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Abstract

We propose and analyse a reduced-rank method for solving least-squares regression prob-
lems with infinite dimensional output. We derive learning bounds for our method, and
study under which setting statistical performance is improved in comparison to full-rank
method. Our analysis extends the interest of reduced-rank regression beyond the standard
low-rank setting to more general output regularity assumptions. We illustrate our theoret-
ical insights on synthetic least-squares problems. Then, we propose a surrogate structured
prediction method derived from this reduced-rank method. We assess its benefits on three
different problems: image reconstruction, multi-label classification, and metabolite identi-
fication.

Keywords: reduced-rank regression, structured prediction, statistical learning theory,
kernel methods

1. Introduction

Learning vector-valued functions plays a key role in a large variety of fields such as eco-
nomics (Liitkepohl, 2013), physics, computational biology, where multiple variables have
to be predicted simultaneously. As opposed to solving multiple single regression problems,
the interest of vector-valued regression lies on the ability to take into account the depen-
dence structure among the output variables by appropriate regularization (see for instance
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Micchelli and Pontil, 2005; Baldassarre et al., 2012; Alvarez et al., 2012; Lim et al., 2015)
or by imposing a low-rank assumption (Anderson, 1951; Izenman, 1975; Velu and Reinsel,
2013). Regarding the infinite dimensional output case, besides functional output regression
(Kadri et al., 2016), the motivation for vector-valued regression mainly comes from the
application of surrogate approaches in Structured Output Prediction (Weston et al., 2003;
Geurts et al., 2006; Kadri et al., 2013; Brouard et al., 2016b; Ciliberto et al., 2020). In
order to learn a model to predict an output with some discrete structure, surrogate ap-
proaches embed the structured output variable into a Hilbert space and thus boil down to
vector-valued regression with a potentially infinite dimensional output space. At prediction
time, decoding allows to return a prediction in the original structured output space. Image
completion (Weston et al., 2003), label ranking (Korba et al., 2018) and graph prediction
(Brouard et al., 2016a) are all examples of structured prediction tasks that can be handled
by surrogate approaches.

One way to implement infinite dimensional output regression consists in learning in
vector-valued Reproducing Kernel Hilbert Spaces (vv-RKHS) (Micchelli and Pontil, 2005).
In particular, regularized least-squares estimators in vv-RKHS enjoy strong theoretical guar-
antees (see Caponnetto and De Vito, 2007). However complex tasks such as structure pre-
diction very often involve a limited amount of training data compared to the complexity of
the input and output data. To overcome this issue, the structure of the target output can
be leveraged. This is typically the goal of reduced-rank approaches (Mukherjee and Zhu,
2011; Luise et al., 2019).

In this paper, our aim is to improve upon the regularized least-squares estimators by
imposing a rank constraint on the least-squares estimator. Our contributions are three-fold.

As a first contribution, we introduce a novel reduced-rank estimator for vector-valued
least-squares regression in the general case of infinite dimensional outputs. Denoting )
a Hilbert space and X a Polish space, we consider the following relationship between the
input variable and the output variable:

y="n(z)+e (1)

where the pair of random vectors (z,y) takes its values in X x ), e € Y is a random noise
independent of = with expectation E[¢] =0 and h* : X — ) is a measurable function.
Assuming we have already an estimator h:X — Y of h* built from a training i.i.d. sample
(xi,yi)i—, we propose to learn a linear operator P of rank p, for p € N* allowing to project
h(z) onto Z C Y with dim(Z) < p giving rise to the following new estimator:

This novel estimator generalizes the reduced-rank kernel ridge regression estimator proposed
by Mukherjee and Zhu (2011) to the infinite dimensional case.

The second contribution of this paper is to study the proposed least-squares estimator
under output regularity assumptions and provide excess-risk bounds. We assume that h*
belongs to a vector-valued reproducing kernel Hilbert Space, namely h* = He¢(.) with
HeY®H|H|us < +o00, and ¢ : X — H, is a canonical map associated to a scalar-
valued kernel k : X x X — R. The difficulty of the learning problem in Eq. (1) can
be characterized by standard complexity measures. For instance, the capacity condition
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measures the regularity of the features in terms of eigenvalue decay rate of the covariance
operator C' = E[p(z)®¢(z)], and the source condition measures the regularity of H in terms
of alignment of H*H with C (Caponnetto and De Vito, 2007; Ciliberto et al., 2020; Varre
et al., 2021). The more regular the problem is, the better are the statistical guarantees. In
this work, we consider regularity assumptions on the outputs of the learning problem. We
measure the eigenvalue decay rates of the covariance operator E[h*(z) ® h*(x)], and E[e®¢],
and also the alignment of HH* with HCH*.

The third contribution of this paper is a novel structured prediction method, which
leverages our reduced-rank estimator in the surrogate regression problem. The proposed
approach makes use of both an input and an output kernel. In this case, the resulting
surrogate regression problem’s output space is thus a reproducing kernel Hilbert space.
The least-squares analysis allows to prove the the statistical and computational interest
of the structured prediction method. In particular, consistency and learning rates for our
structured prediction method are given. Moreover, we show by an extensive empirical study
on different real world structured prediction tasks that the proposed approach improves
upon full rank and state-of-the art structured prediction approaches.

Outline.  The paper is organized as follows. In Section 2, we provide a novel reduced-
rank method for solving vector-valued least-squares problems. In Section 3, we give learning
bounds for the proposed least-squares estimator. Then, we study under which setting this
method improves the statistical and computational performance. In particular, our analysis
includes and extends the interest of reduced-rank regression beyond the standard setting
of reduced-rank regression where the optimum is assumed to be low-rank, and the noise
homogeneous in ). In Section 4, we show how the proposed estimator can be advantageously
used in structured prediction with surrogate methods. We give an excess-risk bound for
the resulting structured predictor, inherited from our least-squares theoretical analysis.
In Section 5, we illustrate our theoretical analysis on synthetic least-squares problems.
We empirically show the benefit of the method in structured prediction on three different
problems: image reconstruction, multi-label classification, and metabolite identification.

2. Problem Setting and Proposed Estimator

In this section, we introduce the learning setting of vector-valued least-squares regression.
Then, we give background on kernel ridge regression. Finally, we present the reduced-rank
least-squares estimator proposed in this work.

Vector-valued least-squares regression. We consider the problem of estimating a
function h : X — ) with values in a separable Hilbert space ) with norm ||.||y, given
a finite set {(z;,yi)/,} independently drawn from an unknown distribution p on X x Y,
minimizing the expected risk

R(h) = E,[|[n(x) — ylI3). (2)
The solution is given by h*(z) := E 5[yl We define the noise € as the random variable
defined by the following equation

y="h"(z) +e 3)
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In practice, solving (2) requires the choice of an hypothesis space H. In this work, we
consider reproducing kernel Hilbert space (RKHS).

Reproducing kernel Hilbert spaces.  Given a positive definite kernel £ : X x X — R,
one can build a Hilbert space H, of scalar-valued functions H,, called the associated RKHS
of k, defined by the completion H, = span{k(z,.)|z € X'} according to the norm induced
by the scalar product (k(z,.),k(z’,.))3, = k(z,2’). There is a one-to-one relation between
a kernel k and its associated RKHS (Aronszajn, 1950). A crucial tool is the representer
theorem which allows to solve in practice regularized empirical risk minimization problems

over RKHS (Wahba, 1990; Schélkopf et al., 2001).

Vector-valued reproducing kernel Hilbert spaces. The theory of vector-valued RKHSs
(vv-RKHSs) extends the theory of real-valued RKHS by enabling to build Hilbert spaces of
vector-valued functions (Senkene and Tempel’'man, 1973; Micchelli and Pontil, 2005; Carmeli
et al., 2010). We note A* the adjoint of any operator A. An operator-valued kernel is an
application K : X x X — £(Y) with values in the set of bounded linear operator on ), sat-
isfying the two following properties: K (z,2") = K(2',2)" and > ', (K (2, 2})yi, yj)y > 0
for any n € N*, (z1,91),...,(Zn,yn) € X x Y. Then, akin to scalar-valued kernel, one can
build a Hilbert space H of vector-valued function from X to ), called the associated RKHS
of K, defined by the completion H = span{ K (z,.)y| (z,y) € X x Y} according to the norm
induced by the scalar product (K (z,.)y, K(2',.)y" )% := (K(z,2")y,y')y. There is a one-to-
one relation between a kernel K and its associated vv-RKHS. Learning with operator-valued
kernels is also possible thanks to representer theorems (Micchelli and Pontil, 2005).

Kernel ridge regression. The kernel ridge regression method (KRR) considers the
estimator minimizing the following empirical objective

1
min — > [|h(z:) = 4ill3 + A Al (4)
1

where H is the RKHS associated to an operator-valued kernel K. In this work, we consider
kernel of the form K (x, ') = k(x,2')Iy, where k : X x X — R is a positive definite scalar-
valued kernel on X. In this case, the solution of the problem above can be computed in
closed-form as follows:

n

h(z) = Z ai(z)y;,  with az) = (K +n)\) Yk, (5)

i=1
where K = (k(z;,25));';—, € R™", and ky = (k(2, 2;));, € R™.

Related works in reduced-rank regression. Reduced-rank (or low-rank) estimators
are estimators whose predictions § € )Y lie in a linear subspace Z C ), estimated from
the data. Reduced-rank regression methods have been proposed for both linear models
(Izenman, 1975) and non parametric models (Mukherjee and Zhu, 2011; Foygel et al., 2012;
Rabusseau and Kadri, 2016; Luise et al., 2019). Two ways of building reduced-rank esti-
mators have been proposed so far. A first way consists in imposing small rank constraints
on the estimated linear operator (Izenman, 1975; Mukherjee and Zhu, 2011; Rabusseau and
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Kadri, 2016): on other words, the obtained estimators can be written as full-rank esti-
mators that has been projected with estimated projection operators for a chosen rank p.
Among those works devoted to finite dimensional vector-valued regression, the contribution
of Rabusseau and Kadri (2016) differs in many ways. They consider a tensor output (the
constraint is thus a multilinear rank constraint) and also provide learning bounds. Another
way to address reduced-rank regression is to use nuclear norm (or trace norm) penalization
as a convex relaxation to rank penalization as developed in (Romera-Paredes et al., 2013;
Foygel et al., 2012; Luise et al., 2019). It is worth mentioning that only Luise et al. (2019)
tackle an infinite dimensional vector valued-regression problem and provide a statistical
study. More precisely, in terms of statistical guarantees, Rabusseau and Kadri (2016) and
Luise et al. (2019) show improved constants in learning bounds when using reduced-rank
regression, in comparison with full-rank, in their respective settings.

Proposed least-squares estimator. = We introduce a non-parametric estimator belong-
ing to the family of reduced-rank estimators. Let A;, A2 > 0 and p € N*. Let P, be the set
of the orthogonal projections from ) to ) of rank p. We note hy a KRR estimator defined
using with the training sample (z;,vy;)!_, and a regularization parameter A > 0.

Ideally, we would propose the reduced-rank estimator a — Ph Ao (z) where P is the operator
defined as follows:

P := argmin E[||Ph*(z) — h*(z)|3). (6)
PEP,

Nevertheless, P is unknown, so we replace it by the following empirical estimator

. 1 & R R
Py, := argmin — Phy, (xi) — hy, (z5)]? , 7
1 Pep, n;” 1( ) 1( )H)} ( )

based on a KKR estimator A A, of A*, with possibly A; # A2. Eventually, this approximation
gives rise to the following proposition for our reduced-rank estimator with hyperparameters

(P, A1, A2):
X — PAlil)\Q(LIZ). (8)

Remark 2.1 Note that P is the projection onto the span of the p eigenvectors of the co-
variance operator E[h*(x) @ h*(x)] corresponding to the p greatest eigenvalues. Similarly,
15,\1 is the projection onto the span of the p eigenvectors of the empirical covariance operator
%Z?:l iAL,\l(xi) ® iL)\l(l’i) corresponding to the p greatest eigenvalues.

The proposed estimator allows to cope with any separable Hilbert output space ) (po-
tentially infinite dimensional), which is of practical interest (See Section 4). Furthermore,
efficient and theoretically grounded approximation methods for KRR and kernel principal
component analysis (Rudi et al., 2015; Rudi and Rosasco, 2017; Sterge et al., 2020) can be
straightforwardly leveraged to alleviate the computation of this estimator. For sake of sim-
plicity, in the remainder of the paper, except when it is necessary, we omit the dependency
in A1 and A2 and use notations h and P.
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input space
regression output space
structured output space

P probability distribution on X x )
Il.lly | norm of the Hilbert space )
n/ng | number of training data/test data

h* least-squares optimum = — E 1) [v]
structured loss A : Z x Z — R*
structured prediction optimum z — argmin ;¢ z E ;1) [A(2, 2)]
positive definite kernel on X
RKHS associated to k
vv-RKHS associated to K(z,2') = k(x,2’)Iy
space of orthogonal projections from ) to ) with rank p
argmin pep, B[|Ph*(z) — h*(2)]3)]
adjoint of A
A = B | Yu, (u, Au) < (u, Bu)
tp(A) | p-th eigenvalue of A sorted in decreasing order
|l.llzs | Hilbert-Schmidt norm
|l.lloc | operator norm
a®b | defined such as Va,a ® bx = (b, x)a

Sp(4) Zi:1 pr(A)

N =

g EE=

Table 1: Notations

Remark 2.2 The proposed estimator can be seen as a generalization of the reduced-rank
estimator defined in (Mukherjee and Zhu, 2011) for finite dimensional vector-valued to the
infinite dimensional output case and when A1 and Ao are not necessarily equal. In this work,
we additionally provide learning bounds by leveraging the linear structure of the noise € and
those of the outputs h*(x).

Notations are gathered in Table 1.

3. Theoretical analysis

In this section, we present a statistical analysis of the proposed estimator. We start, in
Section 3.1, by giving the assumptions on the learning problem that we considered. Then,
in Section 3.2, we provide learning bounds. Finally, in Section 3.3, we study under which
setting reduced-rank regression is statistically and computationally beneficial.

3.1 Assumptions
Here, we introduce and discuss the main assumptions that we need in order to prove our

results.

Assumption 1 (attainable case) We assume that the solution h* belongs to the RKHS
associated to the kernel K (z,xz") = k(x,2')Iy, i.e. there exists a linear operator H from H,
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to Y with ||H||lus < +o00 such that:

h(x) = Hp(x). (9)

This assumption states that the solution A* indeed belongs to the chosen hypothesis space
‘H. Tt is a standard assumption in the learning theory (Ciliberto et al., 2020).

Assumption 2 (regularity of target’s outputs) The operator M = E[h*(z) @ h*(z)]
satisfies the following property. There exists o € [0, 1] such that:

¢ = Tr(M?) < +o0. (10)

Assumption 2 is always verified for o = 1 (as Tr(M) < ||H||%gk?), and the smaller the «
the faster is the eigenvalue decay of M. It quantifies the regularity of the target’s outputs
h*(x) € Y. As a limiting case, when M is finite rank o = 0. The capacity condition is a
standard assumption for least-squares problems, which can be written Tr(C") < +oo with
r € [0,1], and that characterises instead the regularity of the features ¢(z) € H,. Remark
that it implies the Assumption 2 to hold with at least o < r, but o < r is possible.

Assumption 3 (output source condition) The operators H and C = E[¢p(z) ® ¢(x)]
satisfy the following property. There exists B € [0,1], ca > 0 such that:

HH* < coM'~P, (11)

Assumption 3 is always verified for 8 = 1 (as ||[H|l« < +00), and the smaller the 3 the
stricter the assumption is. It quantifies the alignment of the left-singular vectors of H with
the main components of M. The source condition is a standard assumption for least-squares
problems, which can be written H*H < aC'~" with r € [0,1],a > 0, and that quantifies
instead the alignment of the right-singular vectors of H with the main components of C'
(See, e.g. Ciliberto et al., 2020; Caponnetto and De Vito, 2007). The Assumption 3 allows
to show a fast convergence rate of P. In general, Assumption 3 can be maximum (8=0)
while the source condition is arbitrarily weak (r = 1).

Assumption 4 (diffuse noise and concentrated signal) The operators M and E =
Ele ® €] satisfy the following property. There exists v € [0,1], c3 > 0 such that

csM'™7 < E. (12)

Assumption 4 quantifies the alignment of the main components of E' and M, and the greater
the « the more the noise is diffuse in comparison to the signal. As a limiting case, when
v — 1, then 021y = E with a certain ¢ > 0, which is only possible in finite dimension (e.g.
E = 02I, homogeneous noise commonly assumed in low-rank regression).

Example 1 (finite-rank example) The standard low-rank regression setting (See Figure
1 left) corresponds to Y = R, C = 02y, with 02 > 0, H = Y.i_, v; ® u; with r € N¥,
E = 021y with 02 > 0, (u;);, (v;); being orthonormal bases (ONB) of respectively H, and
Y. In this case, the assumptions are verified with « = 0,8 =10,y = 1.
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1.0 1.0
1 — Hp(M) — (M)
0.8 —— Wp(E) 08 —— Mp(E)
0.6 0.6
0.4 0.4
0.2 0.2 !
0.0 0.0 -
0 10 20 30 40 50 0 10 20 30 40 50
p p

Figure 1: Illustration of finite-rank setting with » = 5, 02 = 1,02 = 0.1 (Left) and
polynomial setting with r. = 3/2,r, = 5/4,r. = 8/7 (Right). We plot
p = pp(M) = (vp, Mup)y and p — pip(E) = (vp, Evp)y.

Example 2 (polynomial example) In this paper, we study reduced-rank regression be-
yond low-rank setting. For instance, we can consider polynomial forms (See Figure 1 right)
for C = ;of i Teu; @ uy, H = Z;;Of 1T Thy; @ u;, B = 0.5 X Z;"fi*“vi ® v, with (u;);
and (v;); being (ONB) of H, and ), respectively. In this case, the assumptions are verified

with o = g =Tr(M*) <2, = 27;3}7"67 y=1- QTZiTC.

2rp+re’

3.2 Main Result

Now, we present the main result of this work which is Theorem 1. Under Assumptions 1, 2,
3, 4, it provides a bound on the proposed estimator’s excess-risk for a chosen p = rank(P).

Theorem 1 (Learning bounds) Let Ph be the proposed estimator in Eq. (8) with rank(P) =
p, built from n independent couples (x;, ;)i drawn from p. Let § € [0,1]. Under the As-
sumptions 1, 2, 3, 4, there exists constants cq,cs,cg > 0, ng € N* defined in the proof,
and independent of p,n,d, such that, if pp11(M) > cg logg(%)n_ﬁ and n > ng, then with
probability at least 1 — 39,

Ex[HPiL(:r) — h*(w)H%;]l/z < <C4\/13n_1/4 + csSp(E)1/4>n_1/4 log(n/d) + \/3clup+1(M)1/2(1_°‘)
(13)

with Sp(E) = 370_ jui(E).

The bound is the sum of two terms: the first one increases with p, the second one
decreases with p. When p = o(y/n), the first term is dominated by a term proportional to
S,(E)/*log(n/8)n1/*, which should be compared to the dominating term of the kernel
ridge estimator’s bound Tr(E)Y4n~1/* (cf. Lemma 13): instead of the total amount of noise
Tr(E), the reduced-rank estimator only incurs the quantity within the p main components
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of E, plus a logarithmic term in n. The second term of the sum decays w.r.t p at the speed
of the eigenvalue decay rates of E;[h*(z) ® h*(x)], modulo an exponent 1 — «. Finally,
1

the condition pi41(M) > cgn” #+1 stems from the estimation error of P, and can translate
into the existence of a plateau threshold p* from which the second term cannot decrease
anymore (See Rudi et al. (2013)). Hence, the stronger is Assumption 3, the faster is the
estimation of P and the divergence rate of the plateau threshold. We give here a sketch of
the proof for the Theorem 1. The complete proof is detailed in Appendix A.

Sketch of the proof. The proof consists in decomposing the excess-risk of the estimator
Ph as follows.

Eo[| Ph(z) — h*(2)[3]"? < Eo[| Ph(z) — PR*()[3]'/2 + Eo[|| Ph* () — h*(2)[3]'/% . (14)

Vv
regression error on a subspace reconstruction error

Then each right-hand term is bounded using a dedicated lemma given in the Appendix A.
Lemma 7 bounds the regression error on the subspace defined by P (akin to a variance).
Lemma 11 bounds the reconstruction error (akin to a bias). We exploit techniques and
schemes similar to those used in (Rudi et al., 2013; Rudi and Rosasco, 2017; Ciliberto et al.,
2016, 2020; Luise et al., 2019) in order to prove these lemmas. Namely, L2-norms of functions
in ‘H are expressed as Hilbert-Schmidt norms of Hilbert-Schmidt operators in Y ® H.,.
Relevant norms decompositions lead to study the deviation of the sample operators from
the true operators E[y ® ¢(z)] and E[¢(z) ® ¢(z)]. For this purpose, Bernstein’s inequalities
for the operator norm, or the Hilbert-Schmidt norm, of random operators between separable
Hilbert spaces are applied (Tropp, 2012). The previously introduced assumptions of Section
3.1 Rlay an important role in the proof of Lemma 11, allowing to obtain faster learning rate
for P.

Remark 3.1 (Independence assumption on ¢(z) and €) In this work, we assume that
¢(x) is independent of €. This allows to keep a clear exposition of the proofs, by perform-
ing lighter mathematical derivations. Nevertheless, such assumptions is not exploited by the
proposed method, and similar results hold without this assumption as we discuss in Appendix
A7

3.3 Polynomial Eigenvalue Decay Rates

In this subsection, we discuss under which setting reduced-rank ridge regression can be
statistically and computationally advantageous in comparison to standard full-rank ridge
regression. For this purpose, we apply Theorem 1 considering polynomial eigenvalue decay
rates for M and FE.

Assumption 5 (polynomial eigenvalue decay rates) M and E have polynomial eigen-
value decay rates with parameter s > 1 and e > 1, if there exist constants a, A,b,B > 0
such that:

ap® < pup(M) < Ap™?, (15)
bp~® < pp(E) < Bp~©. (16)
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Parameters s and e characterize the shapes of the signal’s and noise’s distributions in
Y, and provide information complementary to the total amounts of variance Tr(M) and
Tr(E). Moreover, notice that Assumption 5 does not require an exact polynomial decay of
the eigenvalues py o< k~". In particular, one can define a measure of distortion of py (M)
and pg(E) from exact polynomial decays as the values % and %, respectively. The greater
are these ratios the greater are the distortions.

Remark 3.2 (Assumptions relationship) Assumption 5 implies that Assumption 2 holds
with ¢p = Tr(M%), and Assumption 4 holds with v =1 — < and c3 = Ae/sp=1,

Under the Assumptions 1, 3, and 5 we derive the following corollary from Theorem 1 in
the special case of polynomial eigenvalue decay rates.

Corollary 2 (Learning bounds (polynomial decay rates)) Let § € ]0,1], n > nyg.
Under Assumptions 1, 3, and 5, assuming % < 0 with 8 > 1, then by taking only

8 1
p = collog*(5)) T n T, (17)
we have with probability at least 1 — 30:

11-2/s

. 1 8
E,[|Ph(z) — h*(@)|[3]Y? < eio(s,e) 10g5/4(%)n_1/4 +cu(e)n 2T 108:8(5)7 (18)

- —1)\1/4 - L
where c10(s,€) = ¢10 (6(%1)) (1 + log (e_%)), c11(e) = é11 (1 + log (6_%)) €10, €11, Nno,
are constants independent of n,d,s,e, and cg is a constant independent of n,d, defined in
the proofs.

As a first remark, note that the chosen components number p of order (’)(nm) is
significantly smaller than n when s is big (concentrated signal). For instance, s = 2 yields
at most to p = O(y/n). Then, notice that the bound is the sum of two terms. The first
term is decaying in O(n~/4) modulo a logarithm term in n, and its multiplicative constant
can be arbitrarily small when e is small (spread noise), as cio(s, €) F 0. The decreasing

rate of the second term varies within the open interval ]0,1/2[. The greater is s and the
smaller is 8, the better is the rate.

Comparison with full-rank estimator’s bound. The bound provided in Eq. (18)
sheds light on the role of M and E’s shapes, flat (s,e — 1) or concentrated (s, e — +00), in
the performance of the reduced-rank estimator. At the opposite, remark that the full-rank
ridge estimator’s bound is dominated by a term of the form c(k + || H ||ug) Tr(E)n~/*log(%)
with ¢ > 0 a constant independent of n,d, s,e (See Lemma 13). So, the ridge estimator is
not impacted by the shapes of M and E, but is only affected by the total amounts of signal
||H||fs, and noise Tr(E).

10
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Favorable settings for reduced-rank. Which situations are favorable to the pro-
posed reduced-rank method? To simplify the discussion, let us not consider the terms
(1 +log(e/(e —1))) appearing in cio,c11. If s is big enough and § small enough then the
right term of (18) is o(n~'/4) (e.g. s = 6, § = 0 gives O(n~'/3)). So, for n big enough,
it remains to compare the left term of the bound with the dominating term of the ridge
bound. When e becomes close to 17 the left term can be arbitrarily smaller than the ridge
bound, because c19(s,e) — 0, while ¢ Tr(FE) is unchanged. Let be ¢ € N*. For the following
family of settings:

B<1-— %, e €]l,e*(n,q)] (19)

%}, the reduced-rank bound is ¢ times smaller
than the full-rank one, when n is big enough.

This gain is obtained because the projection yields to an important noise reduction and a
small increase in bias. This can be think as a direct generalization of the low-rank regression

setting.

with e*(n,q) = sup{e/cip(s,e) <

In the following corollary, we duly show that, despite the (1+log(e/(e —1))) terms, one
can find settings (n, s,e) € N* x Rt x RT such that the learning bound (18) is arbitrarily
smaller than the kernel ridge estimator’s one under the same assumptions on the learning
problem.

Corollary 3 (Statistical gain of reduced-rank regression) Let 6 €]0,1] and e > 0. If
B < 1, then there exists a setting s,e > 1, n € N*, such that, under the assumptions of
Corollary 2, with probability at least 1 — 39,

E, [ Ph(z) — h*(2)|3]7 < e x Te(E)Y/* x n~ V4, (20)

Proof We exhibit such a setting (n, s, e). We choose (s, 3) such that 3 < 1 — 2. One can

PR

11-2/s 1/4
check that in this case c;1n” 2 77 log(n/d) = o(n~'/*), and also ¢ (%@9)8 X 10g5(%)) / n~14 =

o(n=1/4) (when e — 1*,n — 400, with e > 1 + # for any a > 0). So, taking n big enough
we obtain the desired inequality. |

Corollary 3 shows that a significant statistical gain is possible using reduced-rank regres-
sion, even if the support of h*(x) covers the entire output space Y, i.e. beyond the standard
low-rank setting. Besides the statistical gain, reducing the rank of the predictions’ space is
of interest for reducing the computational complexity at prediction time.

As it will be presented in the application to structured prediction (See Section 4), decod-
ing predictions in surrogate approaches or simply computing mean squared errors require
to calculate inner products between the predictions provided by the regression estimator
and elements of the output space. In the following lemma, we analyze the complexity in
time of such computations. Note that the same complexity holds for computing distances
between predictions and elements of the output space. We consider the setting where the
dimension of Y is bigger than n (e.g. infinite).

11
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Corollary 4 (Computational gain of reduced-rank regression) Let h:X =Y be
a kernel ridge estimator trained on n points. Let P :' Y — Y be a projection operator of

o N
rank p. Given N output points (y;)Y,, computing the inner products ((Ph(a:), yz)y) )
1=

has a time and space complezity of order O(p(N + n)) while computing the inner products
. N
((h(x), yi>y), | has a time complexity O(nN).
1=

o N
Proof In order to compute ((Ph(x), yz)y) , one needs to compute
i

o) (UY,)T UY (21)
N ——
(Ln)  (np) @)

with a(z) = (K +n\) Yy, ke = (k(z,21), ... k(2,2,)), U =3 €; ® u;, where (u;)}_;
is an orthogonal basis of the range of 15, (e;)f_, an orthogonal basis of R?, and Y}, is the
operator with the n training output points as columns, Y the operator with the N output
points as columns. This costs p(N + n) in time and space complexity. In order to compute

R N
the ((h(m), yi)y>i:1 one needs to compute

a(z) (22)

T KY
~—~
(1) (N

with K'Y the gram matrix between the n training points and N output points for the kernel
ky(y,y') = (y, ¥')y. This costs nN in time and space complexity. [ |

Corollary 4 shows that a significant computational gain is possible when N > p and
n > p, as in this case p(N +n) < nN. Combining this result with Corollary 3 we conclude
that, under the output regularity assumptions made, the proposed method offers both
statistical and computational gains by projecting the ridge estimator onto an estimated
linear subspace.

Remark 3.3 (Consequences for finite dimensional ). ) The obtained results are not
limited to the infinite dimensional setting and are still valuable when Y = R?. One can notice
that in the finite dimensional case Assumptions 2, 3, and 4 are always verified choosing the
best exponents a« = =0,y =1 (if M, E >~ 0), but it is at the price of very large constants
c1,co and very small cg3, which make the bounds very large. In fact, it amounts to using
the rough inequalities Tr(A) < d X ||Al|co and A < Z;(ggB for any bounded operators A, B,
thereby loosing information on the shape of M and E. At the opposite, choosing «, 3,7
such that the constants c1, ca, c3 remain close to 1 allows to obtain finer bounds, taking into

account the signal/noise configuration, closed to the observed behaviors.

Take-home message. The proposed reduced-rank regression estimator enjoys a sta-
tistical gain under more general assumptions than standard low-rank assumptions. As
parameter A, the rank p acts as a regularization parameter whose impact should disappear

when the size of the training sample increases, i.e. p —+> 400. The settings where the
n—-—+0o0

proposed method performs better than the kernel ridge estimator require faster eigenvalue

12
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decay rates for E[h*(z) ® h*(z)] than for E[e ® €] (concentrated signal/diffuse noise). But
this is not sufficient: Assumption 3 with a sufficiently small 5 (8 < 1 — %) is also necessary
to ensure a fast enough estimation of P. Last but not least, reducing the predicted outputs’
dimension can also yield to substantial computational gains.

4. Application to Structured Prediction

In this section, we develop an application of the reduced-rank estimator to structured pre-
diction. The novel method fits into the generic framework of surrogate approaches for
structured prediction and exploits an infinite dimensional embedding by the mean of a
kernel. We describe the algorithm and give learning bounds for the proposed structured
prediction estimator.

4.1 Surrogate Reduced-Rank Estimator for Structured Prediction

Structured prediction consists in solving a supervised learning task where the output vari-
able is a structured object. Denoting Z the structured output space, a structured loss
A : Z x Z — R measures the discrepancy between a true output and a predicted output.
The goal of structured prediction is to minimize the following expected risk:

R(f) = E,[A(f(2), 2)], (23)

over a class of functions f: X — Z, using a finite set (z;, 2;)]_; independently drawn from
an unknown distribution p on X x Z. In other words, if we note f* : X — Z the minimizer
of R(f), the aim of learning is therefore to get an estimator f of f* based on the finite
sample (x;, z;)I"; with the best possible statistical properties.

A surrogate approach: Output Kernel Regression We consider here the case when
A is defined as a metric induced by a positive definite kernel k, acting over the structured
output space Z:

A(z,2) = [9(2) = ¥ () 3. (24)

This boils down to embedding objects of Z into the Reproducing Kernel Hilbert Space
associated to k, using the canonical feature map ¢ : Z — H, associated to k,, and then
consider the square loss over H,. Relying on the abundant literature about kernels on
structured objects (Géartner, 2003), this class of losses covers a wide variety of structured
prediction problems.

However, learning directly f through 1 still raises an issue and a simple way to overcome
it consists in seeking instead a surrogate model h : X — H_ able to predict the embedded
objects in the infinite dimensional space H, and leverage the kernel trick in the output
space. This approach is referred as Output Kernel Regression (OKR) (Weston et al., 2003;
Geurts et al., 2006; Brouard et al., 2016b). The original structured prediction problem is
then replaced by the following surrogate vector-valued regression problem stated in terms
of the surrogate true risk:

i B, [lh(@) ~ () ) (25)

13
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Assume h* is the function © — Ey[i)(2)|z] (solution of Eq. (25)). Then at prediction
time, one can retrieve a prediction in the original space Z through an appropriate decoding
function d : H, — Z:

2" = f"(x) :=doh*(x) := argmin ||h"(z) — @ZJ(Z)H?HZ (26)

z€EZ

The overall approach is illustrated on Fig. 2.

heH

f =doh
Figure 2: Schematic illustration of OKR.

Ciliberto et al. (2016) have proved that f** solves exactly the original structured pre-
diction problem, i.e. f** = f*. Fo that purpose, they have shown that A(z,z') =
[¥(2) =¥ (2')|3,. belongs to the wide family of Structure Encoding Loss Functions (SELF),
as it can be written z, 2/ — (y(2),0(2')), with v = H,BROR, v(z) = (v2¢(2), 19(2)13,.. 1),
and y(2) = (=v2¢(2), 1, () [3,.)-

Moreover, when providing an estimator h of h* using the training sample (z;, z;)1"_;, we
benefit from the so called comparison inequality from Ciliberto et al. (2016)

R(f) — R(f") < ¢ x Ey[||A(z) — h*(2)[13,.]"/, (27)

where f = d o h and the constants ¢ and Q are defined as: ¢ = 21/2Q2 + Q* + 1, and
Q@ = sup, [|9(2) .-

Reduced-rank regression in structured prediction. The OKR problem depicted
in Eq. (25) can be solved in various hypothesis spaces and trees-based approaches (Geurts
et al., 2006) as well as kernel methods (Weston et al., 2003; Geurts et al., 2006; Brouard
et al., 2011; Kadri et al., 2013; Laforgue et al., 2020) have been developed so far to tackle
it. We focus here on Input Output Kernel Regression (IOKR), a method that exploits
operator-valued kernels (Brouard et al., 2016b) and assumes that h belongs to a vv-RKHS.
In particular, IOKR-ridge solves the kernel ridge regression problem in Eq. (4) with the
following choice s: the output space is Y := H,, the chosen operator-valued kernel writes
as K(z,2') = k(xz,2')Ig,,and the hypothesis spaceH is the vv-RKHS associated to K.
Instantiating Eq. 5, the solution to IOKR-ridge writes as:

h(z) = Z o (2)(2i), (28)
i=1
where «a;’s are defined according Eq. 5.
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In this section, we propose to solve the surrogate problem in Eq. (25) using our reduced-
rank estimator based on the IOKR-ridge estimator. This gives rise to the definition of a
novel structured output prediction f:

fz) = arg min 1Ph(x) — v(2)|3,.. (29)

Because of the comparison inequality Eq. (27), the resulting structured predictor directly
benefits from the learning bound on the least-squares problem.

Theorem 5 (Excess-risk bound for the structured predictor) Letd €]0, 1], n > ng.
Under Assumptions 1, 3, and 5, assuming % < 0 with 0 > 1, then by taking only

p = co(log®(3))Hn T (30)
then with probability at least 1 — 36

R(f)~ BU) < ex (enols,e) log? 4 () n + en(e)n ™75 10g°5)) 1)

- —1)\1/4 ~ L
where c10(s,€) = ¢19 (@) (1 + log (ﬁ)), c11(e) = é11 (1 + log (e%l)) €10, C11, NQ,
are constants independent of n,d,s,e and cg is a constant independent of n,d, defined in
the proofs.

The bound provided in Theorem 5 is similar to the one of Corollary 2 modulo the
multiplicative constant ¢, and thus the interpretation is the same. In particular, when s
is sufficiently big and e, 8 sufficiently small, we can obtain a significant statistical gain in
comparison to the not projected estimator, as shown in Corollary 3.

4.2 Algorithms and Complexity Analysis

To define the final reduced-rank IOKR-ridge estimator f , one has to apply Algorithm 4.2 to
compute all the parameters of Ph necessary to the decoding phase described in Algorithm
4.2.

Complexity in time At decoding/prediction time, one needs to compute ng times the
prediction f(z;), for the testing data points (;)™¢. Each prediction requires to calculate the
distances in Eq. (26). This is made possible by usmg the kernel trick, avoiding to compute
the infinite dimensional vectors h(z) and 1)(z). These computations cost O(ngn|Z|) in
time, where n and |Z| € N* are the size of the training data set and the number of output
candidates, respectively. Note that |Z] is typically very big in structured prediction. For
instance, in multilabel classification with d labels |Z| = {0,1}% = 2¢. In practice, one often
chooses a subset of Z as a candidate set. Hence, the decoding phase badly scales with n, and
in general is computationally expensive. Because of the projection onto a finite dimensional
space, the proposed method can significantly alleviate these computations. When using Ph
with P of rank p, the decoding time complexity reduces to O(nep|Z|) as shown in Corollary
4. Furthermore, the training phase consists in a matrix inversion for computing h plus a
singular value decomposition for computing P. Hence, the time complexity of the training
algorithm without approximation is O(2n?®). It can still be reduced using efficient and
theoretically grounded approximation methods for KRR and kernel principal component
analysis developed in (Rudi et al., 2015; Rudi and Rosasco, 2017; Sterge et al., 2020).
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Algorithm 1 Reduced-rank IOKR-ridge - Training phase
Input: K,, K, e R"™*" A>0, pe N*

KRR estimation: W = (K, +n\Il)~! € R™*"

Subspace estimation:
K, =WK,K,K,W € R**"

b=\ - g | ERVP < SVD(KR) = X

Training outputs projection:
K., =KWK, € R"™*"
UY = K,;,p € R™*P

Return: W (KRR coefficients), 8 (projection coefficients), UY (projected training out-

puts)

Algorithm 2 Reduced-rank IOKR-ridge - Decoding phase
Input: k!¢ € R, Zeandidates € R™*%, UY € R™*P, W € R™*"

Output candidates projection:

K., = WK KT/ ¢ Rnxne

UY, = K., € R"*P

Distances computation:

a =Wk e R?

Uhte =UYTa € RP

S =" (Ph(@1e), ¥(Zeandidates))n.” = (Uhie) "UY, € R™
N = "[$(Zeandidates)3;,” = (K=(22)) e 2,0 as0100 € R™
D=N-2S8

1-NN prediction :

i = arg min ic[1ne) Di

2 = Zeandidates[i] €Y

Return: Z (prediction)
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Algorithm TOKR Reduced-rank IOKR

Training ~ O(n3) O(2n3)
Decoding ~ O(ngen|Z])  O(neep|Z|)

Table 2: Time complexity of IOKR versus reduced-rank IOKR.

5. Numerical Experiments

We now carry out experiments with the methods proposed in this work. In Section 5.1,
we illustrate our theoretical insights on synthetic least-squares problems. In Section 5.2,
we test the proposed structured prediction method on three different problems: image
reconstruction, multi-label classification, and metabolite identification.

5.1 Reduced-rank regression: statistical gain and importance of Assumption 3

We illustrate, on synthetic least-squares problems, the theoretical insights, given in Sub-
section 3.3. For d = 300, X = H, = Y = R% we choose y,(C) = ﬁ, pp(E) = 1%. We

draw randomly the eigenvector associated to each eigenvalue. We draw Hy € R¥*? with
independently drawn coefficients from the standard normal distribution. We consider two
different optimums H = Hy (8 = 1) and H = (HyCHy)Hp (8 = 1/3). Then, we gener-
ate n € [10%,...,5 x 10%],nyq = 1000, ngest = 1000 couples (x,y) such that z ~ N(0,C),
e ~N(0,E), and y = Hx + ¢. We select the hyper-parameters of the three estimators fL,
PiL, and Ph in logarithmic grids, with the best validation MSE. On the Figure 3 we plot
the test MSE obtain by the three estimators for various p and n, and for the two different
optimums H = Hy (left) and H = (HoC Hp)Hy (right). There exists for both H (left/right)
a minimum MSE w.r.t p for Ph below the MSE of & when n is big enough: P offers a
valuable regularization of h. Moreover, we observe that the selected p increases when n
increases with a decreasing gain, following the provided bounds’ behavior. Furthermore, we
observe that because of the estimation error of 15, there is no gain for Ph when H = Hy,
while when H = (HoCHy)Hy there is a gain for n big enough. This illustrates the faster
convergence rate of P when 5 is small.

5.2 Experiments on Structured Prediction

In this section, we assess the performance of the reduced-rank IOKR estimator calculated
using Algorithms 4.2 and 4.2 proposed in Section 4 on three real-world structured prediction
tasks: image reconstruction, multi-label classification, and metabolite identification. Our
experiments show how reduced-rank regression can be advantageously used for surrogate
methods in structured prediction in order to improve both statistical and computational
aspects. In these experiments, we choose A\ = Ay in order to reduce the quantity of
hyperparameters.

State of the art approaches For each task, we compared our reduced-rank method
to relevant existing SOTA approaches. SPEN Belanger and McCallum (2016), a neural
network learned by minimizing the structured hinge loss, is an Energy-Based Model (EBM),
considered as a strong benchmark in the literature. Contrary to surrogate approaches,
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Figure 3: Test MSE w.r.t p (z axis) and the quantity of training data n (color bar), obtained
with the optimal projection P and its estimation 15, for various output source
condition. (Left) Output source condition f = 1, H = Hy. (Right) Output
source condition = 1/3, H = (HyCHy)Hy.

EBM involves the computation of the decoding phase during the training phase. Kernel
Dependency Estimation (KDE) (Weston et al., 2003) shares with IOKR the use of kernels in
the input and output space with the following differences: in KDE, Kernal PCA is used to
decompose the output feature vectors into p orthogonal directions. Kernel ridge regression
is then used for learning independently the mapping between the input feature vectors and
each direction. By applying KPCA on the outputs KDE aims at estimating the linear
subspace of the output embedding 1(y) while the proposed reduced-rank estimator aims at
estimating the linear subspace of the h*(z). Additionally, for the multi-label classification
problem, we choose the exact setting of previous benchmark experiments (See for instance,
(Gygli et al., 2017; Lin et al., 2014)) and thus benefited from the collected results and
comparison with other methods.

5.2.1 IMAGE RECONSTRUCTION

Problem and data set. The goal of the image reconstruction problem provided by
Weston et al. (2003) is to predict the bottom half of a USPS handwritten postal digit (16 x
16 pixels), given its top half. The data set contains 7291 training labeled images and 2007
test images.

Experimental setting. As in Weston et al. (2003) we used as target loss an RBF loss
lv(y) — (Y )H%{y induced by a Gaussian kernel k and visually chose the kernel’s width

agutput = 10, looking at reconstructed images of the method using the ridge estimator (i.e.
without reduced-rank estimation). We used a Gaussian input kernel of width J?nput. For

the pre-image step, we used the same candidate set for all methods constituted with all the
7291 training bottom half digits. We considered A\ := Ay = Ag for the proposed method.
The hyper-parameters for all tested methods (including afnput, A, p, and SPEN layers’ sizes)
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have been selected using logarithmic grids via 5 repeated random sub-sampling validation

(80%/20%).

Reduced-rank estimator for surrogate problem. We start by evaluating the per-
formance of the reduced-rank estimator in solving the Hilbert space valued least-squares
problem described in Eq. (25). We plot on Figure 4 the test mean squared error of our
estimator, and of the ridge estimator, w.r.t the quantity of training data n from n = 500 to
n = 7000. We observe that the reduced-rank estimator (p < +00) always performs better
than the kernel ridge estimator (p = 4+00). Nevertheless, we see that this gain is smaller
for small n or big n. This is a typical behavior observed in our experiments, which can be
interpreted as a difficulty in estimating P when n is small, and the diminishing usefulness
of regularization when n increase. Indeed p can be thought of as a regularization parameter
exploiting a different regularity assumption than A, but whose action, similarly to A, should
decrease when n increases, such that p — +o00 when n — +o0.

0.525]
0.500
n
= 0.475

0.450

0.425+

2000 4000 6000
Ntr

Figure 4: Test MSE of the proposed reduced-rank estimator (p < +o0), and of the ridge
estimator (p = +00) w.r.t n on the USPS problem.

Comparison with SOTA methods. Then, in a second experiment, we compare the
structured predictor (see Eq. (29)) using reduced-rank estimation, to state-of-the-art meth-
ods: SPEN (Belanger and McCallum, 2016), IOKR (Brouard et al., 2016b), and Kernel
Dependency Estimation (KDE) (Weston et al., 2003). We fix n = 1000 where the reduced-
rank estimation seems helpful, according to Figure 4. For SPEN we employed the standard
architecture and training method described in the corresponding article (cf. supplements
for more details). We evaluated the results in term of RBF loss (e.g. Gaussian kernel loss),
as in Weston et al. (2003). The obtained results are given in Table 3. Firstly, we see that
SPEN obtains worse results than KDE, IOKR, and reduced-rank IOKR. Furthermore, note
that the number of hyperparameters for SPEN (architecture and optimization) is usually
larger than reduced-rank IOKR. Finally, notice that IOKR correspond to the proposed
method with p = +00. Hence, this shows the benefit of exploiting output regularity thanks
to reduced-rank estimation in structured prediction.
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Method RBF loss p
SPEN 0.801 + 0.011 128
KDE 0.764 + 0.011 64
IOKR 0.751 +£ 0.011 oo

Reduced-rank IOKR 0.734 4+ 0.011 64

Table 3: Test mean losses and standard errors for the proposed method, IOKR, KDE, and
SPEN on the USPS digits reconstruction problem where n = 1000, and nest =
2007.

5.2.2 MULTI-LABEL CLASSIFICATION

Problem and data set. Bibtex and Bookmarks (Katakis et al., 2008) are tag recom-
mendation problems, in which the objective is to propose a relevant set of tags (e.g. url,
description, journal volume) to users when they add a new Bookmark (webpage) or Bibtex
entry to the social bookmarking system Bibsonomy. Corel5k is an image data set and the
goal of this application is to annotate these images with keywords. Information on these
data sets is given in Table 4.

data set n Nte Nfeatures  Tlabels !
Bibtex 4880 2515 1836 159 2.40
Bookmarks 60000 27856 2150 208 2.03

Corel5k 4500 499 37152 260 3.52

Table 4: Multi-label data sets description. [ denotes the averaged number of labels per
point.

Experimental setting. For all multi-label experiments we used a Gaussian input and
output kernels with widths Ulznput and agutput =1, where [ is the averaged number of labels
per point. As candidate sets we used all the training output data. We measured the quality
of predictions using example-based F1 score. We selected the hyper-parameters A and p in

logarithmic grids.

Comparison with SOTA methods. We compare our method with several multi-
label and structured prediction approaches including IOKR (Brouard et al., 2016b), logistic
regression (LR) trained independently for each label (Lin et al., 2014), a two-layer neural
network with cross entropy loss (NN) by (Belanger and McCallum, 2016), the multi-label
approach PRLR (Posterior-Regularized Low-Rank) (Lin et al., 2014), the energy-based
model SPEN (Structured Prediction Energy Networks) (Belanger and McCallum, 2016) as
well as DVN (Deep Value Networks) (Gygli et al., 2017). The results in Table 5 show that
surrogate methods (first two lines) can compete with state-of-the-art dedicated multilabel
methods on the standard data sets Bibtex and Bookmarks. With Bookmarks (n/ni, =
60000/27856) we used a Nystrom approximation with 15000 anchors when computing h
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to reduce the training complexity, and we learned P only with a subset of 12000 training
data. h decoding took about 56 minutes, and Ph decoding less than 4 minutes. With a
drastically smaller amount of time, Ph (first line) achieves the same order of magnitude of
F1 as h (line two) at a lower cost (see Table 6) and still has better performance than all
other competitors.

Method Bibtex Bookmarks
Reduced-rank IOKR 43.8 39.1

IOKR 44.0 39.3

LR 37.2 30.7

NN 38.9 33.8

SPEN 42.2 34.4

PRLR 44.2 34.9

DVN 44.7 37.1

Table 5: Tag prediction from text data. Fj score of reduced-rank IOKR compared to state-
of-the-art methods. LR (Lin et al., 2014), NN (Belanger and McCallum, 2016),
SPEN (Belanger and McCallum, 2016), PRLR (Lin et al., 2014), DVN (Gygli
et al., 2017). Results are taken from the corresponding articles.

IOKR Reduced-rank IOKR
Bibtex 2s/13s 15s/4s
Bookmarks 465s/3371s 617s/214s
USPS 0.1s/9s 0.4s/1s

Table 6: Fitting/Decoding computation time of IOKR compared to our method (in seconds)

Small training data regime. We evaluate the reduced-rank structured predictor in
a setting where only a small number of training examples is known. For this setting, we
consider only the 2000 first couples (z;,y;) of each multi-label data set as training set.
Hyper-parameters have been selected using 5 repeated random sub-sampling validation
(80%/20%) and the same A was used for IOKR. The results of this comparison are given in
Table 7. We observe that the proposed reduced-rank structured predictor obtains higher F1
scores than the one using kernel ridge regression in this setup. This highlights the interest
of our method in a setting where the data set is small in comparison to the difficulty of the
task.

About the selected rank p.  We selected the rank p with integer logarithmic scales,
ensuring that the selected dimensions were always smaller than the maximal one of the grids.
From Table 7 to Table 5, the selected dimension p for Bibtex/Bookmarks are 80/30, then
130/200. In Table 7 recall that we used a reduced number of training couples. Interpreting
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Bibtex Bookmarks Corel5k

n 2000 2000 2000
Nie 2515 2500 499

IOKR 35.9 22.9 13.7
Reduced-rank IOKR 39.7 25.9 16.1

Table 7: Test F} score of reduced-rank IOKR and IOKR on different multi-label problems
in a small training data regime.

p as a regularisation parameter, we see that when n increases then the p increases, i.e. the
rank regularisation decreases.

5.2.3 METABOLITE IDENTIFICATION

Problem and data set. An important problem in metabolomics is to identify the small
molecules, called metabolites, that are present in a biological sample. Mass spectrometry
is a widespread method to extract distinctive features from a biological sample in the form
of a tandem mass (MS/MS) spectrum. The goal of this problem is to predict the molecular
structure of a metabolite given its tandem mass spectrum. The molecular structures of the
metabolites are represented by fingerprints, that are binary vectors of length d = 7593. Each
value of the fingerprint indicates the presence or absence of a certain molecular property.
Labeled data are expensive to obtain, and despite the problem complexity only n = 6974
labeled data are available. State-of-the-art results for this problem have been obtained with
the IOKR method by Brouard et al. (2016a). The median size of the candidate sets is 292,
and the biggest candidate set is of size 36918. Hence, the metabolite identification data set
is characterized by high-dimensional complex outputs, a small training set, and a very large
number of candidates.

Experimental setting. We adopt a similar numerical experimental protocol (5-CV
Outer/4-CV Inner loops) than in Brouard et al. (2016a), probability product input kernel
for mass spectra, and Gaussian-Tanimoto output kernel on the molecular fingerprints (with
parameter o2 = 1). We selected the hyper-parameters A, p in logarithmic grids using nested
cross-validation with 5 outer folds and 4 inner folds.

Improved prediction with reduced-rank estimation . We compare the proposed
reduced-rank structured predictor with SPEN, and with the state-of-the art method on this
problem IOKR (which corresponds to our method with p = +00). The result are given in
Table 8. We observe that reduced-rank IOKR improved upon plain IOKR, in this context
of supervised learning with complex outputs and a small training data set.

6. Conclusion

In this paper, we proposed a novel reduced-rank regression estimator in the case of regular-
ized least squares regression with infinite dimensional outputs and gave excess-risk bounds
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Method MSE Tanimoto-Gaussian loss Top-k accuracies
k=1|k=5|k=10
SPEN — 0.537 + 0.008 25.9%|54.1% | 64.3%
IOKR 0.781+0.002  0.463 £ 0.009 29.6% 61.1% | 71.0%
Reduced-rank IOKR 0.766 + 0.003 0.459 +0.010 30.0%|61.5% | 71.4%

Table 8: Test mean losses and standard errors for the metabolite identification problem.
SPEN MSE in H, is not defined as predictions are directly done in Z.

under general output regularity assumptions. In particular, we characterized a family of
situations where reduced-rank regression is statistically and computationally beneficial. We
used the proposed reduced-rank regression for structured prediction, and derived theoreti-
cal guarantees on the resulting estimator. Experiments on structured prediction problems
confirm the advantages in practice of the approach.
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Appendix A. Proofs of the Learning Bounds
In this section we prove Theorem 1 and Corollary 2. The proofs are organized as follows:

e Appendix A.1 introduces some necessary notations and definitions.

Appendix A.2 provides the proof for bounding E[|| P(h(z) — h*(2))|3] (Lemma 7).

Appendix A.3 provides the proof for bounding E[|| Ph*(z) — h*(z)||3] (Lemma 11).

Appendix A.4 provides the proof for bounding E[|| Ph(z) —h* (z) 3] (Theorem 1) using
Lemmas 7 and 11.

Appendix A.5 provides the proof for the Corollary 2 using Theorem 1.

Appendix A.6 gives some technical results used in the proofs.

e Appendix A.7 discusses the assumption that ¢(x) and € are independent.

A.1 Notations and Definitions

In the following we consider X to be a Polish space, and ) a separable Hilbert space. We
define here the ideal operators that we will use in the following

e The feature map ¢ : X — H,, Vo € X, ¢(x) = k(x,.), with ||¢(z)||%, < & with £ > 0.
e The target h*(.) € H = E, (y), and @ > 0 such that Vy € ), [|ylly < Q.
o S:feMs— (f,0())n, € L*(X,px)
o Z:yeY > (y,h'()y € L*(X, px)
and their empirical counterparts

e The KRR estimator h(.) € H trained with n couples (z;, y;)",
o Su:f€Ho— J=((f,0(xi))1.)1<i<n € R"

© Zn:y €Y = =({y,y1)y))i<i<n € R"
From there, we can define the following covariance operators
o C=E,[¢(x) ®¢(x)] =55
o V=E)ly®y]
o M =E,[h*(z)® h*(x)]
o 275 =Eyyly © ¢(2)]

and their empirical counterparts

oCn:%

n
1=

¢(xi) ® ¢(w:)

1
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.Vn:%

(2

Yi Q Yi
1

n

h(xz;) @ h(x;)

-

oMn:%
1

© 73S == ilyz ® ¢(;)
From Lemmas 16 and 17 in Ciliberto et al. (2016) we recall that we have
o h*(.)=H¢(.) with H =2*SCT € Y @ H,
o h(.) = Hyo(.) with H, = Z5S,(Ch + M) 1 € Y @ H,
e M =HCH*
o M, =H,C,H}

o
Il

A.2 KRR Error on a Subspace

In this subsgction we prove a bound on the kernel ridge regression error on the subspace
defined by P:
E.[||Ph(z) — Ph*(2)|3)'? = | P(Hn — H)S* |us. (32)

Equation (32) is obtained by definition of the operators H,, H,S (see e.g. Ciliberto et al.
(2016)).

In order to bound (32), one can not directly apply standard learning bounds for kernel
ridge estimator on the learning problem (:U,py) with (z,y) ~ p, as P depends on the
training data. That is why we will decompose (32) as

1P(Hy — H)S™|lus < [|P(A + )2 |lus x [|(A+¢1)7V2(Hy — H)S* oo (33)

with a well chosen operator A:)Y — ).
As a first step, we give a bound on the KRR estimator excess-risk with respect to the
operator norm.

Lemma 6 (Bound ||(H, — H)S*||«) Let k: X x X — R be a bounded kernel with Yz €
X k(x,2) < K2 Letp be a djstm’bution on X x Y such that its marginal w.r.t y is supported
on the ball ||y|ly < Q. Let h = Hp¢(.) be the KRR estimator trained with n independent
couples drawn from p, and regularization parameter Ay > % og(). Let 6 € [0,1]. Then,
under Assumption 1, H,S* — HS* = Ay + As, with
Ay i= Z3 S0 (Cp + Ao ) 1S — HCR(Cr + AD) ™' S* (34)
Ag == HC,(Cp, + XoI) 715" — HS* (35)

and with probability at least 1 — 20

240(Q2 + || Ellsc A '52) | 8KQn
Al < + ; Aslloo < V20 ol H | 0o 36
[| A1l _\/ " 3V 0un [A2]loo < 2| H| (36)
(2Tr(C) Tr(E) )

with n= 1Og(/\2fw”oo)7 E = E[E ® 6]; €E=Y—- h*(l‘), R = ||HHHS
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Proof

Decomposition. The decomposition H,S* — HS* = A; + A, is obtained noticing that

we have H,, = Z}S,(C,, + A2I)™1 (See section A.1).

1. Bound ||A1]|s. We have
A1 ]loo < [(Z5Sn — HCW)(C + Aal) ™ [loe x [(C + A2D)2(Chy + AaT) 7157
1.1 Bound ||(Z:S,, — HC,)(C 4 XoI)™V/?|| . We define
& =€ @ (x:)(C + A1) ~1/2

with €¢; = y; — h*(x;). In this way,

, - 5N
1(Z2Sw = HCW)(C + 02D ™ loe = 1Y 6illc
i=1

(37)

(38)

(39)

We aim at applying the Bernstein inequality given in Theorem 14 to the random linear

operator £. So, we define

T =26QA "% > |I&]l oo

0% = max(|[E[EE] oo, |E[E*E]l|o),
d = Tr(E[¢"¢] + E[¢€™]) /o™,
Note that [le|| < |lylly + ||P*(2)|ly < 2Q, and ||¢(z)|| < k. Then, we have

1B ] loo = IE[e; ® €5 X (¢(@i), (C + Aod) ™ d(@i)) 2] llow
< |Ele ® €0 x iz
and
B[ lloo = [I(C + XI)T2C(C + A1) 7?00 x E[|l€]3)]
< 4Q%.

Moreover, if Ao < ||C||so,

Te(Elee]) | Te(ElE))  2Tr(C) | Te(E)
P EED TR . = e Bl

Thus, by applying the Bernstein inequality given in Theorem 14, we have

4Q7 4[| Elloon®Ay") | 45QN
n 3n

Wﬁ&eﬂam0+kn“%mg¢%(

2Tr(C) |, Tr(E) )
Ao IEoo
0

where 1 = log( ), E=Ele®¢€].
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1.2 Bound |[|(C + \oD)Y2(Cp, + XoI)"15*||oo.  We apply Lemma B.6 in Ciliberto et al.
(2020), with Ay > % log(%), and get with probability at least 1 —,

I(C + A2D)2(Cr + A2 D) 7' [lo < [I(Cr 4 A2D)V2(C + X2) 2%, < 2. (49)

Finally, we have

2 271 ~1/2
[A1][oe < \/2477(@ + 1 Ellcok?X ) + 8KkQA;

n 3n (50)
Bound ||A2||cc.  We have
1A2lloc = | H(C(Cr + A2D) ™' = 1)l (51)
= [[H(=22(Co + A2D) ™)l (52)
< X[ H oo [(C + A2 D) 715" |oo (53)
and
1(Cn+ 221) 15 loo < 252 (Cr + Aad) /25| (54)
=2 P0G+ 2eD) O o (55)
<X PG+ 2aD)AC 4 20) g (56)
< V2,2 (57)
because ||(Cp + A\oI)~Y2(C + A\2)/?||2, < 2 from Equation (49).
Finally, we have
142]loc = V2¢/ 22| H]|oo- (58)
Conclusion.  The bound on |[(H,, — H)S*||~ is obtained by summing the two bounds
on ||Al]|e and ||A2]co- [ |

We are now ready to prove a bound on the excess-risk of the ridge estimator on the
random subspace defined by P, namely ||P(H, — H)S*|/us.

Lemma 7 (KRR excess-risk on a subspace) Let k: X x X — R be a bounded kernel
with Vo € X, k(z,x) < k?. Let p be a distribution on X x Y such that its marginal w.r.t y
is supported on the ball ||y|ly < Q. Let h be the KRR estimator trained with n independent
couples drawn from p. Let 6 € [0,1]. Define Sp(E) = Y.F_ u;(E). Then, under the
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Assumptions 1, 3, 4, taking for n big enough \o = maX(Sp(E)l/anl/Q,nfl, %log(%)),
then with probability at least 1 — 26

E,[I1Ph(x) = PR*@)|I3]'% < (cay/n= /4 + e58,(E)/*)n ™" log(n/9)

with ¢4 = (TQ + 4kQ + 2| H|lus(1 + 3x))(1 + cg), 5 = 103/(1 + co)rl| Bl + 2] H||us.

_ Tr(C) Tr(E)
Ce = 10g(8(||EH}>42 IIEHOO))'

Proof

Decomposition.  We decompose ||P(H,, — H)S*||us as follows
1P(H, — H)S*||us < || PA1lus + | PAsz|lus (59)
with A1, Ay defined above in Lemma 6. Then, let be ¢1,t5 > 0,

1PA1|lus < |P(E +tD)Y?|us x ||(E+ 1) 72 A1 (60)
=Te(P(E + t:1)"Y? x |(E + t:1) %A1 oo (61)

< /Sp(E) +ptr % |(B +01) "2 Ay, (62)

and similarly

1P Asllts < /Sp(HH*) + pta x ||(HH* + t21) ™/ A3 . (63)

Sketch of the following proof. We are going to bound |[(E + t11)""/?A;||s and
|(HH* + tol)~"/2 As)| oo, using the Lemma 6 two times. This is done noticing that ||(F +
t11)71/2A1|» is exactly the error "part A;” of the KRR estimator trained with data
(zi, (E + tll)_l/Qy)?zl, trying to solve the least-squares problem : (E + t;1)"1/2y =
(E 4 t.1)"Y2He(x) + (E + t11)"/%¢. The same trick is used for ||(HH* + toI) ™'/ Ag|| .
In the two cases, we compute then the resulting modified constants in the bound because
of these left linear operators multiplications.

1. Bound ||(E+t11)""?A;||c. We apply Lemma 6 on the KRR estimator trained with
(i, (E + )7 2y,).

We have
(B +t.1)"YV2E(E +t,1)7?|| < 1 (64)
(B +tD)" 2| < 677°Q (65)
I(B+t) "2 H|lus < ;|| H]us. (66)

Furthermore, if ||E||oc > t1, we have

T(E(E+t)™) . Bl +t

1EE )1~ W EET g (67)
<2Tr(E(E+t)™1) (68)
< 2Tr(E)t; (69)

28



VV-REGRESSION UNDER OUTPUT REGULARITY ASSUMPTIONS

Thus we get with probability at least 1 — 24

- 24n(Q27" + M\ k2| Ell)  86Qt Yy
E+t) Y244 < \/ 1 2 L7 70
I1( 1) 1o < . + 3van (70)
(Tr(C)+Tr(E))
with 7 =log(—25—"—"), E=Ele®¢], e =y — h*(z).

2. Bound |[(HH* 4 toI)"'/?As||os.  We apply Lemma 6 on the KRR estimator trained
with (z;, (HH* +t2)~'/?y;). We have

[(HH* 4 t21)" Y2 H||oo = ||(HH* + to) "' HH*||}/? < 1. (71)
So,
[(HH* + t21) 72 Ag|oe < V20/ X2 (72)

Conclusion.  We conclude by summing the bound. We have

2 24n(Q27" + M\ k2| Ell)  8:Qt
P(H, — H)S"|us < \/Sp(E) + pt1 \/ 1 2 1
|| ( ) ||HS = p( )—i—p 1 X - + 3\/En

+\/Sp(HH") + pta x (v/A2V2).

Taking t; = p~1S,(E) < | E|lx, and to = p~LS,(HH*), we get

. i} 481(Q2p + 2S,(E)\y ' K2||E|l0o)  46Q+/DN
P(H, — H)S <
I1P( )S™ [lus < \/ - + Pon

+ 24/ S, (HH*)\/ Xa.

Now, taking Ay = max(S,(E)"/?n=2 n1, % log(%)), we get

~ 2 2 E -1, 9 E - 4
HP(Hn—H)S*HHS§7\/”C’i p+7\/ 15BN W2l | 45Qypy

n Van
+ 2[[H|[ns v/ Az
nQ%p 20Sy(E)'/?R2|| Elloe | 4rQ+/PN
<r /10 g [N 4nGy
+ 2| H s (Sp(E) 4= 4072 + 3en 2 10g () )

< | (7@ + 45Qn + 20 Hls(1 -+ 3w10(5) ) yon =
+ (103w B2 + 20 Has) Sy(B)/* /4

< (04\/]37@*1/4 + C5Sp(E)1/4> n~*log(n/d)
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1/2

with ¢4 = (7Q + 4rQ + 2||H||us(1 + 3k))(1 + ¢), c5 = 10/ (1 + c6)k||E||ss" + 2||H||us,
ce = log(8(|gﬁlc/)2 + ﬁ(‘f))) as n < ¢g + log(n/d) < (06 + 1)log(n/d) if p < n.
|
A.3 Supervised Subspace Learning
In this subsection we prove a bound on the supervised reconstruction error:
E.[||Ph*(x) = h*(2)[3]/? = ||(P = )M "/?||us. (73)

We use the proof scheme of Rudi et al. (2013) for subspace learning, retaking also the
Lemma 8 restated just below. The novelty to deal with is that the random variable, whose
reconstruction error is minimized here, is h*(x). The unknown h*(x;) are estimated via our
supervised subspace learning method (7) thanks to the couples (z;,y;);~,. This leads to
additional derivations in our proofs.

We start by restating the Lemma 3.6 from Rudi et al. (2013) in a convenient form for
our purposes.

Lemma 8 (Convergence of covariance operators) Let X',) be two Hilbert spaces, H €
VX, A Ey[Hx®@Hzx], (x;)", i.i.d from a distribution p on X supported on the unit ball,
A,=1 E Hx;®@ Hz;, B € Y®Y any positive semidefinite operator, log(%) <t < ||Aoos

=1
then wzth probability at least 1 — § it is

2
\/;g (A + B +tI)

Proof By defining B, = (A + B +tI)"2(A — A,)(A + B + tI)"2, we have

(A + B+ D)2 ||os < V2

N

(A + B+ t1)5(An + B+ t1)"3 oo = |(T — Bo) Y| /2 (74)

and B is positive semidefinite so
I1Bulloo = (A + B +t1)"2 (A — A)(A+ B +tI) 77| (75)
<(A+HD) "2 (A= A)(A+ D)2 (76)

Now, by applying Lemma 3.6 from Rudi et al. (2013), we get with probability at least 1 —4,
if §log(§) <t < || Al

1
Bylleo < 7
Bullo < 5. (77)

We conclude by observing that
1

V1 [Bnlloo

1

V1= 1Bl

< (I = Ba)3? < (78)
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The two following lemmas handle the estimation of M = HCH* = E[h*(z) ® h*(x)] in
our supervised subspace learning method. In particular, here is exploited the Assumption
3, whose the divergence rate of the plateau threshold py,q4, from which the error remains
constant (See Rudi et al. (2013)), depends on.

Lemma 9 Let be £ > 0,0 € [0,1]. Under Assumptions 1, 3, taking

_4

1q_
£ >0 FE(E/2) T (zm(@ + KR) (1 + 2 M A ﬁ)) log? ; + c§/2) T (79)
and
A= ti%nflm
is enough to achieve with probability at least 1 — 0
[(HCH* +tI)"2(H, — H)S"||s < £. (80)

Proof We note for convenience A = (HCH*+tI )_% We proceed as in the proof of Lemma
18 and Theorem 5 in (Ciliberto et al., 2016) (showing a learning bound for the kernel ridge
estimator). However, we monitor the action of A, and we use Assumption 3, in order to
obtain the best bound w.r.t ¢ and n, decreasing fast when n and ¢ increase. We have

|A(Hn — H)S[loo = [|AZ380(Crn + M) 718" — AZ" o (81)
< (T) + (I1) + (I11) (82)

with
(1) = |AZ:Sn(Cr + A1)t = AZ*S(Cr + M) 71800
< \/3 X || 258 (Cr 4+ M)t — Z*S(Cr + A1) S| ms
(I1) = [AZ*S(Cr + M) 'S* — AZ*S(C + A1) ™' 5% ||ow
< \/z X || Z*S(Cp + M) 71S* — Z*S(C + M)~ 1S*||us
(IIT) = |AZ*S(C 4+ M) 718" — AZ* ||
Bound (IIT). From Assumption 1 we have Z* = HS*, and

(II) = [[AZ*(S(C + A1) ~'S* = D)oo (83)
= JAHS*(S(C+ M) 7'S* = )]l (84)

= |AH(S* = M\ (C+ M) = 8o (85)

= M AH(C + M) 7' S| (86)

< AH oo x MI(C+ A1) 7"5* [l (87)

(88)

< |AH||s0 % /A1
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Using Assumption 3 we have

IAH oo = (M + 1) 2 H||oc (89)
< (HCH* + 1)~ 2/ 2MO=P/2)| (90)
<c/?xt5 (91)

Bound (I) and (ITI). We bound (I) and (II), as in Ciliberto et al. (2016) (Lemma 18).

Conclusion. This leads to the following bound with probability at least 1 — §:

4k2

Q+ kR 1/2 _B
A(H, — H)S" oo <4 1+ 1 —|— 1t 92
A — )57 < 6L (14| Y 10g? D 4 2V (92)
. -3a-p .
Now, choosing \; = * o if t < || M|/, we obtain

|A(Hn — H)S"[|oo < (45(Q + 1R) ( +2mﬂkmﬁ%;§+&”)n4ﬂramw (93)

1
(4/-4 (Q + KR) <1+2/<|\M||§o(1 B))l og §+c§/2> n~ Y41 (B+1) (94)

4
Hence, taking ¢t > rfﬁ(gﬂfﬁ (45(@ + KkR) <1 + 2K HMHoo )10 28 +cl/2> i

enough to achieve

[A(Hn — H)S"[Joo < €. (95)

We combine Lemmas 8 and 9 to finally prove a concentration bound for H,,C,, H devi-
ating from HCH*.

Lemma 10 (Convergence of the supervised covariance M,,) Let be 6 € [0,1]. Un-
der Assumptions 1, 3, and defining

By, = (HCH* +tI)"2(H,Co H — HCH*)(HCH* + tI)"2

if t > cg logg(%)nfﬁ, n > ng (constant independent of §), then with probability 1 — 26

1
1Bl < 5

11
with cg = ({/2)_ﬁ (4/{(Q+/¢R) (1+2;<¢|]MH<;‘O(1 B)) + 1/2> " and €=, ng e N*

constant defined in the proof.
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Proof We decompose in 7 terms the difference of products, then we will bound each asso-
ciated term in || By ||oc-

H,CoH! — HC,H* = (H, — HYCH* (i)

+ HC(H, — H)* (i)
+ (H, — H)C(H, — H)* (i)
+ (H, — H)(C,, —C)H* (iv)
+H(C, — O)(H, — H)*  (v)
V- (Hy — HY(Cn — C)(Hn — HY*  (vi)
+ H(C, —C)H* (vii)

Bound (i) and (i7).

(HCH* +tI)"2 HC(H,, — H)*(HCH* +tI)"% |0 < |(HCH* + tI) 2 HS" ||
x (HCH* + 1)~ 2 (Hy, — H)S*||oo
But:
|((HCH* +tI) 2 HS* |0 = |[(HCH* +tI) 2 HS*SH*(HCH* + )"z ||}/2

— |(HCH* +tI)": HCH*(HCH* + tI)"2||/2
<1

1 7
4 - +
And from Lemma 9, defining cg = (£/2) 5+1 (4%(@ + KR) <1 + 2/<VHZW||§O(1 B)) + c§/2> ,

1
E=14,if t > cg logg(%)n_m we get with probability at least 1 — 8

1
|(HOH" 4 1) (H, — H)S"|lo0 < £
Bound (iii).  As for (i) and (ii), from Lemma 9 we have
(HCH* +tI)"2(H, — H)C(H, — H)*(HCH* + tI)"2||oo < |(HCH* +tI)"2(H, — H)S*||%
1 1
< —.
142 T 14
Bound (iv) and (v). We decompose

((HCH* +tI)"2(H, — H)(Cy, — C)H*(HCH* +tI)"2 ||os <
[(HCH* +t1)7% (H, — H)C? oo x (|G 2(Cn = O)C P |oo % |2 H* (HCH + )72 oo
We bound
|((HCH* +tI)"2(H, — H)C}"?||se = |[(HCH* + tI)"2(H, — H)Cy(H,, — H)*(HCH* + tI)"2 || /2
< |(HCH* +tI)"2(Hy — H)S*||oo + /2| (HCH* + 1)~ 2 (H, — H)| o0
3

<(HCH® +tI)"2(Hy — H)S||oo + [ Hn — Hlloo
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and similarly,
|CHPH (HCH* +t1)72 ||oo < |(HCH* + tI) 2 HS*||oo + /2| (HCH* + tI) " 2cH|
< |[(HCH* 4 t1) 2 HS"|loo + || H] o0
<1+ |H|o

finally we obtain

1

((HCH* +tI)"2(H, — H)(Cy, — C)H*(HCH* +tI)" 2 ||os <
(I(HCH* +t1)72 (Hy — H)S|oo + | Hn — )

x |C7 2 (Cr = C)C |
X (14| Hlloo) -

From Lemma 9, ||(HCH* + t1)~3 (Hy, — H)(Cy — O)H*(HCH* + tI)"3||os < 1/14 if t >
1
8 logs(%)nfﬁ. From Lemma 15, ||H,, — H||oo < 210g8(%)R if n > ny with n; a constant
independent of §. So, defining v = (1/14+2R) x (1+ R). Now, using Lemma 3.6 from Rudi
et al. (2013), we can have HCt_lﬂ(Cn - C’)C’t_lﬂHOo <1/14 xullog™®(%) if t > alw
with a; > 0 a constant independent of §. We conclude that
1
|((HCH* +tI)"2(H, — H)(Cp — C)H*(HCH* + tI) 2 ||o < o
Bound (vi).  Similarly as for (v), we have
|(HCH* + 1)~ (H, — H)(Cy, — C)(Hy, — H)*(HCH" + tI)" 3| <
2
(I(HCH* +t1)7% (Hy, — H)S*|oo + | Hn — o)
~1/2 ~1/2
x 10y (O = )T e
and, if ¢t > CLQ%, with a9 a constant independent of §, we also have

|((HCH* +tI)~2(H, — H)(Cy, — C)(H, — H)*(HCH* + tI)"2||oc < 1/14.

Bound (vii).  As previously, from Lemma 3.6 from Rudi et al. (2013), there exists a

constant ag > 0 such that with probability at least 1 — ¢ if ¢ > agw, with ag > 0, we
have

(HCH* +tI)"2H(C,, — C)H*(HCH* +tI)"% | < 1/14.

1
Conclusion.  But there exists ng independent of 4 such that Vn > ng > nq, cg logg(%)nf BT >
logn/d§

1
—=. So, we conclude that, if £ > cg 10g8(%)n_ F+1 and n > ng,

1
[Bnlloo < 5-

max(ay, az,as)

[\

We are now ready to prove the main result of this section. We prove a bound on the
reconstruction error of P when reconstructing the h*(z), namely E,[||Ph*(z) — h*(z) ]@]1/2.
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Lemma 11 (Supervised subspace learning) Let (z;, ;) be drawn independently from
a probability measure p and (y;)i*, be drawn independently from the marginal p w.r.ty with
support in the ball ||y|ly < Q. Let P be the estimated projection in the proposed method.
Then, under Assumptions 1, 2 and 3, there exist constants cg > 0,n9 € N*, such that, if
pp1(M) > cs logg(g)n_ﬁ, n>ng, \p = uerl(M)_%n_%, then with probability at least
1-36

Eo[| Ph*(x) — h*(2)|3]% < v/3erpiper (M)/2079),

Proof We have (See Proposition C.4. in Rudi et al. (2013)):
. . 1
E,[| PR* (x) = h* (@) = (P — 1) M¢ |lfis (96)

Then, as in the proofs of Rudi et al. (2013), we split (96) into three parts, and bound
each term,

~ 1 1 1 1 1 1
(P —I)M?2|lus < (M +t1)2(My + t1) 72 [l X (ptp+1(My) + )2 X (M + )2 M2 ||ns
A B ¢
Bound A = ||[(M + tI)2 (M, +tI)"2||sc.  We have:
(M 4+ t1)2 (My, + 1) 72 [loo = [[(M +£1)2 (My, + 1)~ (M + 1) ||}/2
= (7 = Bn) M|
with B, = (M + tI)~/2(M — M,)(M +tI)~"/2. So, if || Bpeo < 1,
1 1 1 1
e < (M +tD) (M + )2 oo € —
V' 1+ Bnll " ~ T V1Bl
Then applying Lemma 10, if ¢ > cg logs(%)n_ﬁ, with probability 1 — 34 it is
2
\/; < (M + D)3 (My + )73 o0 < V2
Bound B = (jp1(M,) + t)2. 2 < ||(M + tI)2 (M, + tI)"2 || is equivalent to
M+t < %Mn—i—t (by Lemma B.2 point 4 in (Rudi et al., 2013)). Then, Yk € N*, (M, +t) <

3 (M +t), so we have

Vi1 (My) + < \/g\/ pp+1 (M) +t. (97)

Bound C = ||(M—i—t])7%M%HHS. We have

C?=Te(M(M+1t)~1) (98)
= Te(MOM*=(M +t)~1) (99)
< (M) M (M + )7 (100)
< xt® (from Assumption 2 and Young’s inequality for products). (101)
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Finally, we get the following upper bound.
E, | Ph () — 1*(@)[]Y? < V3 ipsr (M) + t x ¢/* x 79/ (102)

Taking t = pp+1 (M), which is possible if g1 (M) > cg logs(%)nfﬁ, we get
E,[| PR (x) = h*(2)|]"/? < vV/3erppea (M)'/2070). (103)

We get the wanted upper bound.

A.4 Theorem

In this subsection we give the main result of this paper which is a learning bound for the
proposed method. That is we bound:

Eq|[Ph(x) — h*(2)[13)- (104)
The proof consists in decomposing this excess-risk in two terms, as in equation (27), then

bounding each term applying the two lemmas previously proved.

Theorem 1 (Learning bounds) Let Ph be the proposed estimator in Eq. (8) with rank(]s) =
p, built from n independent couples (x;,y;)}_, drawn from p. Let 6 € [0,1]. Under the As-
sumptions 1, 2, 3, 4, there exists constants cq,cs,cg > 0, ng € N* defined in the proof,

and independent of p,n,0, such that, if pp41(M) > cg logg(%)rfﬁ and n > ng, then with
probability at least 1 — 36,
B[ Ph(x) — 1 () [3]72 < (eay/n 4+ esS,(B)YH )= 4 log(n/5) + Ve 1 (M) /20
(13)
with $,(E) = Y0, pi(E).
Proof We decompose the excess-risk as follows
(|| Ph(z)—h*(2)[|3]/? < Bo[||Ph(z) — Ph*(2)[5]"/? + By [|| Ph* (2) — h*(2)[|5]/2 . (105)

Vv
regr. error on a subspace reconstruction error

1
We apply the Lemmas 7 and 11, and we get, if 41 (M) > cg logg(g)n_ﬁ, with probability
at least 1 — 30:

E,(I1Ph(z) = b* (@) 3172 < (eay/on /" + esSp(E)/*)n= 4 log(n/8) + v/3erpuya (M)/202),
(106)

with ¢4 = (7Q + 4rQ) + 2||HHHS(1 + 3%))(1 + Cﬁ), c; = 10 (1 + Cﬁ)HHE”(lX/)Q + 2HHHH87
- Tr(C) | Te(E)
ce = log(8( )-

B2 " Bl
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A.5 Corollary

In this subsection we derive from the Theorem 1 a corollary in the case where M and E
have polynomial eigenvalue decay rates. This allows to explicit the optimal quantity of
components p, and also obtaining a condition on the decay rates s,e > 1 in order to obtain
a statistical gain.

Corollary 12 (Learning bounds (polynomial decay rates)) Let § € 0,1, n > ny.
Under Assumptions 1, 3, and 5, assuming % < 0 with 0 > 1, then by taking only
8 1
p = co(log®(5)) " n T, (17)

we have with probability at least 1 — 30

11-2/s

B[ Ph(z) — B @312 < enols, ) 1og? (5) =+ en(e)n 5 1og¥(5),  (19)

- —1)\1/4 - L.
where c10(s,€) = €10 (@) (1 + log (i)), cr1(e) = é11 (1 + log (e_%)) C10, C11, Mo,
are constants independent of n,d,s,e, and cg is a constant independent of n,d, defined in
the proofs.

Proof The proof consists in applying the Theorem 1 in the specific case of polynomial
1
eigenvalue decay rates. If i, 1(M) > cg logs(%)nfﬁ, with probability at least 1 — 34:

E,(I1Ph(z) = B*(2)[3]'/2 < (eay/mn™ /% + 58, (B) ) n ™ og(n/8) + v/3eupsa (M) /2072,
(107)
Bound S,(FE). The polynomial eigenvalue decay assumption, give us that ]% < pp(M) <

1%‘ So, Assumption 1 is verified with a = 2, and ¢; = Tr(M®) < Y72 x A% < 247

Hence,
VA A20-a) /6 A
V3e i1 (M=) < " = T (108)
pa
Moreover,

p P D B -1
Sy (B) = m(E) < BY i < B(1+/ A S g x (1= ) (109)
i=1 i=1 =

and using (1 — 1/z) <log(z) <z — 1, we get

Sp(B) < 1 x (e = 1) log(p) + log(e)) (110)
< o (e = Dloglp) + (e — 1) (1)
- _Be_l % (e — 1)(log(p) + 1) (112)
< _Ei_l < 2(e—1)log(p) (ifp > 3) (113)
= 2Belog(p). (114)
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1
Now, taking p = 09(10g8(%))_%n5<5+1) defining ¢ = (6—8)_% ensures f1,(M) > cglog®(3)n”~ A,
Moreover, B < 6 x b < 0 Tr(E)(3 1% i ¢)~! = 9?{(?) by definition of the Riemann zeta
function. So, using this defined p, we get,

Sp(E) < 2Be (% log (CC;) + Sl(oﬁg_(;%i)) (115)
< ¥ Tr(f;i;log(”) (log <;> + 1) (if n > 3) (116)

1
Bound /3¢y i1 (M)Y20-0), Now, taking p = 09(log8(§))7§ns(/3+1), defining c¢g =
(%)_i, ensures p,(M) > cg logg(%)n_ﬁ. Using this defined p, we get

mw

Vet (M)207) < VEA(= log( 5>>%< By i (117)
-2
< VGA(E +1)log? (g) 3T (118)
lr]130und vpn~Y2. Furthermore, one can check that (1 — 25(5+1)) > %ll_fgs, hence we
ave
1/28 —2/s
Vo2 < (:) n~ G EE) < <C +1> TR (119)
8 8

Studying cy, cs5, cg, ng dependencies in s,e.  In this work we study the behavior of the
bound when the shape of E and M vary, i.e. when s and e vary. Therefore, it’s important
to make some derivations to studying cq, cs, cg, ng’s dependencies in s and e. First, cg, ng
are independent of 4, s, e.

Then, observing that we have ||E|} = u(E)™' < b1 < % <4 C(bl , leads to ¢g <
1/2
log(8(%-IxC) (T;rl(/z) +6)) + log(¢(e)). So, we have
cqs = (7TQ + 4kQ + 2R(1 + 3k))(1 + cs) (120)

0'/2 Tr(C)

< (log(¢(e)) +1) (1 + log(S(W

+ 9))) (TQ + 4kQ + 2R(1 + 3x))  (121)

and also

= 10/(1 + co)Rl| 137 + 2| H |[ms (122)

6'/2 Tr(C) 1/2
< (log(¢(e) + 1)) (1 + log(S(W +0)) (10 1E|lgs + 2HHHHS) (123)
Conclusion.  Thanks to the previous derivations we obtain the following bound

11-2/s

B[ Ph(e) — 1 ()31 < crofs,e) g™ ()n4 + exs(e)n™ 7 1ogh(3)
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. N e \1/4 N N N
with c19(s,e) = ¢1p(log(¢(e)) + 1) (W) , c11(e) = ¢11(log(¢(e)) + 1). €10 and ¢y are
constants independent of n, d, s, e, defined below

~ 91/2 TI'(C) 1/2 a 1/4
(124)
_ cs a 0Y/2 Tr(C)
=V6AHL/—+1 <— 1) 1+1 —_—" 4 2R(1 .
¢ = VOA(y/ . +1)+ o + ( + log(8( T (B2 +6)) ) (7Q + 4kQ + 2R(1 + 3k))
(125)
The inequalities 25 < ((e) < -2 allow to conclude the proof.
|

A.6 Auxiliary Results

In this section, we give four auxiliary results:

e A bound on the KRR estimator which monitors the role of the total amount of noise
Tr(E).

e A Bernstein inequality for bounded operator and the operator norm.
e A bound on ||H, — H||s, used in the proof of Lemma 11.

e Some properties of Lowner’s partial ordering

Lemma 13 (Full-rank KRR excess-risk ) Letk: X x X — R be a bounded kernel with
Vo € X, k(z,x) < k2. Let p be a distribution on X x Y such that its marginal w.r.t y is
supported on the ball ||ly|ly < Q. Let h be the KRR estimator trained with n independent
couples drawn from p. Let § € [0,1]. Then, under the assumption 1 and 3, taking

1 ||EY?
)\1 — max (n’ H\/ﬁHHS> (126)

the following holds with probability at least 1 — §

4

Ex[l[A(x) — h*(@)|[3]2 < Clp)n~ 1 log 5 (127)

1
with C(p) = 10| O(n™1) + (k + R)| EY?||3s |, R = || H]|ns.

Proof We follow the proofs of (Ciliberto et al., 2020) in order to derive a learning bound
of the KRR estimator. We carefully monitor the role of the total amount of noise Tr(E).

39



BRrRoGAT-MOTTE, RUDI, BROUARD, ROUSU, AND D’ ALCHE-BUC

We make appear the conditional variance by modifying the Proposition B.7 in (Ciliberto
et al., 2020), with the following change from equation (B.55) to (B.58):

HQ

Eo[ICy 6(@)|Po(@)’] < 5 * Eslo()’] (128)
RZ
= < Elllel3] (129)
/{2
=+ < IEY?[lhs (130)

by defining the noise € = 1(y) — h*(x), and E = E[e ® €].
Then, doing the same proof than Theorem B.8 from (Ciliberto et al., 2020), we get the
following bound

8k log %

() — Ph* /2 <
E.[| Ph(z) — PR*(z)|[3)] ﬁ

x (Q + w| Ly Z||us)

4
6 % BRI + R s los 5

+ 10 X )\||LA1Z||HS

Now, using the assumption 1, we have

1L Z s = 1Ly SH |[us (131)
< |IL3"Slus * [ Hllus (132)
<A\ZxR (133)

and similarly ||L'Z|lus < R. Moreover,
deg(\) := Tr((C + M)71C) < A2 (134)
So, we get

k(Q + KR)
Van

1 4
+ 7 X \/()\*1/-12||E1/2||12{S + k2R) x 1010g5

4
+)\% X R x IOIOgS

. [lie) - h* @312 < X 10108 ;

Now, we define \ in order to minimize this bound, with

< ||E1/2HHS)
A = max - >
n \/ﬁ
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so we obtain

EI[HB(@ — h*(x)||§,]1/2 < n_i X 1010g% X | (k(Q + /QR))TL_i

J

+VREV? s + w2 Ron 4

+ (w122 ) < B

We conclude

7 * _1 4
Eo[||h(z) — h*(2)|I3]Y? < C(p)n~ 1 log < (135)
with
_ -1 \/ 1/2 2,3 i 1/2)2
Clp) =10|(r(Q +rR))n™ 4+ k\V|EV2|as + R?*n"2 4+ (n 1 + ||[EV*||js | R
1
=10 O(n‘i) + (k+ R)||E1/2|]IQ{S].
|

Theorem 14 (Concentration inequality on the operator norm, Tropp (2012)(Theorem 7.3.2))
Let & be independent copies of the random variable & with values in the space of bounded

operators over a Hilbert space H such that E[(] = 0. Let there be R > 0 such that ||€]|ec < T.

Define 0 = max(|EIE€] oo, [EIE"€] o), and d = Tr(E[¢*€|+EIEE]) fo®. Then, ifé € [0, 1],

with probability at least 1 — §

2no? 2T
n i n

136
- n 3n ( )

where n = log(%d).

Proof This theorem is a restatement of Theorem 7.3.2 of (Tropp, 2012) generalized to the
separable Hilbert space case by means of the technique in Section 3.2 of (Minsker, 2017). B

Lemma 15 (Bound ||H,, — H||~) With probability at least 1 — 2§ it is

log 2
|Ho— Hlloo < <00

2 * *
< S (@R ) + 1 e
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Proof In order to bound ||H, — H||c we do the following decomposition in three terms,
and bound each term:
|Hy — Hlloo = |1 2550 (Cr + MI) L — Z5CT|| oo
< Z5Sn = Z*S)(Co+ M) oo + | Z°S((Cr+ M D)™ = (C+ M) Yoo
(4) (B)
+Z°5((C + M) = OVl
©

Bound (A). We have:
1
(4) = (2380 = Z*8)(Cr + M) oo < 3, 14090 = 27 S]ns

4leog%
Avn o

From Ciliberto et al. (2016) (proof of lemma 18.), with probability 1 — §: (A) <

Bound (B). We have:

(B)=1Z2"S((C+ D)™ = (Co+ M) s
= [Z"5((C + MI)™H(Co = O)Cr + M) o
< 1Z°S(C + M) oo (Cr = O)looll(Cr 4+ Md) oo

1
< — h* n - e’}
< Al|| w1l (Cn = O]

where we used the fact that for two invertible operators A, B: A~'—~B~! = A=1(B-A)B~},
and noting that ||Z*S(O+ )\1])_1”00 < ||Z*S(C—|— )\1])_1”1{5 < ||HHHS = ||h;2||9.[ From

* k2 1lo 2
Ciliberto et al. (2016), with probability 1 — 8: (B) < ‘W‘%

Bound (C). We have:

(C)=1Z*S((C+ M) = CNl
= [|HS*S((C+ M) = ON)|wo
= [H(C(C+ M) = 1)|s0
= M| H(C 4+ MDY
< gl

We conclude by union bound, with probability at least 1 — 24:

\H, — H| < 4Q/€log% 4Hh*¢”7{/{2 log%
" = Al\/ﬁ /\1\/ﬁ

+ [1h [l

. . _1=8 __B_ . .
Notice that if we choose A\; = (cg logs(g)) 2 n A+l as chosen in Lemma 9, we obtain

B

2
|Hp — Hlloo < (4QK + R/<;2)10g5 X a X n1+p

D=

+R (137)
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with a = Cglogg(%)%, such that ||H, — H||x < 2Rlog9(%)% when n > N with N > 0 a
constant independent of 9.
|

Lemma 16 (Properties of Lowners’s partial ordering <) Let A, B be positive semidef-
inite linear operators on Y such that A <X B, and M a bounded linear operator on Y, then

1. If A, B are random variables then E[A] < E[B].

2. MAM* < M BM?*.

Proof
1) For any u € Y, we have (u,E[A]u)y = E[(u, Au)y] < E[{u, Bu)y| = (u, E[Blu)y.
2) From Lemma B.2 in Rudi et al. (2013).

A.7 About the Independence of ¢(x) and ¢

In this section, we discuss the assumption that the random variables ¢(x) and e are inde-
pendent.

In this work, this assumption allows to obtain shorter and lighter derivations, and an
easier reading of the proofs. Nevertheless, such assumption is not exploited by the proposed
method, and similar results can be proven without this assumption. More precisely, one
can prove bounds with the same dependencies in the parameters of the learning setting,
leading to the same conclusions. We discuss how below.

How to obtain similar bounds without this assumption? The independence of
¢(x) and € allow simpler derivations when bounding expectations involving products of these
two random variables using E[f(¢(x))g(e)] = E[f(¢(x)) xE[g(e)]. This is used multiple times
from Equations (38) to (48) to prove the Lemma 6, and only there.

We carried out derivations below in order to bound the same quantities but we do not
make use of the assumption. Then, we will check that the dependencies in the parameters
of the learning setting are similar.

Sketch of the proof (Bound |(Z:S,, — HC,)(C 4 X\oI)~'/?||,, without the indepen-
dence assumption). We define

& =€ ® ¢(2:)(C + AoI) /2 (138)

with ¢; = y; — h*(x;). In this way,

[(Z3S0 — HC)(C + 2D ™ e = |12 36 ~ Bl (139)
=1
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We aim at applying the Bernstein inequality given in Theorem 14 to the random linear
operator u := £ — E[{]. So, we define

T = 4kQA; % > ||ul|so, (140)
o? := max(||E[ut]||oo, | E[uu][loo) (141)
d := Tr(E[u*u] + E[uu*]) /o (142)

Note that [le]| < |lylly + ||P*(2)|ly < 2Q, and ||¢(z)|| < k. Then, we have
Eluu'] = E[(e ® ¢(z) — E[e @ ¢(2)))(C + A2I) "} (e ® ¢(z) — E[e ® ¢(x)])"] (143)

=23 'E[(e ® ¢(z) —Ele ® ¢()])(e ® ¢(z) — Ele ® ¢()])’] (144)

=3 'El(e ® ¢(2)(e @ ¢(2))"] — E[e ® ¢(2)]E[e ® p(x)]* (145)

= A 'Ele® ellg ()] (146)

=N Ele® €] = Ay 'KPE (147)

where =< denotes the Lowner’s partial ordering of positive semidefinite operators. We used
properties of Lowner’s partial ordering (cf. Lemma 16). So, we have

E[uu oo < A5 K2 Bl co- (148)
Then, similarly, we have

E[u*u] = (C + XoI)"V?E[(e ® ¢(x) — Ele ® ¢(2))* (e @ p(x) — E[e @ ¢(2))](C + oI )~1/?

(149)
= (C+ XD) V2 (E[p(z) @ (@)||e|*] — E[p(z) @ |E[¢(x) ® ) (C + Aﬂ)‘l/zm)
< (C + D) 724Q%C(C + NoI) ™Y (151)
< 4Q°Iy. (152)
So, we have

Efu* ]l < 4Q°. (153)

Now, from previous derivations, if Ay < [|C||se, we also have
Tr(Efuu*]) < Ay Tr(E)w?, (154)
Tr(Efu*u]) < 4Q%\; ' Tx(C), (155)
B[] oo > [Var(e © ¢(2)) ]l (156)

- 2[1Ceo
by defining Var(e ® ¢(z)) = E[(e® ¢(x) —E[e ® ¢(2)]) (e ® ¢(x) — E[e ® ¢(z)])*]. So, we have
Tr(E[u*u]) + Tr(E[uu*])
R
< 1 2ATr(E)R? +4Q° Tr(C))||Clloo
- [Var(e @ ¢(x)) | '

(157)

(158)
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Conclusion.  Then, one can bound ||(Z}S,, — HC,,)(C + X\oI)~'/2||s as in the proof of
Lemma 6 by applying the Bernstein inequality given in Theorem 14.

The dependencies in the learning setting’s parameters of the resulting bound will de-
pend on the dependencies in the learning setting’s parameters of the obtained bounds on
[E[wu]lloo, [E[ut"]||oo, and d.

Notice that the bounds on ||E[u*u]|ec, [|[E[ut*]||« have the same dependencies in the
learning setting’s parameters than the ones obtained in Lemma 6 on [|E[£*¢]|co, |E[£€*]]]co-

The bound on d obtained above without the independence assumption has poorer de-
pendencies in the learning setting’s parameters than the one obtained in Lemma 6. More
precisely, d has poorer dependencies in ¢; and Ae. Nevertheless, it remains polynomial
dependencies in tfl and A\, 1 such that the resulting n = log(%)7 in the proof of Lemma
7, has similar dependencies in the learning setting’s parameters than the one obtained in
Lemma 7.

We conclude that, without the independence assumption of ¢(x) and €, one can prove
bounds similar to Theorem 1, namely with the same dependencies in the parameters of the
learning setting.
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Appendix B. Additional Experimental Details

In this section, we give an additional synthetic experiment (Section B.1) that aims at dis-
cussing the difference between the output source condition (Assumption 3) and the standard
source condition (Ciliberto et al., 2020). We also give additional details on the experiments
for the sake of reproducibility (Sections B.2, B.3).

B.1 Difference Between Standard Source Condition and Assumption 3.

From Assumption 1 we have M = HCH*. Hence, Assumption 3 measures the alignment
between HCH* and H H*. Notice that it’s a different assumption than requiring the align-
ment of C' and H*H (source condition). Indeed, in general strong Assumption 3 doesn’t
imply strong source condition. For instance, when H is finite rank (e.g. H = yo ® ho
with yo € YV, ho € H,), Assumption 3 is verified with 5 = 0 (best case), while the source
condition can be arbitrarily bad (e.g. if (ho|C~( " hg)y, = +oo with v > 0, then the
source condition can’t be verified for r < v). Source condition is verified with r = 1 —2u by
operators of the form H = HyC" with Hy € Y ® Hy, ||Hollus < +o0, u € [0, 3]. Similarly,
Assumption 3 is verified with 5 = ﬁ by operators of the form H = (HyCHj)"Hy with
| Holloo < +00, u € [0, +00].

We illustrate this empirically. For d = 200, X = H, = Y = R?, we choose 11,(C) = %

p

and draw randomly the eigenvector associated to each eigenvalue. We draw Hy € R¥*¢

with independently drawn coefficients from the standard normal distribution. Notice that
B and r can be measured as the increasing rates, when t,A\ — 0, in ¢t ? and \™" of the
quantities ||(M —i—t)_%HHgo and || H(C + )\)_% |%,. Hence, we compute and plot on Figure 5
HH(C—i—)\)*%HgO w.r.t A (left), and H(M—i—tﬁ%HHgo w.r.t ¢ (right), with H = (HoCH§)"Hy
for various v € [0,1.5]. We also plot in Figure 5 (right) the slopes 8 = ﬁ Firstly, we
see that Assumption 3 indeed improved when 7 increases, while the source condition is low
and does not change. Then, as explained H = (HyCHg )Y Hy verifies Assumption 3 with at
least 8 = Tlﬂ’ but depending on Hy it might be verified for § <« 27% Nonetheless, notice

that with our generated Hy, 8 = TIH are sharp for H = (HyCHg)"Hj.

B.2 Image Reconstruction

Link to downloadable data set https://web.stanford.edu/~hastie/StatLearnSparsity_
files/DATA/zipcode.html

SPEN USPS experiments’ details. We used an implementation of SPEN in python
with PyTorch by Philippe Beardsell and Chih-Chao Hsu (cf. https://github.com/philqc/deep-
value-networks-pytorch). Small changes have been made. SPEN was trained using standard
architecture from Belanger and McCallum (2016), that is a simple 2-hidden layers neural
network for the feature network with equal layer size np = 110, and a single-hidden layer
neural network for the structure learning network with size ng = 50. The size of the two
hidden layers n; € [10,30,50,70,90,110,130] was selected during the pre-training of the
feature network using 5 repeated random sub-sampling validation (80%/20%) selecting the
best mean validation MSE (cf. Figure 6 for convergence of this phase). ns € [5, 10, 20, 50, 70]
was selected during the training phase of the SPEN network (training of the structure learn-
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Figure 5: Source condition HH(C—{—)\)_% |2, w.r.t A (left) and output source condition ||(M +
t)f%HHZO w.r.t ¢ (right) in log-log scale for H = (HoCH{)YHy and various v €
{0,0.1,0.25,0.5,0.9,1.5}.

ing network plus the last layer of the feature network) doing approximate loss-augmented
inference (cf. Figure 6 for inferences’ convergences), and minimizing the SSVM loss, using
5 repeated random sub-sampling validation (80%/20%) selecting the best mean validation
MSE (cf. Figure 6 for convergence of this phase).
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Figure 6: Left: Convergence of train/validation MSE when pre-training the feature net-
work. / Center: approximate loss-augmented inferences’ convergences. / Right:
Convergence of train/validation SSVM loss when training the SPEN network.

B.3 Multi-label Classification

Link to downloadable data set http://mulan.sourceforge.net/datasets-mlc.html
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