
covered by this paper. In many cases, those attacks can be prevented by source
code analysis or dynamic testing.

3.3 On-Board Intrusion Detection

The main challenge on the edge is to aggregate all the sensor information from various
channels and detect abnormalities or falsified perturbation and detect a difference
(glitch) using ML, pertaining to the whole system. In this work we try to classify a
normal scenario (un-perturbed case) and an anomalous scenario while the smart car is
in motion. In order to ensure good training, the data is significant. Therefore, separate
sessions were run to collect different types of data. As mentioned earlier, two anomaly
detectors are embedded within the edge viz. sensor anomaly detector and network
anomaly detector. The sensors data recorded is from a variety of sensors including:

1. External: Ultrasonic ranger, Camera, LDR sensor, IR sensors (for lines-tracing in
the test area), Gyroscope, Accelerometer, Magnetometer, Barometer, Temperature
and Humidity Sensor;

2. Internal: CPU temperature, clock, voltage, memory split, throttle status.

Apart from the sensors, the Network packet data is also monitored for anomalous
activity. In order to collect precise data without any phase difference, an additional
on-board system called the data aggregation unit is installed to collect inputs from
all sensors and stack them together balancing the phase. Once the data is collected,
the training for the sensor and network anomaly detectors is carried out. The training
process is completed as shown in the figure 3.

Fig. 3. Anomaly detection ML core training and model generation flow diagram.
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Fig. 4. Results table.

Results The results obtained from testing the robot smart car with different attacks
involving both sensors as well as network, are highlighted below in the figure 4.

The on-board IDS could easily detect both the sensor anomalous activity as well
as the network anomalous packet activity. Thus, securing the Proof-of-Concept (PoC)
of the designated motivation of having a generic framework of Intrusion Detection
System for IoT systems (in our case a V2X scenario) by running smart filtration
of sensor and network activity (surfaces prone to threats from different adversarial
actors) including both human-error (accidents, improper operation, etc.) as well as
induced faults, to detect and classify them against normal operation. Additionally, it
connects to the cloud for sending both real-time (with only latency due to connectivity)
anomaly detection status as well as collected sensor data which is used to re-train
existing anomaly detection ML models or new models on the cloud and push new ML
core models to the edge. The capabilities of the cloud services available for our use-case
are shown in figure 5.

Fig. 5. Cloud remote monitoring and management console.
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3.4 Device Fleet Monitoring with AI

The architecture of the embedded IDS presented above is designed for a deployment on
single devices, meaning that the IDS is deployed on an embedded system and analyses
the data of that system only. In the context of IoT, the challenge is to monitor and
to ensure security to large fleets of heterogeneous IoT devices, equipped with different
sensors or different interfaces. In this case, it is of course possible to deploy the IDS on
compatible devices, each one endowed with an IDS running at the edge and reporting
to the central cloud server. This is necessary to provide real-time detection capabilities,
but the constrained resources on the edge limit the usage of powerful AI-based detec-
tion model. However, on the server side, alerts and data from the whole fleet can be
aggregated and high computation resources are available, enabling a lot of new analysis
possibilities: from intrusion, anomaly or failure detection, to smart visualization and
business intelligence.

Cloud IDS. Since the edge computation resources and storage are limited, it is not
always possible to use cost intensive ML models at edge level. For instance, large deep
neural networks sometimes require several gigabytes of memory, or rely on GPU to run
in reasonable computation time. On the edge, lightweight models are sometimes pre-
ferred. However, it is possible to deploy powerful and expensive models on the server
side, with the goal of verifying and confirming alerts generated on the edge side. In
other words, when an alarm is generated on the edge, it is notified on the server along
with some metadata and on the server side, it is analyzed a second time by the ”twin”
detection model. With this architecture, one can provide real-time, lightweight detec-
tion systems at the edge while fully exploiting the capabilities of AI based detection
on the server side, while minimizing the amount of transmitted data.

Fleet anomaly detection. At server level, it also becomes possible to aggregate the
alerts and other information from multiple devices to improve the security analysis.
When analysing the relations of similar devices between each other, if we assume a
nominal operation for the fleet of devices, we can detect devices behaviors diverging
from the general tendency [15]. So doing so, we can build an anomaly detection system
at fleet level. Depending on the monitored data used as input of this system, it is
possible to vary the scope of detected anomalies, from attacks, missuses, environment
induced variations, or failures.

Visualization and business intelligence. After aggregation and detection, the next
use-case of fleet monitoring is smart visualization. Smart visualization should allow
the user to view the fleet in a condensed way providing insight regarding what is
happening and what is going to happen, in order to take action if necessary. When
dealing with IoT devices, the data is heterogeneous and difficult to interpret: the edge
side provides notifications from the IDS and from other components, logs and and
in some cases sensor values. So there is a need to aggregate this information in a
form meaningful for an end user. For this purpose, AI-based dimensionality reduction
have shown to be efficient [6], with algorithms like Principal Component Analysis,
LLE, t-SNE and its variants, etc. Those methods reduce data in high dimension into
2-D or 3-D dimensional maps, while preserving similarities and dissimilarities of the
original inputs. Dimensionality reduction can directly bring out devices with different
distributions than others, giving hints at possible failures, or providing valuable insight
regarding the devices behaviour or their life-cycle (a device may for example degrade
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at a different pace depending on its geographical location). For the same purpose,
clustering methods can be used.

3.5 Case-Studies: Automotive and Healthcare

In this sub-section we provide two similar state-of-the-art research studies that suggest
similar solutions. However, with our advanced edge capabilities to monitor multiple
different anomalies through sensor aggregation as well as monitoring the network for
threats, we provide additional value to the existing IoT solutions or propositions.

1. Healthcare: The authors in [20] propose a cloud-based intelligent healthcare mon-
itoring system that focuses on providing a smart solution to locate human organs
to aid in the transplant surgical processes in the Hospitals. It is a classic approach
of using IoT infrastructure in delivering life saving solutions in healthcare.

2. Automotive: Similarly to the approach in healthcare, as proposed in this work,
the automotive industry greatly gains from the edge-to-cloud approach in the V2X
infrastructure. In the paper [16], the authors, from Denso Corporation and Nanzan
University in Japan, share their insights and experiences about the growing influ-
ence of cloud-based solutions in the Automotive sector. They claim that the Auto-
motive software is evolving to become Automotive Cloud Service System (ACSS)
and will continue to do so in the coming days.

4 Discussion: Other Security Services for edge-to-Cloud

Edge devices have a life cycle like human beings. The life of an edge device starts
at design, then semiconductor and Original Equipment Manufacturer (OEM) level, to
pass through manufacture that will oversee feeding the device with its identity, software
program, applications, and services. When the edge device is ready, it is shipped by the
system maker to the market by distribution supply chains. Hence, the edge device will
be able to start its mission in the field. From security viewpoint, several security services
shall be considered in edge-to-cloud context. We mainly mention assets provisioning,
secure firmware update over the air (SFUOTA) and device identity. Those can be seen
as micro-services fully managed by a remote side that is the server. An illustration can
be depicted in figure 6.

4.1 Assets Provisioning

An asset is any sensitive data that is used to derive or manipulate secrets. Those assets
could be:

– Chip/device private asymmetric key along with signed certificate for the public
key.

– Chip/device symmetric master key.
– Device unique identifier.
– Chip maker/OEM public key certificate.

We can distinguish two provisioning phases in the life cycle of an edge device: before
shipping (i.e. at manufacture stage) and after shipping (i.e. in the field stage). Before
shipping, the provisioning is generally made locally in a safe zone at the manufacture
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Fig. 6. Edge-to-cloud security services.

and not remotely. This is to reduce the risk of tampering with the initial assets. Ideally,
an HSM, Hardware Security Module local server, is needed to ensure a maximal security
by considering a certification authority (CA) that will be the unique guardian of signing
certificate, as requested from OEMs generally, and storing secret keys. Then those
assets are injected to the devices through a physical access such as JTAG, on a specific
machine called the tester. One other approach to be used for sake of convenience, is
to map the HSM server with a remote central server to allow remote provisioning to
several manufacturer distant sites. The server itself may hold an HSM server as CA.
Such HSM would serve the same purposes as the local HSM. In practice, such scheme
could be applied when a central site as head quarter oversees provisioning several
manufacturers that he may own or not. After shipping, the edge device may need to
update or revoke its assets. In that case, in-field provisioning is obviously needed. Here,
the remote server shall be able to provision the edge device provided that the latter is
reachable from the network. Technically, a secure channel is initiated and established
by the user after properly verifying the mutual identities of both parties: the server
and the edge device. Therefore, the server could generate new assets and send them to
the edge device. Now, the edge device will make the Host processor handle the received
assets to safely store them and send them to a secure hardware layer as TPM or SE
as described previously. Besides, the remote server shall be able to revoke those assets
and suspend the device’s activity.

4.2 Secure Firmware Update

The edge device runs a software which is a piece of code that needs to be provisioned
before shipping and then updated, similarly to the key assets. More precisely, the
software, called firmware, comes packed as a binary image stored in some persistent
memory like the Flash. When the device starts, it boots on an embedded code from the
static memory (ROM) that allows loading the firmware. The firmware itself is composed
of the system code with initial applications and services needed by the kernel image or
the full operation system to work properly. Before shipping, the OEM basically needs
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to provision the device with the firmware. That could be performed either locally by
interacting directly and simultaneously with many devices at factory/OEM level; or
remotely based on a management server. Such server is necessary when the edge device
is already shipped and in the wild. Such mechanism would make the life of chip makers
and OEMs much easier. As a matter of fact, for automotive, the conventional situation
today is to drop your car off at the repair shop to get it updated with new software
version. Updating the firmware remotely is a sensitive task. For this purpose, several
standardization bodies are about to push upward a unified solution. We mention for
instance the IETF SUIT framework [18].

4.3 Device Identity

Before the heavy presence of connected objects in our landscape, security consisted
in protecting users and their access to shared resources by ensuring their identities
based on security standards. Nowadays, it has become similarly important to ensure
the protection of data generated by these connected objects.

Authentication The principle of authenticating objects is the same as authenticat-
ing users, but the technologies to be implemented are quite different. Obviously, both
cases share the same objectives. Authentication is the process of verifying the identity
of a user or an object by comparing the credentials provided as an input with those
stored in a database. These data are called authentication factors, which form the basis
of authentication protocols and methods available in the cybersecurity world. We can
categorize these said methods into four types:

– Hardware: includes any physical device that stores or generates a secret key on a
real time basis.

– Memorial: such as passwords.
– Corporeal: which uses the human characteristics that only the rightful user has,

the example of facial recognition and biometric authentication. As far as an IoT
is concerned, the equivalent of a biometric is a “PUF” (Physically Unclonable
Function) [26], whose security is standardized as per ISO/IEC 20897.

– Reactional: includes everything that is unique, that only the user can produce,
like a signature or a gesture.

Based on these methods we can distinguish between three types of authentications:

– Mono-Factor Authentication: which consists of using a single (factor/method)
to validate both the user and the object identity.

– Multi-Factor Authentication: which consists of using more than one method
to validate both the user and the object identity.

– Single-Sign On (SSO) authentication: it is a mechanism that allows the user
and the object to access one or more resources at the same time without having
to go through the authentication service each time.

Authorization Authorization is the mechanism of determining whether the authen-
ticated user can gain access to resources or perform specific actions. This function is
called RBAC (Role Based Access Control), which is a security concept for managing
access rights in a computerized system. Access rights are not managed by an admin-
istrator but delegated to an IAM (Identity Access Management) solution also called
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User-IAM that is based on authentication and authorization. The aims of an User-
IAM can be applied by analogy to the Device-IAM. The difference lies in the tools
and the implementation of the concept. As for IAM-Device, unique identifiers such as
IMEI serial numbers, UUIDs, MAC addresses, etc., allow to establish a first level of
Mono-Factor Authentication of devices. Some devices reinforce their security by stor-
ing these identifiers in secure elements in the hardware (such as in Hardware Security
Modules or HSMs, Trusted Execution Environments or TEEs, Secure Elements, etc.).
However, this mono-factor authentication aspect can be improved. Like User-IAM, this
mechanism can be strengthened by adding a second layer of authentication through
PUF (Physically Unclonable Function). PUF is a technology that extracts a unique
identifier from the intrinsic properties of each device. The output of a PUF is unique
to a device and reproducible, and therefore constitutes an identifier.

Practical Use-Case In general practice, a server-side microservice implements a
standard connectivity protocol, such as Lightweight M2M (LwM2M) or FIDO device
on-boarding [3]. It allows to connect the device at its first connection to authenticate
and authorize it to access the server resources. More precisely, the process is realized
in two phases:

– On-boarding: First, a primary server-side microservice will ask the Device to com-
municate its identifier. This identifier will be verified by another microservice. In
a second step, the primary microservice will request the PUF image which will be
compared to its exact value in a secure database in the cloud.

– Authorization: Once, and only if, the authentication is verified, the primary mi-
croservice will assign a token to the device to allow it to access the server’s re-
sources.

5 Conclusion

We propose a novel approach for anomaly and intrusion detection, based on Artificial
Intelligence in the context of edge-to-cloud security monitoring. This framework is
motivated by the need to provide security services, like monitoring, device identity
management or secure firmware update, to fleets of IoT devices in various applications
fields: automotive, healthcare, smart-homes, etc. In those ecosystems, millions of edge
devices need to embed real-time security systems to prevent attacks and intrusions,
all reporting to a central server. We propose to enhance such systems with machine
learning-based anomaly detection methods in order to improve the detection scope
and capabilities and to make an overall better usage of the complex and heterogeneous
data processed at the edge. We introduce a customizable edge IDS, monitoring network
interfaces and sensors to detect multiple types of threats including but not limited to
fault injections, and network cyberattacks like DoS or ARP spoofing attacks. The scope
of our framework extends to advanced analytics: artificial intelligence can be used at its
best on the cloud server side for fleet monitoring by aggregating and correlating data
from millions of devices to detect anomalies, failures, to provide smart visualizations
and eventually gain valuable insight for business intelligence.
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