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Abstract—A smart home system is realized by implementing
various services. However, the design and deployment of smart
home services are challenging due to their complexity and
the large number of connected objects. Existing approaches
to the smart home system to create services either require
complex input from the inhabitant or can only work if the
inhabitant specifies regulation solutions rather than targets.
In addition, smart home services may conflict if they access
the same actuators. Learning methods to dynamically generate
smart home services are promising ways to solve the above
problems. In this paper, depending on the ability to consider the
composition of services and their mutual influence, we propose
several reinforcement learning-based architectures for a smart
home system to dynamically generate services. The expected
advantages are, first, that the smart home services can propose
the states of the actuators by considering the target values of
the controllable environment states given by the inhabitant or
by interacting with the inhabitant in a simple and natural way;
and second, that there is no conflict between these propositions.
We compare the performance of the proposed architectures
using several simulated smart home environments with different
services and select the architectures with the best performance
concerning our predefined metrics.

Index Terms—service orientation, reinforcement learning,
multi-agent, smart home

I. INTRODUCTION

Implementations of various services contribute to the real-
ization of a smart home system. Depending on the problem
and the corresponding proposed solutions, there are different
definitions of services. For example, in [1], each device is
considered as a service. In [2], a service is implicitly expressed
as an action that can be performed if certain conditions are
met. In [3], a service is described as a target of functions that
are triggered under certain conditions. In our work, we define
that each smart home service manages a controllable envi-
ronment state by instructing actuators to perform appropriate
actions with respect to environment state values detected by
the corresponding sensors.

Many approaches have been proposed for developing smart
home systems by creating various services. Most of these ap-
proaches belong to the knowledge-based approaches. However,
despite the capability to provide understandable services, the
knowledge-based approaches usually require manual inputs

from the inhabitant. And the inputs become complicated when
the desired services are complex or there are many connected
objects. In addition, this kind of approaches cannot create
services if the inhabitant only specifies the target value for
the controllable environment state, but not the regulation
solution. And conflicts may arise when services request the
same actuators to perform different actions. Furthermore, it is
important to consider the inhabitant’s reactions when design-
ing a user-friendly smart home system according to [4]. With
the existing work on transforming services created by learning
methods into understandable ones [5], learning methods for
dynamically generating smart home services are promising
solutions to overcome the above problems and create a user-
friendly smart home. In this paper, we propose several learning
method-based architectures with a collective name SHOMA
(Smart HOme-based Multi-services Architecture). Each ser-
vice in these architectures is modeled based on reinforcement
learning (RL) [6]. Since the basic idea of RL is that an artificial
agent learns the system’s behavior patterns by interacting with
the environment, it can be used to dynamically generate smart
home services considering the inhabitant’s reactions to the
proposed actuators’ actions.

In the rest of the paper, Section II presents existing work
on the development of smart home systems through the
creation of various services. Section III introduces how RL
is used to dynamically generate a single smart home service.
Section IV presents the proposed architectures to dynamically
generate multiple smart home services. Section V describes the
simulated environments used to evaluate the proposed archi-
tectures. Section VI analyzes the results of the experiments and
selects the architectures with the best performance. Section VII
summarizes the work and provides interesting perspectives.

II. RELATED WORK

Many applications try to implement a smart home system by
creating multiple services. For example, in [7], the proposed
smart home system contains low and high levels. The low
level includes the execution of various devices, while the
high level includes system modeling, rule transformation, and
system reasoning. System modeling uses the semantic web to
model the environment and ECA (Event-Condition-Action)-
based descriptions to simulate the operation of services. Rule
transformation is about converting ECA into executable se-978-1-5386-5541-2/18/$31.00 ©2018 IEEE



mantic rules, e.g., SWRL (Semantic Web Rule Language).
And reasoning is about deriving new facts based on SWRL.
These new facts are converted into commands and sent to the
devices for execution. However, in this method, the inhabitant
has to manually design rules and there is no guarantee that
the services are conflict-free. [8] proposes an application
called RHDL (Recognition Habit of Daily Living) to generate
the habitual smart home service. RHDL uses a clustering
algorithm to learn the inhabitant’s habitual behavior which is
then converted into rules. These rules are used together with
the knowledge representation to derive new facts, and the new
facts are translated into control commands for devices that
change the environment state values. However, RHDL cannot
consider the inhabitant’s (dis)satisfaction with a proposed
smart home service. [9] proposes a platform called Synapse
using four parts to create services. First, Synapse collects
information from the real world through the sensor event
collection part and converts the information into useful con-
texts. Then, the service control part controls various devices to
provide services. Next, the Synapse core part uses the HMM
(Hiden Markov Model) to model the relationship between
services and events collected by sensors. Finally, the services
recommended by the HMM are listed in the last part of a
user interface where users can browse and launch the available
services and update the recommended services. However, this
work also does not consider the inhabitant’s reactions to the
recommended services.

In this work, we propose RL-based SHOMA architectures
for a smart home system to dynamically generate services.
This system can reduce the manual intervention of the inhab-
itant, interact more naturally with the inhabitant, and ensure
that there are no conflicts between the generated services.

III. DYNAMIC GENERATION OF ONE SMART HOME SERVICE

Before presenting the SHOMA architectures for modeling a
smart home system to dynamically generate multiple services,
we first show how a single smart home service can be
dynamically generated based on RL.

According to the proposed service definition, we know
that a service is implemented by proposing actuators’ actions
according to the observable environment states detected by
the sensors. Moreover, to allow a service to interact with
the inhabitant during its implementation, it should be able to
consider the inhabitant’s (dis)satisfaction or the target value
specified by the inhabitant. Therefore, RL is used to model a
single smart home service that can be dynamically generated
by the dynamic propositions of the actuators’ actions. The
corresponding principle is shown in Fig.1.

A smart home service z contains an interpreter, an RL
algorithm, and a policy. An interpreter is used, first, to select
states S from observable environment states O, where S is
used as input to the RL algorithm; second, to generate a
reward r using a reward function that considers the input
S and the inhabitant’s (dis)satisfaction. The RL algorithm
proposes action quality values for each possible action of
each actuator. In our study, Q-learning [10] is used. The

Fig. 1. Leverage RL to dynamically generate a single smart home service

policy is used to select the action that each actuator will
perform. The process is as follows: After the sensors detect the
observable environment states O, the interpreter selects the RL
algorithm’s input states S from O. The action quality values
Q for each action of each actuator are then proposed by the
RL algorithm, and the policy uses a function or rule, e.g., the
ϵ-Greedy function, to select the action for each actuator, where
A is the set of selected actions for all actuators. The execution
of the actuators contributes to the updating of the controllable
environment state within O. In this situation, the inhabitant has
two options to provide his input: He can have the actuators
perform different actions A′ to achieve the desired controllable
environment state. Changing the actions of the actuators from
A to A′ contributes to the computation of the reward by the
interpreter. Or, he can directly specify the target value C of the
controllable environment state, and the interpreter can compute
the reward by measuring the difference between the updated
controllable environment state and C. Then, based on the input
of the inhabitant and the updated O, the interpreter selects the
RL algorithm’s input states S from O and calculates the reward
r. Both S with the original and updated values and r are used
to train the RL algorithm. The updated RL algorithm is then
used to repeat the above process.

IV. PROPOSED ARCHITECTURES FOR DYNAMIC
GENERATION OF MULTIPLE SMART HOME SERVICES

To better illustrate the principle of SHOMA architectures,
we first present a smart home system with three services. The
process of creating a smart home system with more or less
than three services using SHOMA architectures is the same as
the process with three services presented in this section. We
refer to the three services as z1, z2, and z3. They belong to
different types of services and can represent any specific smart
home services. The actuators associated with each service are:
(1) {d1, d2, d3} for z1; (2) {d2, d4, d5} for z2; (3) {d2, d3, d6}
for z3, where d2 is shared by the three services and d3 is
shared by z1 and z3. In addition, the environment states that
each service considers are: (1) Oz1 = {oz1,1, oz1,2, · · · }
for z1; (2) Oz2 = {oz2,1, oz2,2, · · · } for z2;
(3) Oz3 = {oz3,1, oz3,2, · · · } for z3. The environment
states converted by the interpreter and used as input to the
RL algorithm in each service are expressed as Sz1 , Sz2 ,
and Sz3 . The corresponding target or preferred values for
these inhabitant-specified controllable environment states are



Fig. 2. Classification of SHOMA architectures

denoted as Cz1 , Cz2 , and Cz3 , and C = Cz1 ∪ Cz2 ∪ Cz3 .
Assuming that z1, z2, and z3 are individually implemented
by respecting the principle in Fig.1, we have the following
modules: interpreter RFz1 , rl algorithm RLz1 and policy POz1

for z1; interpreter RFz2 , RL algorithm RLz2 and policy POz2

for z2. The same is true for z3.
Using the three services and their associated modules in

different ways, we define eight architectures in SHOMA based
on the concept of multi-agent RL (MARL) [11] to model a
smart home system to dynamically generate services: One
Learning System-based Architecture (OLSbA), Qmix-based
Architecture (QmixbA), Remove Shared Actuators-based Ar-
chitecture (RSAbA), Common Controller-based Architecture
(CCbA), Priority-based Architecture (PbA), Equal Priority-
based Architecture (EPbA), Total Reward-based Architecture
(TRbA), and Context Sharing-based Architecture (CSbA). As
shown in Fig.2, these architectures can be divided into two
types: “merged service-based architectures” and “composite
service-based architectures”. The difference between them
depends on whether only a single service is used to model
the entire smart home system. For “composite service-based
architectures”, the architectures can be further divided into
three subtypes: “indirect mutual influence”, “direct mutual
influence” and “without mutual influence”. The difference
between them lies in how the shared actuators’ actions are
determined. For “indirect mutual influence” and “direct mutual
influence”, each service proposes actions for the shared actua-
tors under the indirect or direct influence of other services. In
“without mutual influence”, the actions of the shared actuators
are determined by one service or controller, thus eliminating
the influence between services.

A. Merged service-based architectures

The first architecture category is the merged service-based
architecture, where all services of the smart home system are
merged as a single service to regulate multiple controllable
environment states. Two SHOMA architectures belong to this
category: OLSbA and QmixbA.

1) One Learning System based Architecture: The OLSbA
shown in Fig.3 models the entire smart home system as
a single service z. In the initial time step, the interpreters
RFz1 ,RFz2 and RFz3 transform the observable environment
states Oz1 , Oz2 and Oz3 into states Sz1 , Sz2 and Sz3 , which are
used as input to the RL algorithm. And the algorithm generates
action quality values for all possible actions of all available

Fig. 3. Structure of OLSbA

actuators. Then the policy POz uses a function to decide the
action for each actuator, e.g., the greedy policy selects the
action with the highest action quality value for the actuator.
The controllable environment states update their values as the
actuators perform the selected actions. Based on the updated
controllable environment states and the inhabitant’s target
value C for the controllable environment state or actions A′,
RFz1 ,RFz2 and RFz3 calculate the reward rz1 , rz2 and rz3 .
The total reward rz = rz1 + rz2 + rz3 is used together with
the environment states before and after the update to train the
RL algorithm in z. Then, the updated RL algorithm or the
updated service z is used to repeat the above process.

2) Qmix based Architecture: We use the principle of [12]
to implement the QmixbA shown in Fig.4. To determine
the actions of the actuators, QmixbA introduces a learning
system called Qmix that takes the action quality value outputs
Qz1 , Qz2 , Qz3 from the RL algorithm RLz1 ,RLz2 and RLz3
as inputs and a hyper neural network [13] to determine the
values of its parameters. Moreover, the total reward rz =
rz1 + rz2 + rz3 is used to determine the learning direction of
Qmix and the hyper neural network. Finally, Qmix generates
the action quality values for the possible actions of each
actuator and a policy is used to select the final action that
each actuator will perform.

B. Composite service-based architectures

In composite service-based architectures, each controllable
environment state is controlled by a service. Since the im-
plementation of a service is realized through the execution
of one or more actuators, certain actuators may be shared by
multiple services, leading to potential conflicts. Based on the
mechanisms used to decide the states of these shared actuators,
“composite service-based architectures” can be further divided
into three subcategories: “without mutual influence”, “indirect
mutual influence”, and “direct mutual influence”.

1) Without mutual influence: “without mutual influence”
refers to architectures where shared actuators are controlled
by only one service or controller, which involves two archi-
tectures: RSAbA, and CCbA.



Fig. 4. Structure of QmixbA

Fig. 5. Structure of RSAbA

Fig. 6. Structure of CCbA

a) Remove Shared Actuators based Architecture: In
RSAbA, only one shared service is maintained to determine
the states of the shared actuators. The service that is main-
tained is the one whose corresponding dynamic characteristic
about the controllable environment state is the simplest. In
the given example with multiple services, we assume that the
order of complexity of each service is: complexity(z1) <
complexity(z2) < complexity(z3), therefore, d2 and d3 are
controlled by z1. Thus, RSAbA can be expressed in Fig.5.

b) Common Controller based Architecture: CCbA de-
fines a common controller modeled by an RL algorithm for
each shared actuator. As shown in Fig.6, a common controller
CCd2

is defined for d2 since d2 is shared by z1, z2, and
z3. CCd2

takes the inputs of the RL algorithms of the
shared services Sz = Sz1 ∪ Sz2 ∪ Sz3 and the total reward
rd2

= rz1 + rz2 + rz3 as its input, and proposes the action for
the actuator d2. And for the actuator d3, a common controller
CCd3 is defined since it is shared by z1 and z3. It takes
the inputs of the RL algorithm of the corresponding shared
services Sz1,z3 = Sz1∪Sz3 and the total reward rd3

= rz1+rz3
as input, and proposes the action for the actuator d3.

2) Indirect mutual influence: The category “indirect mutual
influence” includes architectures where each service proposes
states of the shared actuators under the indirect influence of
other services. The final states of the shared actuators are
determined by considering the propositions of all services.
They can influence the states of the shared actuators proposed
by each service in the next time step. Therefore, the final states
of these shared actuators can be considered as the indirect
influence of other services on each service. PbA and EPbA
are two architectures of this type.

a) Priority based Architecture: In PbA, a priority cal-
culator modeled by an RL algorithm is defined. Each pri-
ority calculator proposes priorities for services that share
an actuator. Fig.7 in yellow shows how z1, z2 and z3 can
be modeled with PbA: Each service receives its associated
observable environment states, which contain the target value
of the controllable environment states or action changes of
the actuators made by the inhabitant, as input. Then, for non-
shared actuators, each service directly proposes the actions
that these actuators will perform. For each of the shared
actuators, the action quality values of all possible actions
proposed by the shared services are multiplied by the priorities
of the corresponding shared services to obtain the weighted
action quality values. These priorities are proposed by the
corresponding priority calculator. The action with the highest
quality is then selected for this shared actuator. For example,
d2 is shared by z1, z2 and z3. Each service z uses an RL
algorithm to propose action quality values Qz1

d2
, Qz2

d2
, and Qz3

d2

Fig. 7. Structures of PbA (in yellow) and EPbA (in red)



for d2. A priority calculator PCd2
is defined for d2. It takes

the inputs of the ensemble RL algorithm Sz = Sz1 ∪Sz2 ∪Sz3

as input and proposes three priorities pd2
z1 , pd2

z2 , pd2
z3 whose sum

is one. A policy based on the value function addition principle
(abbreviated as VFAP in this paper) introduced in [14] is used
to compute the final action quality value Qd2

for d2:

Qd2 = Qz1
d2

· pd2z1 +Qz2
d2

· pd2z2 +Qz3
d2

· pd2z3 , (1)

and then selects the action with the highest action quality value
in Qd2

as the action that d2 will perform.
b) Equal Priority based Architecture: The principle of

EPbA is shown in red in Fig.7. Instead of computing the
priorities of the services sharing the same actuators, EPbA
directly summarizes the action quality values of the shared
actuators and selects the actions with the highest action quality
values by following the VFAP policy. We can also say that all
shared services have the same priority with the value of 1 to
associate EPbA with PbA. Therefore, the example of using
the VFAP policy to calculate the final action quality values
for the shared actuator d2 is:

Qd2 = Qz1,d2 +Qz2,d2 +Qz3,d2 . (2)

Then, the VFAP policy selects the action with the highest
action quality value in Qd2 as the one that d2 will perform.

3) Direct mutual influence: The direct mutual influence
type includes architectures where each service proposes the
actions of shared actuators under the direct influence of other
services. For example, each service that shares the same
actuators considers the total reward which results from adding
the rewards of these services. The total reward then directly
influences the proposition that each service makes for the state
of the shared actuator. Therefore, for each service sharing the
same actuators, the total reward can be considered as the direct
influence of the other services for each service. TRbA and
CSbA are two architectures of this type of SHOMA.

a) Total Reward based Architecture: TRbA, as shown in
Fig.8, is a variant of EPbA. Unlike EPbA, TRbA adds the total
rewards of services sharing the same actuator to each service’s

Fig. 8. Structure of TRbA

Fig. 9. Structure of CSbA

RL algorithm as an additional reward for determining the states
of that shared actuator. For example, d3 is shared by z1 and
z3. Therefore, the total reward rd3

= rz1 + rz3 is used as an
additional reward and sent to RLz1 and RLz3 . By introducing
the total rewards, the states of the shared actuators can be
determined by ensuring that all shared services receive high
rewards simultaneously.

b) Context Sharing based Architecture: In CSbA, each
service takes as input its associated environment states, its
hidden states, and the hidden states of other services that use
the same actuators. Each hidden state contains past information
about the associated service within a short period of time. As
shown in Fig.9, service z1 considers its environment states
Oz1 , its hidden states Hz1 , and the hidden states Hz2 and Hz3

of z2 and z3; while z2 receives its environment state Oz2 , its
hidden state Hz2 , and the hidden states Hz1 and Hz3 of z1 and
z3 as input. The same principle applies to the z3. In addition,
as in TRbA, the total reward is used. For each service, the
hidden states and total rewards are used as a direct influence of
other shared services that share the same actuator with it. The
states of the non shared actuators depend only on the output of
the action quality values of the associated services. The states
of the shared actuators depend on the action quality values
generated by a MultiLayer Perceptron (MLP)-based policy that
uses the action quality outputs of the shared services as input.

V. COMPARATIVE EXPERIMENT

To compare the performance of SHOMA architectures for
dynamic generation of smart home services, we conduct sev-
eral simulated experiments based on three simulated services:
a light service, a temperature service, and an air quality
service. Before the experiments, we describe how the environ-
ments are simulated to determine the values of the controllable
environment states that the corresponding services attempt to
regulate. When simulating these services, we disregard the
low impact actions. For example, we do not consider the heat
generated by turning on the lamp.



A. Simulated environment

The involved variables in the environment are as follows:
(1) sus: state of the inhabitant. (2) sle: outdoor light in-
tensity. (3) ste: outdoor temperature. (4) sae: outdoor air
quality. (5) slr: indoor light intensity. (6) str: indoor tem-
perature. (7) sar: indoor air quality. (8) slp: state of the
lamp. (9) slightcur , stemp

cur , saircur, scur: the curtain state proposed
by light service, temperature service and air quality service,
and the final curtain state. (10) sac: state of the air con-
ditioner. (11) stemp

win , sairwin, swin: the window state proposed
by the temperature service and the air quality service, and
the final window state. (12) sap: state of the air purifier.
(13) stemp

wct , sairwct: working duration for windows and curtains
proposed by the temperature service and the air quality ser-
vice, respectively. (14) sact: air conditioner working duration.
(15) sapt: air purifier working duration. And slr, str and sar
are the controllable environment states that light, temperature
and air quality services attempt to adjust.

1) Light service: The learning system associated with the
light service takes sus and sle as input and slp and slightcur as
output. Among them, sus,t is randomly generated by following
the uniform distribution: sus,t = Uint(0, nus), where nus is
the total number of states of the inhabitant and Uint(0, nus) is
a function that randomly generates an integer between 0 inclu-
sive and nus exclusive by respecting the uniform distribution.
sle of one day is simulated with a Gaussian distribution [15],
[16]: sle,t = N (amplititude = 600,mean = 12, stddev =
3) + 5 · U(0, 1), where N denotes the Gaussian distribution.
Also, some noise is added to sle,t, which is simulated using a
uniform distribution with a maximum value of 5. To simplify
the experiment, sle,t is generated every 5 minutes every
day. slp,t can have multiple levels represented by integers,
with level 0 indicating that the lamp is off and other levels
indicating that the lamp is on. The light intensity that slp,t
can provide is β · slp,t, where β = 100 is the light intensity
that one level can provide. slightcur,t has three possible values: 0,
1/2,1 representing that the curtain is closed, half open, and
fully open, respectively. Suppose slp,t, s

light
cur,t and sle,t at time

step t are known, we can obtain slr,t as follows:

slr,t = β × slp,t + sle,t × slightcur,t. (3)

2) Temperature service: To adjust str, the temperature
service learns to propose the states sac, s

temp
win , stemp

cur and the
corresponding working duration sact, s

temp
wct by considering

sus and ste. Among these variables, sus,t is simulated in
the same way as in the light service. ste,t is simulated
with trigonometric functions [17] and expressed as: ste,t =
A · cos(B · (x−D)) +C where A = −7, B = π/12, C = 19
and D = 4 and x is the corresponding time with unit hour
at time step t; the relation between x and t is: x = t · 5/60
with the time interval between t and t + 1 being 5 minutes.
The possible values for the temperature service’s propositions
are as follows: (1) sac,t ∈ {0,−1, 1} with 0 for off, 1 for
heating and −1 for cooling; (2) stemp

cur,t has the same range
as slightcur,t; (3) stemp

win,t ∈ {0, 1} with 0 for off, and 1 for open;

(4) sact,t, s
temp
wct,t ∈ {i/10 for i ∈ {0, 50}}.

To calculate str knowing the propositions, we first assume
that the watt-hours (W · h) of the air conditioner is ϕac =
20 · 735; the specific heat of the air is constant and is Cp =
1.005; the air density is constant on average and has the value
ρ = 1.205(kg/m3); and the room under study has the volume
V = 60(m3). Thus, the energy produced after the operation
of the air conditioner for the duration of ∆sact,t(h) is:

Qac,t = ϕac ·∆sact,t (4)

Assuming that the resulting indoor temperature at time t + 1
is str,t+1, the total energy that should be provided to maintain
str,t+1 is:

Qheat,t = Cp · ρ · V · |str,t+1 − str,t| (5)

Besides, there is always the air circulation between the indoor
and outdoor through the window and curtain, thus, the resulted
heat loss is:

Qheat
loss,t = Lt · stemp

wct,t · ρ · Cp (6)

where Lt(m
3/s) is the air flow rate for indoor and outdoor

air circulation and can be calculated as:

Lt = dh · dl ·

√
2 · g · (ρet − ρrt ) · h

λ · dw · ρrt/dl +
∑

ς · ρrt
(7)

where dh = 2(m), dl = 2(m), and dw = 0.2(m) are
the height, length, and width of the window, respectively;
g = 9.81(m/s2) is the acceleration rate due to the gravity;
λ = 0.019 is the Darcy-Weisbach friction coefficient;

∑
ς

is the summarized minor loss coefficient; and ρet and ρrt are
the indoor and outdoor air densities as a function of the
corresponding air temperature:

ρe, r
t = 1.293(kg/m3) · 273(K)/(273(K) + ste, tr

t (◦C)) (8)

As a result, we have the relation:

Qheat,t = Qac,t +Qheat
loss,t (9)

According to equations of (4), (5) and (6), we can obtain the
resulted indoor temperature:

str,t+1 =
Qac,t +Qheat

loss,t

Cp · ρ · V
± str,t (10)

where “+” represents the air conditioner is heating, and “-”
denotes it is cooling.

3) Air quality service: The air quality service controls
indoor air quality by adjusting the sap, swin, scur of the
actuators and their working duration sapt and sairwct with the
consideration of sus and sae. The detailed descriptions for
simulating the above states are as follows: sus,t is sim-
ulated in the same way as in the light and temperature
service. To simulate sae,t, we first impute the atmospheric
carbon dioxide dataset from quasi-continuous measurements
on American Samoa [18]. Imputation allows us to replace
the anomalous data with surrogate data. In this study, the
surrogate data that we use is the average of the corresponding



data. Then, an interpolation is performed to obtain a data
set sampled every 5 minutes instead of hourly about sae,t.
The states proposed for the actuators are adjusted by the
DQN. The possible values for the actuators involved are:
(1) sap,t ∈ {0, 60, 170, 280, 390, 500} with 0 being turning off,
and other numbers representing the values of the cubic meter
air flow rate (m3/h or CMH) of the air purifier; (2) saircur,t

has the same range as slightcur,t and stemp
cur,t ; (3) sairwin,t has the same

range as stemp
win,t; (4) sapt,t, sairwct,t ∈ {i/10 for i ∈ {0, 50}}.

The controllable indoor air quality is influenced by the
outdoor air quality and the air purifier and can be calculated
as follows: [19]:

sar,t+1 = sar,t · (1−
sap,t · sapt,t

V
− Lt · swct,t

V
− nus,tbus,t

V

· ∆xus

V
) + sae,t ·

Lt · swct,t

V
+ sexha,t ·

nus,t · bus,t ·∆xus

V
(11)

where V and Lt represent the same value as in the temperature
service environment setting; sexha,t = 38000(ppm) is a
constant representing the CO2 content in the exhaled air; nus,t

is the number of inhabitants in the room. In this study, nus,t is
constant and has the value 1; bus,t is the CO2 breathing rate of
the inhabitant, whose value depends on the inhabitant’s activity
and can be found in Table 3 and Table 4 in [20]. In this paper,
we assume that the inhabitant is between 21 and 30 years old,
so the physical activity level M corresponding to sus is M =
{0, 1.4, 4, 1}. The CO2 breathing rate bus,t associated with sus
is bus,t ∈ {0, 11.004(mg/s), 31.44(mg/s), 7.6635(mg/s)}.
∆xus is the inhabitant’s breathing time with a constant value
5 minutes between two time steps.

VI. EXPERIMENT RESULTS

In this section, to evaluate the SHOMA architectures and
select the architectures with the best performance, we first
compare all the architectures with the temperature and air
quality services, with and without energy saving requirements
in the simulated inhabitant’s habitual behaviors. From this
comparison, we select the architectures with better perfor-
mance. Then, we evaluate the selected architectures with
three services with and without energy saving requirements
to determine the best performing architectures.

Following metrics are defined to evaluate the performance
of the architectures: (1) Accuracy of each service to propose
the actions of the actuators correctly. (2) Accuracy of all
services to propose the actions of the actuators simultaneously
correctly. (3) Average of all accuracy, which denotes the
general performance of an architecture. The above accuracy
indicates the number of samples in which each service or
all services correctly propose actuators’ actions so that the
updated controllable environment states match the inhabitant’s
target values, as a percentage of the total samples.

A. Evaluation results with two services

Fig.10 shows the result of the predefined metrics for the
experiment without energy saving requirement. It can be seen
that EPbA generally performs better on all four metrics: the

Fig. 10. Architecture evaluations without constraint and with two services

Fig. 11. Architecture evaluations with constraint and two services

Fig. 12. Architecture evaluations without constraint and with three services

Fig. 13. Architecture evaluations with constraint and three services

accuracy of the temperature service, the air quality service, the
two services that correctly suggest the state of the actuators
simultaneously, and the general performance. RSAbA and
CCbA perform best after EPbA. PbA is fourth, followed by
TRbA. OLSbA, QmixbA, and CSbA perform worst.

We then apply these architectures to the same test dataset
but with the saving energy constraint. The result is shown in
Fig.11. The result is almost the same as in Fig.10, except that
the performance of PbA drops sharply. With the exception
of OLSbA and QmixbA, the other architectures also show
slight performance degradation, but not as severe as PbA. To
remove the doubt that adding the constraint in the reward
function is not a good way to realize energy saving, we select
architectures: RSAbA, CCbA, PbA, EPbA, and TRbA, with
general performance greater than or close to 50%, based on
the result in Fig.10 for three service-based experiments.

B. Evaluation results with three services

Fig.12 shows the results without energy saving requirement.
Compared to Fig.10, the performance of RSAbA and PbA
improves, which means that introducing the light service helps



to improve the learning performance of the temperature and air
quality services. For RSAbA, this can be because introducing
the light service reduces the number of actuators controlled
by the temperature and air quality services. For PbA, intro-
ducing the light service may provide more information to
decide which service should have higher priority. For EPbA,
the performance in the two figures is almost the same, so
introducing the light service has no significant impact. The
performance of CCbA and TRbA is still not as good as
the other three architectures: The performance of CCbA has
slightly decreased. The performance of TRbA has dropped
significantly, so introducing the light service makes services
with TRbA architecture harder to learn the system patterns.

From the result in Fig.13, EPbA and RSAbA always have
the best performance that is hardly affected. This shows that
introducing energy saving constraint and expressing it as the
inhabitant’s habitual behaviors work well for them. However,
the performance of PbA decreased significantly compared with
Fig.12, which is the same phenomenon as that in Fig.11.
Therefore, expressing the energy saving constraint in the in-
habitant’s habitual behavior is not a good method for PbA, and
perhaps other methods should be used to describe the energy
saving. The performance of CCbA and TRbA has decreased,
which may be because introducing more services along with
the constraint makes the environments more complex. As a
result, learning the characteristics of the environment using
the two architectures becomes more complicated.

The above four experiments show that OLSbA and QmixbA
perform worse than most composite service-based architec-
tures, which proves the advantage of composite service-based
architectures. Moreover, the comparison of the composite
service-based architectures shows that EPbA and RSAbA have
better performance than the others, and thus are selected for
our future research on the smart home system. Even though
only experiments with two and three services are discussed in
this paper, these experiments considered all possible problems
that may occur when more than three services work together.
Therefore, our results are most likely applicable for systems
with more than three services, even though these systems may
need more time to be well trained.

VII. CONCLUSION

Developing a smart home system to dynamically generate
services can be very complex. Existing solutions for building
such a smart home system either require complex manual
input from the inhabitant, require the inhabitant to specify
regulation solutions, or do not consider the potential conflicts
when generated services use the same actuators.

In this paper, we propose RL-based SHOMA architectures
for a smart home system to dynamically generate services
considering the inhabitant’s (dis)satisfaction. We conduct sev-
eral simulated experiments with and without the energy saving
requirements specified in the inhabitant’s habitual behaviors.
The results show the advantage of composite service-based
architectures by defining multiple RL-based services and con-
tribute to selecting the architectures with the best performance.

In perspective, it is important to evaluate the selected
architectures in the real environment. Moreover, it is promis-
ing to integrate the knowledge-based approaches into these
architectures to make the generated services understandable.
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