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Abstract: We present a new method to estimate the off-axis adaptive optics pre-compensation
phase of a ground to GEO satellite telecom link suffering from point-ahead anisoplanatism. The
proposed phase estimator relies on the downlink phase and log-amplitude measurements that
are available at the optical ground station. We introduce the analytical tools, extended from the
literature, to build the estimator as well as a general modal formalism to express the reciprocal
residual phase covariance matrix resulting from any estimation linear with measurements. We
use this residual phase covariance matrix to generate independent coupled flux samples thanks
to a pseudo-analytical approach and study the gain offered by the proposed estimator on the
coupled flux statistics, in various atmospheric conditions. The estimator is shown to reduce the
anisoplanatic residual phase variance by at least 35%, and 46% at best, with a greater impact
on the lower modes, especially on the tip and tilt residual phase variances. The phase variance
reduction brings a gain up to 15 dB on the cumulative density function at probability 10−3. This
gain should allow to relax the power constraints on the link budget at the OGS and renews the
interest in large aperture diameter (60 cm class telescopes) for GEO Feeder links by reducing the
atmospheric turbulence impact on the uplink coupled signal.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical GEO-Feeder links are foreseen to be a game changer in the telecommunication next
generation very high throughput networks [1]. As the space network is envisioned to complement
the terrestrial one, high capacitive links are needed to connect the space segment to the ground
core network. In this scenario, the GEO satellite acts as a relay node and optical links are a
key technology to reach the targeted capacity while overcoming the radio-frequency bottleneck.
Unfortunately, today’s earth to space optical telecom link performance is limited by cloud
coverage and atmospheric turbulence [2]. While optical ground station (OGS) diversity tackles
cloud blockage [3], telecom signal distortion due to atmospheric turbulence still needs to be
addressed. A solution is to use physical reliability mechanisms, to be deployed on ground, such
as multi-aperture diversity [4–6] or adaptive optics (AO) used to pre-compensate the emitted
laser beam phase. We focus our analysis on the AO monolithic large aperture solutions for its
potential in terms of geometrical losses [7]. One possibility is to pre-compensate by the downlink
measured phase [8], so called "classical" method. However, because of the point ahead angle
(PAA) inherent to the GEO-Feeder link geometry as depicted in Fig. 1, the downlink and uplink
do not propagate through the same turbulent volume. Thus, the classical approach suffers from
point-ahead anisoplanatism and is not optimal [8,9]. As a result, the received signal on-board the
satellite undergoes long and deep fades.

Several solutions to overcome the anisoplanatic error in ground-to-geostationary satellite
telecoms have been reported in the literature. The initial concept of taking advantage of a
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wavefront measurement from a downlink beam at PAA is presented by Tyson [8]. This downlink
beam could either come from a slave satellite, a solution whose cost and feasibility still needs to
be investigated, or from a laser guide star (LGS). A numerical analysis of the performance of
the LGS based pre-compensation can be found in [10]. However, these systems are complex to
implement and Tip-Tilt indetermination remains a limitation [10,11].

In the meantime, there is a need to evaluate and compare the telecom performance associated to
the different methods. In this aim, because ground to satellite optical data is scarce, a great effort
have been put to perform outdoor optical link demonstrations [12–15] and to develop free-space
optical (FSO) link numerical models. Two kinds of numerical models are used to simulate AO
corrected uplink coupling efficiency in the literature: End-to-end (E2E) and pseudo-analytical
models based on link reciprocity. E2E modeling, relying on Monte-Carlo propagation of the
optical beam through a turbulent volume discretized in phase screens, are considered as the most
accurate simulation tool from the literature [10,16]. However, E2E modeling is computationally
intensive, thus, pseudo-analytical approaches have been developed to speed up the computation.
They rely on an analytical description of the statistics of the residual phase and amplitude of the
field in the OGS pupil, that can be expressed either in a modal [7,17,18] or Fourier formalism
[19]. Knowing these statistics, one can draw field samples and compute the coupling efficiency
as the numerical overlap integral with a Gaussian mode.

As seen above, the turbulence and field statistics are used to model the coupling efficiency
of the uplink coupled signal. These statistics can also be used for phase estimation away from
measurement directions. This can be for instance performed with minimum mean square error
(MMSE) linear estimation. This approach can be found in astronomy, particularly in Whiteley
[20] using the phase measurement from a single beacon and in AO tomographic approaches as
in [21,22] and references therein, using several guide star phase measurements to perform the
estimation. This MMSE method has the advantage to only use the information already available
at the OGS. Both techniques use the MMSE estimation to minimize the wavefront error given
phase measurements and statistical priors.

In this article, we propose to apply the MMSE estimation of Whiteley [20] to the telecom
wavefront estimation at PAA. Furthermore, we extend this work and propose a new phase estimator
based on phase and log-amplitude on-axis measurements and associated statistical priors. While
the phase information is classically used to perform the AO correction, the log-amplitude is
usually discarded whilst being freely available from the wavefront sensor measurements at the
OGS. We compute the estimator thanks to analytical modal covariance matrices. This formalism
also allows to extend the pseudo-analytical performance assessment tools to the general case of a
phase estimation linear with respect to the measurements. Thanks to this tool, we evaluate the
gain brought by the new estimator in terms of both residual phase variance and coupled signal
statistics, with respect to state of the art methods. We also study the gain sensitivity to various
atmospheric conditions.

In section 2 we present the reciprocal bidirectional system and the pseudo-analytical model to
compute the coupling efficiency relying on the general phase modal covariance matrix formalism.
Section 3 is dedicated to the MMSE method and the new estimator relying on the phase and
log-amplitude downlink measurement vector and associated statistical priors. Tools needed to
compute the said estimator are also presented. Finally, we assess in section 4 the new estimator
gain on the coupled flux statistics thanks to the pseudo-analytical simulation, with respect to state
of the art methods.
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2. AO pre-compensated uplink modeling

2.1. Notations

Vectors and matrices will be denoted by bold lowercase and uppercase variables. The term
denoted j corresponds to the imaginary unit. The scalar product weighted by W is defined as :

⟨X|Y⟩W ≜
∬

W(r)X(r)Y∗(r)d2r, (1)

where X(r), Y(r) and W(r)∈ C are functions of the spatial coordinates, Y∗(r) denotes the complex
conjugate of Y(r).

Now, let X and Y be two random vectors ∈ RNx1. They depict two physical quantities that
can be of same or different nature, and either issued from the same optical path or from optical
paths separated by an angle ∆α. We define the cross-covariance matrix between X and Y, and
the covariance matrix if Y=X, as:

ΓXX(0)≜ E[(X − E[X]) (X − E[X])T] = (E[xixk] − E[xi]E[xk])i0≤i,k≤iN (2)

ΓXY(∆α)≜ E[(X − E[X]) (Y − E[Y])T] =
(︂
E[x0

i yαk ] − E[x
0
i ]E[y

α
k ]
)︂

i0≤i≤iN,k0≤k≤kN
(3)

where i0, k0 and iN, kN are the indexes of the first and last elements of X and Y respectively.

2.2. Bidirectional link definition

The considered GEO-Feeder system is a bidirectional optical link between the GEO satellite
and the ground. An AO system at the OGS corrects the phase of the incident downlink field
before single mode fiber (SMF) injection and pre-compensates the emitted uplink laser mode.
Through all the modeling steps, we choose to exploit the reciprocity principle to express wavefront
perturbations experienced in the point ahead direction in the OGS pupil and the associated
coupled flux, as in [7,19,23–25]. This principle states that the uplink coupling of the emitted
mode from the ground after propagation to the satellite receiver mode is equal to the coupling
of this receiver mode back-propagated towards the OGS to the station emission mode. Using
the reciprocal uplink, as represented in red in the Fig. 2, we can therefore express the off-axis
wavefront perturbations and thus analyse the AO pre-compensation performance. We define the
complex field after propagation from the satellite to the OGS pupil plane as:

Ψ(r, t;α) ≜ A0 exp (χ(r, t;α) + jΦ(r, t;α)), (4)

where χ are the log-amplitude fluctuations, A0 is the intensity constant term, Φ is the perturbed
phase, r is the space coordinate vector defined over the telescope circular aperture of radius Rtel,
associated to the aperture transmission function P(r), t is the time and α is the angular direction
of the optical path considered. The downlink beam axis is taken as the angular reference α=0,
thus, the reciprocal uplink is located at α=PAA as shown in Fig. 2. In this study, we consider a
statistical approach and do not study the temporal dynamic of the coupled signal but only the
capacity to angularly predict the performance, t is then fixed.

2.3. Choice of a representation basis: Zernike polynomial basis

We use a modal formalism to describe the field phase and log-amplitude, choosing the Zernike
polynomial basis. The Zernike is a basis whose polynomial are orthogonal over circular aperture
for the scalar product defined over the telescope aperture P(r). It is classical in the AO field to
represent the phase on this basis [26], however, it is less common to do likewise concerning the
log-amplitude. Yet, this log-amplitude modal expansion has already been used in [27]. We note
that other basis could be used to describe these quantities as the zonal basis, or the Fourier basis.
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Fig. 1. Sketch of a GEO-Feeder bidirectional link geometry for a given PAA.

Fig. 2. Scheme of the reciprocal modeling of the GEO-Feeder bidirectional link.

Therefore, the phase and log-amplitude are expanded onto a Zernike polynomial basis subset
until the order Nmax defined by the last polynomial used in the representation. The dimension
of this subset is Nmax − 1 for the phase (the first mode, the piston, is not represented as it is not
measured by the AO system and do not impact the coupling in a direct detection scheme), and Nmax
for the log-amplitude. Thus, we can write Φ(r;α) =

∑︁Nmax
i=2 aαi Zi(r) and χ(r;α) =

∑︁Nmax
i=1 bαi Zi(r)

where Nmax is the number of polynomials used in the representation, Zi(r) the Zernike polynomial,
i its Noll index. We define a second subset, denoted AO, corresponding to the number of modes
measured by the AO system from mode 2 and 1 to NAO for phase and log-amplitude, respectively.

Consequently, at a given angle α, these quantities can be depicted by the two following vectors:

Φα =
(︂
aα2 . . . aαNAO

. . . aαNmax

)︂T
, with aαi = ⟨Φ(r;α)|Zi(r)⟩P (5)

and χα =
(︂
bα1 . . . bαNAO

. . . bαNmax

)︂T
, with bαi = ⟨χ(r;α)|Zi(r)⟩P (6)

where P is the circular telescope aperture function.

2.4. Reciprocal uplink residual wavefront and coupled flux

2.4.1. AO residual wavefront

We use a reciprocal formalism to explicit the wavefront perturbations at PAA that are corrected by
the AO pre-compensation. This allows to evaluate the AO correction performance by computing
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the reciprocal off-axis residual wavefront:

Φres ≜ ΦPAA − Φ̂PAA, (7)

the difference between the phase of the back-propagated reception mode of the satellite in the
OGS pupil plane ΦPAA ∈ RNmax−1 and the AO correction phase Φ̂PAA ∈ RNmax−1, both expressed
in the subset of Zernike modes of size Nmax.

We assume the residual wavefront Φres to be the sum of two error contributions: the
anisoplanatism induced by the angular decorrelation of the turbulence which affects only the
AO subset of modes and the fitting due to the finite AO correction mode basis impacting the
high order modes from NAO + 1 to Nmax. As the anisoplanatism is the overriding error of the AO
error budget [7], and that we consider an optimal AO system, we neglect the errors induced by
the AO system as AO loop temporal error, aliasing or wavefront sensor noise. As a result, we can
express the correction phase as:

Φ̂PAA ≜
⎛⎜⎝
Φ̂AO,PAA

0
⎞⎟⎠ , (8)

where Φ̂AO,PAA ∈ RNAO−1 is the correction phase on the AO modes subset. The zero terms cover
the rest of the representation mode subset from NAO + 1 to Nmax.

We develop a general formalism relevant to every AO corrections computed as linear operations
with AO measurements. In this aim, we assume the correction phase to result from a linear
operation between a given reconstructor matrix R and a measurement vector ym, from the
downlink beam, and propose a new formulation for the correction phase:

Φ̂AO,PAA ≜ Rym. (9)

The value and dimensions of R and ym depend on the chosen estimation and correction method.
We assume that all measurements are noise free since we are in a high flux regime in telecom
scenarii.

Under this formalism, we can describe the statistics of the residual phase and show that its
covariance matrix, under the notations of section 2.1, is equal to:

Γres ≜ E[ΦresΦres
T] =

⎛⎜⎝
Γaniso = [ΓAO,res]2≤i,k,≤NAO 0

0 Γfitting = [ΓΦΦ(0)]NAO+1≤i,k,≤Nmax

⎞⎟⎠ , (10)

where we neglect the cross-covariances between the corrected and uncorrected modes, supposedly
weak. We compute the residual phase covariance matrix as:

ΓAO,res = ΓΦΦ(0) − RΓΦym (αPAA)
T − ΓΦym (αPAA)RT + RΓymym (0)RT (11)

As an example, we can compute the residual phase covariance matrix of the classical pre-
compensation case, where the correction phase is based on the downlink phase measurement
located at α = 0. In this case, R = INAO−1 ∈ RNAO−1×NAO−1 and ym = (Φ0) ∈ R

NAO−1. As a result,
applying Eq. (11), we obtain in this particular case:

ΓAO,res−classical = 2ΓΦΦ(0) − ΓΦΦ(αPAA) − ΓΦΦ(αPAA)
T. (12)

Finally, the metrics to evaluate the pre-compensation performance are the overall mean square
error (MSE) and the modal MSE:

MSE = tr[Γres] and MSEi = (Γres)i,i, (13)

where tr is the trace operator and i the ith Zernike mode index.
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2.4.2. Reciprocal coupled flux

We express the random coupled flux of the pre-compensated signal aboard the satellite reciprocally
as the coupling, in the OGS aperture, between the given complex field back-propagated from the
satellite at PAA, corrected by AO, and the uplink emission Gaussian mode [25]:

fpre−compensated,OGS−→satellite(αPAA) = fcompensated,satellite−→OGS(αPAA). (14)

Here, f is a random variable as we only study the statistics behavior of the coupling.
To express f, we assume Φ and χ of the field independent [28]. Therefore, we can consider

separately the phase and log-amplitude contributions to the coupling as:

f = ρΦ · ρχ. (15)

The phase contribution is the result of the overlap integral between the field neglecting the
log-amplitude fluctuations and the fiber Gaussian mode M0(r) [18]:

ρΦ = ρcompensated,satellite−→OGS =

|︁|︁|︁|︁|︁|︁|︁
⟨︁
ejΦres(r) |M0(r)

⟩︁
P√︂⟨︁

ejΦres(r) |ejΦres(r)
⟩︁

P ⟨M0(r)|M0(r)⟩P

|︁|︁|︁|︁|︁|︁|︁
2

· exp(−σ2
super−fitting),

(16)
where Φres(r) =

∑︁Nmax
i=2 ⟨Φres |Zi⟩Zi is the residual phase onto the truncated Zernike polynomial ba-

sis. The term σ2
super−fitting = 0.458(nr + 1)−5/3

(︂
D
r0

)︂5/3
[29] accounts for the phase non represented

on the basis, where nr is the radial order of the last Zernike polynomial of the representation. This
result is a variation on the asymptotic development of Noll residual phase variance given in [26].

Finally, we assume to be in the weak perturbations regime. Thus, the log-amplitude contribution
ρχ can be approximated to the scintillation averaged over the aperture as in [18], also known as
power in the bucket (PIB), multiplied by a constant penalty factor e−σ

2
χ [30,31], assessing for the

mean coupling losses due to the log-amplitude spatial fluctuations over the aperture:

ρχ = PIB · e−σ
2
χ =

∬
|Ψ(r)|2 P(r)d2r · e−σ

2
χ . (17)

At this stage, there is no assumption made about the statistics of neither ρΦ nor ρχ.

2.4.3. Pseudo-analytical modeling

We call pseudo-analytical modeling the approach relying on the generation of random complex
fields thanks to analytical formulas, that are then coupled to a gaussian mode through a numerical
overlap integral. The method to model the statistic of the phase of the complex field can vary.
Fourier approaches are adopted in [19]. We choose the modal approach as in [7,18,32]. However,
with respect to the former modal method that considers only the diagonal of the covariance
matrix, we developed a formalism that is general to every AO correction linear with the AO
measurements which considers the cross-correlations between the modes that are shown to be
non negligible in the classical pre-compensation case [33].

To apply this pseudo-analytical formalism, we assume that Γres is known. For instance, in the
classical pre-compensation case, its residual phase covariance matrix from Eq. (12) requires only
to compute the phase angular modal covariance which can be found in [34]. These covariance
matrix terms can be calculated thanks to the OGS and atmospheric parameters, in particular
the C2

n profile that is supposed to be known, which gives the distribution of the turbulence
strength along the line of sight. Then, knowing the statistics of the residual phase, whose Zernike
projections follow a centered normal distribution [35] given by Γres, one can make an arbitrary
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large number of residual phases draws, synthesize complex fields and compute the numerical
overlap integral mentioned above to obtain the coupling phase contribution. These draws are
made in the diagonalized space of the covariance matrix to account for the cross-correlations.

Finally, the PIB contribution from Eq. (17) can be expressed as e2χAp , where the aperture-
averaged log-amplitude χAp follows a normal distribution [18] of variance σ2

χAp and mean −σ2
χAp

to ensure energy conservation with E[e2χAp ] = 1. Therefore, ρχ follows a log-normal distribution.
In the same way, one can therefore draw samples from this law.

3. Minimum mean square error phase estimation

3.1. General MMSE method

Here, we aim to optimize the AO correction phase Φ̂AO,PAA and compute the associated residual
phase covariance matrix ΓAO,res. To this end, we use a minimum mean square error (MMSE)
method [36] to minimize the residual phase variance. For normal distributed random vectors, the
estimator is linear and the reconstructor R is given by:

RMMSE ≜ argminRtr(ΓAO,res) = ΓΦym (αPAA)Γymym (0)
−1 (18)

and the theoretical associated covariance matrix is, applying Eq. (11):

ΓAO,res−MMSE = ΓΦΦ(0) − RMMSEΓΦym (αPAA)
T. (19)

In the above developments, the statistical priors correspond to the knowledge of the covariance
matrices ΓΦym (αPAA) and Γymym (0).

3.2. Estimator based on phase measurements and priors

The MMSE estimation has been used in [20] for astronomical applications by using:

ym = [Φ0], (20)

where Φ0 ∈ RNAO−1 is the on-axis phase measurements.
We compute the MMSE estimator RMMSEΦ as in Eq. (18). The two covariance matrices of the

estimator can be developed as the matrices below:

ΓΦym (αPAA) = ΓΦΦ(αPAA) (21)

and,
Γymym (0) = ΓΦΦ(0) (22)

By applying Eq. (19), its residual phase covariance matrix is then:

ΓAO,res−MMSEΦ = ΓΦΦ(0) − RMMSE,ΦΓΦΦ(αPAA)
T. (23)

The performance of this estimator will be computed and compared to the one of the other
methods in section 4.

3.3. Proposed estimator based on phase and log-amplitude measurements and priors

We propose an MMSE estimator based on a measurement of the phase and the log-amplitude
and the associated statistical priors. Indeed, the log-amplitude of the complex field still carry
information about perturbations occurring in the atmosphere upper layers, where the downlink
and uplink beam footprints are the more separated. Adding the log-amplitude information to
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the phase estimation can thus bring information about the phase perturbations at the origin of
anisoplanatism. We define the new measurement vector as the following block matrix:

ym =
(︂
ΦT

0 χT
0

)︂
T, (24)

where ym ∈ R2NAO−1.
We compute the MMSE estimator RMMSEΦχ as in Eq. (18). The two covariance matrices of

the estimator can be developed as the block matrices below:

ΓΦym (αPAA) =
[︂
ΓΦΦ(αPAA) ΓΦχ(αPAA)

]︂
(25)

and,

Γymym (0) =
⎡⎢⎢⎢⎢⎣

ΓΦΦ(0) ΓΦχ(0)

ΓΦχ(0)T Γχχ(0)

⎤⎥⎥⎥⎥⎦ (26)

As in Eq. (19), the theoretical associated covariance matrix in this case can be given by:

ΓAO,res−MMSEΦχ = ΓΦΦ(0) − RMMSEΦχ ΓΦym (αPAA)
T. (27)

3.4. Analytical terms of the covariance matrices

The phase and the log-amplitude of the two fields are expressed as vectors in the modal formalism,
we can therefore define the angular covariance matrices in the telescope pupil under the notations
of section 2.1 as:

ΓΦΦ(αPAA) ≜
(︂
E[a0

i aαPAA
j ] − E[a0

i ]E[a
αPAA
j ]

)︂
2≤i,j≤NAO

(28)

Γχχ(αPAA) ≜
(︂
E[b0

i bαPAA
j ] − E[b0

i ]E[b
αPAA
j ]

)︂
1≤i,j≤NAO

(29)

ΓΦχ(αPAA) ≜
(︂
E[a0

i bαPAA
j ] − E[a0

i ]E[b
αPAA
j ]

)︂
2≤i≤NAO,1≤j≤NAO

(30)

Let’s note that all phase projection distributions are by definition centered, whereas this is not
the case for the distribution of the first projection of the log-amplitude b1 which mean is equal
to the variance of the log-amplitude averaged by the pupil as explained in section 2.4.3. In the
following, we assume knowing E[bα1 ] from past measurements allowing to compute the error on
a centered measurement vector.

The modal angular covariance matrix of the phase was developed in [34], although neglecting
the term related to Fresnel diffraction. Similarly, the log-amplitude covariance matrix (∆α = 0)
was derived in [27]. We extended and generalized these formulas to derive the angular covariance
matrices between the three combinations of phase and log-amplitude. We assume in the following
developments to be in the weak perturbations regime. We only consider the case of the covariance
of beams co-located in the same telescope aperture as depicted in Fig. 2. We denote the matrix
coefficients as (x, y) ∈ {(a, a), (a, b), (b, b)}:

E[x0
i yαPAA

j ] − E[x0
i ]E[y

αPAA
j ] =5.20Kij

∫ L

0
dzC2

n(z)
∫ +∞

0
dkk

−14
3

Jni+1(k)Jnj+1(k)Fxy(
zk2

2k0R2
tel
)(1 +

2πRtel
L0k

2
)
−11

6 ·

(S1 · Jm1+m2 (
kd(z, ∆α)

Rtel
) + S2 · J |m1−m2 |(

kd(z, ∆α)
Rtel

))

(31)

where (ni, mi), (nj, mj) are the radial and azimuthal degrees of the ith and jth Zernike polynomials
respectively, z is the distance to the OGS pupil on the line of sight, Rtel is the aperture radius and
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k0 =
2π
λ is the wave number. Kij is defined as Kij =

√︁
(ni + 1)(nj + 1)(−1)

ni+nj−mi−mj
2 R

5
3
telk

2
0, C2

n(z)
is the turbulence refractive index structure function at the distance to the pupil z, Jn(k) are the
Bessel functions of the first kind of order n. Fxy is the Fresnel term discriminating the physical
quantities:

Fxy : k ↦→ cos2(k) for (x,y) = (a,a), corresponding to ΓΦΦ(∆α)

Fxy : k ↦→ sin2(k) for (x,y) = (b,b), corresponding to Γχχ(∆α)

Fxy : k ↦→ sin(k)cos(k) for (x,y) = (a,b), corresponding to ΓΦχ(∆α),

(32)

where k = 2πf is the angular frequency. Moreover, (1 + 2πRtel
L0k

2
)
−11

6 is the Von Karman term
accounting for the turbulence outer scale L0. The last part of the equation is the contribution
of the angular correlation between the two beam footprints at a given height distant from
d(z, ∆α) = ∆α · z, where ∆α is an oriented angle. S1 and S2 are the geometrical coefficients
depicting the relative orientation of the beam footprints that can be found in [37,38].

4. Numerical results

4.1. System specifications

4.1.1. OGS and AO parameters

Throughout this study, we consider the OGS parameters presented in Table 1. We choose a
unique configuration of interest rather than performing a parametric study.

Table 1. OGS and AO
general parameters.

OGS Parameters

Elevation 30◦

αPAA 18.5 µrad

λ 1550 nm

Dtelescope 60 cm

AO Parameters

NAO 136

This configuration is characterized by a large aperture that limits the geometrical losses induced
by the beam divergence, but results in increased wavefront perturbations in the telescope aperture,
and thus requires a good quality AO system [7]. As a result, we set a 60 cm diameter which is
in accordance with the current OGS designs [39–41]. In this scheme, the anisoplanatic error
due to the angular decorrelation of the turbulence is larger, thus there is a greater interest in
improving the correction at PAA. We consider a Feeder-link with a GEO satellite at 30◦ elevation
corresponding to a point-ahead angle of 18.5 µrad. It is a plausible scenario for a link between a
GEO satellite and an OGS in Europe [42]. The considered wavelength is 1550 nm to benefit
from off-the-shelf telecom components and of low atmospheric attenuation. Concerning the AO
parameters, we consider a high quality correction with a number of correction modes as high as
NAO = 136 (nr=15), in accordance with current OGS AO systems [40,43,44].

4.1.2. Atmospheric conditions

We consider statistically representative atmospheric C2
n profiles. These profiles, called MOSPAR-

XY, are composite profiles constructed thanks to astronomical site measurement databases [45,46].
The construction of these profiles is detailed in [15,17]. X and Y are thresholds on the statistical
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distributions of the anisoplanatic angle θ0, describing the turbulence angular decorrelation, and
the Fried parameter r0, corresponding to the strength of the phase perturbation. For example, the
MOSPAR-9090 is a profile whose θ0 is chosen P(x>θ0) = 0.9 and r0 is chosen P(y>r0) = 0.9
according to on-site measurements.

To illustrate and evaluate the performance of the estimator, we choose a strong perturbation
case MOSPAR-9090 as depicted in Fig. 3. We also explore a set of different strengths of r0 and
θ0 with all combinations of thresholds (X,Y)∈ {50, 60, 70, 80, 90} × {50, 60, 70, 80, 90}. An
example of the explored integrated parameters values with respect to their XY thresholds applied
in the profile construction are given in Table 2. We precise that at fixed threshold X, respectively
Y, the value of θ0, respectively r0, barely varies.

Fig. 3. Example of MOSPAR 5050 (blue) and MOSPAR 9090 (green) C2
n profile. The

associated integrated parameters are r0 = 7.86 cm and r0 = 4.03 cm, θ0 = 11.34 µrad and
θ0 = 6.83 µrad, σ2

χ = 0.04 and σ2
χ = 0.08, respectively.

Table 2. Table of the integrated parameters for different XY
thresholds considered in the construction of a C2

n profile
computed for a wavelength of 1550 nm and for a 30◦

elevation.

Parameter Threshold 5050 6060 7070 8080 9090

r0 (cm) 7.8 6.8 5.8 4.9 4.1

θ0 (µrad) 11.3 10.2 9.2 8.2 6.8

σ2
χ 0.035 0.043 0.046 0.060 0.080

As the outer scale parameter impacts the low order Zernike mode variances which are
supposed to induce the fades, we take it finite and explore the gain of the estimator for several
L0 ∈ {1, 2.15, 4.6, 10, 21.5, 46.4, 100, 215} m. Furthermore, we assume the inner scale l0 to be
equal to zero.

4.2. Estimator performance

4.2.1. Case study

We analyse and compare the residual phase variance given by the classical pre-compensation
from section 2.4, the MMSE phase from section 3.2 (MMSEΦ) and the new MMSE phase and
amplitude from section 3.3 (MMSEΦχ) methods on the strong perturbation case MOSPAR 9090
with an outer scale of 20 m, a typical value from the literature [47]. In Fig. 4, we plot the modal
MSE ie. the modal residual phase variance on the AO subset as a function of the mode order.
We can see that the MMSEΦ brings negligible improvement compared to the classical method
which suffers from the anisoplanatism error on all the modes. We also observe that the estimator
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MMSEΦχ brings an important reduction of the low order mode variances as highlighted in the
red rectangle. We quantify the MSE reduction as 100 ·

(︂
1 −

MSE(Φres,MMSEΦχ
)

MSE(Φres,classic)

)︂
. The total MSE

is reduced of 47% while it even reaches 49% when considering only the tip and tilt modes
respectively. We will show in the following that the reduction of these two modes is crucial to
improve the statistic of the coupled flux.

Fig. 4. Modal MSE evaluated for the three methods: the classical pre-compensation (blue
dots), the MMSE phase (green crosses) and the MMSE phase and log-amplitude (blue stars).
The performance is evaluated on the MOSPAR 9090 C2

n profile, with a fixed L0 of 20m.

Thanks to the pseudo-analytical model depicted in section 2.4.3, we generate 150000 indepen-
dent samples of coupled flux for each phase correction case (classical, MMSEΦ and MMSEΦχ).
In Fig. 5(a) and Fig. 5(b) we plot the probability density function (PDF) as well as the cumulative
density function (CDF) also known as fading probability [48], respectively, for each correction
case. As expected, the PDF and CDF of the classical pre-compensation is superposed to the
MMSEΦ one (as they have almost the same phase statistics). We observe in Fig. 5(a) that the
pdf associated to the MMSEΦχ method shows higher mean value and smaller variance (with a
scintillation index of 0.17 for the classic case and 0.06 for the MMSEΦχ). Moreover, the tail of
the distribution is highly reduced. In Fig. 5(b), the tail reduction is highlighted with a 15 dB gain
at probability 10−3 provided by the MMSEΦχ with respect to the classical and MMSEΦ. This
threshold for fading probability is taken as a reference as explained in [49].

(a) Probability density function (b) Cumulative density function

Fig. 5. Coupled flux statistics for MOSPAR 9090 at 30◦ elevation and L0=20m. The three
correction cases are depicted: classic in dark blue, MMSEΦ in green dots, MMSEΦχ in red.
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To summarize, we observe that the proposed estimator brings a gain on the low order modes
of the residual phase variance and an improved coupled flux statistics. However, in this analysis,
the contribution of all the modes is mixed in the coupled flux generation process. To evaluate the
impact of some group of modes on the coupling statistics, we compare the classical correction case
with a modified MMSEΦχ case. The modified case is constructed with a composite covariance
matrix including the classic modal MSE from modes 2 to i and the MMSEΦχ error on modes
i+1 to NAO, in order to evaluate the impact of energetic low order modes. We study this two
particular cases:

• Case A: Classic MSE on the group of mode of radial order 1 - MMSEΦχ from Z4 to 136,

• Case B: Classic MSE on the group of mode of radial order 1 and 2 - MMSEΦχ from Z7 to
136.

We observe in Fig. 6 that in both modified cases A and B, the high order corrected modes bring
only a small improvement to the coupling statistics. In Fig. 6(a), the distribution of the A and
B cases is slightly improved in mean and variance compared to the classical case. In Fig. 6(b),
the CDFs of the A and B cases show only a 3 dB gain compared to the classical case. However,
the slope of cases A and B are similar to the classical one, which is less steeper than the full
MMSEΦχ corrected case. This means that deeper fades are far less likely with the new MMSE
estimator. We conclude from these results that the tip-tilt MSE reduction has a strong impact
on the signal distribution shape and on the CDF curve steepening and thus is a key metric to
optimise. This was an expected result as the tip and tilt errors can be interpreted as a mispointing
error induced by the turbulence in the plane of the satellite, or so called beam wander [50].

(a) Probability density function (b) Cumulative density function

Fig. 6. Statistics of the coupled flux (CDF on the left, PDF on the right) when the gain on
the tip and the tilt is cancelled (dark green), and when the gain on the modes from Z2 to 26
(light green) is cancelled. The statistics are compared with full classical error (dark blue)
and full MMSEΦχ correction.

We also evaluate the estimator gain on the theoretical fundamental transmission limit of the
channel by computing the outage probability. Indeed, the second Shannon theorem [51] stipulates
that if the communication rate of the transmission is below the channel capacity (the theoretical
upper bound of the rate that can be communicated for a given signal to noise ratio (SNR)), the
communication can be error free. For a fading channel, the channel capacity is a random variable
depending on the variable SNR function of the coupled flux. Thus, there is a non-zero probability
that the channel capacity drops below the fixed rate r. When this happens, the communication
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experiences an outage. The outage probability is:

POutage = P(r>C(SNR(fc))) with C(SNR(fc)) = log2(1 + SNR(fc)) = log2

(︃
1 +

fc
N0

)︃
, (33)

where N0 is the noise power and r the rate in bits per channel use (cu).
In Fig. 7, we plot the outage probability as a function of the SNR (dB) for a fixed rate of 2

bits/cu. It is used to consider the gain on the outage at probability 10−3 which is the forward
error correction (FEC) coding limit [52]. This means that at this outage probability, the FEC is
able to reduce after correction the error probability below 10−7. We observe 15 dB gain on the
outage probability for the proposed estimator compared to the classical method.

Fig. 7. Outage probability function of the SNR with a rate r=2bit/cu for the three correction
methods (black for the classic, green for the MMSEΦ method, red for the new MMSEΦχ

method). The gain at 10−3 is also highlighted.

With respect to these results, the estimator significant gain could allow to reconsider the use of
large aperture telescopes by reducing the impact of atmospheric turbulence on the uplink coupled
signal. This could allow to take advantage of the low beam divergence of large waist laser beams
[7], while only adding software complexity and not hardware complexity at the OGS.

4.2.2. Robustness of the estimator to various atmospheric conditions

To assess the robustness of the estimator, we analyse its MSE and power reduction in several
atmospheric turbulence scenarios. First we study the impact of the outer scale L0 for a fixed C2

n
profile, then we study all the MOSPAR profiles described in section 4.1.2 and Table 2 at fixed L0.

In Fig. 8(a) and Fig. 8(b), we plot the total MSE and the Tip and Tilt MSE, respectively, as a
function of L0 for the MOSPAR 9090 case. We depict on both graphs several MSE reduction
key points. We observe a saturation of the absolute MSE for both correction methods around
L0=10 m. The reduction rate reaches 46.6% for the total MSE and 49.4% for the tip and tilt MSE
around L0=20 m, which is a typical value considered in the literature. We can conclude that the
proposed estimator provides a significant MSE reduction for all the outer scale considered values,
with a greater reduction for large outer scales.

In Fig. 9, we plot the associated coupled flux CDF value at probability 10−3 in dB as a function
of the outer scale as well as the gain brought by the proposed estimator. We can observe that this
gain is comprised between 2.9 dB and 15.6 dB. Figure 8 and Fig. 9 also show that the outer scale
strongly impact the phase and signal statistics. However, the proposed estimator, by limiting
the increase of the phase MSE also shows to reduce the impact of L0 on coupled flux statistics.
This range, including the CDF value at probability 10−3 for an outer scale from 1 m to 200 m,
is shown in Fig. 9 to be large of 8 dB for the proposed estimator whereas it is large of 20 dB
concerning the classical method.
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(a) Total MSE vs L0. (b) Tip and tilt MSE vs L0.

Fig. 8. Absolute value of the MSE for the classical case (blue circles) and the MMSEΦχ

case (green crosses) versus L0. Red arrows correspond to the MSE reduction provided by
the MMSEΦχ method, with the gain value below the arrow.(a) Total MSE error over the AO
corrected modes, (b) MSE error on tip and tilt.

Fig. 9. Absolute value of the CDF at P(fc ≤ Fc) = 10−3 for the classical case (blue circles)
and the MMSEΦχ case (green crosses) versus L0. Red arrows correspond to the gain at
probability 10−3 on the CDF provided by the MMSEΦχ method, with the gain value given
below the arrow.

Furthermore, we study the sensitivity to the C2
n profile. We set L0 to its earlier value of 20 m

In Fig. 10, we plot the MSE reduction gain as a function of θ0, for different values of r0.
In Fig. 10(a) and Fig. 10(b) we plot the total MSE and tip and tilt MSE, respectively, as

a function of the anisoplanatic angle corresponding to the studied C2
n profile for different r0

parameters. The results from the classical method and proposed estimator are represented by
dots and crosses, respectively. The different colors depicts the different strengths of r0. We
observe that the total MSE value is almost independent from r0. This was an expected result as
the anisoplanatic error is mainly driven by θ0. The total MSE is reduced from 35 to 46% and the
tip-tilt MSE from 38 to 49%. We can conclude that, stronger is the anisoplanatism, larger is the
gain. Additionally, we notice a higher gain than expected for the case MOSPAR 5050. This can
be interpreted by the fact that the estimator gain depends also on the C2

n profile structure and not
only on the parameter θ0.

In Fig. 11, we plot the associated coupled flux threshold of the CDF at probability 10−3 as a
function of the anisoplanatic angle corresponding to the considered C2

n profile. Similarly, we
observe a quasi-null impact of the Fried parameter on the coupling attenuation value in both
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(a) Total MSE vs 𝜃0 (b) Tip and tilt MSE vs 𝜃0

Fig. 10. Absolute value of the MSE for the classical case (circles) and the MMSEΦχ case
(crosses) versus θ0, for different r0. Each color depicts a different r0. Red arrows correspond
to the MSE reduction provided by the MMSEΦχ method, with the reduction value on its left.
(a) Total MSE error over the AO corrected modes.(b) MSE error on tip and tilt.

classical and MMSEΦχ cases. We observe a gain from 5.5 to 15.8 dB provided by the new
estimator. Thus, we can conclude that the estimator gain (in phase variance or in coupled flux), is
almost insensitive to r0, and increases with more severe anisoplanatic conditions.

Fig. 11. Absolute value of the CDF at P(fc ≤ Fc) = 10−3 for the classical case (circles)
and the MMSEΦχ case (crosses) versus θ0. Each color depicts a different r0. Red arrows
corresponds to the gain at probability 10−3 on the CDF provided by the MMSEΦχ method,
with the gain given on the left of the arrow.

5. Conclusion and perspectives

In this article, we studied the coupled flux attenuation induced by the turbulence of an AO assisted
ground to GEO satellite optical link suffering from anisoplanatism. This effect is due to the
inherent point-ahead angle between the probed downlink and emitted uplink path directions and
greatly impairs the quality of the AO correction.

We propose a new analytical MMSE phase estimator of the phase at PAA based on phase and
log-amplitude downlink on-axis measurements and statistical priors. We derive a reciprocal
analytical formalism to compute the estimator and extended the formulas from the literature
to obtain the modal phase and log-amplitude angular cross-covariance matrix. We show
that the proposed estimator significantly decreases the mean square error of the anisoplanatic
residual phase variance, especially on low order modes. This confirms that log-amplitude
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measurements complements the phase measurements and brings information on the distribution
of the turbulence along the line of sight, allowing estimation at point-ahead angle. Note that
this phase and log-amplitude complementarity can be used also in C2

n profiling [53,54]. We
show through numerical simulation that the estimator provides high dB gains on the associated
coupled flux and consequently we observe a gain on the outage probability. We highlight that
the tip-tilt estimation drives most of the gain on the coupled flux statistics. These estimator
properties were quantified for various atmospheric conditions based on C2

n profiles constructed
from measurement databases, and various outer scales. This gain on the coupled flux statistics
will allow to relax the already severe power constraints on the link budget of the GEO-Feeder
link. It can also renew the interest in the large diameter OGS designs by reducing the impact of
atmospheric turbulence on the uplink coupled signal, therefore allowing to take advantage of the
low geometrical losses due to the low beam divergence of large telescope apertures. Beyond that,
reducing the coupled signal fluctuations, thus reducing the fading events, could pave the way
toward the implementation of telecom architectures such as transparent ones, very sensitive to
fading events, therefore allowing to reduce the system complexity onboard the satellite [55].

In this study, we furthermore propose a general modal formalism based on covariance matrices
to compute the phase statistics for an arbitrary phase estimation linear with on-axis measurements.

However, the presented results correspond to an ultimate performance on a idealized AO
system. In practice, although dominated by the anisoplanatic error, the AO system suffers from
additive errors such as the one induced by the AO loop delay. In future work, we will take into
account this error in the residual phase covariance matrix but also as a prior in the equations. We
will also study the temporal statistics of the resulting coupled flux and its impact on the telecom
signal, especially on interleaver size. Furthermore, the results here were obtained with a known
C2

n profile. Therefore, an additional perspective will be the assessment of the robustness of the
estimator to C2

n profile uncertainties.
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