
HAL Id: hal-03867187
https://telecom-paris.hal.science/hal-03867187

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Role of Causality in a Formal Definition of Timing
Anomalies

Benjamin Binder, Mihail Asavoae, Florian Brandner, Belgacem Ben Hedia,
Mathieu Jan

To cite this version:
Benjamin Binder, Mihail Asavoae, Florian Brandner, Belgacem Ben Hedia, Mathieu Jan. The Role of
Causality in a Formal Definition of Timing Anomalies. 2022 IEEE 28th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), Aug 2022, Taipei, Taiwan.
pp.91-102, �10.1109/RTCSA55878.2022.00016�. �hal-03867187�

https://telecom-paris.hal.science/hal-03867187
https://hal.archives-ouvertes.fr

The Role of Causality in a Formal Definition of
Timing Anomalies

Benjamin Binder∗, Mihail Asavoae∗, Florian Brandner†, Belgacem Ben Hedia∗ and Mathieu Jan∗
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

†LTCI, Télécom Paris, Institut Polytechnique de Paris, F-91120, Palaiseau, France

Abstract—Intuitively, a counter-intuitive timing anomaly man-
ifests when a locally faster execution becomes globally slower.
While the presence of such timing anomalies threatens the sound-
ness and/or scalability of timing analyses, tools to systematically
detect them do not exist. The main reason lies in the absence of
a definition of counter-intuitive timing anomalies that establishes
relations between local and global timing effects. In this paper,
we address these relations through an important concept, that
of causality, which we further use to revise the formalization of
counter-intuitive timing anomalies. We also propose a specialized
instance of the notions to implement a detection procedure for
out-of-order pipelines.

Index Terms—Timing Anomalies, Formal Modeling, Out-of-
Order Pipeline

I. INTRODUCTION

Reasoning about real-time systems means reasoning about
their timing behavior through dedicated timing analyses, for
example WCET analysis. Undesired timing phenomena, called
Timing Anomalies (TAs), can manifest, threatening the sound-
ness of such timing analyses. We can distinguish amplifica-
tion anomalies, important for compositionality [1]–[3], and
counter-intuitive anomalies. In this work, we consider counter-
intuitive TAs only, which could be explained using a pair
of execution traces executing the same program trace, i.e.,
the same input program and data, but starting from distinct
initial hardware states. A counter-intuitive TA occurs when one
execution is locally faster (e.g., cache hit vs. miss) but globally
slower than the other one. The local timing contribution of an
instruction in one trace is often called a latency that entails a
variation wrt. the other trace, which triggers the TA.

WCET analysis computes execution time bounds of a given
program, running on an underlying hardware. Static WCET
analyses use abstractions to compute an over-approximation
of the possible hardware states that may appear during the
program execution [4]. On complex hardware, this inevitably
leads to state explosion and thus, it would be desirable if
abstract states could be pruned during the analysis. As pruning
should also preserve the soundness of the WCET analysis, the
source of TAs is subject to two interpretations.

A first interpretation considers TAs to be an artifact of
the analysis in combination with pruning [5], [6]. A TA is
identified for a given abstraction when the WCET bound
obtained with pruning is smaller than without pruning. Note
that under this interpretation, TAs may be assumed even when
the WCET bound obtained with pruning is safe wrt. the
concrete hardware. TAs, however, were originally observed

in a real processor [7], outside of any analysis framework.
This leads to another interpretation, where TAs originate from
the hardware itself [8], [9]. Pruning during WCET analysis
then becomes unsafe when the actual WCET is larger than
the WCET bound obtained from the analysis. Studying TAs
then consists in determining whether the hardware fulfills the
underlying assumptions of the analysis.

This second interpretation is also applicable outside of tradi-
tional static WCET analysis. Notably, TAs may be problematic
when trying to bound the impact of perturbations that may
occur during the execution of a program. Preemptions or
interrupts would be a typical example of such situations. The
perturbations may lead to new hardware states that would not
occur during an execution of the program in isolation, e.g.,
an instruction cache miss might occur even for two succes-
sive instructions on the same cache line. WCET analyzers
would probably fail in exhaustively exploring the possible
states. Besides, TAs jeopardize other timing-analysis methods
partially based on concrete executions, such as measurement-
based analysis [10] and probabilistic analysis [11]. The impact
of TAs thus has to be studied and understood independently
from the WCET analysis technique itself. In this work, we
adhere to the second, hardware-centric interpretation.

Several formal definitions of counter-intuitive TAs were
proposed in the literature [6], [8], [9], [12]–[14]. However,
recent work [15] has shown that none of these definitions
is able to correctly capture TAs on an Out-of-Order (OoO)
pipeline. These definitions share several issues. First, nearly
all are based on hardware models that remain theoretical
concepts, without a clear relation to concrete hardware. As a
consequence, they are often not implemented as TA-detection
procedures or in any other practical setting. Second, they lack a
way to correlate the local timing variations and their impact on
global execution time. Again, this shortcoming could explain
the absence of tool support to reason about TAs.

We propose a framework that lays the groundwork for the
identification of TAs—unambiguously applicable to a concrete
architecture and independent of the WCET analysis method.

1) We propose a formalization of TAs based on the notion
of causality, which restricts the scope of a variation to the
trace portion where it determines the timing behavior.
2) We instantiate this formalism on a well-specified

hardware-architecture model representing an OoO pipeline,
with all the necessary information for the TA-detection
procedure that we have implemented.

3) We evaluate the instantiation of our formalism on the
OoO pipeline wrt. false positives and faithfulness of the rep-
resentation of scheduling effects established as TA patterns.

4) We identify a new problem, related to the composition
of multiple variations, since our accurate formalization of
TAs exposes more complicated scenarios on the traces under
consideration. We consistently represent multiple variations
individually, which allows for tackling this open problem that
we plan to address in future work.

The rest of this paper is organized as follows. We address
related work in more detail in Sec. II. In Sec. III, we describe a
comprehensive example to motivate our overall approach. We
informally introduce how we interpret the notion of causality,
which is then used, in Sec. IV, to formalize TAs. Sec. V details
the correctness arguments. In Sec. VI, we present the applica-
tion of our detection procedure on examples, illustrating the
capabilities of our approach, before concluding in Sec. VII.

II. RELATED WORK

The crucial notion of causality is missing in all the proposed
formal definitions of TAs, in particular in the case of multiple
variations. The semi-formal definitions of TAs by Lundqvist
and Stenström [7] and Wenzel et al. [5] explicitly assume
that a single variable latency affects the trace comparison,
whereas no later formal definition restricts the way that traces
may differ from each other. In our work, we generalize it
to possibly multiple variations. Some definitions are based
only on the commit events [8], [9], [12], [14], representing
the instants where instructions leave the pipeline, to define
latencies and variations. For instance, Gebhard [8] defines
latencies as the timing gaps between the commit events of
two successive instructions. These definitions are unsafe: they
are too coarse-grained and omit relevant events in-between
instruction commits, which may hide TAs and thus lead to
inconsistent verdicts [15]. Only the definition by Kirner et
al. [13] is not based on variations identified by instructions,
but on a global favorable (i.e., lower) total utilization of certain
resources that constitute a hardware partition. However, this
definition does not state how to determine relevant resources
in order to formally define partitions. The detection of TAs is
not conclusive, e.g., one instruction could increase its use of
a resource while another instruction decreases its use of the
same resource, leading to the same total utilization in both
traces [15]. Finally, the definition by Reineke et al. [6] is based
on finer-grained comparisons of traces, however with specific
limitations that are detailed below (cf. Sec. III). A relaxed
version [16] focuses only on the instants when instructions
are fetched in order to define latencies, thus with the same
granularity as the aforementioned coarse-grained definitions.

Eisinger et al. [14] apply model checking on an OoO
processor with OoO commit to identify TAs wrt. a WCET
analysis abstraction of the processor. The formulation is only
based on commit events and does not integrate causality.
Similarly, Asavoae et al. [17] apply the definition by Reineke
et al. [6] in a model checker in order to detect TAs on an OoO
processor—thus inheriting the limitations of the underlying

definition. We also have used model checking in previous
work to highlight issues of existing definitions [15]. This work
shows the relevance of causality with an intuitive concept but
does not propose any novel form of definition nor indicate
how to concretely derive causal relationships.

Specific cores based on hardware counter-measures have
been designed in order to remove TAs. The Patmos [18]
and SIC [19] cores target particular TAs occurring due to
memory interference. These cores are based on simple in-
order pipelines and it is unclear how to extend these results
to common OoO pipelines. MINOTAuR [20] extends the
framework of SIC to a more complex architecture, which
allows speculative execution and can execute independent
instructions out-of-order (stalling decoding on dependencies
and respecting program order on functional units). Similarly,
Vicuna [21] is a timing-predictable vector co-processor. All
these cores prevent execution scenarios that are known to entail
TAs, but no definition of TAs per se is provided.

Our approach for modeling timing dependencies in a
pipelined processor is similar to that of Li et al. [22]. They
use Execution Graphs (EG) that model the timing semantics
of an OoO pipeline through events, latencies and the im-
posed order between events, in order to provide analytical
WCET estimates. We need to capture causality emerging
from dynamic scheduling effects, which may trigger TAs.
We thus focus on the execution of specific traces. We also
need runtime information such as the actual instant of each
event and the actual order imposed by contention (the EG
uses undirected arcs in this case). Bai et al. extend the EG
with a more compact but equivalent symbolic data structure
called Execution Decision Diagram [23]. Hahn et al. [1]
use microarchitectural execution graphs to represent possible
durations between events of interest. However, they focus on
abstract states that do not allow distinguishing the effects of
individual instructions needed to identify causal relationships.

III. MOTIVATION

We consider a sequence of instructions A to E with data
dependencies, and a simple OoO pipeline (see Fig. 2) with
three Functional Units (FUs). Fig. 1 presents four traces, α,
β, α′, and β′, corresponding to different pipelined executions
of this sequence, from distinct initial hardware states yet the
same input data. These traces may exhibit a local variation wrt.
the use of FU1 by instruction A. This particular instruction
executes 1 cycle on FU1 in α/α′ (e.g., data-cache hit) and 3
in β/β′ (e.g., data-cache miss). These traces may also exhibit
a local variation wrt. the use of the IF stage by instruction E ,
which requires 1 cycle in α and β (e.g., instruction-cache hit)
and 3 cycles in α′ and β′ (e.g., instruction-cache miss).

The definition of TAs by Reineke et al. [6] is the most
appropriate wrt. the granularity of variations (cf. Sec. II), since
the underlying latencies are based on the local occupation of
a pipeline resource by an instruction. This definition assumes
a hardware abstraction and consequently, a static analysis
to compute abstract hardware states. This abstraction can
be arbitrarily close to the concrete architecture. We thus

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM
E IF ID FU3 FU3 FU3 ROB ROB ROB ROB ROB COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM
E IF ID FU3 FU3 FU3 ROB ROB ROB COM

α′
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM
E IF IF IF IF IF IF ID FU3 FU3 FU3 COM

β′
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM
E IF IF IF IF IF IF ID FU3 FU3 FU3 COM

•

•

•

•

δα = 1

∆α = 9

δβ = 3

∆β = 5

δα′ = 1

δβ′ = 3

Fig. 1: Execution of a program with data dependencies ()
on an OoO processor. Traces α/α′ vs. β/β′ exhibit a local
variation wrt. FU1 for A (). α/β vs. α′/β′ exhibit a local
variation wrt. IF for E (). β′ is the local worst-case path ac-
cording to the definition by Reineke et al. [6], which indicates
the absence of TAs. α/α′ vs. β/β′, however, constitute a well-
established example of a TA [5], [6], [13], [17]. δ, ∆, and
the colored cells are relevant for our definition (cf. Sec. IV-F).

assume an abstraction that explores all (concrete) states and
we consider that an abstract state maps each pipeline resource
to the (potential) processed instruction at a given instant and
to the associated latency. Then, whenever two traces share
the same prefix and then diverge due to a local variation,
this definition identifies the variation with the larger latency
as a local worst-case. A local worst-case path is a trace that
follows all the local worst-cases (i.e., for any other trace and
any variation). Consequently, this definition identifies a TA
when the WCET bound is not derived from a local worst-case
path. During the analysis, if there is no TA, it is safe to prune
the abstract states that open up a non-local worst-case path.

The four traces in Fig. 1 share the same prefix comprised
of the first two cycles and then diverge due to two distinct,
simultaneous variations in cycle 3, i.e., the use of FU1 by
A and of IF by E . Both variations identify β′ as a local
worst-case wrt. any other trace, thus this trace is a local worst-
case path. Since this local worst-case path results in the global
WCET, this definition does not signal a TA. However, a WCET
analyzer could determine that trace β′ is infeasible (e.g., the
case with two cache misses is excluded) and thus, this path
should be excluded (i.e., for a tighter WCET bound). More
precisely, the abstract state that opens up β′ in cycle 3 should
be pruned from the state space. A direct consequence of this
pruning is that, in order to remain sound when applied, this
definition should also address the remaining traces. It does not
because it follows only the local worst-case paths.

The pruning under the local worst-case path leaves us with
the traces α, β, and α′. Let us inspect them closer. We note
that instruction E does not impact the scheduling of the other

(preceding) instructions because E has no data dependency
and is the only instruction to use FU3. Moreover, E does not
impact the global execution time, which is, in fact, determined
by the execution of instructions A to D (i.e., the same in
traces α and α′). We also note that the variation in the
use of FU1 by A, in traces α/α′ as opposed to β, affects
the scheduling of the instructions B to D . This variation is
favorable (i.e., A has a shorter latency) in α/α′, and leads
to a global slowdown wrt. β, notably for the commit of D
and E . This case is a traditional TA pattern often found in the
literature [5], [6], [13], [17].

The definition by Reineke et al. [6] is unable to identify a
local worst-case path among the remaining traces α, α′, and β.
Both variations are favorable for trace α, thus this trace cannot
be a local worst-case path. Traces β and α′ mutually prevent
each other from being identified as a local worst-case path,
since each trace has a variation that constitutes a local worst-
case that appears precisely when the traces diverge. However,
the local worst-case related to the use of FU1 by A should
serve as a basis to actually identify trace β as the local worst-
case path. As a consequence, this definition is limited for
comparing traces, thus for consistently reasoning about TAs.

We argue that a definition of TAs should be able to identify
individual variations and to check whether these variations
could actually determine global slowdowns. Moreover, it
should be able to identify chains of events from any favorable
variation, defining trace portions of interest (/), later called
causal regions. As such, a TA would be stated wrt. a trace if
a slowdown is observed () in the causal region. A formal
definition that is able to identify variations and causal regions,
to work under less restrictive assumptions (i.e., the existence
of a static analysis to compute abstract hardware states) and to
systematically discriminate between traces is introduced next.

IV. FORMAL DEFINITION OF TIMING ANOMALIES

In this section, we gradually develop a formal definition of
counter-intuitive TAs. We rely on two input traces derived
from a transition system, from which we define events at
the granularity of pipeline resources. The events represent
the acquisition and the release of resources at some instant.
From these events, we define an Event Time-Dependence
Graph (ETDG) for each trace, whose arcs capture timing
dependencies expressing the fact that the source event imposes
a minimal duration before which another destination event can-
not occur. The interval between the instants of the acquisition
and the release of a resource by the same instruction defines a
latency. From both graphs, we define (favorable) variations
in the use of resources. Then, we introduce a Causality Graph
(CG), i.e., a sub-graph of the ETDG where only the arcs
that exactly and unambiguously explain the instant of the
destination event remain. We then introduce the causal region
of a favorable variation, as a sub-graph of the CG, to define
the scope in which the variation determines the timing of other
events. Finally, we combine all these elements to precisely
capture counter-intuitive TAs triggered by the variation.

IF ID
RSNFU FUNFU

COM/

su
pe
rs
ca
l

/

In-order front-end OoO computation In-order
back-end

ROB

/

Fig. 2: OoO-pipeline model with NFU functional units, fetching
and committing at most superscal instructions per cycle.

We first define general concepts and then provide con-
crete instantiations for our case study, a representative OoO-
architecture model. We focus on this precise microarchitectural
model, providing modeling details and an actual implementa-
tion of a TA-identification procedure.

A. Execution Model for Timing Anomalies

We first define execution traces, i.e., how the hardware exe-
cutes a given sequence of instructions. The targeted hardware
is a pipeline that may perform computations out-of-order.
We only assume that the computed results are committed in-
order—which is the case for modern processors.
Definition 1: Execution Traces — The set S of execution
traces of a hardware model, represented by a transition system
(TS), consists of all finite sequences of instructions executed
by the TS, from any possible initial state.

Instantiation 1: Hardware Model & Execution Traces
We base our work on an OoO model, inspired by formal
models proposed in the literature and illustrated in Fig. 2, to
reason about timing modeling [5], [15], [24]. The model is
based on a pipeline containing an in-order front-end respon-
sible for fetching (IF) and decoding (ID) the instructions
from the input sequence, an in-order back-end so as to
commit (COM) the instructions in program order via a
reorder buffer (ROB), and an OoO execution engine in the
middle, which may hold instructions in Reservation Stations
(RS) and perform computations in Functional Units (FU).
The model can be parameterized using four parameters:
superscal determines the number of instructions fetched/de-
coded/committed per cycle, NFU specifies the number of
RSs/FUs, and NRS and NROB specify the sizes of the buffers
of the RSs and the ROB.
The model allows the execution of an arbitrary specified
instruction sequence. We specify for each instruction its
data dependencies and the admissible FUs. We also specify
for each instruction the sets of possible latencies for the
FUs and the IF stage (the COM stage takes 1 cycle). The
instruction sequence, the choice of FUs, as well as the choice
of latencies explicitly represent the initial state. The set of
initial states is given by all combinations of these choices.
Starting from an initial state, instructions deterministically
advance through the pipeline at each cycle (). The OoO
computation relies on Tomasulo’s algorithm [25] and only

represents how instructions progress through the pipeline,
i.e., the instructions’ computations are not modeled. Instruc-
tions are issued directly from the ID stage to a FU ()
or otherwise from the associated RS. The results from FUs
are bypassed (), allowing the back-to-back execution of
dependent instructions on FUs. The RSs and the ROB keep
track of the status of instructions (pending/ready/executing/
completed/committed) and their (data) dependencies ().
Instructions are assigned an entry in the relevant RS and in
the ROB within the ID stage. If the buffer capacity of one
of these resources is reached (NRS or NROB), the pipeline is
stalled in ID (otherwise this stage takes 1 cycle).

Remark — The hardware model is centered on the pipeline stages. In
particular, the memory system is modeled implicitly, through variable
latencies. Possible interference, e.g., on the memory bus, are thus
not modeled. This microarchitecture is prone to TAs, but sufficiently
simple in order to reason about the relevant events that may occur
during execution. This is also true for the choices of initial states—
extensions are discussed in Sec. VII.
In order to reason about TAs, we need to extract information
from these execution traces. For this, we define two functions
to capture the runtime behavior at the hardware level:
Definition 2: Events — The function Events : S → P(E)
(where P denotes the power set) provides a set of triples
(i , r , t) ∈ E , called timestamped events, where i is an instruc-
tion identifier, r a resource identifier, and t a timestamp.
The Events function captures from an execution trace (Def. 1)
any timestamp t when an executed instruction i triggers an
event associated with a resource identifier r , which may refer
to an in-order commit unit or the acquisition/the release of a
relevant hardware resource by an instruction.
Definition 3: Instruction Dependencies — The function
IDeps : S → P(D) provides a set of triples (i , j , t) ∈ D
where i and j are instruction identifiers and t a timestamp.
The IDeps function captures from an execution trace the data
or control dependencies that impact an event of instruction j
at timestamp t due to instruction i .

Instantiation 2: Events & Instruction Dependencies

• In our case, instruction identifiers i are capital letters, e.g.,
A or B , according to the order of executed instructions.

• Instructions progress through the OoO pipeline; the fetch
unit (IF stage), the decode unit (ID) and the FUs are
considered to be resources that are acquired when the
instruction enters the unit and released when the instruction
exits. The acquisition/release of one of these resources
is denoted by an arrow pointing up-/downward, followed
by the name of the unit/stage, e.g., r =↑ IF or ↓ FU1.
Instructions complete in the COM stage, which is reflected
by a resource r = COM. Each instruction is assigned an
entry in the ROB/RS buffers in ID. The attribution of an
entry is indicated by r = ROB and r = RS respectively.

• In our case, an instruction dependency of j on i may
impact j at a single timestamp t , i.e., the timestamp of the
acquisition of a FU by i . The Events and IDeps functions
emit events/dependencies according to the progress of

instructions in the pipeline as defined by Inst. 1.

The fetch unit and the FUs are considered relevant resources
in our model, since they may have an intrinsic impact on the
timing of other events. The time that an instruction spends in
these resources thus represents a latency that can be explained
directly by the initial hardware state. Note that ↑ / ↓ IF
exclusively correspond to the time required for fetching an
instruction (from memory or a bus): additional stalling may
occur in the IF stage after ↓ IF, e.g., when the instruction
in ID stalls. Also, the ID stage is relevant since its timing
is not determined only by the use of the fetch unit. The
COM stage is relevant since it represents the completion
of instructions, therefore a reference point when comparing
traces. Since COM events are simple end-markers (they take
a single cycle and may never cause stalling), there is no need
to distinguish acquisition/release. Similarly, ROB and RS are
simple markers within the ID stage (the behavior/content of
ROB and RS are otherwise irrelevant for our approach).
Remark — While we focus on our OoO model, we would like to
make some remarks relevant for more general architectures:
• We expect that events coincide with register writes in most cases,

e.g., when data of an instruction is written into a pipeline register.
• On more complex architectures, it might not be sufficient to capture

events only for pipeline stages. Events related to caches, buses,
memories, etc. might be required.

• On real processors, it is not sufficient to fix the instruction sequence
in order to be certain that the exact same program was executed,
e.g., due to changes in the input data. In this case, registers and
memories visible through the instruction set architecture (defined
by the programmer’s manual or application-binary interface) have
to be identical, whereas hidden registers and memories may diverge.

B. Event Time-Dependence Graph (ETDG)

The ETDG captures a minimal duration imposed between two
events in a trace τ . The nodes are the events in the trace
(Def. 2) and the arcs connect two nodes for which the source
node may have a direct timing impact on the other.
Definition 4: Event Time-Dependence Graph (ETDG) —
The ETDG of a trace τ is a graph G = (N ,A), where
N is the set of nodes, which are directly derived from
the events occurring during the execution of the trace (i.e.,
N = Events(τ)), and A a set of weighted arcs, which specify
timing dependencies. The arcs (and their weights) are derived
from microarchitecture-dependent rules using information on
the trace’s events as well as on data dependencies among
instructions (Def. 3). An arc is denoted as e1

w−→ e2, where e1
is the source event node, e2 the destination node and w the
weight, i.e., a minimal delay imposed between the events.

Instantiation 3: ETDG
Our microarchitectural model imposes order and delay con-
straints between events, captured by the following rules
(which may be applied in any order).
1) Order of pipeline stages: The pipeline structure imposes

a progression order wrt. a given instruction, as well as a
minimal duration. In terms of events, any instruction X of
a trace has nodes of the form (X , ↑ IF, t1), (X , ↓ IF, t2),
(X , ↑ ID, t3), (X , ↓ ID, t4), (X , ↑ FUi , t5), (X , ↓ FUi , t6)

and (X , COM, t7). Instructions are decoded in a single
cycle, so: (X , ↓ IF, t2)

0−→ (X , ↑ ID, t3), (X , ↑ ID, t3)
1−→

(X , ↓ ID, t4), (X , ↓ ID, t4)
0−→ (X , ↑ FUi , t5) ∈ A. Simi-

larly, since an instruction could be committed immediately:
(X , ↓FUi , t6)

0−→ (X , COM, t7) ∈ A.
2) Resource utilization: The duration between the acqui-

sition of the IF stage or a FU (by an instruction) and the
matching release (by the same instruction), i.e., the duration
of a resource use by the instruction, is determined by
the initial hardware state (cf. Inst. 1). Hence, considering
the events evoked in Rule 1, the weights of the related
arcs are exactly the timestamp difference between events:
(X , ↑ IF, t1)

t2−t1−−−→ (X , ↓ IF, t2), (X , ↑ FUi , t5)
t6−t5−−−→

(X , ↓FUi , t6) ∈ A.
3) Order of instructions in the input sequence: If we
consider two successive instructions in the input sequence,
the stages of the in-order front-end and back-end (cf. Inst. 1)
cannot process the second instruction before the first one.
A minimal duration between these stages is 0: instructions
could be processed at the same time (depending on the
superscal parameter). Any pair of successive instructions
X and Y in a trace has events of the form (X , ↑IF, t1) and
(Y , ↑IF, t ′1), which have to respect the program order and
thus (X , ↑ IF, t1)

0−→ (Y , ↑ IF, t ′1) ∈ A. The same applies
for the decode/commit events: for nodes (X , ↑ID, t2)/(Y , ↑

ID, t ′2) and (X , COM, t3)/(Y , COM, t ′3), it follows that
(X , ↑ ID, t2)

0−→ (Y , ↑ ID, t ′2) and (X , COM, t3)
0−→

(Y , COM, t ′3) ∈ A.
4) Instruction dependencies: In the OoO engine, the in-

structions use the resources independently of their order
in the input sequence. However, the execution obviously
respects data dependencies, which entails an order between
dependent instructions. Any pair of instructions X and
X ′ of a trace has events of the form (X , ↓ FUi , t) and
(X ′, ↑ FUj , t

′) (possibly with i ̸= j) since instructions
always require a computation in a FU. If IDeps(τ) in-
dicates that X ′ depends on a result produced by X , then:
(X , ↓FUi , t)

0−→ (X ′, ↑FUj , t
′) ∈ A.

5) Resource contention
a) Execution in a FU: Even without dependencies, an

instruction cannot be issued to its FU if another instruction
is already using it. In this case, the instruction is ready but
still not executing, it has to wait in the associated RS (cf.
Inst. 1). Such competing instructions have events of the
form (X , ↓FUi , t

′), (Y , ↓ID, t1) and (Y , ↑FUi , t2), with
t1 < t ′ ≤ t2. If two instructions X and Y exhibit such
events, then: (X , ↓FUi , t

′)
0−→ (Y , ↑FUi , t2) ∈ A.

b) Limited in-order parallelism: Instructions may also
suffer resource contention in the in-order front-end and
back-end, when more than superscal instructions try to
access the resources at the same time (cf. Inst. 1). This
occurs when two successive instructions are not part of
the same fetch bundle or when the second instruction is
completed but not committed yet and thus remains in the

ROB (Inst. 1). Any pair of successive instructions X and
Y has events of the form (X , ↓IF, t1) and (Y , ↑IF, t ′1).
If t1 = t ′1, then X and Y are not part of the same fetch
bundle, s.t. Y is delayed and fetched when the resource
is released: (X , ↓IF, t1)

0−→ (Y , ↑IF, t ′1) ∈ A. Likewise,
successive instructions have events (X , COM, t ′), (Y , ↓

FUi , t1) and (Y , COM, t2). If t1 ≤ t ′ < t2, then Y is
in the ROB and must wait for the end of the ongoing
commit: (X , COM, t ′)

1−→ (Y , COM, t2) ∈ A.
c) Finite resources: Stalling occurs in ID whenever the ca-
pacity of the finite ROB or appropriate RS is reached (cf.
Inst. 1). If the ROB is full, ID is stalled until instructions
are removed from the ROB: the new assignment in the
ROB occurs after the instruction enters ID, and a minimal
duration between the commit(s) that immediately precede
the new assignment (within ID) and the end of the stalling
in ID is 1. If the RS is full, ID is stalled until the end of an
instruction’s execution in the FU and thus until an entry is
freed in the RS: the new assignment in the RS occurs after
the instruction enters ID, and a minimal duration between
this execution end and the end of the stalling in ID is 0.
Moreover, in both cases, the next instruction is transitively
stalled in IF: a minimal delay of 0 is imposed between the
end of the stalling in ID and the acquisition of ID by the
next instruction. Any instruction X has events of the form
(X , ↑ID, t1), (X , ROB, t2), (X , RS, t3), (X , ↓ID, t4) and
(X , ↑FUi , t5), with t1 ≤ t2 ≤ t4 and t1 ≤ t3 ≤ t4 ≤ t5.
If t1 < t2, then stalling occurs due to the ROB and an
instruction X ′ exists with an event (X ′, COM, t2 − 1):
(X ′, COM, t2 − 1)

1−→ (X , ↓ ID, t4) ∈ A. If t1 < t3,
then stalling occurs due to the RS and X ′ exists with an
event (X ′, ↓FUi , t3): (X ′, ↓FUi , t3)

0−→ (X , ↓ID, t4) ∈ A.
Let Y be the instruction that follows X . It has an event
(Y , ↑ID, t ′). If t1 < t2 or t1 < t3, then Y is transitively
stalled: (X , ↓ID, t4)

0−→ (Y , ↑ID, t ′) ∈ A.

Remark — A similar reasoning would apply with additional events,
resulting for instance from an explicit modeling of the memory
system. Note that the number of events with the same timestamp
is unlimited and that ↑ / ↓ pairs can be nested. Thus, the rules
reported above constitute a sound basis for more complex models.
The ETDG captures the utilization of resources by the instruc-
tions. This allows us to formally define latencies:
Definition 5: Latency — Given an acquisition event (i , ↑

R, t↑) and a matching release event (i , ↓ R, t↓), the latency δ
of i wrt. that resource is δ = t↓− t↑.
In our case, an arc always exists between these events (cf.
Rule 2 of Inst. 3).

C. Relating Events between Traces

Henceforth, we consider two traces α and β that execute
precisely the same instruction sequence and for which we want
to decide whether a TA exists or not. As such, we need to be
able to reason about events that occur in both of those traces
and relate events from one trace to events in the other one:

Definition 6: Corresponding Event — The function
CospEvent : Events(α) → Events(β) maps an event of trace
α to its corresponding event of trace β.

Instantiation 4: Corresponding Event
For the microarchitectural model from Inst. 1, such a map-
ping is straightforward. The acquisition/release or occupation
related to the IF, ID, and COM stages of a given instruction
identifier are simply mapped to the same events of the
other trace of the same instruction identifier, i.e., an event
(i , r , tα) ∈ Events(α) is mapped to (i , r , tβ) ∈ Events(β).
However, instructions may execute on different FUs in the
two traces. For events related to FUs we thus simply map
to that other FU, i.e., (i , ↑FUα, tα) ∈ Events(α) is mapped
to (i , ↑FUβ , tβ) ∈ Events(β) (similarly for the release of
FUs).

Remark — Note that on our hardware model, such a mapping always
exists, i.e., for every event in one trace, a corresponding event exists
in the other trace. This might not be the case for all models, e.g.,
when the bus or memory is not accessed due to a cache hit. The
CospEvent function needs to be adapted accordingly in that case.
Because the corresponding events between the two traces are
used to compare latencies (Def. 5), we can define variations
that represent a favorable local case:
Definition 7: Variation — Let δα be the latency of a given
instruction wrt. a given resource (Def. 5) in trace α and δβ be
the latency obtained from the corresponding events (Def. 6).
We observe a variation if δα ̸= δβ , more precisely a favorable
variation for α (β) when δα < δβ (δβ < δα).
Similarly we can detect whether an instruction has switched
from one functional unit to another:
Definition 8: Resource Switch — A resource switch occurs
when the corresponding events (Def. 6) of an instruction’s
resource use in trace α refers to a different resource in trace
β, i.e., for e = (i , rα, tα) ∈ Events(α) and CospEvent(e) =
(i , rβ , tβ) we have rα ̸= rβ .
In our OoO model, variations arise from the resources IF and
FUi , and resource switches only from FUs.

D. Causality Graph (CG)

Now that we can build the ETDGs of traces α and β, which
captures the order as well as timing dependencies among
events of the traces, we further refine the graphs in order to
capture causality.
Definition 9: Causality — Given an ETDG G = (N ,A),
causal arcs form the subset CA ⊆ A of arcs e1

w−→ e2 ∈ A
that represent situations where event e1 has a direct impact on
event e2 in terms of timing. Node e1 ∈ N is causal to node
e2 ∈ N iff there exists an arc e1

w−→ e2 that is causal, i.e., the
first event determines the timestamp of the other event.
Generally, not all arcs of an ETDG correspond to this notion
of causality, and, consequently, some arcs are removed from
the graph, resulting in the causality graph:
Definition 10: Causality Graph (CG) — The CG is the sub-
graph C = (N , CA) of the ETDG (Def. 4), where only the
arcs that reflect causality (cf. Def. 9) of events are retained.

Instantiation 5: CG
For our OoO model (Inst. 1), we distinguish three rules,
identifying cases where an arc e1

w−→ e2 between two events
e1 = (i1, r1, t1) and e2 = (i2, r2, t2) has to be removed:
1) Timing gap: An arc has to be removed when t1+w < t2.
In this case, another event has to exist that delays e2 more
than the duration w due to e1, so that e2’s timestamp is not
determined by e1 (at least not via that arc of the ETDG).

2) Variation: An arc needs to be removed if it corresponds to
a variation (thus e1 represents a resource acquisition and e2
the matching release) (Def. 7). Any event e0 that occurred
before e1 and that is causal wrt. e1 is no longer causal to
any event e3 that occurs after e2 (even if e2 is causal wrt.
e3), since the timestamp of e3 is not only determined by
e1 but also by the variation that lies between them.

3) Resource switch: The same occurs when an instruction
switches from one FU to another (Def. 8). The assignment
to a FU results from the initial state (cf. Inst. 1), and
consequently, this choice also determines the timestamp of
later events e3 according to the scheduling on FUs.

Definition 11: Causal Region — Given a causality graph
C = (N , CA) (Def. 10) and an event e ∈ N , we define the
causal region of that event, denoted by C (e) = (NC (e) ⊆
N , CAC (e) ⊆ CA), as the sub-graph obtained from the nodes
that are reachable from e .

E. Counter-Intuitive Timing Anomalies

Based on the variations and their causal region, we can now
reason about TAs. We formally define them in accordance
with the intuitive definition. Nevertheless: 1) The definition
is based on a precisely defined variation (Def. 7) in how an
instruction uses a resource. 2) The causal region (Def. 11) of
this variation limits the scope of the TA verdict to this region
(i.e., not necessarily the whole trace). 3) Contrary to previous
definitions, we do not rely on the (absolute) global execution
time. Instead, we compare the relative time distance of events
by using the operator ∆, which computes ∆(e1, e2) = t2 − t1
for two events e1 = (i1, r1, t1) and e2 = (i2, r2, t2).
Definition 12: Counter-Intuitive Timing Anomaly — For
τ = α or τ = β, let eτ↑ = (i , ↑ rτ , tτ↑) be an acquisition
event and eτ↓= (i , ↓rτ , tτ↓) be the matching release event, s.t.
eβ↑= CospEvent(eα↑) and eβ↓= CospEvent(eα↓). The event
eα↓ triggers a counter-intuitive TA at an event e wrt. β, iff:
1) Variation: α exhibits a favorable variation (Def. 7) at eα↓,
i.e.: (δα = tα↓− tα↑) < (tβ↓− tβ↑= δβ);

2) Causality: e is a node of the causal region C (eα↓) of the
variation (Def. 11), i.e., e ∈ NC (eα↓);

3) Slowdown: α exhibits a relative slowdown, expressed as:
∆(eα↓, e) > ∆(eβ↓,CospEvent(e)).

We can obviously apply the definition with α and β exchanged
in order to get TAs for favorable variations in β.
While this definition applies to all events e , we notably focus
on COM events. Such events are relevant since the related
instructions are fully executed and can no longer impact
the execution of other instructions in the trace. However,

considering terminal nodes other than COM events, i.e., nodes
without any successors in the causal region, is relevant for
events representing a resource switch or another variation. This
is necessary to reason about the composition of variations and
about chains of TAs (cf. Sec. VI). In any case, ROB and RS
events explain the scheduling but not TAs themselves.

F. Application to the Motivating Example (cf. Sec. III)

Next, we present how the various definitions/instantiations
work on the TA pattern of the motivating example (cf. Sec. III),
and how our definition addresses the raised issues. As a first
step, we consider only traces α and β. Fig. 3 shows the ETDG
and CG of this pair of traces—all arcs are in the ETDG while
the dashed arcs are not in the CG, which contains only the
solid arcs. We illustrate the successive steps of the procedure.
1) The first step consists in extracting events from both con-
sidered traces of Fig. 1. The derived events (cf. Def. 2/Inst. 2)
are the nodes in Fig. 3a and 3b.

2) From these events and from the time-dependence rules
of Inst. 3, we build the ETDG (Def. 4) of each trace. In
Fig. 3a and 3b, the nodes that have the same timestamp are
vertically aligned. The arcs derived from Rule 1 (order of
stages) and Rule 2 (resource use) are represented with bold
black arrows (→), those from Rule 3 (order of instructions)
with simple black arrows (→), those from Rule 4 (instruction
dependencies) with red arrows (→), those from Rule 5a
(contention in a FU) with blue arrows (→) and, finally, those
from Rule 5b (limited parallelism) with green arrows (→).

3) Both ETDGs exhibit a single variation (Def. 7), namely
from the latencies (Def. 5) related to the use of FU1 by
instruction A in both traces, denoted as δα and δβ . The
variation is highlighted similarly in Fig. 1 and 3 (). The
variation is favorable for α (δα = 1 < 3 = δβ).

4) Both CGs (Def. 10) are derived from the ETDGs by
removing the dashed arrows in Fig. 3, according to Rules 1
and 2 of Inst. 5. Rule 3 does not apply due to the absence
of resource switches.

5) We then compute the causal region C (eα↓) (Def. 11) of
the release event eα↓= (A, ↓FU1, 4) using the CG C of α,
which contains the favorable variation. The nodes of this
region are highlighted in Fig. 3a (/)—reflecting the same
information as in Fig. 1.

6) We finally compare the relative time distance from eα↓
to each event e ∈ NC (eα↓) of the causal region, with the
relative time distance from the corresponding release event
eβ↓= CospEvent(eα↓) = (A, ↓FU1, 6) to each corresponding
event CospEvent(e) in trace β. The events at which a TA
manifests (Def. 12) are highlighted with a more pronounced
color in Fig. 1 and 3a (). Let us consider, in particular,
the commit event eE = (E , COM, 13) ∈ NC (eα↓). The
relative time distance is ∆(eα↓, eE) = 9, denoted by ∆α

in Fig. 1 and 3a. The corresponding relative time distance
in the ETDG of β is ∆(eβ↓,CospEvent(eE)) = 5, with
CospEvent(eE) = (E , COM, 11), denoted by ∆β .1 Trace

1CospEvent(eE) may not be in the causal region of the variation in β.

δα = 1

∆α = 9

(a) Trace α

δβ = 3

∆β = 5
xx

(b) Trace β

Fig. 3: ETDG/CG of α and β from the motivating example (cf. Fig. 1). For each trace, all arcs are in the ETDG, while the arcs
represented with dashed arrows are not in the CG. The nodes of the causal region of the favorable variation are highlighted
(/). Among these nodes, those at which a TA manifests are highlighted in a more pronounced manner ().2

α is longer (∆α > ∆β): a TA is triggered by eα↓ at eE .
Let us now bring α′ up, so that we consider the three traces
that remain after pruning β′ from the motivating example. The
variation related to the use of IF by instruction E is favorable
in α and β against α′. It can be easily observed from Fig. 1
that in both former traces, the causal region of the release
event of this variation is limited to the use of FU3 by E .
There is no slowdown in these causal regions wrt. α′, and
thus no TA is signaled. This correctly reflects the fact that for
the considered traces, this variation has no scheduling impact
on the other instructions (cf. Sec. III). Besides, the variation
in FU1 is favorable for α′ wrt. β. The causal region of the
release event in α′ is exactly the same as in α, thus entailing
the same TAs wrt. β. This consistently captures the TA pattern
shared by both traces α and α′.
Finally, our definition does capture the TA pattern even if we
consider β′ instead of β. In α/α′, exactly the same TAs as
wrt. β are triggered wrt. β′, for two reasons stemming from
the fact that our definition is not based on the WCET. We do
not exclusively focus on the end of the traces, and moreover
we compare relative times.

V. CORRECTNESS ARGUMENTS

In this section, we show that the detection procedure for TAs
on our OoO model, based on the various instantiations from
Sec. IV, is accurate wrt. the intuitive understanding of TAs.

A. Prerequisites

We first investigate the correctness of the ETDG, which
establishes a link between the actual execution of the input
traces on the OoO model (Inst. 1) and our formalization.

Lemma 1: ETDG Accuracy — The ETDG (Inst. 3) is
accurate, i.e.,
1) its nodes exactly represent the relevant observable events
of an execution trace for the study of TAs; 2) for all pairs
of events for which an order is imposed by the OoO model
during the execution of a trace, arcs exist in the graph; 3) the

2For simplification, ROB and RS nodes are not represented (cf. Sec. IV-E).

arc weights represent actual delays imposed by the OoO
model between the respective events.

PROOF 1. 1) COM events are indispensable in order to
identify executions of the same program and to delimit the
contribution of a given instruction within an execution of
our Transition System (TS). Besides, the acquisition/release
of resources (IF/FU) that provide information about the
initial hardware state must be represented, since the intuitive
understanding of TAs relies on latencies ensuing from the
initial state. The observation of the COM stage (cf. Sec. IV-A)
is subject to harmless simplifications, since commit always
takes 1 cycle. The duration spent in the RSs and the ROB is
an emerging property of the pipeline scheduling, not a latency
that is directly related to the initial state.
2) Due to space consideration, we cannot provide a full proof

showing that the ETDG reflects any possible evolution of the
state variables that represent relevant resources, specified by
the transition relation of our TS. However, the microarchitec-
tural model may impose an ordering among events only in
four situations (Rules 1/2 and 3-5 of Inst. 1). ■
The intuitive definition of TAs from the introduction further-
more requires that traces are comparable.

Lemma 2: Trace Comparison — Inst. 4 as well as Def. 7
and 8, which build on it, allow a consistent comparison of
the two traces at hand.

The objective of the CG is to capture causality, i.e., the
relationship of two events within a trace s.t. the first event
explains why the second event occurred at a specific instant.

Lemma 3: CG Accuracy — The CG (Def. 10) is accurate,
i.e., 1) all arcs of the graph link causal events; 2) all the
events that verify the causality relationship are connected
through an arc.

PROOF 2. 1) We must ensure that all remaining arcs in the CG
correspond to the causality relationship. All arcs are also in
the ETDG, so they represent a delay constraint. This constraint
is clearly necessary for causality but it is not sufficient. We
must verify that the source event e1 determines the timestamp

of the destination event e2. Indeed, a timing gap may exist due
to the timing dependency of e2 on another event e0. Inst. 5
(Rule 1) ensures that such an arc between e1 and e2 is not
present in the CG. Note that in this case an arc has to exist
between e0 and e2 due to the second item of the instantiation.
Besides, we must verify that the causality relationship takes
into account the comparison of both traces at hand, since we
are interested in explaining whether a given event caused a
divergence between the two traces. Variations and resource
switches are the only source of divergence between the execu-
tion of traces (cf. Inst. 1), and they are correctly captured (cf.
Lemma 2). All other effects (e.g., the order of computations
on FUs) are emerging from that in the hardware model.
Recall that variations are based on latencies and that the
assignments to FUs are independent and only depend on the
initial hardware state (cf. Inst. 1). Consequently, the instants
of the events that are time-dependent on the release e2 of
a resource use that exhibits a variation or a switch are not
explained by the matching acquisition e1 alone. Rules 2 and 3
of Inst. 5 complete the removal of undesired arcs, without loss
of relevant information (the ETDG suffices to characterize the
resource use in question).
2) Assume that a pair of events exists that verifies the causality
relationship, but no arc in the CG connects them. By definition,
the CG is a sub-graph of the ETDG that shares the same event
nodes. Clearly, an ordering exists between the two events.
Consequently, a path has to exist between the two nodes in the
ETDG (due to Lemma 1) and at least one arc along this path
was removed during the CG construction. The removed arc
either represents a timing gap or a variation/resource switch.
In the former case, the initial hypothesis on causality is con-
tradicted. In the latter case, the initial variation is no longer
the only explanation for the instant of the destination event.
Consequently, an arc must exist between the two considered
events. ■
Causal regions represent chains of events where each event is
time-determined by its predecessor.

Lemma 4: Timing in Causal Regions — Given a causality
graph C , for any pair of events (e1, e2), where e2 ∈ NC (e1)

(Def. 11), the relative time distance ∆(e1, e2) between the
two events corresponds exactly to the sum of the arcs
weights on any path between the two events of C (e1) .

PROOF 3. This follows from Lemma 3 and by induction from
the fact that any arc of C (e1) satisfies Rule 1 of Inst. 5. ■

B. Formal Definition of Timing Anomalies

We now argue that Def. 12 corresponds to the intuitive defi-
nition of TAs, considering the notion of causality. Due to lack
of space, we will focus on scenarios with a single variation
and without resource switches. Most existing definitions are
limited to this kind of execution scenarios (often without
explicitly stating so).

Lemma 5: Counter-Intuitive TAs — For the OoO model
from Inst. 1, Def. 12 corresponds to the intuitive understand-
ing of TAs.

PROOF 4. Given the vagueness, inherent to the intuitive
understanding wrt. TAs, it is impossible to provide a formal
proof. We will thus develop a series of arguments highlighting
different aspects of the definition and showing that its verdicts
are coherent with this intuitive notion of TAs.
We first investigate the three necessary conditions at the heart
of our definition by assuming the absence of each of them:
1) Variation: Suppose that the two input traces do not exhibit
any variation. Consequently, the two traces are identical
and our definition does not signal a TA—conforming to the
intuitive notion of TAs.
2) Causality: Now suppose that a (single) favorable variation

is present in one of the traces and that an event e , of that
execution trace, experiences a slowdown due to the variation.
Furthermore, assume that e is not in the causal region of the
release event e↓of the variation. Our definition does not signal
a TA, while intuitively one would expect a TA.
However, given that the slowdown is due to the variation,
some ordering has to exist between e↓ and e , which has to be
captured by a corresponding path in the ETDG (Lemma 1).
At least one arc along this path was removed according to
Lemma 3. The rules of Inst. 5 referring to variations and
resource switches are not applicable, since only a single
variation occurred. The arc must have been removed due to a
timing gap. This contradicts the hypothesis that e suffered a
slowdown due to the variation (e was delayed by some other
event) and the verdict of our definition must be correct.

3) Slowdown: Finally, assume that a (single) favorable
variation is present in the input traces, that an event e suffered
a slowdown due to the variation, and that e is in the causal
region of the variation’s release event e↓, but e does not
exhibit an increase in relative time (∆) for the favorable trace.
Intuitively, a TA should be signaled, due to this slowdown.
Having a single variation, and no resource switch, means that
both traces are identical up to and including the acquisition
events of the variation. Given that the acquisition events occur
at the same instant, that the variation is favorable (δ), and that
the relative time distance (∆) is not larger in the favorable
trace, it follows that also the absolute time of e is smaller
in the favorable trace. This contradicts that e suffered a
slowdown and the verdict of our definition must be correct.
Clearly, traces that do not satisfy the three conditions in
Def. 12 lead to verdict that is coherent with the intuitive notion
of TAs. It remains to show that our definition is coherent with
this notion when it actually signals a TA.
For this, assume that a (single) favorable variation is present
in the input traces and that an event e exists that is both
causal wrt. the variation and whose relative time distance
increased in the favorable trace, but that did not experience
a slowdown. In terms of the intuitive notion, no TA should be
signaled, while our definition clearly does.
As before we need to contradict the fact that e did not
experience an intuitive slowdown. For this we can analyze
the impact of the relative slowdown on e’s timestamp:
1) If the increase of the relative time distance (∆) is larger
than the amplitude of the variation (δ), its absolute time

becomes larger in the favorable trace. It is difficult to attest
the absence of a slowdown for e when both its relative and
absolute times increase. This leads to a contradiction and the
verdict of our definition must consequently be correct.
2) The increase of the relative time distance (∆) is not large

enough and e occurs at the same time or even earlier in the
favorable trace than in the other trace—which leads to a quite
controversial situation and the intuitive notion of TAs is no
longer sufficient to reach a conclusion.
We argue that our definition still provides a sensible verdict
for two reasons. First of all, we can construct examples that
reflect the same TA pattern (see Sec. VI) with regard to some
event e with the only difference that in one example e occurs
earlier and in the other example e occurs later in terms of the
absolute time. Since both examples exhibit the same pattern,
the verdict should be the same for both examples—which is
the case for our definition. Secondly, a strong link between
the relative slowdown and causality exists (Lemma 4), which
ensures that the accumulated delay up to e in the favorable
trace is always greater than that of its corresponding event
in the other trace, i.e., the OoO processor performs more
work sequentially in the favorable trace between the variation
and e . The increase in sequential work reflects the intuitive
notion of TAs even when absolute time is not impacted. ■

VI. RESULTS FROM THE TA-DETECTION PROCEDURE

Def. 12 and its application from Sec. IV-F result in a detection
procedure. We formalized this procedure using the TLA+ [26]
language3 by instantiating a formal specification of the OoO-
hardware model twice (cf. Inst. 1). The TLC model checker
thus can explore all possible pairs of traces and automatically
identify TAs. Input parameters of the two OoO models specify
the common instruction sequence and the data dependencies,
as well as the possible execution choices (cf. Inst. 1). This
allows us to query the model checker for TAs: does a specific
OoO configuration exhibit TAs? Does a given instruction
sequence exhibit TAs? May TAs disappear when restraining
the initial hardware state?
The subsequent illustrations and examples are all obtained
using this tool. The input sequences are based on very short
examples found in the literature [5], [6], [13] and adapted in
order to highlight interesting features of our definition (e.g.,
through variations of the parameters of the OoO model, in
particular superscal and NFU). Due to space limitations, we
use only a compact trace representation similar to Fig. 1.

A. Simple Cases

We start with a series of simple examples by opposing the
results obtained using our definition with previous work and
the intuitive notion of TAs. We show that these examples.
entailing surprising statements about TAs according to the
major formal definitions, are correctly handled by ours.
1) Unrelated Variations: Fig. 4 shows two execution traces on
an in-order configuration of our OoO model (superscal = 1,
NFU = 1). The traces contain two variations, where one

3We intend to make the code available publicly.

1 2 3 4 5 6 7 8 9 10 11

α
A IF ID FU1 COM
B IF ID FU1 COM
C IF ID FU1 COM
D IF ID FU1 COM
E IF IF IF IF ID FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS1 RS1 FU1 COM
C IF ID RS1 RS1 FU1 COM
D IF ID RS1 RS1 FU1 COM
E IF ID RS1 RS1 FU1 COM

•

•

δα = 1

δβ = 3

Fig. 4: Illustration of the separation of unrelated variations.

is favorable for trace α and the other one is favorable for
trace β. The other two traces (i.e., resulting from the other two
combinations of the variations) might have been pruned. If we
try to apply the definition by Reineke et al. [6] to α and β, the
situation of the motivating example (cf. Sec. III) is reversed.
We can identify a local worst-case path, namely trace β. The
variation in FU1 is a local worst-case for β. Since both traces
have already diverged in cycle 5, when the second variation
occurs, and the traces consequently do not share the same
prefix, no local worst-case is identified for this variation and
only the first observed variation serves as a basis to define the
local worst-case path. However, the first variation is irrelevant
wrt. the global execution time. The scheduling on FU1 is
exactly the same in both traces, and the global execution time
depends on the larger latency among both variations, namely
the latency of the second one in this case. More generally,
while the intuitive definition clearly leads to the absence of
TAs, all existing definitions surprisingly state a TA [15].
Our approach splits the favorable trace α into independent
parts. The causal region of the first variation in α is lim-
ited to the commit event (A, COM, 4), since the successive
instructions do not have data dependencies and they do not
experience a resource contention. The relative time distances
of the COM event wrt. the variation in both traces is constant
(1 cycle). Our definition correctly states the absence of TAs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α
AIFIDFU1 FU1 FU1 COM
B IFID RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF IF IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF IF IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
AIFIDFU1 FU1 FU1 COM
B IFID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

δα = 3∆α = 4

δβ = 1
∆β = 7

Fig. 5: Example showing that TAs may be limited in scope.

2) TA with a Limited Impact: Since the causal region allows
us to precisely capture the scope of a variation, we can also
detect TAs that have a limited impact on the execution. In the
example from Fig. 5, we clearly observe that the execution
of instruction B in FU2 and its completion in COM occur
later in the favorable trace β. However, the trace with the
favorable variation has the shorter global execution time. The
definition by Reineke et al. [6] does not state a TA, since α is a
local worst-case path and is longer. Note that the definition by

Gebhard [8] for instance would signal a TA caused by B [15].
However, it is easy to see that B does not cause the TA.
In our case, the TA is clearly attributed to the variation at
instruction C , which blocks instruction B due to a resource
contention on FU2 in Trace β. Such effects are generally not
captured in previous work. Our definition also captures the fact
that a TA has an effect on a limited scope. In this example,
instruction D neither experiences an absolute nor a relative
slowdown wrt. the variation. Thus no TA is signaled here.

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID FU2 FU2 FU2 COM
C IF ID RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB ROB COM
D IF ID RS1 RS1 FU1 FU1 FU1 ROB ROB COM

•

•

δα = 1

∆α = 9
δβ = 3

∆β = 7
Fig. 6: Example showing a TA pattern that does not impact
absolute time.

3) Identification of TA Patterns: Fig. 6 shows a variant of the
motivating example, executing on a constrained OoO model
(superscal = 1, NFU = 2). All the existing definitions signal
the absence of TAs [15] due to the identical global execution
time. Yet, the global scheduling pattern characterized by the
use of FUs is the same as in the motivating example, which
clearly exhibits a TA. The situation is similar to the TA
detection on traces α/α′ vs. β′ in the motivating example (cf.
Sec. IV-F), but this time the traces exhibit a single variation.
Our definition is based on the precise identification of relevant
uses of resources, which leads to the detection of this TA
pattern as of the acquisition of FU2 by C , i.e., the event (C , ↑

FU2, 7). This resource can indeed be used even before the
end of the variation in β, i.e., the corresponding relative time
distance in β is negative. Moreover, the TA persists up to the
end of the execution, although the global execution time is
the same in both traces. This may surprise, but our definition
relies on the relative time distance from the resource release
of the variation, in order to capture actual slowdowns instead
of the absolute execution time. The commit of D in α does
suffer a slowdown in α wrt. β due to the sequential execution
of instructions B , C , and D .

B. General Scenarios

Next, we consider more complex examples, which exhibit
several variations or even FU switches. These considerations
are overlooked by all of the existing definitions, though these
definitions do not exclude them from their hypotheses. Our
approach consistently handles variations by identifying their
individual impact through causal regions. Within a causal
region, the relative time distance enables us to focus on the
effects of the last variation, excluding any resource switch.
This brings up the problem of the composition of multiple
variations/switches. If none of the variations taken indepen-
dently triggers a TA, we might intuitively suspect that the
composition of the variations does not exhibit a TA. However,

the composition of variations/switches and TAs in general is
an open problem. We illustrate this in the following examples.

1 2 3 4 5 6 7 8 9 10 11 12

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
D IF ID RS1 RS1 RS1 RS1 RS1 RS1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

δα = 1

∆α = 6

δβ = 3

∆β = 4

Fig. 7: Composition of two variations with a clear verdict.

1) Serial Composition: In Fig. 7, we consider the slightly
modified motivating example, where instruction D also has
a variation. Both variations occur one after another in one
trace and moreover, the second variation is time-dependent
on the first. Differently stated, the causal region of the first
variation contains the acquisition event of the second variation.
Rules 2 and 3 of Inst. 5 ensure that the causal region ends
with this event, similarly to the cases when there is no timing
dependency (cf. Sec. VI-A1) or there is a timing gap, since
the remainder of the execution behavior does not depend only
on the first variation. Consequently, we do detect the same
anomaly as previously (cf. Sec. III), triggered by the first
variation, up to the commit of C .
Since both variations are time-dependent and favorable for the
same trace, this situation leads to a serial composition. The
second variation only reduces the global execution time in α, it
does not entail any particular timing effect nor globally prevent
the TA from occurring. We thus could extend the causality
region of the first variation in order to compute the relative
time distance up to the end of the trace and state a global TA.
Similarly, we intuitively suspect that the serial composition of
two TAs remains a global TA, since in this case the second
variation even exacerbates the already observed slowdown.
However, as the subsequent examples show, the analysis of a
composition of TAs is complicated in general. Our definition
provides a starting point to tackle this problem in future work.

1 2 3 4 5 6 7 8 9 10

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF ID FU1 FU1 FU1 COM
D IF ID RS1 RS1 RS1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 FU1 FU1 ROB ROB COM

•

•

δα = 1

δβ = 2

∆α = 2

∆β = 4
Fig. 8: Illustration of cumulative effects of multiple variations.

2) Composition with a Series of TAs: Let us now consider
the example in Fig. 8 in which instructions A and C exhibit
variations and instruction C , in addition, switches its FU The
definition by Reineke et al. [6] does not signal a TA, since the
first variation is favorable for the shorter trace (α).
For our definition, two favorable variations are identified, one
for instruction A in α and a second for instruction C in β. The
former variation alone does not trigger any TA as indicated

in the figure (). The latter triggers TAs by itself (), in
particular for D’s commit (see ∆α and ∆β). This allows us
to state that TAs occur in this example.
The characterization of the global timing behavior is tricky
due to the interaction between the opposing variations. Let
us focus on the favorable variation for α, which clearly does
not trigger TAs in α. Note that we observe an increase in
the relative time distance wrt. the commit of instruction D
(5 cycles in α, vs. 4 in β)—a slowdown. This event is not
in the causal region of the variation, since it is exclusively
delayed by C . If we focus on Trace β, we observe that the
resource switch of C imposes a delay on B due to contention
on FU2. However, the increase of the use of FU1 by A is
crucial in determining the execution order between B and C .
The variation on A thus also plays a role in the appearance
of the TAs visible in β. Due to the independence of these
choices (Inst. 1) causality is excluded though. This shows that
the problem of composition needs to be investigated further—
notably considering realistic processor implementations where
these choices will necessarily expose causal relationships.

1 2 3 4 5 6 7 8 9 10 11 12 13

α
A IF ID FU1 COM
B IF ID RS2 FU2 FU2 FU2 COM
C IF IF IF ID RS2 FU2 FU2 FU2 COM
D IF IF IF ID RS1 RS1 RS1 RS1 FU1 FU1 FU1 COM

β
A IF ID FU1 FU1 FU1 COM
B IF ID RS2 RS2 RS2 RS2 FU2 FU2 FU2 COM
C IF ID FU2 FU2 FU2 ROB ROB ROB COM
D IF ID RS1 RS1 RS1 FU1 FU1 FU1 ROB COM

•

•

δα = 1

∆α = 9
∆α = 5

∆β = 5

δβ = 1
∆β = 7

Fig. 9: Composition triggering mutual TAs in both traces.

3) Composition with mutual TAs: Now consider Fig. 9, a
combination of the motivating example and the traces from
Fig. 5, i.e., a variation in the use of IF by C and D is
added. The global execution times and scheduling effects in
the resulting traces are the same as in the motivating example:
the use of IF by C , though longer, is still too short for its
release to delay any relevant event in the trace. The definition
by Reineke et al. [6] does not signal a TA, since the first
variation is favorable for β, which is also the shorter trace.
Our definition remains consistent, identifying the same TAs
for α as in the motivating example. Moreover, TAs are
identified due to the favorable variation of IF for C in β,
which are consistent with those identified in Sec. VI-A2. The
difference is that the commits of B and C occur earlier in α
here, which explains the TA for C in β. Our definition thus
is able to clearly separate the effects of those mutual TAs.

VII. CONCLUSION & FUTURE WORK

In this work, we proposed a formalization of counter-intuitive
TAs based on the notion of causality. This formalization allows
accurate reasoning about multiple variations and the resource
utilization of instructions through specialized data structures.
It also exposes a new problem, that of the composition of
timing effects. Finally, a detection procedure is implemented
with clear assumptions for an OoO-hardware model, designed
to expose exactly the aforementioned features.

In ongoing work, we intend to improve the model with a more
concrete scheduler. The actual policy for FU assignments will
be relevant when reasoning more deeply about compositions.
Compositions will also require additional information linking
variations to each other, through side-effects on the hardware
state. While short instruction sequences are presented for
illustrative purposes in this paper, we also intend to scale up
our detection procedure with large software benchmarks.

REFERENCES

[1] S. Hahn, M. Jacobs, and J. Reineke, “Enabling compositionality for
multicore timing analysis,” in RTNS, 2016.

[2] M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee, “Formal semantics
of predictable pipelines: a comparative study,” in ASP-DAC, 2020.

[3] B. Binder, M. Asavoae, F. Brandner, B. B. Hedia, and M. Jan, “Formal
modeling and verification for amplification timing anomalies in the
superscalar tricore architecture,” STTT, 2022.

[4] R. Wilhelm, S. Altmeyer, C. Burguière, D. Grund, J. Herter, J. Reineke,
B. Wachter, and S. Wilhelm, “Static timing analysis for hard real-time
systems,” in Proc. VMCAI, 2010, pp. 3–22.

[5] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder, “Principles of timing
anomalies in superscalar processors,” in QSIC, 2005.

[6] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker, “A Definition and Classification of Timing Anomalies,”
in WCET, 2006.

[7] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically
scheduled microprocessors,” in Real-Time Systems Symposium, 1999.

[8] G. Gebhard, “Timing Anomalies Reloaded,” in WCET, 2010.
[9] F. Cassez, R. R. Hansen, and M. C. Olesen, “What is a Timing

Anomaly?” in WCET, 2012.
[10] I. Wenzel, R. Kirner, B. Rieder, and P. P. Puschner, “Measurement-based

timing analysis,” in ISoLA, 2008, pp. 430–444.
[11] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic

hard real-time system,” in RTSS, 2002, pp. 279–288.
[12] R. Kirner, A. Kadlec, and P. Puschner, “Worst-case execution time

analysis for processors showing timing anomalies,” TU Wien, Tech.
Rep., 2009.

[13] R. Kirner, A. Kadlec, and P. Puschner, “Precise worst-case execution
time analysis for processors with timing anomalies,” in ECRTS, 07 2009.

[14] J. Eisinger, I. Polian, B. Becker, S. Thesing, R. Wilhelm, and A. Met-
zner, “Automatic identification of timing anomalies for cycle-accurate
worst-case execution time analysis,” in DDECS, 2006.

[15] B. Binder, M. Asavoae, B. Ben Hedia, F. Brandner, and M. Jan, “Is
this still normal? Putting definitions of timing anomalies to the test,” in
RTCSA, 2021.

[16] J. Reineke and R. Sen, “Sound and efficient wcet analysis in the presence
of timing anomalies,” in WCET, 2009.

[17] M. Asavoae, B. B. Hedia, and M. Jan, “Formal Executable Models for
Automatic Detection of Timing Anomalies,” in WCET, 2018.

[18] M. Schoeberl, P. Schleuniger, W. Puffitsch, F. Brandner, C. Probst,
S. Karlsson, and T. Thorn, “Towards a time-predictable dual-issue
microprocessor: The patmos approach,” in PPES, 2011.

[19] S. Hahn and J. Reineke, “Design and analysis of sic: A provably timing-
predictable pipelined processor core,” in RTSS, 2018.

[20] A. Gruin, T. Carle, H. Cassé, and C. Rochange, “Speculative execution
and timing predictability in an open source RISC-V core,” in RTSS,
2021.

[21] M. Platzer and P. Puschner, “Vicuna: A Timing-Predictable RISC-V
Vector Coprocessor for Scalable Parallel Computation,” in ECRTS, 2021.

[22] X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order proces-
sors for WCET analysis,” Real-Time Syst., vol. 34, pp. 195–227, 2006.

[23] Z. Bai, H. Cassé, M. De Michiel, T. Carle, and C. Rochange, “Improv-
ing the Performance of WCET Analysis in the Presence of Variable
Latencies,” in LCTES, 2020, pp. 119–130.

[24] X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order proces-
sors for wcet analysis,” Real-Time Systems, 2006.

[25] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of R&D, vol. 11, no. 1, pp. 25–33, 1967.

[26] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

	Introduction
	Related Work
	Motivation
	Formal Definition of Timing Anomalies
	Execution Model for Timing Anomalies
	Event Time-Dependence Graph (ETDG)
	Relating Events between Traces
	Causality Graph (CG)
	Counter-Intuitive Timing Anomalies
	Application to the Motivating Example (cf. Sec. III)

	Correctness Arguments
	Prerequisites
	Formal Definition of Timing Anomalies

	Results from the TA-Detection Procedure
	Simple Cases
	Unrelated Variations
	TA with a Limited Impact
	Identification of TA Patterns

	General Scenarios
	Serial Composition
	Composition with a Series of TAs
	Composition with mutual TAs

	Conclusion & Future Work
	References

