
HAL Id: hal-03930026
https://telecom-paris.hal.science/hal-03930026

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Execution trace analysis for a precise understanding of
latency violations

Maysam Zoor, Ludovic Apvrille, Renaud Pacalet, Sophie Coudert

To cite this version:
Maysam Zoor, Ludovic Apvrille, Renaud Pacalet, Sophie Coudert. Execution trace analysis for a
precise understanding of latency violations. Software and Systems Modeling, 2023, �10.1007/s10270-
022-01076-z�. �hal-03930026�

https://telecom-paris.hal.science/hal-03930026
https://hal.archives-ouvertes.fr


Execution Trace Analysis for a Precise Understanding of

Latency Violations

Maysam Zoor1, Ludovic Apvrille1*, Renaud Pacalet1 and Sophie Coudert1

1*LTCI, Télécom Paris, Institut Polytechnique de Paris, Sophia-Antipolis, France.

*Corresponding author(s). E-mail(s): ludovic.apvrille@telecom-paris.fr;
Contributing authors: maysam.zoor@telecom-paris.fr; renaud.pacalet@telecom-paris.fr;

sophie.coudert@telecom-paris.fr;

Abstract

Despite the amount of proposed works for the verification of embedded systems, understanding
the root cause of violations of requirements in simulation or execution traces is still an open-
issue, especially when dealing with temporal properties such as latencies. Is the violation due
to an unfavorable real-time scheduling, to contentions on buses, to the characteristics of func-
tional algorithms or hardware components? The paper introduces the Precise Latency ANalysis
approach (PLAN), a new trace analysis technique whose objective is to classify execution trans-
actions according to their impact on latency. To do so, we rely first on a model transformation
that builds up a dependency graph from an allocation model, thus including hardware and soft-
ware aspects of a system model. Then, from this graph and an execution trace, our analysis
can highlight how software or hardware elements contributed to the latency violation. The paper
first formalizes the problem before applying our approach to simulation traces of SysML models.
A case study defined in the AQUAS European project illustrates the relevance of our approach.
Last, a performance evaluation gives computation times for several models and requirements.

Keywords: Embedded Systems, Execution Trace Analysis, Dependency Graph, Model-Based Systems
Engineering (MBSE), Timing analysis, Simulation

1 Introduction

The growing complexity of embedded systems
makes their analysis challenging. In particu-
lar, better understanding how their mechanisms
impact each other is a key aspect. Relying on
trace analysis has been proposed as a promis-
ing solution as it provides relevant information
about system execution [46]. Traces are collected
by simulating a model or running the embedded
system in real-time. Trace analysis is a powerful
approach to understand and optimize the behav-
iors of a system [47], to debug it [47] [36], to

perform model checking [32], to analyze timings,
to detect data races [31] or perform other verifica-
tions [32]. References [35], [23], [33], [14], [13], [11]
and [34] rely on simulation traces for perfor-
mance analysis. Most of these approaches focus
on verifying temporal properties, on statistical
evaluation, on bottleneck analysis and on dead-
lock/fault detection. Thus, all these contributions
focus on whether a property is satisfied or not,
but not on the reasons why it is not satisfied. Yet,
understanding the reasons for a property violation
is difficult since a trace is the result of complex
interactions between different processes running

1



2 Article Title

on different hardware components, and commu-
nicating using communication paths of different
nature (shared memories, Direct Memory Access
(DMA) transfers, network sockets, . . . ).

Our contribution, named PLAN, can inves-
tigate a simulation or execution trace produced
from a system-level model featuring an applica-
tion, an architecture and the allocation of the
application on the architecture. PLAN takes as
input a model, a trace, two events of inter-
est (e1, e2), and the maximum delay (also called
“latency” in this paper) between the occurrences
of these two events. PLAN can then automatically
check the time delay between events, and can pro-
duce a categorization of the different transactions
of the trace (obligatory, optional, contention, no
contention, etc.) so as to guide designers on how
to update their system if the latency property is
not satisfied. Possible decisions are to change the
application model (e.g., using another algorithm),
to modify the system architecture (e.g., replac-
ing a processor by a more efficient one, selecting
another scheduling policy), or finally to change the
allocations, e.g., allocating a function to a different
processor, or using other communication facilities
between processors.

In this paper, the main contributions provide
a more accurate formalization with regards to
the one presented in [54]: formal definitions of
assumptions, enhancement of the system formal
definitions and more refined discussions. Also, a
performance evaluation gives, for four different
models, the time it takes to generate a dependency
graph and to classify transactions.

Section 2 reviews different execution traces
analysis approaches. Then, Section 3 formally
defines different inputs of PLAN. Section 4
presents the formal definition of the PLAN cat-
egories. The mapping of our formal model to
the Systems Modeling Language (SysML) dia-
grams is presented in Section 5. The implemen-
tation of PLAN in the TTool toolkit and the use
case taken from H2020 AQUAS project are pre-
sented in Section 6. Performance evaluation on
four models gives an insight on the usability of
our approach. Section 7 discusses the complex-
ity of PLAN and potential future work before the
conclusion (Section 8).

2 Related work

Embedded systems must comply with func-
tional and nonfunctional requirements such as
system safety, security, performance, reliability,
etc. [5] [43]. These requirements can be verified
using different approaches throughout a Product
Life Cycle (PLC) from design time to runtime.
Formal verification approaches use mathemati-
cal logic to prove properties [44] [48] [45] while
runtime verification approaches detect property
violations by monitoring the system during exe-
cution [48]. Runtime verification can be applied
on traces collected as the system runs (on-line) or
afterwards. In the design stage of a PLC, simula-
tion is meant to represent system execution. [50]
compares simulation and run time verification.
Both rely on obtaining traces and then perform-
ing requirement verification on traces. Yet, while
simulation is used to enhance the system at design
stage, runtime verification is rather used to detect
faults in the system during operation and take
required actions.

2.1 Simulation traces analysis

Simulation is a very common technique for evalu-
ating and validating designs as simulation traces
record the behavior of an application allocated to
an architecture and thus provide relevant informa-
tion about the system execution. Obviously, this
requires models, which are approximations of real
systems, to be executable [44].

Simulation trace analysis is a technique to dis-
cover what happened during simulation [29]. Sys-
tem evaluation and validation using trace analysis
is considered useful when engineers can manage
and use the trace analysis tools to analyze com-
plex requirements [52]. For instance, [4] describes
a trace analysis approach that allows the designer
to reason aboutthe model execution at the level of
the SysML/UML model. The aim of this approach
is to help the designer to explore and understand
the model-based analysis results. Tools using sim-
ulation trace analysis techniques to analyze and
verify time related requirements are discussed
next.

The SoC-Trace Project [47] aims to develop an
infrastructure to store and analyze traces regard-
less of their format or size. The objective of



Article Title 3

building this infrastructure is to have tools built
on top of it that can analyze the stored traces.

Traviando [51] is an example of a software
tool used for the analysis of simulation traces.
It provides qualitative (e.g., Linear Time Logic
(LTL) model checking) and quantitative (e.g., sta-
tistical evaluation, bottleneck analysis, deadlock
detection) trace analysis [51]. The analysis aims
to attract the attention of designers to sections
of traces that correspond to potentially abnormal
model behaviors. Traces corresponding to these
behaviors are highlighted with Message Sequence
Chart (MSC) [37].

The RT-Simex [2] project uses a set of code
instrumentation tools to analyze and verify timing
constraints and locate faults of parallel embedded
code [23]. Real time constraints on UML models
are specified using MARTE time models and the
Clock Constraint Specification Language (CCSL)
library [21]. Simulation traces in Open Trace For-
mat (OTF) are studied to check if the specified
real time constraints are met. TimeSquare [22]
has been used in RT-Simex. TimesSquare relies
MARTE model and CCSL for designing systems.
TimeSquare analyzes clock constraints and pro-
vides feedback during system simulation.

[33] presents SATM (Streaming Application
Trace Miner), an approach to help debugging real
time applications such as streaming application
and understand the violation reasons for quality of
service (QoS) properties. SATM takes as input an
execution trace and outputs a description of sys-
tem activity indicating the origin of the temporal
bug. To identify the origin of the QoS problem,
SATM uses data mining. In [33], the execution
trace is based on executing the embedded software
on a real hardware —an already manufactured
chip— however, the application of pattern min-
ing algorithms on simulation traces is highlighted.
The data mining algorithm is used to character-
ize simulation traces of program executions that
corresponded to temporal properties violations.

Chen et al. [14] suggest to analyze simulation
traces of systems, including hardware/software
models, to check if functional and performance
constraints expressed in Logic of Constraints
(LoC) [15] are satisfied. A trace checker reports
any constraint violation of a simulation trace.
Constraints are specified at system level.

One of the verification techniques implemented
in Metropolis—a system-level design framework

for embedded systems—is based on simulation
trace checking [13]. Functional and performance
properties can be specified by the designer using
LoC, mathematical logics and LTL. Trace analy-
sis tools integrated into the Metropolis simulator
automatically check for the specified properties.
This verification can be performed off-line or
during the simulation [13].

The TRAP tool [52] is a model-based frame-
work that analyzes simulation traces to verify
causal and temporal properties of embedded sys-
tems. Simulation traces are generated by Virtual
Prototypes (VPs) simulators. An error is raised in
case a property is violated. A trace file generated
by a VP simulator often contains a lot of detailed
information about the system. To minimize the
trace size, a domain specific language, Simula-
tion Trace Mapping Language (STML), is used
to abstract trace data into symbolic information
(logical clocks) and remove irrelevant information.

[34] provides a complete design flow (named
Koski) to model multiprocessor system-on-chips
in a UML profile with automated design space
exploration. It uses simulation for functional veri-
fication and performance evaluation. Performance
evaluation related to statistics obtained at sim-
ulation: process execution time, communication
latency and communication throughput. From
these metrics, alternative architectures can be
compared.

2.2 Execution traces analysis

Runtime verification approaches detect property
violations by monitoring the system during exe-
cution [48]. A runtime verification system with a
decision procedure for the property under study
is referred to as a monitor. Creating a moni-
tor is the first step in the runtime verification
process [25]. The monitor takes as input events
from the system under analysis. To generate these
events the system is instrumented. Thus, the sec-
ond step in the runtime verification process is
system instrumentation. Then, the system is exe-
cuted and the monitor analyzes the generated
events to produce a verdict [25]. An overview
of a taxonomy of work in runtime verification is
described in [26]. It presents seven major high-
level concepts used to classify runtime verification
approaches and classifies 20 runtime verification
tools according to this taxonomy. For instance, a



4 Article Title

property may be implicit or explicit. Implicit prop-
erties describe correct concurrent behavior and
aim at avoiding runtime errors, e.g., absence of
deadlocks while explicit properties express func-
tional or nonfunctional requirements. However,
detecting the violation of critical safety properties
in operation is not acceptable [27]. Thus, runtime
analysis must be used firstly for unexpected events
while requirements are expected to be verified in
an earlier stage of the PLC.

There are many proposals of specification
languages for runtime verification [10] [20].
Temporal Stream-based Specification Language
(TeSSLa) [17] is an example of a runtime ver-
ification language allowing to express timing
properties and events along execution traces.
Unlike traditional stream-based runtime verifica-
tion approaches that process events in execution
traces without considering timing information, a
timestamp is associated to each event of an execu-
tion trace [17], thus enforcing event ordering and
easing timing analysis between events.

The Copilot language [48] is a runtime verifi-
cation framework for real-time embedded systems
used in combination with NASA core flight sys-
tem applications. The Copilot language supports
a variety of temporal logics that can be used to
express re-occurring patterns.

LOLA [19] is a specification language of syn-
chronous systems that allows not only the moni-
toring of boolean temporal specifications but also
of quantitative/statistical properties of the sys-
tem. It has been successfully used to monitor syn-
chronous, discrete time properties of autonomous
aircrafts [9].

To the best of our knowledge, if some of the
aforementioned works could detect violations of
latency requirements of high-level allocation mod-
els, they do not explain why they are violated.
Most of the analysis tools calculate the Worst-
Case Execution Time (WCET) or Best-Case Exe-
cution Time (BCET) or latency and throughput
values. While having the minimum and maximum
latency can be beneficial for the designer, not
understanding the cause of the latency and what
elements are contributing to its value limits the
designer’s knowledge on how to enhance the model
to further improve performance.

The approach introduced in this paper is based
on the conversion of the model semantics into a
directed graph and the study of the execution

trace along the generated graph as explained in
the next section.

3 Overview and problem
formalization

This section presents the general approach of
PLAN and formalizes input models.

3.1 Precise Latency Analysis
Approach

PLAN takes as input a system-level model, a
latency requirement, and an execution trace of the
model, Figure 1. This trace can be obtained from a
model simulation, or from a model-to-code genera-
tion and then code execution. Our method follows
the Y-Chart approach [39] to partition the sys-
tem between hardware and software: application
and platform are modeled independently before
the application is allocated to the platform. PLAN
then builds a dependency graph to simplify model
analysis, as explained in the next section. The exe-
cution trace analysis answers whether the latency
requirement is satisfied. If not, then the analysis
classifies the transactions along the traces into cat-
egories to support the developer in her efforts to
determine the cause of the violation.

3.2 Formal definition of system
models

The following definitions capture the application,
the platform and the allocation of the considered
system.

Definition 1 HW/SW partitioning model
A HW/SW partitioning model m = 〈Fm,Pm,Am〉
is a 3-tuple with Fm an application model, Pm a
platform model and Am an allocation model.

In the sequel we always consider one model
at a time, thus indexes or parameters m will be
omitted.

Notations: An element of a HW/SW parti-
tioning is denoted xid where x is a letter associated
with its type (o for operator, h for hardware com-
ponent. . . ) and id is an integer that makes the
identifier unique. Ordered sequences of elements
are denoted 〈ei, . . . , ej〉 and we sometimes handle



Article Title 5

Execution  Trace

   HW/SW Partitioning Model

Application Platform

Allocation

Requirement
The latency between operator o

A
 and 

operator o
B
 should be less than 

maximum Latency (𝜆
max

)

OptionalFunc NoContention

MandatoryFunc Contention MandatoryOp

OptionalOp

OtherHardware

Requirement 
not satisfied

Dependency Graph

 P
re

c
is

e 
L

at
en

cy
 A

n
al

ys
is

 A
p

p
ro

ac
h

Model
Execution

(1)

   Execution 
 Trace 

 Analysis 
 (ETA)

Function Input
Legend

Function Output Analysis Function

Others

Requirement 
satisfied

(1) Model execution may require a model transformation first. 
However this transformation and execution is not part of our contribution 

Model

Graph
Builder

Fig. 1 Overview of PLAN

them as sets, using symbols ∈, ⊆, . . . By notation
abuse, ei ∈ seq means that ei is an element of
sequence seq, and eiej ∈ seq means that ei and ej
are consecutive in sequence seq.

3.2.1 Application

Definition 2 Application model
An application model is a 2-tuple F = 〈F, CC〉 of a set
of functions F and a set of communication channels
CC.

Figure 2 gives the graphical representation of
an application model with 5 functions (f1, . . . , f5)
and 3 communication channels (dc6, dc7, sc8).

Definition 3 Communication channel
A communication channel ccfi,fj links a writing func-
tion fi to a reading function fj . {DC,SC} is a partition
of CC. DC contains data channels and SC contains
synchronization channels.

f1

o10,Start

o12,IntOP

o11,WriteData

o13,Stop

o39,IntOP

o22,WriteData

f4

o35,Notify

o17,Choice

f3

o31,ReadData

o26,Choice

o28,IntOP

o29,Merge

o30,IntOP

o27,IntOP

f5

o38,Wait

o40,Stop

dc6 dc7

sc8

f2

o14,Start o25,Start

o33,Start o37,Start

o36,Stop

o32,Stop

o24,Stop

o16,ReadData

o15,IntOP

o18,IntOP o19,IntOP

o20,Merge

o21,IntOP

o23,IntOP

o34,IntOP

Legend

oid,cat

fid
Function Behavior

Control flow 

Operator

Function

Synchronization 
channel

Data channel

4 dc6

4

10

4 dc6

15 13

14

4

17 12

2

2

5

50

2 dc7

dc7

sc8

sc8

oid corresponding
data ch.

oid corresponding
Synchronization ch.  

oid Complexity

oid Data Amount

Fig. 2 Graphical representation of an application model

Figure 2 shows two data channels (dc6, dc7)
and one synchronization channel (sc8).

Definition 4 Synchronization channel
Following the semantics in [24], a synchronization
channel scfi,fj ∈ SCfi,fj supports the transmission of
control messages between two functions.

Definition 5 Data channel
Data channels model the quantity of exchanged data
between two functions, not the data values (they are
abstracted).

Definition 6 Function
A function is a 2-tuple f = 〈Vf , Bf 〉, where Vf is a set
of variables and Bf is a behavior.



6 Article Title

Definition 7 Function behavior
A behavior is a 2-tuple Bf = 〈Of , Cf 〉 where Of is a

set of operators and Cf ⊆ {(oi, oj) ∈ O2
f | oi 6= oj} is

the set of control flow connections of Bf .

Figure 2 shows the behavior of each function
where an operator is represented together with
its id and type (see Definition 12). Also, directed
arrows between two operators represent control
flow connections.

Definition 8 Set O of All Operators

O =
⋃
f∈F

Of

Definition 9 Dependencies between operators
D ⊆ O2 denotes the set of direct dependencies. oioj ∈
D means that oj directly depends on oi.
D = synChDep∪dataChDep∪controlFlowDep, where
synChDep (Definition 13) and dataChDep (Defini-
tion 14) relate to communication dependencies and
controlFlowDep (Definition 11) relates to control flow
dependencies.

Definition 10 Model dependency path
A dependency path is a finite sequence of operators
such that for any pair of consecutive operators oi and
oj in the sequence, oioj is a direct dependency in D.
−−→
oioj denotes a dependency path having oi as first oper-
ator and oj as last one. DP−−→oioj

denotes the set of all
dependency paths between oi and oj .

Notations: by notation abuse ∀−−−→oi, oj and ∃−−−→oi, oj
respectively abbreviate ∀−−−→oi, oj ∈ DP−−−→oi,oj and

∃−−−→oi, oj ∈ DP−−−→oi,oj .

Definition 11 Control flow dependency
(controlFlowDep)
c = (oi, oj) ∈ Cf denotes an oriented control flow con-
nection from oi to oj , as defined in Definition 3.2.1.
In the application model, we say a control flow depen-
dency oioj exists from operator oi to operator oj if and
only if there exists a control flow connection between
them.

controlFlowDep =
⋃
f∈F

Cf

In Figure 2, o10o11, o11o12 and o12o13 are
example of control flow dependencies.

Definition 12 Types of operators
Operators belong to one of the following types:
Start, Stop, Choice, Merge, IntOp, Set, WriteData,
ReadData, Notify, Wait or Loop.

• Start: start of control flow. The Start operator is

unique in a function behavior. This operator repre-

sents the first operator to be executed by function

f and is denoted by Stf .
• Stop: end of control flow.
• Choice: selects one control flow among the next ones

whose guard is true. If no guard is true, then the

choice operator blocks. Only choice operators can

have more than one next operator.
• Merge: merges together several execution flows. The

merge operator is the only one that can have several

previous operators.
• IntOp: abstracts computations by specifying the

complexity of the operation in terms of, e.g., integer

operations. Said differently, the computation steps

of algorithms are not provided: only an estimation

of the amount of corresponding integer operation is

used.
• Set: assigns a value to a variable.
• WriteData, ReadData: writes/reads an amount of

data to/from a data channel.
• Notify, Wait: sends a message or waits for a message

in a synchronization channel.
• Fixed Iteration Loop: iterates a number of times on

a set of operators called insideLoop operators. The
fixed number of iterations is a parameter of this
operator. Also, loops created without using the
loop operator, that is created by using merge
and choice operators are not supported. Said
differently, cycles in models can only be created
using the loop operator.

If o is a Notify or Wait operator, getSyncCh(o)
denotes the corresponding synchronization chan-
nel. Similarly, if o is a ReadData or WriteData
operator, getDataCh(o) denotes the data channel.

Property 1 Control flow connection constraint
When there is a control flow connection between two
operators (oi, oj) ∈ Cf then, (oj , oi) /∈ Cf .

Property 2 Well-formed function For each o ∈ Of ,
there must exist at least one control flow dependency
path from the start operator Stf to o.



Article Title 7

Definition 13 Synchronization channel dependency
(synChDep)
If there exists a synchronization channel sc between
two functions fi and fj , then for all operators oi
of fi and oj of fj such that oi sends messages on
sc and oj receives messages from sc, then oioj is a
synchronization channel dependency.

synChDep =
⋃

fi,fj∈F
{(oi, oj) ∈ Ofi ×Ofj |

type(oi) = Notify ∧ type(oj) = Wait

∧ getSyncCh(oi) = getSyncCh(oj)}

In Figure 2, o35 sends one synchronization
message on sc8 and o38 receives one synchro-
nization message from sch8. Thus, o35o38 is a
synchronization channel dependency.

Definition 14 Data channel dependency
(dataChDep)
If there exists a data channel dc between two functions
fi and fj , then for all operators oi of fi and oj of fj
such that oi writes on dc and oj reads from dc, oioj is
a data channel dependency.

dataChDep =
⋃

fi,fj∈F
{(oi, oj) ∈ Ofi ×Ofj |

type(oi) = WriteData ∧ type(oj) = ReadData

∧ getDataCh(oi) = getDataCh(oj)}

For instance, in Figure 2, o11 writes on dc6 and
o16 reads from dc6. Thus, o11o16 is a data channel
dependency.

3.2.2 Platform

Definition 15 Platform model
A platform model P = 〈H,L〉 is a set of hardware com-
ponentsH and a set of links L. A hardware component
represents the physical electronic component plus its
support software, e.g., a processor and its operating
system. We consider three different kinds of hardware
components: execution, communication and storage.
They respectively belong to subsets HE , HC and HS .
{HE ,HC ,HS} is a partition of H.

Figure 3 depicts three HE hardware compo-
nents h41, h42 and h43, one HC hardware compo-
nent h44, one HS hardware component h45 and
links l46 = (h41, h44), l47 = (h42, h44), l48 =
(h43, h44), l49 = (h44, h45).

h41,ExecHC h42,ExecHC h43,ExecHC

h44,CommHC h45,StoreHC

f1 f3f2 f4 f5

dc6 dc7 dc6 dc7

Legend
Hardware 
component
Allocationl46

l47
l48

l49

Slave
LinkidMaster

hid,Cat

Fig. 3 Graphical representation of an allocation model

Definition 16 Links
A link is a 2-tuple (hi, hj) of hardware components,
at least one of which is a communication component:

L ⊆ HC ×H ∪H×HC

In Figure 3, L = {(h41, h44), (h42, h44),
(h43, h44), (h44, h45)}.

Definition 17 Communication path
A write path πw = 〈hi, . . . , hj〉 is a sequence of hard-
ware components linked together, starting with an
execution component and ending with a storage com-
ponent. A read path πr = 〈hi, . . . , hj〉 is a sequence
of hardware components linked together, starting with
a storage component and ending with an execution
component.

πw = 〈hi, . . . , hj〉, ∀hkhl ∈ πw, (hk, hl) ∈ L,
hi ∈ HE , hj ∈ HS , ∀hk 6=i,j ∈ πw, hk ∈ HC

πr = 〈hi, . . . , hj〉, ∀hkhl ∈ πr, (hk, hl) ∈ L,
hi ∈ HS , hj ∈ HE , ∀hk 6=i,j ∈ πr, hk ∈ HC

A write path πw and a read path πr form a communi-
cation path cP = 〈πw, πr〉 ∈ CP if and only if the last
component of πw is the first component of πr.

In Figure 3, πw = 〈h41, h44, h45〉 is a write path
and πr = 〈h45, h44, h43〉 is a read path.

3.2.3 Allocation

Definition 18 Allocation
Functions and their communications must be allocated
to hardware components. Functions are allocated to
HE hardware components while data channels are
allocated to communication paths. We assume in our
model that synchronization channels do not generate
significant traffic and we thus ignore their allocation.

Formally, we define allocations as 2-tuples of total

functions A = 〈
−→
Af ,
−−→
Adc〉 with

−→
Af : F → HE and

−−→
Adc : DC → CP .

Figure 3 shows an allocation of the application
of Figure 2 to a platform with one communica-
tion, one storage and three execution components.



8 Article Title

Functions f1 and f2 are allocated to h41, func-
tion f3 to h42 and functions f4 and f5 to h43

while data channels dc6 and dc7 are allocated to a
communication path containing h44 and h45.

Property 3 Valid allocation

Let fi, fj ∈ F and hi =
−→
Af (fi), hj =

−→
Af (fj) and

dcfi,fj ∈ DC a data channel between fi and fj . Then,
dcfi,fj can be allocated to a communication path cP =
〈πw, πr〉 if and only if the first component of πw is hi
and the last component of πr is hj .

3.3 Trace generation

We now define the notion of traces and occurrences
of operators from a model execution. An execution
engine must provide HW/SW partitioning mod-
els with an operational semantics, i.e. it has to
provide the hardware components with all the nec-
essary behaviours to execute the application, e.g.,
scheduling policies must be used by the engine
to schedule tasks on processors and to perform
transfers on buses while respecting the maximum
capacity of these buses (i.e., throughput). A model
execution generates one execution trace for a given
model.

Definition 19 Execution trace
An execution trace for a time interval [0, τ ] is a
sequence x = 〈ti, . . . , tj〉 where each t ∈ x is an
execution transaction with start and end times in
[0, τ ]. Transactions in an execution trace are ordered.
The ordering is based on a unique sequence number
assigned to each transaction by the execution engine.

Table 1 gives one possible execution trace for
the application model of Figure 2, with allocation
model of Figure 3, for a time interval [0, 50]. This
example will be referenced as “our main exam-
ple” in the sequel. As the execution of Start, Stop,
Choice, Merge and Set operators is assumed to
take no time, their execution is not represented in
the trace. The id field corresponds to the opera-
tor indexes of Figure 2. Other fields are explained
below.

Definition 20 Execution transaction
An execution transaction t = 〈seqt, τst , τet , ht, ot〉 rep-
resents an execution of operator ot on a hardware

component ht. A transaction has a sequence number
seqt, a start time τst and an end time τet ≥ τst .

The order defined by seq is strict and total on x.
Moreover, a transaction must always be before any
transaction with a higher start time and two trans-
actions having the same start time must be ordered
according to their end time. A transaction can have
the same start time τst and end time τet .

Definition 21 ith Occurrence of operator o in x
As transactions are provided with an order in the
execution trace, it is clear to speak about the ith

occurrence to,i of the operator o in the execution trace
x.

Property 4 System execution constraints.
A trace x ∈ EXEC(m, τ) must fulfill the following

constraints so we can analyze it:

• Loops are unrolled. Since they have a fixed num-
ber of iterations, each operator o inside a loop
can be replaced by a set of equivalent operators
oi, ..., oj .

• Only one operator at a time can be executed on
a given hardware component.

• If a read or write path of a communication
path is allocated to hardware components with
different throughputs, the overall communica-
tion throughput is constrained by the hardware
component having the minimum throughput.

Hypothesis 1 Execution engine. We assume that the
execution engine complies with all the model depen-
dencies and constraints we have defined before.

3.4 Requirements on model
execution

Generally, a requirement expresses a property on
the system. Usually, it is a goal or an anti-goal
that the system must satisfy. Requirements are
expected to be satisfied for all possible execution
traces.

Definition 22 Maximum latency requirement
Latency requirements specify timing constraints on
the execution of a system. A maximum latency
requirement r specifies a maximum delay between ele-
ments of execution traces, characterized by their oper-
ators. We assume that a maximum latency require-
ment is expressed as ”The maximum latency between



Article Title 9

Table 1 Execution trace in tabular format

seq 5 6 7 8 11 12 14 15 17 20 21 23 25 27 28 29 32 33 34
id 34 15 27 35 38 39 11 11 12 16 16 18 30 21 22 22 31 31 23
h 43 41 42 43 43 43 41 44 41 44 41 41 42 41 41 44 44 42 41
τs 0 0 0 5 6 7 10 10 11 15 15 16 17 31 45 45 46 46 46
τe 5 10 17 6 7 57 11 11 15 16 16 31 19 45 46 46 47 47 50

operator oA and operator oB should be less than
λmax”. A maximum latency requirement is denoted
as: r = 〈oA, oB , λmax〉.

r = 〈o11, o31, 35〉 is a latency requirement
which completes our main example. It is violated
by execution trace in Table 1, as

τeto31,1
− τsto11,1

= 47− 10 = 37 > 35

3.5 Valid execution traces

PLAN can analyze only valid execution traces,
defined as follows.

Definition 23 Valid execution traces
Em denotes the set of all possible execution traces of
model m and EV ⊂ Em the set of all valid execution
traces, i.e. traces on which the analysis technique can
be applied. Execution traces are valid only if they sat-
isfy Hypothesis 2 and Hypothesis 3 given below. Some
of these assumptions are discussed in Section 7.

In the scope of this paper, we are concerned
with operators which depend on each other. In
other words, we assume that the two operators
of a given maximum latency requirement are
dependent since a maximum latency requirement
between 2 independent operators is of little inter-
est. So, there must exist at least one dependency
path between operators oA and oB . There may be
several. The executed operators that are in depen-
dency paths between oA and oB are one of the
main parameters to classify transactions.

Hypothesis 2 Limitation on the occurrence of oper-
ators. Valid execution traces must have the two
following properties.

First. The execution trace must contain exactly
one transaction corresponding to operator oA and one
transaction corresponding to operator oB . In fact,
when these transactions rely on a channel that is
mapped on a hardware path with several components,

they may be decomposed into several transactions
sharing a same timing: one per component (see for
example to11,1 and to11,2 in Table 1). In this case, we
consider the first of them. Thus, in the sequel, toA and
toB will respectively abbreviate toA,1 and toB ,1.

Second. A dependency path between oA and oB
must have been selected by the execution engine and
executed. More formally, let us define sequences of
operators ”included” in an execution trace x:

opSeq(x) =

{〈oi1 , · · · , oin〉 | ∃{t1, · · · tn} ⊆ x,
∀k ∈ [1, n], otk = oik

∧ ∀k ∈ [1, n− 1], seqtk < seqtk+1}

In other words, according Hypothesis 2, an execution
trace is valid only if there is at least one dependency
path from oA to oB included in x:

x ∈ EV ⇒ ∃−−−→oAoB ,
−−−→oAoB ∈ opSeq(x)

Thus, executions in which toB is not linked to
toA by a dependency path are rejected. Moreover,
to enforce a dependency path, two transactions
corresponding to two consecutive operators in the
same dependency path must not overlap. That
is the end time of the first transaction must be
smaller than the start time of the second one.
Hypothesis 3 is an over approximation of this.

Hypothesis 3 Transactions in the same dependency
path are not interleaved.

x ∈ EV ⇒∀−−−→oAoB ∈ opSeq(x), ∀oioj ∈ −−−→oAoB ,

∀(toi,n, toj ,m) ∈ x2,

τstoj,m > τetoi,n ∨ τ
s
toi,n

> τetoj,m

From now on, we assume that Hypotheses 2
and 3 are fulfilled and that an execution trace x
is thus always valid.



10 Article Title

4 Precise Latency Analysis
Approach: categorization

4.1 Execution trace analysis

When a requirement is not satisfied, human anal-
ysis of bulk transactions may be tedious if not
unfeasible, especially when there are many trans-
actions. Our execution trace analysis classifies
transactions into categories in order to help under-
stand the causes of the violation. Definition 24
lists the categories we identify. These categories
are called impact sets as the classification relies
on the impact of transactions on latency. As
they form a partition, they are exclusive and
exhaustive.

Definition 24 Execution trace partition
We classify transactions of an execution trace

x into the following categories, called impact sets:
MOPx (mandatory operator), OOPx (optional oper-
ator), MFx (mandatory function), OFx (optional
function), Cx (contention), NDCx (no direct con-
tention), OHx (other hardware), Ox (Others).{
MOPx, OOPx,MFx, OFx, Cx, NDCx, OHx, Ox

}
is

a partition of the transactions of an execution trace x.
For short we will denote MOPx, OOPx, . . . as MOP ,
OOP , . . . .

The choice of these categories is a strong
heuristic. In practice, the set of all transactions
from the beginning of the trace that have an
impact on latency may be very large. We there-
fore consider an impact as an effect on the date
at which the impacted transition t can start. As
soon at there are shared ressources (in particular
scheduling), most transactions are delayed with
respect to their ideal starting date (their ideal
starting date is when there is no concurrence).
When a transaction is delayed, it directly delays
all transactions depending on it. And that goes
double when considering indirect impact, where
a transaction t delays a transaction t′ which in
turn delays another transaction t′′, and so on. To
avoid having to classify transactions acording to
potentially longs chains of delaying dependencies,
we decided to focus on the transactions that are
the most ”close” to the latency requirement under
analysis. This choice has been relevant for the case
study we present in section 6, but may obviously
be questionable for larger or different systems.

We intend to consider a longer set of delaying
dependencies in our future work.

Intuitively, for a trace x and a requirement
〈oA, oB , λmax〉, our focus is the following one (sets
are formally defined in following sections):

• All categories except O only contain transac-
tions that execute between toA and toB .
O contains all other transactions.

• DP = MOP ∪OOP ∪MF ∪OF contains trans-
actions of x that execute after toA and before toB
because of control flow or data communication
dependency to toB . Some of them (MOP and
MF ) are mandatory: they occur in any trace
containing toA and toB . The other ones (OOP
and OF ) are optional: they occur because some
choice operators branch has been taken in x
but could be absent in another trace. They are
relevant because delaying one of them automat-
ically delays toB and indentifying which ones
have been strongly delayed may be interesting.

• C contains transactions that delay some trans-
action of DP because they concurrently execute
on the same hardware, just before.

• NDC and OH contain transaction that do not
directly delay any transaction of DP because
they do not execute immediately before, or they
execute on another hardware.

Thus analysis consists in first looking at DP
and C, which is often sufficient to locate a prob-
lem. Once a disruptive transaction t has been
identified, it is possible to search indirect impacts
(in sets NDC, OH and O) that have delayed t in
an indirect manner, as explained in section 4.2.8
(implementation of this feature is future work).

Notice also that we consider a direct depen-
dency from any Read operator to any Write
operator on the same channel although there is not
always a one-to-one correspondence between Read
and Write operators at execution. In figure 4, the
dashed arrows represent over approximations of
data dependencies. Let us first consider case (A),
with two write operators: the first writes 2 sam-
ples, and the second 3 samples. The read operators
reads 5 samples. Since we consider dependencies
for the general case, i.e. all read operators of a
channel depend on all write operators of the same
channel, in our example, this leads us to consider
the operator O as optional although it is manda-
tory (The read needs the two write operators to be



Article Title 11

f1 f2

Write 2

Write 3

O

Read 5

f1 f2

Write 5

Write 3

O

Read 5

(B)(A)

Fig. 4 Data dependency approximation

performed to complete), because there is a path
(the green path) that does not contain O. In case
(B), right, O is considered as optional because it
is on a path (the red path, left): in this case, how-
ever, O should neither be mandatory nor optional
for the considered paths.

Nonetheless, for numerous applications (in
particular in signal processing), we do need this
one-to-one correspondence, with the same amount
of samples on both sides: in that case, there is no
approximation. A way to avoid all these approx-
imations is to have only one write and one read
operator per channel, with the same amount of
samples written/read.

Finally, as often in static analysis, our algo-
rithms does not evaluate guards of choices oper-
ators. Thus we do not detect branches that can
not be executed because guards are always false.
Thus, some mandatory operators (from the exe-
cution point of view) are tagged as optional (from
the logical dependency point of view).

4.2 Impact sets in Detail

This section provides the definitions that decide
to which impact set a transaction to of a trace
x belongs. We remind that our approach relies
on a trace that has been generated by an execu-
tion engine: even though a lot of information of
the input model is not used by the classification
exposed in this section, this (semantical) informa-
tion has been taken into account by the execution
engine to generate the trace to be analyzed.

In the sequel, all definitions are parametrised
by the same data which are the parameters pro-
vided to the execution engine and the resulting
trace. To avoid repeating them many times, we
rely on the following convention.

hi

hj

t
i

t
j

τ
s
ti τ

e
tj

Start time range End time rangeLegend

Hardware 
components

Execution time

Fig. 5 Illustration of the cross function

Convention All following definitions rely on

• a model m
• a latency requirement with operators oA and oB
• a trace x containing toA and toB
• a transaction to in x for which an Impact set must

be selected.

o is the operator of to

We use the following notation:

Definition 25 Function of an operator
Function getF takes an operator o as input and
returns the unique function f to which operator o
belongs:

getF (o) = f | o ∈ Of

Also, since we focus on transactions that are
executed between oA and oB , we rely on the
following definition:

Definition 26 Transaction Executes Between Two
Transactions
A transaction t is said to execute (at least partially)
between two transactions ti and tj if t ends after the
start time of ti and t starts before the end time of
tj . Formally, function cross characterizes sets of such
transactions.

cross(ti, tj) = {t ∈ x | τet > τsti ∧ τ
s
t < τetj}

Figure 5 shows two transactions ti and tj .
Transactions that start in the pink range and end
in the green range execute between ti and tj .

4.2.1 On Path sets

MOP and OOP are called On Path sets since
dependency paths between oA and oB are of



12 Article Title

utmost importance to identify transactions of
these sets. Transactions with operators in depen-

dency paths
−−−→
oAoB executed between toA and toB

are in one of the On Path sets. Some of these
operators are mandatory, as at least one path con-
taining them must be executed between oA and
oB . The other ones are optional.

Definition 27 In-Dependency Between Operators
Let oi and oj be operators, and let ST =

⋃
f∈F Stf

be the set of start operators of functions.

Operators that may have to be executed between oi
and oj are characterized by Dop:

if oi = oj then Dop(oi, oj) = {oi}
else if oj ∈ ST then Dop(oi, oj) = ∅
else Dop(oi, oj) =⋃

o′∈pred(oj),Dop(oi,o′)6=∅({oj} ∪Dop(oi, o
′))

Some of them are mandatory, characterized by Mop:

if oi = oj then Mop(oi, oj) = {oi}
else if oj ∈ ST then Mop(oi, oj) = ∅
else
if oj is a merge operator then
let Θ =

⋂
o′∈pred(oj),Dop(oi,o′)6=∅Mop(oi, o

′).

if Θ = ∅
then Mop(oi, oj) = ∅
else Mop(oi, oj) = Θ ∪ {oj}

else Mop(oi, oj) =⋃
o′∈pred(oj),Mop(oi,o′) 6=∅({oj} ∪Mop(oi, o

′)})
The other ones are optional, characterized by Oop:

Oop(oi, oj) = Dop(oi, oj)\Mop(oi, oj).

Lemma: for any oi, oj , Mop(oi, oj) ⊆ Dop(oi, oj)

and thus, (Mop(oi, oj), Oop(oi, oj)) is a partition of

Dop(oi, oj).

In requirement r = 〈o11, o31, 35〉 (operators
are defined in Figure 2), we are interested in the
delay between sending data in f1 and receiving
data from f2 in f3. o11 writes data to dc6 and o16

reads from dc6. Similarly, o22 writes to dc7 and o31

reads from dc7. As o17 is a choice there are two
dependency paths between o11 and o31 denoted as
−−−→
o11o31

1

and
−−−→
o11o31

2

.

−−−−→
o11, o31

1

= o11, o16, o17, o18, o20, o21, o22, o31

−−−−→
o11, o31

2

= o11, o16, o17, o19, o20, o21, o22, o31

So, between o11 and o31, operators o11, o16, o17,
o20, o21, o22 and o31 are mandatory as they must

execute, while operators o18 and o19 are optional
as they may execute.

Definition 28 MOP (Mandatory Operator transac-
tion set)
to belongs to MOP if and only if operator o is a
mandatory operator between operators oA and oB and
to executes between oA and oB .

to ∈ cross(toA , toB ) ∧ o ∈Mop(oA, oB)

⇐⇒ to ∈MOP

Definition 29 OOP (Optional Operator transaction
set)
to belongs to OOP if and only if operator o is an
optional operator between oA and oB and to occurs in
the execution of a dependency path between oA and
oB .

to ∈ cross(toA , toB )\MOP ∧
( ∃−−−→oAoB ∈ opSeq(x), o ∈ −−−→oAoB)

⇐⇒ to ∈ OOP

Thus, in the example in Figure 2, transactions
between t11 and t31 executing o11, o16, o17, o20 or
o21 are in MOP while transactions executing
o18 and o19 may be in OOP (or not, depending
on which one has been executed in the anal-
ysed trace). Thus, for the trace in Table. 1,
{t16,1, t16,2, t21,1, t22,1, t22,2} ⊂ MOP and t18,1 ∈
OOP . Notice that Definition 29 is a little bit more
complex than Definition 28 because the optional
path between oA and oB that contains o must have
been executed (o2 in example of Figure 6, section
4.2.3 illustrates this).

4.2.2 In Functions sets

Operators which have transactions in x and are
in an executed dependency path between oA and
oB can not execute before their previous operators
in their functions are executed. So, for each oi in
On Path sets, the execution trace x must contain
transactions with operators in a dependency path
from Stf to oi, where f = getF (oi).

The same applies for synchronization and data
channel dependencies. For instance, let fi and fj
be two functions, and oi an operator of fi in an
executed dependency path from oA and oB . Let
o′i be a Wait operator on an executed dependency



Article Title 13

path
−−−→
Stfioi, depending on Notify operator oj of fj .

Then oj and its predecessors must have completed
their execution before oi starts executing. More
generally this characterization relies on operators
that must or may be executed before oB with
respect to dependency paths and function control
flows.

Definition 30 In-Dependency Operators
Let o be an operator, and pred(o) = {o′|o′o ∈ D}
Operators that may have to be executed before o w.r.t.
dependency are characterized by Df :

Df(o) = {o} ∪
⋃

o′∈pred(o)Df(o′)

Some of them are mandatory, characterized by Mf :

if o is a merge operator then
Mf(o) = {o} ∪

⋂
o′∈pred(o)Mf(o′)

else Mf(o) = {o} ∪
⋃

o′∈pred(o)Mf(o′)

The other ones are optional, characterized by Of :

Of(o) = Df(o)\Mf(o).

Thus, just like for On Path sets, In Function
sets contain transactions with operators that may
be mandatory or optional.

Definition 31 MF (Mandatory Function transac-
tions set)
to belongs to MF if and only if it does not belong to
MOP or OOP and o is a mandatory operator before
oB :

to ∈ cross(toA , toB )\(MOP ∪OOP ) ∧ o ∈Mf(oB)

⇐⇒ to ∈MF

For instance, let us consider requirement
〈o11, o31, λmax〉, operators being taken from the
model given in Figure 2. Operator o16 is manda-
tory between o11 and o31. Also, operator o15 has
to be executed since it belongs to the only depen-
dency path between Stf2 and o16. Thus to15,1 ∈
MF .

Let us now consider 〈o15, o21, λmax〉. o16 is
mandatory between o15 and o21 and o10 and o11

are on all paths from o10 to o16. Thus o10 and o11

are in MF .

Definition 32 OF (Optional Function transactions
set)
to belongs to OF if and only if it does not belong to
MOP , OOP or MF and there exists a dependency
path from o to oB executed in x:

to ∈ cross(toA , toB )\(MOP ∪OOP ∪MF )∧
∃−−→ooB ∈ opSeq(x)⇐⇒ to ∈ OF

For instance in Figure 2, let us consider
requirement 〈o22, o31, λmax〉 and the trace given
in Table. 1. o31 ∈ MOP and there are two paths
from Stf3 to o31. o26 belongs to both, thus to26,1
is in MF . o27 belongs to only one, thus to27,1 is in
OF .

4.2.3 Dependency path transactions

This section summarizes the four previous impact
sets, which classify transactions in x executed
between oA and oB and that have at least a depen-
dency path to oB . We now propose to classify
transactions that delay any of them. To simplify
the definition of these delays, we consider a global
set for these four impact sets:

Definition 33 DP (Dependency Path transactions)

DP = MOP ∪OOP ∪MF ∪OF
Lemma: respecting notation of convention p. 11,

DP = {to ∈ x | DP−−→o oB
∩ opSeq(x) 6= ∅}

∩ cross(oA, oB)

Figure 6 presents a simplified example to
shortly illustrate the four impact sets. Operator
o3 is in all pathes from oA to oB thus in MOP . If
they are executed before oA in the executed exe-
cution trace, o1 and o4 are not in DP because
they are not in cross(oA, oB). Otherwise they are
respectively in MF and OF because o1 is manda-
tory before oB but not o4 . If the trace contains
the left green path, o2 is in MF if it is executed
after oA. Indeed, it is mandatory before oB but
not in any executed path from oA to oB . If the
trace contains the right red path, o2 is in OOP as
it is in a dependency path that has been executed
but it is not mandatory due to the existence of the
left green path.



14 Article Title

Read

o
1

o
2

o
3

o
B

f
2

o
A

f
1

o
4

f
3

Wait(n)

n>5else

n>5 else

Write Write

Notify(n)

n>5else

Read Read Write

Fig. 6 A summary example for MOP/OOP/MF/OF sets

4.2.4 Contention delay

We are now interested in transactions that delay
other transactions, in particular when this delay is
caused by a contention. Contentions occur when
transactions of two concurrent functions want to
use the same execution hardware or the same com-
munication hardware at the same time. In this
situation, one of the two functions is delayed until
the requested resource is available.

In order to identify transactions that have been
delayed, we propose to compare actual execution
dates with the ones obtained in an ideal model
where each transaction has exactly its expected
duration1 and starts exactly when the last trans-
action it depends on terminates2. Our ideal model
relies on the use of one processor for each function,
and we assume buses can carry all the necessary
samples without delay, i.e. their data width is set
to the sum of the data widths of all channels
mapped on them.

1computed from its specified complexity and hardware car-
acteristics (bus throughput, CPU frequency, . . . )

2By exactly, we mean that there is no other transaction
between.

Definition 34 Best Start Execution Date (BSED)
BSED(t) is the earliest possible start time of transac-
tion t, obtained by executing exactly the same oper-
ators on the same dependency paths but considering
the ideal model.

Definition 35 Best End Execution Date (BEED)
BEED(t) is the earliest possible end time of transac-
tion t, obtained by executing exactly the same oper-
ators on the same dependency paths but considering
the ideal model.

A transaction is delayed if its start and/or end
time is higher than the one in the ideal model. A
transaction delays another transaction if it uses
the same hardware and its end time is between
the ideal value and the obtained value of the
delayed transaction. This leads to the following
definitions3.

Definition 36 Delayed Transactions
Let T ⊆ x be a set of transactions of trace x,
• start delay:
sDelayed(T ) = {t ∈ T | BSED(t) < τst }
sDelaying(T ) = {t′ ∈ x | ∃t ∈ sDelayed(T ),

ht
′

= ht ∧ BSED(t) ≤ τet′ ≤ τ
s
t }

• end delay:
eDelayed(T ) = {t ∈ T | BEED(t) < τet }
eDelaying(T ) = {t′ ∈ x | ∃t ∈ eDelayed(T ),

ht
′

= ht ∧ BEED(t) ≤ τet′ ≤ τ
e
t }

• delay:
Delayed(T ) = sDelayed(T ) ∪ eDelayed(T )
Delaying(T ) = sDelaying(T ) ∪ eDelaying(T )

4.2.5 Contention set

A transaction is in the contention set C if it
directly causes a delay in the execution of a
transaction in DP (Definition 33).

Definition 37 Contention set (C)
to belongs to C if and only if it was executed between
toA and toB and it delays some transaction in DP .
Formally,

to ∈ cross(toA , toB )\DP ∧ to ∈ Delaying(DP )

⇐⇒ to ∈ C

3Reminder: definitions rely on notations provided in conven-
tion p. 11



Article Title 15

h1 t

BSED(t) BEED(t)

t
t

time

o

τsto τeto τetτst

Fig. 7 Graphical representation of an example where a
transaction t0 is classified in the Contention set

h1 t

BSED(t) BEED(t)

t

τteτts

t

τte time

o

o

Fig. 8 Graphical representation of an example where a
transaction t0 is classified in the No Direct Contention set

Figure 7 shows a situation where a transaction
t is delayed by to, both using the same hardware
h1. If transaction t is in DP but to does not belong
to this set, then to is in the contention set.

In our main example (Table. 1), to12,1 does
not belong to DP . Transaction to16,2 executes on
the same hardware (h41) and is delayed. We have
τeto12,1

> BSED(to16,2) and τeto12,1
= τsto16,2

. Thus
to12,1 belongs to the contention set.

4.2.6 No Direct Contention set

There are also transactions that run on a hard-
ware used by a transaction in DP but that do
not directly delay transactions in DP . These
transactions are said to cause no direct contention.

Definition 38 No Direct Contention set (NDC)
to belongs to NDC set if and only if it is exe-
cuted between toA and toB on a hardware used by
a transaction in DP and it is not in DP nor in C.
Formally,

to ∈ cross(toA , toB )\(DP ∪ C) ∧ ∃t ∈ DP, hto = ht

⇐⇒ to ∈ NDC

Figure 8 shows a case where a transaction t is
delayed. However, t is not delayed by to although
to runs on the same hardware.

Let us come back to our main example with
the latency requirement 〈o11, o31, 35〉, see Table. 1.
By computing dependency paths, one can prove

OA OB

t4t7

t5t6

t1 t2 t3
dependency

path

hardware h1

hardware h2

h3 h1 h2

Fig. 9 Example of NDC transactions

that to23,1 does not belong to DP . It executes on
h41 but does not delay any transaction in DP
running on this hardware. Thus, it belongs to
the No Direct Contention set. Another case for
transactions being classified in NDC: transactions
delaying at least one transaction in C but delay-
ing no transactions in DP are in the No Direct
Contention set (i.e., their impact is indirect).

Figure 9 illustrates two simple cases for trans-
actions to be in NDC. In this example, blue trans-
actions (t1, t2, t3) are in DP . Pink transactions
(t4, t5) are in C as t5 delays t2 on hardware h1
and t4 delays t3 on hardware h2. Yellow transac-
tions (t6, t7) are in NDC as they execute between
oA and oB on hardware used by blue transac-
tions but do not directly delay any of these blue
transactions. This illustrates that transactions in
NDC may have indirect impact (t6 delays t5) or
no indirect impact (t7 does not delay t4).

4.2.7 Other Hardware set (OH)

Other transactions executed between toA and toB
are those whose corresponding hardware compo-
nent is not used in DP . They are in the Other
Hardware set.

Definition 39 Other Hardware set (OH)
to belongs toOH if and only if it was executed between
toA and toB on a hardware that is not used in DP .
Formally,

to ∈ cross(toA , toB ) ∧ ∀t ∈ DP, hto 6= ht

⇐⇒ to ∈ OH

In our main example (Table. 1), to39,1 is exe-
cuted between o11 and o31 on h43 which does not
support any transaction of DP (these transactions
are in C or NDC). Thus, to39,1 is in OH.

4.2.8 Others set

The last impact set contains the remaining trans-
actions, i.e. the transactions that are not executed



16 Article Title

between toA and toB . In our example, only to23 is
in O.

Definition 40 Others set (O)
to belongs to O if and only if it does not execute
between toA and toB . Formally,

to /∈ cross(toA , toB ) ⇐⇒ to ∈ O

Clearly, transactions that execute after the
latency interval do not have any impact on this
latency. Transactions that execute before toA may
have some indirect impact. This is also the case
for transactions in NDC and OH (which exe-
cute between toA and toB ). Such transactions are
numerous and often less relevant w.r.t. the goal
of finding delay causes. Thus we do not classify
them more finely. However, with some enhance-
ment of the tool, they could be explored in a
user-guided way. For this, we can rely on Defi-
nition36 on delaying transactions. Once we have
identified a transaction t which directly impacts
the latency, if t itself is delayed in a way that
disturbs us, we can further investigate by look-
ing at Delaying({t}), for example, and continue
recursively if necessary. More globally, we could
build combined requests such as Delaying(C)\C,
or Delaying(C) ∩ cross(oA, oB),etc
Lemma.{
MOPx, OOPx,MFx, OFx, Cx, NDCx, OHx, Ox

}
is

a partition of the execution trace x, thus Definition 24

is well defined.

5 Application to UML/SysML

The objectives of this section is to show how
PLAN was implemented to provide the categoriza-
tion results to the designer in a user-friendly way.
It discusses how our formal model maps to SysML
diagrams.

5.1 Application to UML/SysML

For SysML diagrams, we selected TTool [3] and
SysML-Sec [7] developed in our lab. SysML-Sec
follows the Y-Chart approach [38]. In the appli-
cation model, functions are defined as SysML
blocks (green blocks) and variables of a function
are attributes of blocks. Functions of the example
given in Figure 2 are shown in Figure 10. Figure 10
also captures communications between functions

f1 f3f2

dc6 dc7

f4 f5

sc8

Fig. 10 Functions of the example in Figure 2

with an Internal Block Diagram. Synchronization
ports are in purple while data ports are in blue.

The behavior of a function can be captured
with extended SysML Activity diagrams, thanks
to its built-in operators and control flow con-
nections. Operators of functions are mapped to
SysML elements as shown in Table 2. Operators
IntOp and Set are both mapped to actions of
activity diagrams. Notify and Wait operators are
modeled in violet, WriteData and ReadData oper-
ators in blue, Choice, Merge, IntOp and Set oper-
ators in green, Start and Stop in black. The Merge
operator is not directly supported by TTool, but
loops or OrderedSequence can be used for this.
OrderedSequence captures concurrent activities
which are synchronized with their end / start from
left to right. StaticForLoop executes a subactiv-
ity for a fixed number of times (Table 3). Finally,
Figure 11 shows the behavior of the functions of
Figure 10.

UML Deployment Diagrams or SysML allo-
cations can be used for platform and allocation
models. Execution, communication and storage
hardware components are shown in blue, brown
and green respectively (Figure 12, deployment
diagram). Functions are allocated to execution
hardware components and data channels are allo-
cated to communication paths (communication
and storage hardware components), for instance
using artifacts, as shown in Figure 12.

5.2 Model simulation

Simulation is one particular case of execution
using an environment that reproduces the behav-
ior of a model to produce an execution trace that
we call simulation trace.

Our HW/SW partitioning models can obvi-
ously be used as documentation but thanks to
the execution semantics provided to functions and
hardware components as explained in [41], we are
able to generate simulation traces or to generate



Article Title 17

10

[true] [false]

[ ]

15 13

>>

14

chl
dc6(4) 

chl
dc7(2)

4

chl
dc6(4)

4

17

[true] [ ]

[false]

>>

2

12

chl
dc7(2) 

5

evt
sc8()

evt
sc8() 

50

(f1) (f2)

(f3)

(f4) (f5)

Fig. 11 Behaviors of the functions of Figure 2

<<MEMORY>>
h45

f::dc7

channel

f::dc6

channel

<<CPURRPB>>
h41

f::f2f::f1

<<CPURR>>
h42

f::f3

<<BUS-RR>>
h44

f::dc6

channel

f::dc7

channel

<<CPU>>
h43

f::f5f::f4

Fig. 12 Allocation of the functions given in Figure 3

Table 2 Operators in TTool

cat(c) Graphical Representation

Start

Stop

Choice
[guard1] [guard2]

[ ]

WriteData
chl
data_channel(size)

ReadData
chl
data_channel(size)

Notify

sync_ch

Wait

sync_ch

IntOp

com
plexity

Set

x=
x+
1

Table 3 OrderedSequence and StaticForLoop operators
in TTool

Operator Graphical Representation

OrderedSequence
>>

branch1 branch2 branch3

StaticForLoop Loop 10 times
inside 
loop

exit loop



18 Article Title

reachability graphs. Getting a simulation trace is
generally fast, thanks to our high abstraction level
and to the advanced simulation techniques (e.g.
cutting of transactions). Among the abstraction
the simulator considers, data exchanges between
functions are modeled only with the amount of
exchanged data as explained in Definition 12.
Also, algorithms are modeled using IntOp opera-
tors with a complexity attribute used to specify
the processing complexity of the algorithm. This
is referred to as algorithm abstraction. Control
operators that are Start, Stop, Choice, Merge and
Set categories do not consume any clock cycles.
Also, in the platform model, the hardware com-
ponents are modeled as parameterized hardware
components. The throughput of a data channel is
determined by (1) the slowest hardware resource
along the communication path on which this data
channel has been allocated, (2) the quantity of
data to read or write and (3) the contentions on
execution, communication and storage hardware
components involved in a communication path.

These abstraction levels in the application and
platform models do not allow us to have a sim-
ulation in which we can execute in a precise
way just like it can be done for the lowest level
of abstraction, e.g., cycle-accurate, bit accurate
(CABA) [12].

In the scope of this paper, we assume that
the simulation produces one simulation trace (in
XML), and then we check in this trace whether a
given requirement is satisfied or not. In case the
requirement is not satisfied, the classification of
transactions is performed.

6 Tooling and evaluation

This section shows on a use case how our approach
can be efficiently applied to the analysis of simu-
lation traces obtained from SysML models.

6.1 Integration in TTool

TTool is a free and open-source tool support-
ing several UML profiles, including SysML-Sec.
TTool can simulate a model, can perform safety
or security formal verifications, and can generate
executable code. We have added PLAN to TTool,
both in its graphical interface and in its command
line interface.

Basically, TTool-PLAN takes as input a model
and a TTool simulation trace. In the model, we
assume that a designer has selected two opera-
tors between which the latency can be studied. In
Figure 13, we chose the WriteData operator in f1

and ReadData operator in f3. Then, PLAN first
generates a dependency graph, and then outputs
the transaction categories, see Figure 13.

As shown in previous sections, dependency
paths play an important role for the classifica-
tion of transactions. Thus, each time we ana-
lyze an execution transaction to know whether
it is related to another transaction, we need to
refer to the SysML partitioning model to search
for dependency paths. Unfortunately, computing
dependency paths directly from the SysML model
is costly since many elements are involved (con-
trol flows, data channels, . . . ) As this is done for
other domains just like compilers [42], we rely on
a dependency graph built from SysML models.
Gm = (Om,Dm) is the dependency graph associ-
ated to model m, with Om and Dm the vertexes
and directed edges of Gm defined with respect to
Definition 8 and Definition 9. This graph features
all logical dependencies thus making it possible to
apply well-known graph algorithms, such as the
shortest path algorithm. Thus, in TTool, the clas-
sification of transactions relies on Gm. [54] gives
the full algorithm on how to build Gm from a
SysML model. When relying on the graph rather
than the SysML model, transactions are classified
exactly as stated before. The only difference is in
how dependencies are searched for.

Several facilities help designers to analyze
the trace. For instance, with the Check Path
Between Operators button the designer can check
if a dependency path exists in the dependency
graph between two operators selected in the drop-
down lists. Show Directed Graph opens a separate
window showing the generated graph. The Com-
pute Latency button starts the computation of
latency values, stored in the Latency Values table.
Figure 13 corresponds to the latency in our exam-
ple in Figure 12. The designer can then run
Execution Trace Analysis (ETA) to analyze how
transactions impacted latency. Another window
displays the result of this analysis as a table of
classified transactions, as shown in Figure 14. In
this table, each row corresponds to one hardware
component in the system and each column rep-
resents a one-time slot in the simulation. The



Article Title 19

Fig. 13 PLAN window

Fig. 14 PLAN classification output for a latency value

3 sub-figures show different time slots. Transac-
tions are placed according to when and where they
were executed. The Mandatory OP (MOP ) trans-
actions are displayed in green, the Optional OP
(OOP ) transactions are displayed in bright pur-
ple, the Mandatory Func (MF ) transactions are
displayed in bright blue (cyan), the Optional Func
(OF ) transactions are displayed in light gray,
transactions that contributed to increasing the
latency value due to Contention (C) transac-
tions are colored in red, the NoDirectContention
(NDC) transactions are colored in orange and
finally those of OtherHardware (OH) are colored
in dark blue.

In our example, the IntOp operator in f1

caused contentions on the hardware component
h41.

6.2 Description of the use case

A specification of the industrial drive system—
defined in the scope of the H2020 AQUAS
project [1] [49]—is shown in Figure 15. The sys-
tem consists of 3 main components: Client, Motor
Control, and Motor. The Motor Control is further
split into 3 sub components: Server Control, Main
Loop and Motor Control Power. The Motor Con-
trol receives speed and direction data signals from
the Client through the Server Control and sends
them to the Main Loop. Once the data signals
have been read, the Main Loop notifies the Client
through Server Control by sending an acknowl-
edgment and runs an algorithm to generate PWM
(Pulse Width Modulation) signals. The PWM sig-
nals are then sent to the Motor Control Power.
The Motor Control Power transforms these sig-
nals into supply voltages and sends them to the
Motor. Main Loop periodically runs an algorithm
to monitor the speed and direction of the Motor
after reading the position data and current value
signals sent from the Motor via Motor Control
Power. In case an adjustment is needed, the Main
Loop sends updated PWM signals to the Motor
Control Power.



20 Article Title

MOTOR CONTROL 
C
L
I
E
N
T

M
O
T
O
R

SERVER
CONTROL MAIN LOOP MOTOR 

CONTROL 
POWER

Speed/Direction Voltage Position/CurrentPWM

E
N
C

E
N
C

D
E
C

V
O
T
E
R

ACK

Fig. 15 Specification of the Use Case: An Industrial Drive

Also, a Voter ensures safety by receiving
redundant position signals from the Motor, then
calculating their average. This average value is
sent to Motor Control Power. To ensure confiden-
tiality, position signals are encrypted. The system
must ensure that the latency between starting a
new iteration of the Main Loop and the Motor
receiving the supply voltages from the Motor Con-
trol Power is always below 55 µs; this constraint
is our latency requirement.

6.3 Model simulation and trace
analysis

In Figure 16, x is a variable in function
PWMtoPS. In Figure 16, a synchronization chan-
nel run Inter connects Interrupt to MainLoop,
and a synchronization channel PhaseSig and
a data channel PStoM connect PWMtoPS to
MotorF .

Figure 17 shows the allocation of the MotorF
function and the PStoM data channel. 56 µs
of the industrial drive execution have been sim-
ulated since this duration corresponds to the
latency requirement. Hardware components run at
200MHz. The obtained simulation trace contains
11888 transactions.

oA is the first operator of the main loop and oB
is the operator receiving of the voltage value of the
motor. These two operators and their respective
functions are shown in Figure 16: oA is the Wait
operator named run Inter() in MainLoop and oB
is the reading data operator named PStoM in
MotorF .

In the simulation trace, the start time of toA,1

is 2 and the end time of the toB ,1 is 11115. The
latency in this case is thus 11113 cycles (i.e., 55.56
µs) and the requirement is not satisfied. Let us use
PLAN to better understand this situation. Since
transactions are colored according to their cate-
gory, transactions involved in contentions are easy
to identify. In our use case, after generating a
dependency graph of 552 vertexes and 965 edges

Interrupt MainLoop
run_Inter()

...

PWMtoPS
MotorF

PhaseSig

PStoM
PhaseSig()

PStoM(1)
x = 0;

...

...

[x>0] [x<0]

... ...
...

PStoM(1)

PhaseSig()

run_Interrun_Inter()
oA

oB

Fig. 16 An Excerpt of the Application Model of The Use
Case

<<BUS-RR>>
Bus3

A::PStoM
channel

<<CPURR>>
CPU2

A::MotorF

<<MEMORY>>
Memory1
A::PStoM
channel

Fig. 17 An Excerpt of the Allocation Model of The Use
Case

Fig. 18 ETA Output Showing Contention

and running the execution trace analysis, con-
tentions were spotted on the execution hardware
component on which the Motor Control functions
are allocated (Figure 18). These contentions are
due to the Server Control function: the latter pro-
cesses data to be written to the Client while the
encryption function was ready to execute.

To resolve this contention, an execution hard-
ware component is added to the platform and the
Server Control function is now allocated to it.
Running PLAN again, the end time of toB ,1 is now
10606, that is, a latency equal to 10604 cycles (i.e.,
53.02 µs). The latency requirement is satisfied.
To see how the transaction classifications changed
between the two models, we can use PLAN even
though the requirement is satisfied. The output in
Figure 19 reveals that no contention was detected
and that the Server Control function could pro-
cess its data while the decryption function was
executing.

6.4 Performance evaluation

As explained before, the two main features of
PLAN are the dependency graph generation and
the classification of transactions. The dependency
graph must be generated for each model, while the
classification must be performed for each couple
(oA, oB) of a simulation trace.



Article Title 21

Model Trans. D.G. oA oB Latency Class. (s)

Industrial drive 15k 277/436/105ms sendCommandData phaseSignal 9989 4.8
speedDirection phaseSignal 9825 4.4
executeFOC phaseSignal 5610 2.4

sendCommandData executeFOC 4379 1.9

Copilot 13k 208/378/43ms sendPos1 loggingIn 208 004 0.3
sendDoor1Frame send position2 6 419 149 4.7

Rovers 1.5k 191/308/32ms fromSAtoDT newMotorPower 2079 1.2
newLeaderSocketData injection 14 0.04

fromSAtoDT fromTCtoSSO 2212 1.4

testPlan1k 33k 57/83/8ms trigger appEnd 22 000 2.2
testPlan10k 330k 57/83/8ms trigger appEnd 220 000 30
testPlan20k 660k 57/83/8ms trigger appEnd 440 000 66
testPlan60k 1650k 57/83/8ms trigger appEnd 1 100 002 285

Table 4 Performance evaluation of PLAN

Fig. 19 ETA Output Showing No Contention

We have performed evaluation tests using a
macbook pro 2019 running at 2.3GHz, i9 core, 32
GB of RAM. Oracle Java, version 11.0.15.1, has
been used to execute most recent version of TTool
(Sept. 2022)4. Performance results are given in
Table 4. The first column gives the evaluated
model. Then, ”Trans.” represents the number of
transactions in the whole simulation trace of this
model. The third column represents information
on the dependency graph, separated with ”/”, i.e.,
respectively: the number of vertices, the number
of edges and the time in milliseconds to generate
the dependency graph from the considered model.
The two next columns give the selected oA and oB
(the name of the event or channel of the operator
is given). The latency (in the number of cycles)
between oA and oB is given in column ”Latency”.
Last, column ”Class.” gives, in seconds, the time
TTool took to classify transactions between oA
and oB . For both computation times (the graph
generation and the classification), the graphical
rendering time is not included.

The two first models (Industrial drive, Copi-
lot) have been developed from public use cases

4The help integrated in TTool, section Diplodocus, then
Mapping, then PLAN, gives a step-by-step process to generate
a dependency graph and perform a transaction classification

of the AQUAS project 5 and used in the scope
of AQUAS. The copilot system manages doors
of automatic subway systems. The third model
was made in the scope of the SPARTA European
project (CAPE program), Task 5.2: ”Securing the
connected vehicle”. This model captures how a
platoon of rovers works. The fourth model was
built in order to stress our trace analysis feature
(testing with millions of transactions): a sender
emits data to an intermediate task that dispatches
received data to a receiver. A fourth task per-
forms data transfers to create contentions on buses
and memories. The number of times this data
sending occurs is configurable in the model: in
Table 4, testPlan1k means 1k loops of data send-
ing, etc. The third and fourth model are available
in the model repository of TTool, accessible from
within TTool (menu ”File”, then ”open model
from network repository”).

The results demonstrate that the generation
of the dependency graph is straightforward: a few
dozens of milliseconds in the worst case. Com-
puting the classification is done in a few seconds
or minutes even on large sets of transactions. As
explained in next section, both the graph size and
the number of transactions have an impact on the
PLAN computation time.

7 Discussion

By understanding the reasons why a requirement
is not satisfied, designers are expected to be guided

5Both uses cases are described in the public deliverable D5.3,
see https://aquas-project.eu/documents/



22 Article Title

on how to improve their model. This section dis-
cusses the complexity and perspectives of our
contributions.

7.1 Complexity

The complexity of the implementation of PLAN
in TTool is linked to the size of a system model
and the size of an execution trace (the number of
transactions in the trace). Computing dependency
paths is at the root of many categories. To check
if there exists a dependency path between oA and
oB , TTool checks for the shortest path between
these operators: if the shortest path is non empty
then these operators are dependent. The complex-
ity of Dijkstra’s Shortest Path algorithm is given
in [8] as: O(|E|+ |V |log|V |), where |E| is the num-
ber of edges and |V | is the number of vertexes in
a graph. Also, to check if an operator o is in the
dependency path between oA and oB , TTool com-
putes the shortest path between oA and o and the
shortest path between o and oB .

Since PLAN iterates over all the transactions
in an execution trace x, checking if the opera-
tor of each transaction is in the dependency path
between oA and oB results in a complexity of
O
(
(| x |) ∗ (|E|+ |V |log|V |)

)
.

Further enhancement of our implementation
could avoid computing several times the same ele-
ments: for instance, pre-computing all possible
dependency paths between oA and oB and classi-
fying the operators of these paths as optional or
mandatory. Yet, the number of the dependency
paths to study at the beginning of the analy-
sis might be large. Finally, all systems to which
PLAN has been applied were analyzed in a few
seconds.

7.2 Extensions:

7.2.1 One-to-one relation between
operators

For a model, a trace and a requirement r =
〈oA, oB , λmax〉, PLAN assumes the trace has
exactly one transaction for oA and one transac-
tion for oB . This is allowed because Hypothesis 2
guarantees that all loops have a fixed number of
iterations, have been unrolled, and the operators
have been renamed accordingly.

A possible extension could be to relax the con-
straint that loops have a fixed iteration count, still

offering designers the possibility to relate specific
instances of oA and oB . A further extension could
be, for each occurrence of oB , to identify to which
occurrence of oA it corresponds. For this, we are
currently working on dependency graph tainting
so as to trace execution flows.

7.2.2 Dependencies between channel
operators

As stated by Definition 14, and underlined in
Section 4.1, all read operators of a channel c
are considered as depending on all write oper-
ators of channel c. This property is meant to
cover all possible communication semantics, but
it is an over approximation that can lead to
identify some of the write / read operators as
optional, when they could be in fact mandatory,
or even totally unrelated. Taking into account in
PLAN the communication semantics used by the
execution engine would help reducing this approx-
imation. Note that the same remark applies to
synchronization channels. A static analysis tak-
ing into account the communication semantics
could also help reducing this over approximation.
More generally, i.e., for all operators, because of
over approximation, transactions could be classi-
fied in the wrong category. Since our approach
over-approximates dependencies, this means that
transactions could get an orange flag when a green
flag could be used (thus raising a false warning),
and an orange flag when a red flag could be used.
A first improvement would be to highlight differ-
ently transactions linked to over approximations
in order to better inform users of PLAN.

7.2.3 Multi-trace analysis

In this paper PLAN is used to analyze one exe-
cution trace at a time. A typical PLAN-based
work flow consists in first analyzing the trace with
the highest latency, and to accordingly update
the model. In some cases this could improve
the analyzed trace while worsening other traces,
and maybe resulting in a even higher worst case
latency. An interesting extension would be to con-
currently analyze several execution traces for the
same model and requirement.

Extending PLAN to support traces of symbolic
execution could be a way to achieve multi-trace
analysis. Symbolic execution executes a system
using symbols as inputs instead of concrete inputs



Article Title 23

(e.g., numbers, integers or strings) and symbolic
expressions instead of program variables [40] [16].
The output of the system symbolic execution is
expressed in terms of the input symbols [16].
Yet, while a symbolic execution can replace a
large number of regular system executions [40], it
may result in a large number of symbolic expres-
sions [18], which could increase the complexity of
PLAN.

7.2.4 Enriched model

Several extensions could enrich the modeling.
Currently PLAN does not really consider the

complete semantics of communication channels.
Instead, this is mostly left to the execution
engine. What PLAN considers is the dependencies
between write and read operators: a data channel
is modeled as a vertex in the dependency graph to
which the ReadData and WriteData operators are
connected. However, we already assign attributes
to this data channel vertex including the current
buffer size attribute per hardware component. The
later attribute returns the amount of data already
stored in the buffer on a hardware component. The
classification definitions could thus be adapted to
check the current buffer size attribute. Indeed,
accurately considering how many messages are
stored in a buffer could help to more accurately
compute latencies and categorize transactions.
The same could also apply to synchronization
channels.

The categories of operators presented in
Section 3.2.1 allow the modeling of algorithms
having a statically known complexity. It is also
possible to model an algorithm with two possi-
ble complexity values (value #1 or #2), thanks
to the use of a Choice operator and, for each
branch of the Choice operator, of an IntOp rep-
resenting one of the possible complexity values. A
possible extension would be to allow IntOp oper-
ators with a complexity interval instead of a fixed
value. Adding more control flow operators could
also facilitate the modeling.

Finally, as currently defined, PLAN rather
targets system-level design: data channels do
not convey values but a quantity of data, algo-
rithms can be abstracted with complexity oper-
ators,. . . Handling lower level operations such as
operations on boolean, integer and float, and more

fine-grain control operations (memory manipu-
lation with locations or pointers) would allow
lower-level models, like, for instance, assembly
languages running on processor models.

7.2.5 Proof of correctness

Since we have formally defined the different clas-
sification sets of transactions of PLAN, a proof of
correctness would be an interesting extension of
this work.

7.2.6 Implementation

Currently, TTool already supports all categories
defined in PLAN. We could extend TTool to sup-
port the analysis of transactions outside of the
interval defined by maximum latency requirement.
Also, the ideal model used to compute BSED and
BEED could be improved.

7.2.7 Applying PLAN for a trade-off
between safety and security
mechanisms

One of the challenges when designing embedded
systems is to satisfy altogether its safety, secu-
rity and performance requirements. The advan-
tages of designing embedded systems while taking
the interactions of safety, security and perfor-
mance requirements into consideration early in the
design cycle are highlighted in several approaches
e.g. [30] [28].

A model update consists in adding or remov-
ing software or hardware components, updating
hardware resource parameters or changing a func-
tional behavior. These modifications may occur
when adding new safety or security mechanisms,
or when improving performance. For example, the
addition of encryption/decryption mechanisms
can support more secure message exchanges or a
new security algorithm can increase the system
security level. Such modifications may result in
extra computations and communications. In addi-
tion, extra contentions on resources may result
from the transfer of longer messages [53].

An interesting application of PLAN is to ana-
lyze the impact on timing when modifying a
SysML model. In this paper, PLAN can be applied
to a use case model and an updated version of
this model separately. However, we have started
implementing an extension of PLAN where the



24 REFERENCES

designer can compare the latency and the classifi-
cation of transactions for two models. This aims to
further assist the designer to compare and deter-
mine how the modifications applied to a model
impacted its timing requirements. Further work
on large sets of security and safety mechanisms
is needed to prove our claim and show that our
approach always works. However, since safety and
security aspect can be easily implemented and ver-
ified [6] in TTool, future work intends to apply
PLAN on safety and security-related models and
evaluate how it supports the interaction between
these two aspects.

8 Conclusion

A common way to design an embedded system is
to make a model of this system, to simulate or to
execute it to obtain traces, and then to check in
these traces whether functional and non functional
requirements are satisfied or not. The automated
trace analysis technique introduced in this paper
helps designers to go beyond the yes/no result
of requirement verification. To deeper understand
the reasons of a maximum latency requirement
violation, we capture dependencies in the sys-
tem model and we accordingly categorize trans-
actions of an execution trace according to their
impact on latency. By identifying dependencies
between model elements and classifying transac-
tions of an execution trace with respect to latency
requirements, we can identify and highlight which
software functions and/or hardware components
contributed to this delay.

We now target to address the limitations men-
tioned in the category or discussion sections. In
particular, as underlined before, our classification
approach deals only the first cause when a con-
tention occurs, and can thus not yet investigate
what caused the contention before its first cause:
investigating further traces to identify the possi-
ble root causes for contentions is part of our future
work. Our ultimate goal is to provide designers
with automated suggestions for enhancing models
in order to ensure that timing constraints are all
met.

Acknowledgment

The AQUAS project is funded by ECSEL JU
under grant agreement No 737475.

References

[1] Aggregated quality assurance for systems
(aquas). https://aquas-project.eu, 2013.
Accessed: 2019-09-24.

[2] Retro-ingénerie de traces d’analyse de
simulation et d’exécution de systèmes
temps-réel – rt-simex. https://anr.fr/
Projet-ANR-08-SEGI-0015, 2013. Accessed:
2019-09-24.

[3] TTool, 2013.
[4] El Arbi Aboussoror, Ileana Ober, and Iulian

Ober. Significantly increasing the usability of
model analysis tools through visual feedback.
In International SDL Forum, pages 107–123.
Springer, 2013.

[5] Nada Alhirabi, Omer Rana, and Charith Per-
era. Security and privacy requirements for the
internet of things: A survey. ACM Transac-
tions on Internet of Things, 2(1):1–37, 2021.

[6] L. Apvrille and L. W. Li. Harmonizing safety,
security and performance requirements in
embedded systems. In Design, Automation
and Test in Europe (DATE’2019), Florence,
Italy, 2019.

[7] Ludovic Apvrille and Yves Roudier. SysML-
Sec: A SysML environment for the design
and development of secure embedded sys-
tems. APCOSEC, Asia-Pacific Council on
Systems Engineering, pages 8–11, 2013.

[8] Michael Barbehenn. A note on the complex-
ity of dijkstra’s algorithm for graphs with
weighted vertices. IEEE transactions on
computers, 47(2):263, 1998.

[9] Jan Baumeister, Bernd Finkbeiner, Sebas-
tian Schirmer, Maximilian Schwenger, and
Christoph Torens. Rtlola cleared for take-
off: monitoring autonomous aircraft. In
International Conference on Computer Aided
Verification, pages 28–39. Springer, 2020.

[10] Yoann Blein. ParTraP: A Language for
the Specification and Runtime Verification of
Parametric Properties. PhD thesis, Univer-
sité Grenoble Alpes, 2019.

[11] Jens Brandenburg and Benno Stabernack.
Simulation-based hw/sw co-exploration of
the concurrent execution of hevc intra encod-
ing algorithms for heterogeneous multi-core
architectures. Journal of Systems Architec-
ture, 77:26–42, 2017.

[12] Richard Buchmann, Frédéric Pétrot, and

https://aquas-project.eu
https://anr.fr/Projet-ANR-08-SEGI-0015
https://anr.fr/Projet-ANR-08-SEGI-0015


REFERENCES 25

Alain Greiner. Fast cycle accurate sim-
ulator to simulate event-driven behavior.
In International Conference on Electrical,
Electronic and Computer Engineering, 2004.
ICEEC’04., pages 35–38. IEEE, 2004.

[13] Xi Chen, Harry Hsieh, and Felice Balarin.
Verification approach of metropolis design
framework for embedded systems. Inter-
national Journal of Parallel Programming,
34(1):3–27, 2006.

[14] Xi Chen, Harry Hsieh, Felice Balarin, and
Yosinori Watanabe. Automatic trace analysis
for logic of constraints. In Proceedings of the
40th annual Design Automation Conference,
pages 460–465, 2003.

[15] Xi Chen, Harry Hsieh, Felice Balarin, and
Yosinori Watanabe. Logic of constraints: A
quantitative performance and functional con-
straint formalism. IEEE Transactions on
Computer-Aided Design of Integrated Cir-
cuits and Systems, 23(8):1243–1255, 2004.

[16] Alberto Coen-Porisini, Giovanni Denaro,
Carlo Ghezzi, and Mauro Pezzé. Using sym-
bolic execution for verifying safety-critical
systems. In Proceedings of the 8th European
software engineering conference held jointly
with 9th ACM SIGSOFT international sym-
posium on Foundations of software engineer-
ing, pages 142–151, 2001.

[17] Lukas Convent, Sebastian Hungerecker, Mar-
tin Leucker, Torben Scheffel, Malte Schmitz,
and Daniel Thoma. Tessla: temporal stream-
based specification language. In Brazilian
Symposium on Formal Methods, pages 144–
162. Springer, 2018.

[18] David Currie, Xiushan Feng, Masahiro
Fujita, Alan J Hu, Mark Kwan, and
Sreeranga Rajan. Embedded software veri-
fication using symbolic execution and unin-
terpreted functions. International Journal of
Parallel Programming, 34(1):61–91, 2006.

[19] Ben d’Angelo, Sriram Sankaranarayanan,
César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B Sipma, Sandeep
Mehrotra, and Zohar Manna. Lola: runtime
monitoring of synchronous systems. In 12th
International Symposium on Temporal Rep-
resentation and Reasoning (TIME’05), pages
166–174. IEEE, 2005.

[20] Joshua Heneage Dawes. Towards Automated

Performance Analysis of Programs by Run-
time Verification. PhD thesis, Manchester U.,
2021.

[21] Julien Deantoni. Towards Formal System
Modeling: Making Explicit and Formal the
Concurrent and Timed Operational Seman-
tics to Better Understand Heterogeneous
Models. PhD thesis, Université Côte d’Azur,
CNRS, I3S, France, 2019.

[22] Julien DeAntoni and Frédéric Mallet.
Timesquare: Treat your models with logi-
cal time. In International Conference on
Modelling Techniques and Tools for Com-
puter Performance Evaluation, pages 34–41.
Springer, 2012.

[23] Julien DeAntoni, Frédéric Mallet, Frédéric
Thomas, Gonzague Reydet, Jean-Philippe
Babau, Chokri Mraidha, Ludovic Gauthier,
Laurent Rioux, and Nicolas Sordon. Rt-
simex: retro-analysis of execution traces. In
Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of
software engineering, pages 377–378, 2010.

[24] Andrea Enrici, Letitia Li, Ludovic Apvrille,
and Dominique Blouin. A tutorial on ttool.
DIPLODOCUS: an Open-source Toolkit for
the Design of Data-flow Embedded Systems,
2018.

[25] Yliès Falcone, Klaus Havelund, and Giles
Reger. A tutorial on runtime verifica-
tion. Engineering dependable software sys-
tems, pages 141–175, 2013.

[26] Yliès Falcone, Srdjan Krstić, Giles Reger, and
Dmitriy Traytel. A taxonomy for classify-
ing runtime verification tools. International
Journal on Software Tools for Technology
Transfer, 23(2):255–284, 2021.

[27] Michael Fisher, Viviana Mascardi,
Kristin Yvonne Rozier, Bernd-Holger
Schlingloff, Michael Winikoff, and Neil Yorke-
Smith. Towards a framework for certification
of reliable autonomous systems. Autonomous
Agents and Multi-Agent Systems, 35(1):1–65,
2021.

[28] Radek Fujdiak, Petr Mlynek, Petr Blazek,
Maros Barabas, and Pavel Mrnustik. Seek-
ing the relation between performance and
security in modern systems: Metrics and mea-
sures. In 2018 41st International Conference



26 REFERENCES

on Telecommunications and Signal Process-
ing (TSP), pages 1–5. IEEE, 2018.

[29] Daniel M Gordon and Peter Kemper. On
clustering simulation traces. In Proceedings
Eighth International Workshop on Performa-
bility Modelling of Computer and Communi-
cation Systems (PMCCS-8 2007). Edinburgh,
Scotland, UK, 2007.

[30] Thomas Gruber, Christoph Schmittner, Mar-
tin Matschnig, and Bernhard Fischer. Co-
engineering-in-the-loop. In International
Conference on Computer Safety, Reliability,
and Security, pages 151–163. Springer, 2018.

[31] Damien Hedde and Frédéric Pétrot. A non
intrusive simulation-based trace system to
analyse multiprocessor systems-on-chip soft-
ware. In 2011 22nd IEEE International Sym-
posium on Rapid System Prototyping, pages
106–112. IEEE, 2011.

[32] Fazilat Hojaji, Tanja Mayerhofer, Bahman
Zamani, Abdelwahab Hamou-Lhadj, and
Erwan Bousse. Model execution tracing:
a systematic mapping study. Software and
Systems Modeling, 18(6):3461–3485, 2019.

[33] Oleg Iegorov, Vincent Leroy, Alexandre Ter-
mier, Jean-François Méhaut, and Miguel San-
tana. Data mining approach to temporal
debugging of embedded streaming applica-
tions. In 2015 International Conference on
Embedded Software (EMSOFT), pages 167–
176. IEEE, 2015.

[34] Tero Kangas, Petri Kukkala, Heikki Orsila,
Erno Salminen, Marko Hännikäinen, Timo D
Hämäläinen, Jouni Riihimäki, and Kimmo
Kuusilinna. Uml-based multiprocessor soc
design framework. ACM Transactions
on Embedded Computing Systems (TECS),
5(2):281–320, 2006.

[35] Peter Kemper and Carsten Tepper. Trace
based analysis of process interaction mod-
els. In Proceedings of the Winter Simulation
Conference, 2005., pages 10–pp. IEEE, 2005.

[36] Peter Kemper and Carsten Tepper.
Automated analysis of simulation traces-
separating progress from repetitive behavior.
In Fourth International Conference on the
Quantitative Evaluation of Systems (QEST
2007), pages 101–110. IEEE, 2007.

[37] Volker Kemper and Carsten Tepper. Trace
analysis-gain insight through modelchecking
and cycle reduction. Technical report, SFB

559, 2006.
[38] Bart Kienhuis, Ed F Deprettere, Pieter

Van der Wolf, and Kees Vissers. A method-
ology to design programmable embedded
systems. In International Workshop on
Embedded Computer Systems, pages 18–37.
Springer, 2001.

[39] Bart Kienhuis, F Deprettere, Pieter van der
Wolf, and Kees Vissers. The y-chart
approach. In Embedded processor design
challenges, page 18. Springer, 2002.

[40] James C King. Symbolic execution and pro-
gram testing. Communications of the ACM,
19(7):385–394, 1976.

[41] Daniel Knorreck, Ludovic Apvrille, and
Renaud Pacalet. Fast simulation techniques
for design space exploration. In International
Conference on Objects, Components, Models
and Patterns, pages 308–327. Springer, 2009.

[42] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Lea-
sure, and M. Wolfe. Dependence graphs and
compiler optimizations. In Proceedings of the
8th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL
’81, page 207–218, New York, NY, USA, 1981.
Association for Computing Machinery.

[43] Ruth Malan and Dana Bredemeyer. Defining
non-functional requirements, 2001.

[44] Peter Marwedel. Evaluation and Valida-
tion, pages 239–293. Springer International
Publishing, Cham, 2021.

[45] Aleksandar Matović. Case studies on model-
ing security implications on safety. Indepen-
dent thesis Advanced level (degree of Master
(One Year)), Malardalen University, School
of Innovation, Design and Engineering., 2019.

[46] Generoso Pagano, Damien Dosimont, Guil-
laume Huard, Vania Marangozova-Martin,
and Jean-Marc Vincent. Trace manage-
ment and analysis for embedded systems.
In 2013 IEEE 7th International Symposium
on Embedded Multicore Socs, pages 119–122.
IEEE, 2013.

[47] Generoso Pagano and Vania Marangozova-
Martin. Soc-trace infrastructure. 2012.

[48] Ivan Perez, Frank Dedden, and Alwyn
Goodloe. Copilot 3. Technical report,
Technical Report NASA/TM-2020-220587,
National Aeronautics and Space . . . , 2020.

[49] Luigi Pomante, Vittoriano Muttillo,
Bohuslav Krena, Tomás Vojnar, Filip



REFERENCES 27

Veljkovic, Pacome Magnin, Martin
Matschnig, Bernhard Fischer, Jabier Mar-
tinez, and Thomas Gruber. The AQUAS
ECSEL project aggregated quality assur-
ance for systems: Co-engineering inside and
across the product life cycle. Microprocess.
Microsystems, 69:54–67, 2019.

[50] Kristin Yvonne Rozier. From simulation to
runtime verification and back: Connecting
single-run verification techniques. In 2019
Spring Simulation Conference (SpringSim),
pages 1–10. IEEE, 2019.

[51] G Tepper and P Kemper. Traviando-
debugging simulation traces with message
sequence charts. In Third International Con-
ference on the Quantitative Evaluation of
Systems-(QEST’06), pages 135–136. IEEE,
2006.

[52] Daian Yue, Vania Joloboff, and Frédéric
Mallet. Trap: trace runtime analysis of
properties. Frontiers of Computer Science,
14(3):143201, 2020.

[53] Bowen Zheng, Peng Deng, Rajasekhar Angu-
luri, Qi Zhu, and Fabio Pasqualetti. Cross-
layer codesign for secure cyber-physical sys-
tems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
35(5):699–711, 2016.

[54] Maysam Zoor, Ludovic Apvrille, and Renaud
Pacalet. Execution trace analysis for a precise
understanding of latency violations. In 2021
ACM/IEEE 24th International Conference
on Model Driven Engineering Languages and
Systems (MODELS), pages 123–133. IEEE,
2021.


	Introduction
	Related work
	Simulation traces analysis
	Execution traces analysis

	Overview and problem formalization
	Precise Latency Analysis Approach
	Formal definition of system models
	Application
	Platform
	Allocation

	Trace generation
	Requirements on model execution
	Valid execution traces

	Precise Latency Analysis Approach: categorization
	Execution trace analysis
	Impact sets in Detail
	On Path sets
	In Functions sets
	Dependency path transactions
	Contention delay
	Contention set
	No Direct Contention set
	Other Hardware set (OH)
	Others set


	Application to UML/SysML
	Application to UML/SysML
	Model simulation

	Tooling and evaluation
	Integration in TTool
	Description of the use case
	Model simulation and trace analysis
	Performance evaluation

	Discussion
	Complexity
	Extensions:
	One-to-one relation between operators
	Dependencies between channel operators
	Multi-trace analysis
	Enriched model
	Proof of correctness
	Implementation
	Applying plan for a trade-off between safety and security mechanisms


	Conclusion

