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ABSTRACT

As music has become more available especially on music
streaming platforms, people have started to have distinct
preferences to fit to their varying listening situations, also
known as context. Hence, there has been a growing inter-
est in considering the user’s situation when recommending
music to users. Previous works have proposed user-aware
autotaggers to infer situation-related tags from music con-
tent and user’s global listening preferences. However, in
a practical music retrieval system, the autotagger could be
only used by assuming that the context class is explicitly
provided by the user. In this work, for designing a fully
automatised music retrieval system, we propose to disam-
biguate the user’s listening information from their stream
data. Namely, we propose a system which can generate a
situational playlist for a user at a certain time 1) by leverag-
ing user-aware music autotaggers, and 2) by automatically
inferring the user’s situation from stream data (e.g. device,
network) and user’s general profile information (e.g. age).
Experiments show that such a context-aware personalized
music retrieval system is feasible, but the performance de-
creases in the case of new users, new tracks or when the
number of context classes increases.

1. INTRODUCTION

Since the invention of recorded music, people have been
shifting from consuming music as a main activity in a live
setting, to using music as a background activity as they go
through the day. With the growing availability of music
on streaming platforms, people developed distinct prefer-
ences for the varying listening situations, also known as
context [1]. Consequently, there has been a growing inter-
est in considering the user’s situation when automatically
recommending music to users.

Previous works have proposed user-aware autotaggers
to infer situation-related tags from music content and
user’s global listening preferences [2]. However, in a prac-
tical music retrieval system, the autotagger could be only
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Figure 1. The available data to online music streaming
services.

used by assuming that the context class is explicitly pro-
vided by the user. In this work, we perform a study to eval-
uate the feasibility of inferring the listening situation. The
listening situation for our system is an activity, location, or
time that is influencing the listener’s preferences.

The process of music streaming from the perspective of
our proposed approach can be found in Figure 1. We find
that the music service is informed of the users, their track
history, plus their past and current interactions with the ser-
vice, i.e. the device and time data sent during an active ses-
sion. However, the service is unaware of the influencing
listening situation. Our goal is to utilize the available in-
formation for the service to infer the listening situation and
the suitable tracks for the inferred situation. We propose
an approach that infers the potential context from the user
interactions in near real time, while the tagging of tracks
with their potential listening situation happens in the back-
ground using autotaggers. Both systems are user-aware.

Our contributions in this paper are: 1) a large dataset
of tracks, device data, and user embeddings labeled with
their situational use through a rigorous labelling pipeline;
2) an extended evaluation of music autotaggers in predict-
ing personalized situational tags in various scenarios; 3) a
simple, yet effective model that ranks the potential listen-
ing situations for a given user based on the transmitted data
from the device to the service.

2. RELATED WORK

Our proposed approach is related to two different prob-
lems: music autotagging with contextual tags, and instant
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prediction of the user’s listening situation. Previous work
has already showed that listening situation (i.e. context)
has a strong influence on the user’s preferences [1, 3-5].
Hence, context has become an important factor for reach-
ing a personalized user experience [6].

On one hand, music content is highly complex and is
often challenging to be analyzed and described in human
readable terms. This missing link between the content of
the music and a set of semantic descriptors is referred to
as the “semantic gap” [7]. One common way, which is
often used when searching for or organising music, is the
intended listening situation [8]. Unlike most tags that de-
pend solely on the music content, certain tags depend also
on the user [9, 10]. There has been a recent work on pre-
dicting personalized situation-related tags from music con-
tent and user embeddings [2], which we adopt here too.

On the other hand, the listening situation, e.g. activity
or location, can change frequently, which leads to changes
in user preferences. Explicitly inferring the listening situ-
ation is a challenging task that has only been studied on a
small scale [11]. We aim at addressing this missing link by
performing an extensive study on predicting the listening
situation using available device data. In order to employ
the personalized autotagging approach in an actual real-
world setting, it is also important to be able to predict when
a specific listening situation is being experienced.

3. OBJECTIVE AND PROPOSED APPROACH

A session consists of a sequence of audio-tracks a a given
user u is listening to over time ¢ on a music streaming ser-
vice in a continuous time span'. A session is therefore
defined as a sequence of streams which are each a tuple
(audio-track a, user u, device data dq(f)).

A situational (or contextual) session is a session result-
ing from listening to tracks in a certain situation (or con-
text) ¢ such as “gym”. However, in our case, in order to
gather a ground-truth dataset, we consider that a situational
session can also result from listening to a playlist that con-
tains a context-related keyword in the title 2. A situational
(or contextual) session is defined as a sequence of tuples
(audio-track a, user u, device data dq(f), situation c).

Our objectives is to propose for a given user v a session
(sequence of audio-tracks a) that fits their current situation
c. However, since we don’t know its current situation ¢ we
estimate it based on its device data dq(f) (such as the time of
the day, day of the week, or type of network connections).

3.1 Proposed approach

To do so, we first estimate for each pair audio-track/user
(a,u) its situation ¢, . In other words, we estimate in
which situation c the user u would intend to use the track

! without any break longer than a pre-defined gap, defined here as 20
minutes as proposed by [5]

2 The underlying assumption is that if the user started streaming a
playlist with a certain title related to a situation (or context), most likely
the intention of the user was to play something suitable for that situation
(or context) [12].
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Figure 2. Overview of the system to generate a situational
playlist. The left side (auSP) tags each track/user pair with
a situational tag. The right side (duSP) ranks the potential
situations for a device/user pair to be presented to the user.

a. This is done using an Audio+User based Situation Pre-
diction (auSP) trained to estimate situation tags c given as
input a pair (audio-track a, user u). This is done offline on
the server side and stored in a database.

We then estimate in real-time (with a lightweight model
on the client side) for a given user u and the transmitted
data from its device to the service dq(f), its potential current
situation ¢q,. This is done using a Device+User based
Situation Prediction (duSP) trained to estimate situation
tags c given as input a pair (device-data dq(f ), user u). duSP
provides us with a list of the most likely situations ¢q.,,
(ranked from the most to the less likely).

Finally, to create the situational playlist, we simply se-
lect the audio tracks a for which situation ¢, ,, matches the
most-likely current situations of the user ¢g ;.

Figure 2 indicates the overall architecture.

3.2 Data description

We first describe what are exactly the data for the tracks a,
the users u and the devices.

Track data M, . For each audio-track a, we retrieve its
30 s. snippet from the Deezer API. We represent a by its
96 Mel-bands x 646 frames matrix M,,.

User data e, and g,. Representing the users can be
achieved through various versatile techniques. Consistent
with our requirements (lightweight model and preserving
privacy), we choose to represent the users using the basic
data available during streaming. We use two different rep-
resentations of the user that will be used for estimating &, ,,
and ¢4 ,, respectively.

For the auSP (estimation of ¢,,) we use a user em-
bedding e,. Similar to previous works on auSP, we used
the users’ listening history to derive user embeddings that
encode their listening preferences. We compute these em-
beddings through matrix factorization of the user/track in-
teractions matrix, leading to a 128-d embedding vector
per user, which in commonly used to generate representa-
tions [13]. The constructed matrix uses all the tracks avail-
able in the catalogue to model the user preferences, i.e. it
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Table 1. Summary of the notations

Symbol  Definition Dimension
a an audio track
M,  Mel-spectrogram of a [RI6X616
e, Embedding of a R%C
U a user
e, Embedding of u R™®
Su Demographics data of u R3
dgf) Device data of u at time ¢ R®
c a situation (or context)
s a stream, a tuple (a, u, de), c)

is not computed exclusively with the tracks included in our
dataset. The computed embeddings will be published with
the dataset for reproducibility.

For the duSP (estimation of ¢4 ,,), we use the basic de-
mographic data g,, of the user recorded during registration.
This data is composed of: |age, country, gender|.
While this data selection is prone to errors and short of
fully representing the users, it is consistent with our re-
quirements of using basic always-available data.

Device data dgf). We collect only basic data sent by
the device to the service and selected those that deemed
relevant to the situation prediction. The data are: the time
stamp (in local time), day of the week, device used and
network used. Additionally, we extend the time/day data
with circular representation of the time and day similar to
the one used in [14]. The final feature vector representing
device data is made of 8 features: linear-time,
linear—-day, circular-time-X, circular-—
time-Y, circular-day-X, circular-day-
Y, device-type, network-type. The device-
type can be: mobile, desktop (e.g. a laptop), or
tablet. The network-type can be: mobile (a con-
nection through cellular data), wifi (a WiFi connection),
LAN (a connection through wired Ethernet), or plane (an
offline stream from a device without a connection).

4. COLLECTING THE DATA

Pichl et al. and Ibrahim et al. proposed methods for la-
belling streaming sessions with a situational tag by lever-
aging playlist titles [2, 12]. Although sometimes prone to
errors and false positives, playlist titles provide an appro-
priate proxy for labelling streams with tags [2, 12]. Users
create playlists with a common theme according to their
use [12]. One common theme of these playlists is the lis-
tening situation.

First, we collected a set of situational keywords used
previously in the literature [1, 11, 15]. We extended these
keywords by adding synonyms and hashtags that are fre-
quently used on Twitter to refer to music listening. After-
wards, we retrieve from all public playlists from Deezer >,
an online music streaming service we were given access
to, those playlists that include any of the keywords in their
“stemmed” title. We then filtered out playlists that con-

3 www.deezer.com
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tained more than 100 tracks* or where a single artist or
album represented more than 25% of the playlist, similar
to [2].

From the extensive list of situational keywords and
their corresponding playlists, we settled on three different
subsets with an increasing number C' of situational tags (4,
8, and 12): work, gym, party, sleep | morn-—
ing, run, night, dance | car, train,
relax, club.

These tags were selected by popularity > . We used these
situations as independent tags without attempting to merge
potentially similar activities and places (e.g. "party" and
"dance"). Working with three situational tag sets (of in-
creasing C) allowed us to observe how the system per-
forms as the complexity of the problem increases.

We then focused on the users who actively listened to
these playlists and retrieve the device data of those users
while they were actively listening to the playlist. This re-
sulted in a set of streams each described by an audio-track
a, a user u, a playlist with a situational keyword c in the ti-
tle, along with the device data de) sent during this stream.
Note that an audio-track/user/device triplet have a joint tag,
none of them are tagged individually.

To ensure high quality data, we selected the month of
August 2019 for inspection, because this period had more
stable use patterns, before the Covid-19 pandemic. We
had access to data from two locations: France and Brazil.
These two locations were provided because they have the
most active users in Deezer, while being in two distinctive
time zones and seasons. This allowed us to perform our
study on diverse data with different sources and patterns.
We release the dataset ® along with the code” .

4.1 Dataset Analysis

As a sanity check on the collected data, we plot the distri-
bution of the situations ¢ across the different device-data.
Figure 3 shows the ratio of the used network-type to
connect to the service across situations c. We observe vari-
ations that correspond to what is expected from each sit-
uation, i.e. outdoors vs. indoors. However, we also find
certain networks that do not match the expectations, e.g.
LAN connections in a car situation, which represents noise
in the dataset that can be a continuation of already existing
sessions that moved indoors. Figure 4 represents the used
device-type across situations c. We notice that most
users overwhelmingly use mobile device in most cases,
with small variations that also match expectations of in-
door and outdoor situations. Finally, Figure 5 shows the
distribution of all situations for each hour of the day. Sim-
ilarly, we find predictable patterns for each situation rang-
ing from night-related situation in the early hours that grad-
ually progress as the time passes. These patterns support

4 to increase the chance that playlists reflect a selection of situation-
related tracks, and not randomly added ones

5 Estimated as the number of corresponding playlists in the service
catalogue.

Snhttps://zenodo.org/record/5552288

Thttps://github.com/Karimmibrahim/Situational_
Session_Generator
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Figure 3. Network across situations ¢

the hypothesis of using playlist titles as proxy for inferring
the actual listening situation.

5. DETAILED MODELS DESCRIPTION
5.1 Audio+User based Situation Prediction (auSP)

The auSP estimates the probability of each situation ¢ €
{1...C} given a pair (track a represented by M, user u
represented by e,): P(c|M,,ey). It is implemented as a
Deep Neural Network ¢, = fo(M,,e,) with softmax
output and trainable parameters ¢. To train it we use the
set of training streams represented as tuples (Mg, e, c)
We train it by minimizing the categorical cross-entropy
L(€q.u,c,0) where €, is the estimated probability and
c the one-hot-encoded ground-truth.

Practical implementation. The audio input, M, is
passed to a batch normalization layer then to 4 layers each
made of a convolutional (CNN) and a Max-pooling oper-
ation. The CNNs have various numbers of filters (32, 64,
128, 256) but each with the same size (3x3). They are each
followed by a ReL.U. All Max-poolings are (2x2). The flat-
tened output of the last CNN layer is passed to a fully con-
nected (FC) layer with 256 units followed by a ReLU. The
output of the audio branch e, is a 256-d audio embedding
vector e,. The user input, e, is processed through 2 FC
layers each with a ReLU. This output is then concatenated
with e, and passed to a FC layer with ReLU activation, and
a dropout (with 0.3 ratio) for regularization. The final layer
is made of C output units with a Softmax activation func-
tion, where C' is the number of situations to be predicted.
We train the model until convergence by minimizing the
categorical cross entropy, optimized with Adam [16] and
a learning rate initialized to 0.1 with an exponential decay
every 1000 iterations.

5.2 Device+User based Situation Prediction (duSP)

The duSP estimates the probability of each situation ¢ €
{1...C} given a pair (device-data d represented by de),
user u represented by g,,): P(c|d5f),gu). It is imple-

mented as a function f,y(di(f), gu) With Softmax output and

trainable parameters . To train it we use the set of training
streams represented as tuples (g, de), c)

Figure 4. Device across situations ¢
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Practical implementation. In choosing a real-time
“light” duSP model, we prioritize the computational com-
plexity requirements over accuracy. The low dimensional
input features (11-d = 8 device features + 3 demographic
features) already provide a strong case for the investigated
models. For our implementation, we experimented with
different classifiers: Decision Trees, K-Nearest Neighbors,
and eXtreme Gradient Boosting (XGBoost) [17]. While all
gave comparable results, we chose XGBoost for its consis-
tent performance across splits and different evaluation sce-
narios. Similar to the autotagger model, the output predic-
tions depend on the number C of situations in the dataset.

6. EVALUATION

We evaluate here the performance of our system which
aims at proposing for a given user u a session (sequence
of audio-tracks a) that fits their current situation ¢. For
this, we first evaluate the performance of the two branches
of our system (auSP and duSP) to correctly estimate the
situation c¢. We evaluate this using various numbers of sit-
uations: C' € {4,8,12}. To evaluate the auSP, we use
the common AUC (Area Under Roc Curve) and Accuracy
performance measures. To evaluate the duSP, we use the
Accuracy but also the Accuracy@ K. This measures the
capability of duSP to include the correct situation in the
top K predictions. We then evaluate the global system
by measuring the overlap of correct predictions between
the auSP and duSP branches. This accuracy can be in-
terpreted as the ratio of existing streams that would have
occurred in these sessions if the playlists were generated
with this system instead.

6.1 Scenario

‘We approach the evaluation of this system from two differ-
ent perspectives: 1) evaluating the system on its capability
of learning and generalizing, 2) evaluating the proposed
system in a stable use-case with frequent users/tracks.

We simulate these scenarios through a different split cri-
teria for the test-set. Let the full set of streams in our col-
lected dataset S, where each stream s has a user v and a
track a. We will be referring to the training-set as Sy, qin,
the test-set as Syes¢, the set of unique users in training and
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testing as Uyyqin and Uy respectively, and similarly the
unique audio-tracks in the splits as Ayq;, and Ayegy.

To evaluate the system intelligence and fit to the data,
we restrict the evaluation splits to include either: 1) new
users (cold-user case): Siest = {slu & Urain,a €
Atrain}, 2) new tracks (cold-track case): Siest = {s|u €
Utrain, @ ¢ Atrain - We exclude the specific case of both
new tracks and new users because splitting the data with
only new user/track pairs in the testset is difficult and rare
to find. Additionally, recommending a new track to a new
user is not a common nor practical scenario to use for eval-
uating a system.

To evaluate how the system would perform in a regu-
lar use-case (warm case): Siest = {S|u € Urqin,a €
Atrain, 8 & Strain }- The regular use-case does not restrict
the system to neither new users nor tracks. However, the
test-set contains exclusively new streams, i.e. (user/track)
pairs, not present in the training-set. The evaluation of this
regular use-case is relatively complex and includes several
entwined evaluation criteria. The goal is to compare the
overlap of generated sessions with groundtruth sessions.

6.1.1 auSP Evaluation

The results for the auSP can be found in Table 2.

As shown, the model can reach satisfying performance
relative to the evaluation scenario. In terms of AUC,
the model’s fit for both new users and tracks in the cold
user/track splits is not significantly impaired compared to
the warm case. The performance decreases evidently as the
problem gets harder with more situations C' to tag, though
in some cases it increases given the increase of dataset
size from additional situations. In terms of accuracy, the
model’s performance in the intended use-case, i.e. warm
case, is satisfying (Accuracy above 70). That is to say, the
system can correctly tag around two thirds of the user/track
listen streams with their correct situational use, when it has
seen the user or the track before, but not jointly.

Note that this accuracy was computed by selecting the
most probable situation from the predictions. While the
high values of AUC (above 0.94) suggest a threshold op-
timization is needed for each class, in real use-case we do
not necessarily need a threshold. The prediction proba-
bility could be used directly to retrieve tracks, e.g. by
ranking tracks with the prediction probabilities and include
top ranked tracks in the generated sessions. However,
this max-probability threshold is needed for further eval-
uations with the situation predictor and with the sequential
retrieval model.

Additionally, Figure 6 represents the confusion matrix
obtained in the C' = 12 and warm case.

6.1.2 duSP Evaluation

The results for the duSP can be found in Table 3. We find
that predicting the situation for new users becomes notice-
ably harder. In the case of C'=12 situations, the system
was able to correctly predict the situation for only 25% of
the streams. However, when the system is allowed to make
multiple guesses (Accuracy @3), the accuracy evidently in-
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Table 2. Results of the auSP evaluated with AUC and
Accuracy in the three evaluation protocol splits (cold-user,
cold-track, and warm case) and the three subsets of situa-
tions (4, 8, and 12). The results are shown as mean(std.).

C AUC

Cold User Cold Track Warm
4 | 0.889 (.009) 0.873(.013) 0.959 (.013)
8 | 0.815(.005) 0.866 (.007) 0.945 (.007)
12 | 0.852 (.004) 0.824 (.012) 0.941 (.012)
C Accuracy

Cold User Cold Track Warm
4 169.72 (1.07) 63.77 (2.33) 83.75(2.33)
8 | 47.56(0.53) 52.44(2.31) 70.81 (1.45)
12 | 52.68 (1.25) 37.61 (3.47) 69.14 (3.79)

Confusion matrix for the autotagger in 12 classes case

car CPKRY 0.41 1.24 123 092 082 082 009 116 016 1.35 0.65
club 0.24 [LX3q 4.74 1.77 080 1.18 2.07 0.2 337 0.13 224 0.19
dance 1.34 8.65 46:43/10.59 3.49 1.58 540 035 11.87 029 4.11 110
gym 0.75 2.83 887@128 062 1.11 0.09 567 049 424 074
morning 0.46 123 225 143 129 126 0.12 324 045 321 0.88

night 056 4.24 426 3.50 691438 021 3.99 266 8.08 141

party 1.82 9.19 16.26 7.19 5.63 4.09 CKZY 0.39 10.29 0.14 5.04 1.54

Predicted Label

relax 0.19 016 032 070 1.03 0.70 0.13 ELAWY 043 0.67 0.99 0.40

running 1.38 6.69 12.06 8.51 4.10 135 282 0.38 Eld¥ZY 0.16 9.95 0.40
sleep 0.09 032 0.27 174 1.69 2.60 025 002 037 3.64 201 0.2
train 0.07 029 020 0.77 056 0.15 0.09 0.01 1.01 0.14 @ 0.12

work 041 135 3.09 6.66 4.43 159 202 009 236 1.89 3.56 Ukl

car club dance gym morning night party relax running sleep train work
Groundtruth Label

Figure 6. Confusion Matrix of the auSP in the case C'=12
and warm case

creases. In the case where the user is to make the last de-
cision, the system is able to include the correct situation
in the top 3 suggestions 96%, 80%, and 68% in the cases
of C' =4, 8, and 12 situations respectively. The choice
of K, when evaluating with accuracy@ K, can be obvi-
ously changed, and the performance will increase as K in-
creases. We choose to display the results for K=3 since
3 is around the number of visible items in the carousels
displayed by most streaming services on the suggestions
screen on mobile devices.

Additionally, Figure 7 shows the confusion matrix ob-
tained in the C'=12 situations and warm case. We ob-
serve that the confusion is mostly coherent with the statis-
tic shown earlier of the distribution of situations with the
device data. Situations that are likely to originate with sim-
ilar device data are harder to discriminate than the rest. For
example, we observe a cluster of night-related situations
including night, sleep, and relax situations. Similarly, out-
doors situation are also often confused together. Discrimi-
nating those situations is hindered by the limited data avail-
able. However, the convenience of recommending top &
situations provides as easy solution to further discriminate
between these similar situations.
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Table 3. Results of the duSP evaluated with Accuracy
and Accuracy@3 in the three evaluation protocol splits
(cold-user, cold-track, and warm case) and the three sub-
sets of situations (4, 8, and 12). The results are shown as
mean(std.).

Table 5. The joint evaluation results of the auSP and
duSP and their overlapping predictions evaluated with Ac-
curacy in the three evaluation protocol splits (cold-user,
cold-track, and warm case) and the three subsets of situ-
ations (4, 8, and 12). The results are shown as mean(std.).

C Accuracy Accuracy @3 Model | Cold Users  Cold Tracks ~ Warm Case
Cold User Warm Cold User Warm A STTaations
4 47.46 (0.98) 66.96 (0.39) | 90.51 (0.31) 96.3 (0.1) ausp 69.73 (1.07) 63.78 (2.33) 83.75(2.33)
8 | 30.95(0.89) 49.23(0.16) | 64.11(1.42) 79.62 (0.13) dusp 47.46 (0.98) 66.81(0.35)  67.20 (0.26)
127 25.00(0.29) 39.92(0.13) | 5204 (0.61) 67.62 (0.21) Overlap | 3622 (127) 4460 (L0D) 5892 (1.71)
8 Situations
ausSp 47.56 (0.53) 52.44 (2.31) 70.81 (1.45)
Confuson matei o the stuation prdictor n 12 clsss case dusp | 30.95(0.89) 49.13(0.24) 49.35(0.19)
car 5.68 13.86 10.94 7.11 4.69 9.01 12.78 10.05 3.96 6.10 9.14 Overlap 17.77 (049) 28.94 (124) 39.52 (127)
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Figure 7. Confusion Matrix of the dusP with C=12 and
warm case

Finally, to evaluate the challenge in classifying situ-
ations from multiple sources, we compare between the
evaluation results in each location (France, Brazil) sep-
arately. We compare between two different cases: 1) a
model trained globally on the data from both locations but
tested locally, 2) a model trained locally on each location
independently and tested on the corresponding location.
Table 4 shows the results for this evaluation setting. We
find that training the models locally slightly improves the
results, but not significantly. This suggests that using a sin-
gle unique model for all locations gives comparable results
to using multiple local models. We also observe a clear dis-
tinction in the accuracy between the two locations, where
Brazil scores higher than France in all cases. This is due to
the larger number of users in our dataset who are in France,
i.e. there are more users with more distinct patterns in the
France case.

Table 4. Evaluation results of the globally and locally
trained models for each of the two locations in our dataset,
France and Brazil, evaluated with accuracy at each subset
of situations in the warm case. The results are shown as
mean(std.).

C France Brazil

Global | Local Global | Local
4 53.4(0.2) | 55.1(0.2) | 59.2(0.2) | 61.7 (0.2)
8 35.8(0.1) | 36.8(0.1) | 45.9(0.1) | 48.2(0.1)
12 || 27.6(0.1) | 28.2(0.1) | 39.6(0.2) | 41.8 (0.1)
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6.1.3 Joint Evaluation

The results for the joint system can be found in Table 5. As
we can see, each variable in our evaluation influences the
performance of the system. The most influential parameter
is the number C' of potential situations. As the complexity
increases, we find the accuracy of the model decreasing:
from 58% in the case C'=4 with no new users or tracks to
16% in the case C'=12 with cold scenarios. Additionally,
we find the expected variation in performance between the
cold cases and the warm case of intended use. We observe
how the drop in the performance of the auSP and dusP,
on new users/tracks, negatively affects the joint system per-
formance.

However, in the harder evaluation case of generating
a situational playlists with only 1 guess allowed out of
C=12, the proposed system would have been able to in-
clude at least a third of the actual listened tracks (31.26%)
in those playlists, while pushing them to the user at the
exact listened time.

7. CONCLUSION

In this study, we address the problem of the unobserved
listening situation which influences the users’ preferences.
We proposed a two-branch framework to predict when a
situation is being experienced based on the device data,
while simultaneously autotagging the music tracks with
their intended listening situation in a personalized manner.
Through the proposed approach, users could access a set
of predicted potential situations. These situations are also
associated with a set of tracks “likely” to be listened to by
the user. This likelihood is estimated using an autotagger
trained on predicting the situational use of tracks, given a
specific user and his/her listening history. We evaluated
each of our system’s blocks individually and combined.
The evaluation results indicated that the system is capable
of learning personalized patterns for users, which can be
employed to provide contextual music recommendation.
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