
HAL Id: hal-03860618
https://telecom-paris.hal.science/hal-03860618

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Between Principle and Pragmatism: Reflections on
Prototyping Computational Media with Webstrates

Marcel Borowski, Bjarke V Fog, Carla F Griggio, James R Eagan, Clemens N
Klokmose

To cite this version:
Marcel Borowski, Bjarke V Fog, Carla F Griggio, James R Eagan, Clemens N Klokmose. Between
Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates. ACM
Transactions on Computer-Human Interaction, 2022, �10.1145/3569895�. �hal-03860618�

https://telecom-paris.hal.science/hal-03860618
https://hal.archives-ouvertes.fr

Between Principle and Pragmatism: Reflections on Prototyping
Computational Media with Webstrates

MARCEL BOROWSKI, Aarhus University, Denmark
BJARKE V. FOG, Aarhus University, Denmark
CARLA F. GRIGGIO, Aarhus University, Denmark
JAMES R. EAGAN, Télécom Paris, Institut Polytechnique de Paris, France
CLEMENS N. KLOKMOSE, Aarhus University, Denmark

Computational media describes a vision of software, which, in contrast to application-centric software, is (1) malleable, so users
can modify existing functionality, (2) computable, so users can run custom code, (3) distributable, so users can open documents
across different devices, and (4) shareable, so users can easily share and collaborate on documents. Over the last ten years, the
Webstrates and Codestrates projects aimed to realize this vision of computational media. Webstrates is a server application
that synchronizes the DOM of websites. Codestrates builds on top of Webstrates and adds an authoring environment, which
blurs the use and development of applications. Grounded in a chronology of the development of Webstrates and Codestrates,
we present eight tensions that we needed to balance during their development. We use these tensions as an analytical lens
in three case studies and a game challenge in which participants created games using Codestrates. We discuss the results
of the game challenge based on these tensions and present key takeaways for six of them. Finally, we present six lessons
learned from our endeavor to realize the vision of computational media, demonstrating the balancing act of weighing the
vision against the pragmatics of implementing a working system.

CCS Concepts: • Human-centered computing → Interactive systems and tools; Empirical studies in HCI ; Web-based
interaction; Collaborative interaction.

Additional Key Words and Phrases: computational media, malleable software, Webstrates, Codestrates, dynamic media,
reconstructible media

ACM Reference Format:
Marcel Borowski, Bjarke V. Fog, Carla F. Griggio, James R. Eagan, and Clemens N. Klokmose. 2022. Between Principle and
Pragmatism: Reflections on Prototyping Computational Media with Webstrates. ACM Trans. Comput.-Hum. Interact. Author
Version, To Appear (October 2022), 50 pages. https://doi.org/10.1145/3569895

1 INTRODUCTION
Software has today become synonymous with applications: bundles of functionality built for a specific domain
and with a clear distinction between who the developer is and who the user is. Software as computational media
is a vision of an alternative model to the application-centric one. It blurs the distinction between who is the
developer and who is the user of software and the boundaries between application domains [15]. With traditional
application-based software, we may use one tool to write notes, another tool to process data, a third tool to create
a presentation, and a fourth to communicate with our colleagues. With software as computational media these

Authors’ addresses: Marcel Borowski, marcel.borowski@cs.au.dk, Aarhus University, Department of Computer Science, Aarhus, 8200,
Denmark; Bjarke V. Fog, bfog@cc.au.dk, Aarhus University, Department of Digital Design and Information Studies, Aarhus, 8200, Denmark;
Carla F. Griggio, carla@cs.au.dk, Aarhus University, Department of Computer Science, Aarhus, 8200, Denmark; James R. Eagan, james.eagan@
telecom-paris.fr, LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120, Palaiseau, France; Clemens N. Klokmose, clemens@cs.au.dk,
Aarhus University, Department of Computer Science, Aarhus, 8200, Denmark.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
published in ACM Transactions on Computer-Human Interaction, https://doi.org/10.1145/3569895.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://doi.org/10.1145/3569895
https://doi.org/10.1145/3569895

2 • Borowski, Fog, Griggio, Eagan, and Klokmose

Fig. 1. Applications (left) versus computational media (right). diSessa [14] describes that “[m]onolithic, nonmodifiable
applications have gaps and overlaps” (left) and, in contrast, a “computational medium allows seeding with small but
extendible tools (black dots), but these tools can be organically enriched, altered, and combined, as successive layers here
show” (right) (figure adapted from [14] and reprinted from [50] with authors’ permission).

four activities can happen in the same medium or in different depending on how the user combines their tools.
Figure 1 shows how diSessa illustrates the distinction between software as applications and as computational
media. diSessa [14] regards functionality in applications as “nonmodifiable” while computational media enables
extending and combining functionality.

In our work, we study the potential of computational media1 as means for computer users to take control over
their software and as a material foundation for the development of computational literacy.
We have articulated four principles that modern computational media should strive towards [35, 51]: That

it should be malleable, so that users can adapt and repurpose their tools and documents in idiosyncratic ways.
That it should be computable, so users can execute arbitrary computations in any document and in any use
situation. A modern computational medium should also provide the affordances we have come to expect from
today’s software: that we can collaborate in real-time and use the many different devices we have at hand.
Therefore, computational media should be distributable, so that tools and documents move easily across devices
and platforms, and shareable, so that users can collaborate synchronously as well as asynchronously while using
their own personal tools.
We see computational media as collections of information substrates [4]— software artifacts that combine

content, computation, and interaction and can be treated as documents or tools depending on their use. A
particular information substrate can exhibit characteristics of a conventional application but can also be shared
and repurposed based on the affordances of the computational medium.

Webstrates [35] is a web-based prototype that, since 2012, has served as a vehicle for us to explore the affordances,
potentials, and consequences of software as computational media. It is based on a pragmatic attempt to create
computational media by changing how web pages traditionally work: a webstrate (web + substrate) is a web page
where any changes to its content, behavior, and appearance are automatically persisted on the Webstrates server
and synchronized with all the users that are currently viewing it. Thus, any webstrate can be collaboratively
1We have previously used the term Shareable Dynamic Media [35] as a play on Kay and Goldberg’s Personal Dynamic Media [33]. We later
adopted the more straightforward Computational Media as introduced by diSessa and Abelson [15] for the same vision. We acknowledge
that computational media is now also used in everyday language as an umbrella term for interactive software such as games, visualizations,
interactive fiction, etc. In our work, we use the concept to denote software that exhibits a specific set of qualities that we will unfold in the
following.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 3

edited in real-time, including edits to program code embedded in the page. Klokmose et al. [35] demonstrated
how Webstrates supports the creation of software that allows users not only to collaboratively author documents
in real-time but also to collaboratively extend and reprogram their authoring tools while they are in use. Whether
software served as a tool or as the object of a computing activity became a phenomenon of use instead of being
dictated by the software itself. Over the years, Webstrates has been used to explore these software qualities in
the contexts of design [12, 30], scientific work [50], public libraries [24, 66], video editing [36], programming
assignments [9], data analytics [1, 27, 46], collaborative affinity diagramming [40], and video conferencing [25].

While Webstrates demonstrably enables a number of use cases that are either extremely cumbersome or practi-
cally impossible to achieve with traditional software, the conflation of the space of using and developing software
also introduces tensions between design principles and practical matters. In this paper, we anecdotally present
eight tensions between the vision and the practical realization of computational media that we have identified in
the ten year process of creating Webstrates as well as making software with Webstrates. We present three three
examples of past Webstrates-based projects where some of these tensions have materialized. Furthermore, we
introduce Codestrates v2 and Cauldron [5]: a software development platform and code-authoring tool based on
Webstrates that instantiate the latest decisions and compromises in our exploration of the tensions between our
principled vision and practical limitations. We report on the outcomes of a three-week programming challenge
using Codestrates v2 and Cauldron, describing how this particular path in the realization of computational media
affected users’ understanding and appreciation of it. Last, we contribute six lessons learned from our attempts to
practically realize a modern vision of computational media:
L1: There is a critical difference between a system being technically reprogrammable and it being malleable to

the user in praxis.
L2: Real-time collaboration is both a blessing and a curse, and mechanisms to support switching between

synchronous and asynchronous collaboration in programming are essential — particularly for collaborative
programming.

L3: New concepts demand immediate and perceptible value for end-users to appropriate them and use them.
L4: Systems that are both real-time collaborative in use and development require a code execution model

geared towards collaborative live programming.
L5: Technically competent users can get carried away by the vision and suspend their reflections on what is

technically possible, which leads to frustration when their expectations are not met.
L6: Whatever user interface the users are provided will control the formation of their mental model of the whole

system and its core principles, and users are quick to form conceptual blends with what is already familiar
to build a working understanding, sometimes creating an uncanny-like effect when their understanding
does not match the reality.

The paper is structured as follows: Section 2 positions our work towards related work on reprogrammable
software and computational media. Section 3 summarizes the Webstrates and Codestrates platforms, and Section 4
presents a historical overview of their development. Section 5 describes eight tensions that have influenced the
development of Webstrates and have been key concerns in the translation of vision to practice. Section 6 presents
three Webstrates-based projects and examples of how tensions have materialized in them. Section 7, Section 8,
and Section 9 present the procedure and results of a study with twelve participants on a three-week programming
challenge using Codestrates v2 and Cauldron. Lastly, Section 10 discusses our lessons learned in the process of
realizing the vision of computational media.

2 RELATED WORK
The vision of computational media originates from Kay’s first idea of the Dynabook [33]— a personal computer
to support children in “learning by doing.” This idea evolved into a vision of personal computing that should be

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

4 • Borowski, Fog, Griggio, Eagan, and Klokmose

accessible to anyone, which came with the challenge of supporting countless types of activities for all sorts of
users: “The total range of possible users is so great that any attempt to specifically anticipate their needs in the
design of the Dynabook would end in a disastrous feature-laden hodgepodge which would not be really suitable
for anyone” [32].
This inspired Kay and Goldberg’s vision of personal dynamic media, a flexible software medium that would

“allow ordinary users to casually and easily describe their desires for a specific tool” [32]. Kay and Goldberg
compared such a malleable software to tangible materials like paper or clay, which are highly flexible and can
serve unanticipated purposes when manipulated with the right tools. Other motivations that drove early research
on computational media were to make software easy to learn and easy to program [15]. diSessa pointed out a
tension between designing powerful systems, which can support unanticipated tasks, and their ease of use. He
speculated that “a system composed of a large number of similar but subtly different structures is hard to learn
and prompts mistakes and confusions” [13]. His vision aligned with that of Kay and Goldberg in that he argued
for an integrated environment that served broad functionality by allowing users to modify it to their own needs
rather than by offering a great number of pre-designed and specialized tools. Our vision of computational media
builds on top of this vision and also emphasizes malleability and the possibility of users to modify their software
to their idiosyncratic needs and combines it with a push for shareability and distributability as central aspects
of modern computational media. These properties are essential in the current web of interconnected devices
such as smartphones, tablets, laptops, and desktop computers, which stirs towards Weiser’s vision of ubiquitous
computing [64].
Early attempts to realize such visions of highly flexible and personal software typically led to the design of

programming environments or languages that were simple enough for novices to manage. diSessa explored the
idea of a reconstructible computational medium [14] and created, together with Abelson, the Boxer platform [13, 15].
diSessa and Abelson [15] compared using Boxer to “moving around in a large two-dimensional space.” They
applied a principled approach to designing Boxer, for example, by employing principles such as spatial metaphors
and naive realism. This way, Boxer aimed to leverage a person’s knowledge about space to navigate code in boxes.
Boxes could be nested in each other, allowing to build structures of boxes to create applications, yet still making
it possible to inspect and modify any code in nested boxes at runtime. Ingalls et al. [28] created Squeak based on
the Smalltalk language which was used in the interim Dynabook prototype by Kay and Goldberg [32]. Squeak
was a Smalltalk implementation whose virtual machine and programming tools were also written entirely in
Smalltalk, which meant that all source code was available at all times and users could debug and change their
programming environment in runtime with the same tools they used to develop end-user applications. The
Lively Kernel system later lifted the idea of Smalltalk and Squeak to the web and made it possible to use the
dynamic platform in a web browser [29]. Webstrates, similarly, uses the web as its foundation to pragmatically
leverage its ubiquity, ecosystem of tools, and resources for learning. Compared to The Lively Kernel project,
while sharing many similarities, Webstrates is built around shareability and real-time collaboration as its core
principles. Where The Lively Kernel introduces a new conceptual model for interactive components (based on
Morphic [45]), Webstrates, in contrast, simply builds on the existing building blocks of the web.

Designing software so that it supports unanticipated needs has also been a core interest of the HCI and CSCW
communities, often framed as “tailorable” software. Eagan et al. [17] argue that “there is a gap between the
designers’ conception of how software will be used and its actual use,” and propose that users should be able to
tailor their software to meet their needs as they change over time. For one example of such software, consider
Robertson et al. [56], who implemented a system of modifiable buttons which “encapsulate appearance and
behavior that is user tailorable” and that “are persistent objects and may store state relevant to the task they
perform” [56]. MacLean et al. [44] also explored tailorable buttons, arguing that “tailoring should be a community
effort,” and that for such systems to be successfully adopted, it was necessary to develop “a culture within which
users feel in control of the system and in which tailoring is the norm.” Mackay’s study on MIT’s project Athena

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 5

in the 1980s contributed empirical insights to that line of thought, finding that most users avoided customizing
software “since time spent customizing is time spent not working” [42]. However, specialized workers in an
organization may help their colleagues benefit from customizations: In the study, a small group of highly skilled
users create and share customizations and a group of translators help less skilled workers adopt the customizations
they need [41]. Mackay also observed that users not only adapt to software (i.e., learn how to use it) but also adapt
software to their own needs, either by customizing or appropriating (i.e., repurposing) it for tasks other than the
ones it was designed for [43]. These findings opened the door to designing software that is powerful by not only
allowing tailorability, but also by inspiring appropriation [16, 63], for example, by incorporating design qualities
that support “unintended use” [57] or inviting users to add their own purposes to interface elements [11, 23].

Tailorable software and computational media aim to blur the distinction between developing and using software,
an idea that is also present in more recent explorations of literate computing [53] and so-called no-code or low-code
tools. Literate computing environments [48] are software environments where editable and executable code
is interleaved with text, images, and other rich media. No-code or low-code tools such as Notion,2 Coda,3 or
AirTable4 allow users to piece together personal software artifacts (e.g., spreadsheets, project timelines) or
computational media to serve their own idiosyncratic needs and goals [21]. The literate computing paradigm
has become widespread in the data science community with the popularization of Jupyter Notebook [54] and
similar computational notebook software (see an overview in Lau et al. [39]). They are often used for iterative and
exploratory data analysis [58]. Codestrates [59] brings the literate computing paradigm toWebstrates. Codestrates
manifests the use of computational notebooks not just for data analysis and exploration but for developing
interactive software. This blurs the distinction between using and developing an application as both happens
in the same environment. However, the literate computing aspect may cause confusion and prevent people
from using their prior programming knowledge, as it differs strongly from conventional code editors or IDEs
(Integrated Development Environments) [6].

An open challenge in exploring computational media is how to experimentally approach such a software model
that is radically different from how today’s applications work. For instance, diSessa [14] separated his work into
three steps: First, a technological step that focuses on creating prototypes of a new type of medium. Second, a
cognitive step that focuses on small-scale experiments with individuals or small groups of people. And third, a
cultural step that focuses on how the medium impacts a community such as a primary education school. While
diSessa was successful in the first two steps, the lack of sufficient funding made it impossible to realize the third.
Our work on Webstrates and Codestrates, so far, similarly focused on the first two steps. The question of how
computational media would be adopted on a large scale is neither new nor unique. Researchers have wrangled
for decades with dynamic or computational media; however, most projects turned out to be short-lived, and
only rarely do they escape the confines of academia, such as the case of Smalltalk, which has a small but lively
community and implementations that are used in industry (e.g., GemStone5 and Pharo6). We based our prototypes
on web technologies, in part, hoping to sustain communities of developers and users, creating opportunities for
studying the adoption of computational media on the web.
We are interested in eventually studying the adoption of computational media on a large scale, but we also

believe it is still necessary to further understand users’ experience with such new types of software in detail.
Edwards et al. [18] reflected on users’ experiences with ad hoc interoperation of devices and services:

We believe that the primary challenges posed by our approach come from the user-experience perspective.
In particular, the overarching question is whether users can accomplish their goals with a system that

2Notion: https://www.notion.so/ (Retrieved December 31, 2021)
3Code: https://coda.io/ (Retrieved December 31, 2021)
4AirTable: https://www.airtable.com/ (Retrieved December 31, 2021)
5GemStone: https://gemtalksystems.com/ (Retrieved December 31, 2021)
6Pharo: https://pharo.org/ (Retrieved December 31, 2021/)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://www.notion.so/
https://coda.io/
https://www.airtable.com/
https://gemtalksystems.com/
https://pharo.org/

6 • Borowski, Fog, Griggio, Eagan, and Klokmose

potentially provides less application support than has been traditional. We believe that new UI techniques
can help to maintain the usability that might be missing otherwise. (Edwards et al. [18])

While evaluating a platform’s success in terms of “accomplishing goals” and “usability” is important, this
is only one form of user experience which assumes, for instance, that users are goal-oriented and emphasize
usability. We are more interested in seeing users as creative individuals who work through software to arrive
at a place that was not anticipated in advance, simultaneously shaping and being shaped by the artifact. This
perspective requires specific studies on how users understand computational media and how this understanding
shapes the way they create software.
Finally, most related research can be traced back to well before the current millennium. It is hard to imagine

researchers reminiscing about word processors and image manipulation software from the 1970s and 1980s, yet
that is what often happens with computational media. We are somewhat guilty of this ourselves. And while the
past offers us ideas and principles that are still valid, our work is motivated just as much by asking ourselves how
computational media might look today. With this paper, we want to contribute our experience on using modern
web technologies for the realization of computational media, the tensions they create between principled design
and pragmatism, and our latest observations with users.

3 BACKGROUND: WEBSTRATES AND CODESTRATES
In this section, we present Webstrates, and the two iterations of our development and authoring environment
Codestrates v1 and v2. This section is based on previous work [5, 8, 35, 59] and describes what the platforms are.
The next section will focus on the why and the motivations which drove our prototyping of computational media
through building these platforms. A basic understanding of the technical background and challenges in realizing
the platform is necessary to understand some of the tensions (see Section 5) and results from the game challenge
(see Section 7), that are based on technical limitations and challenges that has led to pragmatic design decisions.

3.1 Webstrates Overview
Webstrates is a platform we have used to explore the vision of computational media on the web. Technically,
Webstrates is a web server. A web page served by Webstrates is called a webstrate: a “web substrate” that embodies
content, computation, and interaction in the DOM (Document Object Model) of a page, including its HTML,
CSS, and JavaScript. Unlike a traditional collaborative application, where the client explicitly sends requests
to the server to update its content or persist changes to a database, any change to the DOM of a webstrate is
automatically persisted. For example, to create a todo list application where a user can add a new task to a list, a
developer would traditionally have to program the server-side application that handles a request to create a new
list (e.g., by persisting it to a database) and the client-side code that processes the response (e.g., adding the HTML
for the new item). With Webstrates, the developer would only work on the client-side interaction for adding a
new item, and the webstrate would automatically persist the changes. Moreover, Webstrates synchronizes the
changes across all clients viewing a webstrate.

Authoring content in a webstrate can be done through tools that live in the webstrate itself, e.g., an “add new
task” button next to a todo list, or by editing the DOM directly with a web browser’s developer tools. To create a
simple shared notepad on a webstrate, a developer could open the developer tools, look for the <body> HTML
element, and add the contenteditable="true" attribute. Then, any text typed on the <body> by a user would
be persisted.

If multiple clients are viewing the same webstrate, local changes made by one are persisted and automatically
synchronized with the others. Consistency between clients is achieved through operational transformations [20]
on the document (see details in [35]). Each operation generates a new webstrate version, thus, users can access
the history of changes of a webstrate. The operational transformation algorithm relies on a log of finely-granular

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 7

Fig. 2. Transclusion in Webstrates makes it possible to embed one webstrate into another by using the <iframe> element.
This makes it possible to compose documents, e.g., a webstrate containing a SVG graphic of a tiger can be embedded inside
a text document (left) and a slide show (right) at the same time. Changes to the graphic are immediately visible in the
embedded versions as well (reprinted from [35] with authors’ permission).

operations, e.g., an insertion of a character, to give a sense of real-time collaboration, e.g., seeing another user
typing in a paragraph.

Webstrates can be composed using the hypermedia principle of transclusion [49]. Transclusion is an important
aspect of the composability of documents. It strengthens both the malleability and shareability of webstrates.
Figure 2 illustrates how a webstrate containing a SVG vector graphic representation of a tiger can be transcluded
in both a document and a slideshow webstrate. Transclusion is realized using the conventional <iframe> element.
Not only content like vector graphics can be transcluded into documents but also functionality and tools.
Besides acting as a persistence and synchronization layer, Webstrates provides a variety of APIs7 to support

development with it. Transients can be used to create elements and attributes that are not persisted and synchro-
nized with the Webstrates server, signaling allows to send messages to other clients that visit a webstrates, assets
allow to store files in a webstrate, and permissions allow adding read and write permissions on a per-webstrate
level.
In summary, Webstrates serves as a vehicle to explore computational media on the web. It inherits the wide

distributability of web pages, which can be easily addressed by URLs and accessed across devices. It supports
malleability by allowing and persisting changes to content, interaction and computation on run-time, shareability
by synchronizing persisted changes across clients, and basic computability using scripts in the DOM.

7APIs were added to Webstrates over time and also after its initial paper [35]. Transients, signaling, and permissions, for instance, were added
later and first published in the Codestrates v1 paper [59].

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

8 • Borowski, Fog, Griggio, Eagan, and Klokmose

3.2 Codestrates v1 Overview
Codestrates v1 and v2 are our efforts in creating authoring and development environments for Webstrates and
built on Webstrates. Codestrates has undergone two iterations that we in this paper refer to as Codestrates v1
and Codestrates v2 and which we summarize in this and the next section.

Codestrates v1 [59] took inspiration from computational notebooks such as Jupyter [54] and follows the literate
computing paradigm [53], where authoring content as well as editing code happens in the same space. Unlike
conventional computational notebooks that are primarily used for data analysis and visualization, Codestrates v1
allows for creating application-like software such as the grocery list app shown in Figure 3. In Codestrates v1, the
app is developed in a notebook format including its HTML content, JavaScript for behavior, and CSS for styling.
“Deploying” an app is done simply by toggling a so-called body paragraph containing the interface full screen,
e.g., for a grocery list. At any time it is possible to break out of the interface to see and edit the implementation.
Codestrates v1 structures code in paragraphs: body paragraphs for HTML, style paragraphs for CSS, code

paragraphs for JavaScript, and data paragraphs for JSON. Paragraphs are displayed in a one-dimensional notebook-
like view and can be grouped into sections. While the content of paragraphs is persisted, the user interface and
editors are rendered transiently on each client.
Body paragraphs contain persistent DOM elements and display them directly. DOM inside body paragraphs

is editable in the view by using the contentEditable attribute. To edit a body paragraph as HTML, the DOM,
first, needs to be serialized into HTML, can then be edited in a transient HTML editor in the Codestrates v1
user interface (UI), and is, finally, deserialized back into the DOM after finishing the editing. The deserialization
process requires syntactically correct HTML and, thus, cannot happen live. This, in turn, prevents real-time
collaborative editing of HTML in textual form in Codestrates v1. Because CSS of style paragraphs is stored in the
text content of a single DOM element, changes to style paragraphs can be directly reflected in the DOM and
applied by the web browser, allowing for real-time and collaborative editing of styles.
Codestrates v1 has a runtime environment for managing the execution of JavaScript in code paragraphs

within a codestrate—a webstrate that runs Codestrates. Code paragraphs can be executed manually or set to
run-on-load, which executes them whenever the codestrate is visited. Here, the order of execution could be
controlled and scripts could import and execute other scripts within the same codestrate. Code paragraphs,
further, can make use of data paragraphs to store data in the JSON format. A codestrate is self-contained, which

Fig. 3. A grocery list developed using Codestrates v1. Content and interactivity is authored in a notebook format. The main
view of grocery list can be made full-screen and shown on a mobile device.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 9

means its implementation code is part of the notebook and can be edited in the same way as other paragraphs,
which are used to implement an application like the grocery app.

Codestrates v1, furthermore, allows bundling functionality as named packages that could be shared between
codestrates using a built-in package manager [8]. The package manager uses temporary transclusion to facilitate
the moving of content between codestrates.

3.3 Codestrates v2 Overview
Codestrates v2 [5] is a generalization of Codestrates v1 and consists of three components: the Webstrates Package
Manager (WPM), an execution engine, and the Cauldron IDE. Codestrates v2 has a similar goal as Codestrates v1
in that it aims to provide an execution engine for code, like for code paragraphs in Codestrates v1, and an
authoring environment that runs directly in the web browser without setup. However, Codestrates v2 moves
away from the strict computational notebook-like interface towards a more conventional authoring environment
and, additionally, decomposes the execution engine, the authoring environment, and the package management.
Where Codestrates v1 presented code as editable paragraphs in a computational notebook interface, Code-

strates v2 introduces the concept of code fragments. Code fragments are reified pieces of code that can be
programmatically manipulated, executed, or edited through editors that are instantiable anywhere in the UI— for
example, as cells in a notebook. A fragment is a <code-fragment> DOM element. Fragments are hidden and
not rendered in the browser by default. The content of a fragment is stored as plain text in the text content of
the fragment DOM element so that it is not interpreted by the browser on its own but can be managed by the
execution engine. Codestrates v2 supports a variety of programming (JavaScript, Python, Ruby, and more), style
sheet (CSS, SCSS), and markup languages (HTML, Markdown, LaTeX).

Fragments with program code can be run manually to execute their code once or can be set to auto-run, i.e. be
executed a single time when a page is (re-)loaded— similar to the run-on-load of paragraphs in Codestrates v1.
“Live reloading,” which can be found in some JavaScript frameworks, reloads the web browser window after a file
is changed in the IDE or code editor. In contrast, Codestrates v2’s auto-run merely flags a code fragment to be
automatically run when a webstrate is loaded— so that the it is not necessary to run it manually with the run
button. Auto-run does not support liveness in the sense that changes to code are immediately applied.

Fragments with markup as well as fragments with style sheets can only be set to auto-run and cannot be run
manually on demand. However, they are updated live and do not require a page refresh. Content from markup
and style sheet fragments is rendered or preprocessed into a transient element. Content is synchronized from
the fragment to the transient rendering so changes to the content of the fragment are automatically applied
in the rendering (for markup and style sheet fragments). Because of this, users can collaboratively edit HTML
fragments in real-time time without the conflicts that could happen in Webstrates or Codestrates v1. However,
changes to the rendered views (e.g., from user interactions or edits via the browser’s developer tools) are not
transferred to the fragments (see Figure 4), as this could cause conflicts when trying to merge the changes back
into the persisted fragment.
While in Codestrates v1 the authoring environment was tightly coupled to the execution engine, in Code-

strates v2 fragments can be used and executed without an authoring environment, e.g., by using the browser’s
developer tools. To author code directly in the web browser, however, Codestrates v2 also provides the authoring
environment Cauldron, which enables users to create and edit code fragments. Cauldron’s UI is closer to the one
of a regular code editor or IDE with a tree browser and tabbed editors (see Figure 5) rather than to a computational
notebook. We did this to make the authoring environment more accessible to users unfamiliar with computational
notebooks. When collaborating synchronously, Codestrates v2 provides basic awareness tools within Cauldron:
The tree browser indicates when other users edit or view a fragment and inside the editor Codestrates v2 supports
seeing the cursors and selections of other users who are currently editing a fragment.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

10 • Borowski, Fog, Griggio, Eagan, and Klokmose

Webstrates Server

Rasmus

Persisted

Fragment
Plain Text

Client of Rasmus

Lise

TransientTransient Persisted

Fragment
Plain Text

Code
Editor
Instance

Code
Editor
Instance

Client of Lise

Rendered
View

Rendered
View

Fig. 4. Data synchronization of HTML fragments between two clients: Fragment plain text content is synchronized both
ways to the Webstrates server and code editor instances. The rendered preview is also synchronized to fragment plain text
changes, however, is not synchronized back to the fragment (reprinted from [5] with authors’ permission).

Codestrates v2 also comes with the more generalized Webstrates Packages Manager. Compared to Code-
strates v1’s package manager, which only allowed to turn sections to packages, WPM allows to transfer any types
of elements from the DOM as packages. WPM is also used to update the implementation code of Codestrates v2
and Cauldron on each page load from a repository webstrate.

4 REALIZING THE VISION OF COMPUTATIONAL MEDIA
This section serves as a summary of motivations and design decisions when developing the Webstrates, Code-
strates v1, and Codestrates v2 platforms. The section is structured into the three platforms and presents a timeline

Fig. 5. A screenshot of a web page with Cauldron docked to the right side of the window. The “edit” button in the left half of
the screen— the application— can be used to open Cauldron.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 11

of the development. Its focus is the why behind the development and how we used the platforms to explore the
vision of computational media. Understanding the motivations and rationale of design decisions is important for
the understanding the tensions in the next section. Figure 6 shows a visual timeline of important milestones.

4.1 Pre-Webstrates (2008–2011)
Webstrates and our computational media vision is not our first stab at these topics: The work sprung out of
several attempts to rethink software particularly to supportmulti-surface interaction— interaction with computers
that span multiple devices sequentially or in concert. We realized that the confinements of applications limited
the possibilities of distributing work across multiple devices. The VIGO project [34] revisited the notions of
application and document to propose a novel architecture for building interactive systems, based on instrumental
interaction [3] and applied to an ad-hoc multi-surface environment. Instrumental interaction conceptualizes
interaction as being explicitly mediated by instruments or tools rather than direct on the object of interest
as in direct manipulation. Software built on this principle are dynamic collections of tools rather than static
applications— not unlike diSessa’s characteristic of computational media. Shared Substance [22], further, proposed
data-oriented programming as a flexible approach to build software based on these principles for multi-surface
environments.
In both cases, there were no existing, prior systems to bootstrap upon— everything had to be written from

scratch. As such, applications were mostly proofs-of-concept and viable for interactive and functional demonstra-
tions but not necessarily for day-to-day use. The Scotty system [17] aimed to address this limitation through
the pragmatic approach of integrating instrumental interaction [3] concepts directly into the macOS Cocoa

+

/web_substrate- +

A uc t o r , quam qu i s
scelerisque volutpat, diam
felis commodo orci, eget
pharet ra lacus dolor et
augue.Mauris commodoac
ipsum ut luctus. Aliquam
elementum sem ac diam
pulvinar, eget molest ie
t ellus ef ficit ur. Et iam
fringilla dui vitae pretium
t incidunt. Nullam risus
lectus, congue eget ligula
vitae, dapibus egestas dui.
Quisque dapibus, risus at
maximus varius, massa
erat mollis lorem,et varius
ipsum massa et nulla.
Morbi pretium id sapienut
m a x i mus . A en e a n
sceler isque f aucibus
porttitor.

Lorem ipsum dolor sit
ame t , c on sec t e t u r
adipiscing elit. Aenean
cursus semper diam, at
interdum ligula semper et.
Maecenas dictum tellus ut
nisl semper ultrices nec
blandit metus. Praesent
egestas sit amet lectus at
tincidunt.

Kongbani

Object Governor

Instrument

View

Manipulates

Observes

VIGO
(Klokmose & Beaudoin-Lafon, 2009)

Shared Substance
(Gjerlufsen et al., 2011)

Codestrates v1
(Raedle et al., 2017)

Codestrates v2
(Borowski et al., 2020)

2009

2011

Scotty
(Eaganet al., 2011)

Instrumental Interaction on the Web
(Klokmose & Eagan, 2012)

2012

2014

2015

Webstrates
(Klokmose et al, 2015)

2017

2020

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Lorem ipsum!

//webstrate/lorem_ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Lorem ipsum!

//webstrate/james_instruments_1

//webstrate/lorem_ipsum

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Lorem ipsum!

//webstrate/wendys_color_instruments_2

//webstrate/lorem_ipsum //webstrate/colors_5

//webstrate/colors_5

//webstrate/pixelmator_like_instruments

//webstrate/michels_mighty_meta_instrument

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis
aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat
nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui
officia deserunt mollit anim id est laborum.

Lorem ipsum!

//webstrate/lorem_ipsum

//webstrate/james_instruments_1

Transclusion Eureka Moment
(Klokmose, 2014)

Fig. 6. Timeline of significant milestones in the development of Webstrates and Codestrates. To the left (purple) shows
pre-Webstrates development leading to the formation of the vision in the middle (orange) and subsequent development of
Codestrates to the right (blue).

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

12 • Borowski, Fog, Griggio, Eagan, and Klokmose

environment. As such, it could effectively bootstrap off of the existing environment, but was still limited by the
different underlying design visions of traditional Cocoa applications and the instrumental interaction approach.
The trade-off here is, thus, between being able to apply the research environment to day-to-day use and the
principled purity of the research concepts and their resulting incongruity with the rest of the system.
Finally, with Webstrates [35], we made a compromise position between the two: it builds on existing web

technologies and is able to draw on numerous existing web libraries, but bootstraps its own system. This approach
yields a pragmatic compromise closer to the research goals associated with the computational media vision while
still being able to draw upon the wealth of existing web systems.

4.2 Webstrates (2012–2016)
4.2.1 Forming the Vision (2012–2014). One of the realizations that led to the development of Webstrates was that
the distribution of a user interface between devices and collaboration between users were two sides of the same
coin, and ideally should be supported by the same mechanisms. Furthermore, we realized that building software
for multiple devices working in concert emphasized a need for software that could be changed, reconfigured, or
even reprogrammed on the fly.

Our vision of computational media and Webstrates developed dialectically over three years. Initially, the first
prototype of Webstrates was developed as part of an attempt to implement instrumental interaction [3] on the
web inspired by the VIGO software architecture [34]. The idea was to use browser extensions as instruments to
manipulate a persistent and real-time synchronizing web page, a “web substrate.” This would allow each user
to have their own set of instruments installed in their browser, which would enable asymmetric collaboration
between users with different tools and distribution of work across multiple devices.

The approach turned out to have a number of limitations: At that time, browser extensions were only available
in desktop browsers, which made the approach impossible on mobile devices. It enforced a more strict distinction
between tool and document, or instrument and domain object, which were not compatible with the philosophy of
instrumental interaction where an instrument can become an object and vice versa through use. The development
of instruments and their use would happen in conceptually and practically different spaces and not through a
general “clay of computing” as Kay and Goldberg [32] describe as the ideal for personal dynamic media. We
wanted instruments to be able to manipulate other instruments in the same way as they would manipulate
documents. This meant that instruments and objects, tools and documents, had to be made out of the same stuff.
Our colleague, Beaudouin-Lafon, had made the theoretical insight that for instrumental interaction to work
there would have to be information substrates that could serve as the material for creating both instruments and
objects [4].

4.2.2 Breakthrough (2014–2015). The big eureka moment was when we realized that the web that we used for
prototyping was a hypermedia system and it supported transclusion. Transclusion on the web is implemented
through the <iframe> element that allows for embedding one web page in another. When “transcluder” and
“transcludee” are served from the same domain, the security model of the browser allows the JavaScript runtime
of the two pages to interact. That means that scripts from one of the pages can manipulate the document of the
other page as well as the other way around. We now realized that we did not need to implement our tools or
instruments as browser extensions but could implement them as web pages as well. One of the first examples we
built was a set of slideshow tools where the slideshow was its own webstrate and the slides could be edited and
controlled from another webstrate through transclusion. Here, changing a slide would simply be moving a CSS
class attribute between slides in the slideshow webstrate. A more elaborate set of slide tools was presented in the
2015 Webstrates paper [35]. Now, whether what was being edited was considered application or document in the
traditional sense started to dissolve and we felt we were getting closer to the “clay of computing” feel of software.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 13

Desktop Code Editor

Browser Developer Tools

Webstrate

Codestrate

A B C

Webstrate

Webstrates
File System

D

Code Editor Webstrate

Webstrate

Fig. 7. The different relationships between a webstrate and tools for editing it in the chronological order they have been
developed in. (A) A webstrate is edited directly through the developer tools in the browser. (B) A code editor webstrate
is used to edit another webstrate through transclusion in a hidden <iFrame> element. (C) A webstrate is edited using a
conventional desktop editor through the Webstrates File System bridge. (D) A webstrate as a codestrate where tools for
editing it is embedded in it self.

In the beginning, all development happened through the developer tools of the web browser. From those it
was possible to inspect the DOM of a web page and edit its content including embedded JavaScript and CSS style
sheets. It was also possible to execute arbitrary JavaScript code in the web page from an interactive console. We
quickly realized that the developer tools were not designed for development but rather debugging. The support
for editing code was poor and did not provide any of the features— like code highlighting or linting— that
developers were used to from IDEs. We, therefore, implemented a “code editor webstrate” [35] that allowed for
editing embedded JavaScript and CSS of another webstrate through transclusion (see Figure 7 for an overview
of the different relationships between a webstrate and tools for editing it). At this point we also started having
colleagues that started playing with Webstrates, and some core conceptual challenges started to emerge: A
question we would often got was why our code editor webstrate could not edit the HTML of another webstrate
but only scripts and styles. The explanation is that for live web page— that is web pages that are loaded in the
browser— the HTML does not as such exist, only the runtime representation in shape of the DOM exist, and it is
also that representation that Webstrates stores.

4.2.3 Maturing of the Platform (2015–2016). After the first publication [35] and the initial public release of
Webstrates in October 2015, we employed a full-time professional programmer to stabilize, improve, and document
the codebase. In July 2016, we released a full rewrite of the codebase as a version 1.0, followed by the first set of
APIs a month later: transients and signaling.

Both transients and signaling addressed shortcomings we had observed with the strict sharing model in
Webstrates and were introduced to handle views, e.g., in a visualization library like D3.js,8 to avoid overloading
the server by many rapid changes to the DOM from such libraries, or to create local UI elements like shared
cursors. Cursor positions are ephemeral information that can rapidly change and should not be persisted within
a document. Transients allowed to create local cursor elements that are not persisted or shared, and signaling
allowed to send information about the cursor positions between clients without having to write the ephemeral
information into the document.

Given the increased use ofWebstrates, a common request was the ability to edit a webstrate using a conventional
IDE. To accommodate this, we developed Webstrates File System (WFS),9 a small service which developers could
install on their computer that mounts a webstrate as HTML, CSS, and JavaScript files. Changes made to the files
are automatically synchronized to the source webstrate. This is a concrete example of a compromise between a
principled pure approach in which all tools are built with Webstrates, and the pragmatic observation that letting
users use their own tools would increase interest and adoption.

8D3.js: https://d3js.org/ (Retrieved December 31, 2021)
9Webstrates File System: https://github.com/Webstrates/file-system (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://d3js.org/
https://github.com/Webstrates/file-system

14 • Borowski, Fog, Griggio, Eagan, and Klokmose

4.3 Codestrates v1 (2016–2019)
4.3.1 Literate Computing with Codestrates v1 (2016–2017). In the 2010s, computational notebooks— the most
popular being Jupyter [37]— introduced the idea of literate computing [53] and found acclamation in the field
of explorative data science [58]. Literate computing describes the idea of interweaving executable code with
markup code in a notebook-like environment. Inspired by this idea, Codestrates v1 was born to explore how
literate computing can be applied to the development of applications and not only data science, and to create a
authoring environment native for Webstrates.

Codestrates v1 [59] was built on top of Webstrates and allowed to weave rich text and executable code within
the same document, a codestrate. This blurred the distinction between development and use of applications as
both the application and its code lived in the same continuous document. Besides combining development and
use of applications in the same document, Codestrates v1 emphasized collaboration. Inheriting the distributability
and shareability properties of Webstrates, it natively supported real-time collaboration within a codestrate and
provided shared cursor and mouse positions of remote users. Codestrates v1, further, was the first platform to
make extensive use of the transients API to generate non-synchronized user interfaces that allowed for more
relaxed What-You-See-Is-What-I-See (WYSIWIS) [61].
We, later, extended Codestrates v1 with a package manager, Codestrate Packages [8], which added the func-

tionality to easily share sections of a codestrate as packages with other codestrates. Codestrate Packages allowed
to add and remove packages from a codestrate—here, every codestrate could act both as a repository where
packages are retrieved from or as a document where the packages are used. Codestrate Packages was motivated
by more and more functionality that was put into Codestrates: shared cursors, a slide show application, a function
to invite other users into a codestrate, and more. These features were always available in each codestrate and
both cluttered the interface and reduced the performance. The package management was a way to store this
functionality in a dedicated repository and only add those packages to one’s own codestrate that are actually
needed. The package manager also allowed to create software by piecemeal without any programing: you could
start out with a notebook, install a slideshow tool to turn the notes into a presentation, install a package to
visualize data to put on a slide, install a video communication package, etc. This is what diSessa refers to as
reconstruction [15].

4.3.2 Codestrates v1 in Use (2018–2019). Over the years, Codestrates v1 transformed from a research prototype
to a platform for creating applications with Webstrates. We and other colleagues used Codestrates v1 in a diverse
range of projects: In Vistrates [1], we used Codestrates v1 to create a collaborative and modular visualization
tool. In the development of Vistrates, the UI architecture of Codestrates v1 served both as leverage but also a
limitation: Things were easy when following the Codestrates v1 structure of sections and paragraphs, but more
difficult when trying to diverge from it. For instance, changing the layout from a one-dimensional notebook
layout into watching paragraphs side-by-side, would have required to implement a complete layout engine. The
structure of sections and paragraphs, similarly, did not allow further nesting of sections and allowed for only two
hierarchical levels of content.

When using Codestrates v1 for collaborative programming assignments in a university course [9] (see Section 6.3
for more detail), we found the notebook-like structure of documents to be limiting in some situations and to
cause a lot of scrolling. In some instances, students also made codestrates inoperable by accidentally removing
the implementation of Codestrates v1 itself from the document or hiding all elements— including the UI—with
their CSS styles. This was possible as the implementation of Codestrates v1 and its user interface lived in the
same space as the application or content a user is working on. This meant that, for instance, styles applied to an
application, e.g., changing the background of all <div> elements, were also applied to the UI of Codestrates v1. In
the same way, removing all <div> elements from the body, for example, to remove all items in a todo list, did
also remove the implementation code of Codestrates v1 itself, leaving the user with a blank page. Still, the linear

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 15

structure supported students in thinking about assignments one paragraph at a time, and the shareability and
real-time collaboration were clear benefits in that study as it allowed students to avoid conflicts like in other
version-control systems like Git [9].

In another project together with a group of nanoscientists, we used Codestrates v1 to create a prototype of
a computational labbook [50] (see Section 6.1 for more detail). In it, we wanted to reuse existing scripts of the
researchers, this, however, was not easily possible as they used Perl and Python as their primary programming
languages. Codestrates v1, however, only supported JavaScript as a programming language, making it difficult to
integrate the scripts of the researchers with our prototype. For our prototype we therefore had to employ an
additional server tool, which was executing Perl and Python scripts that were sent from a codestrate using REST
andWebSockets. Videostrates [36], a collaborative video editing prototype built onWebstrates and Codestrates v1,
similarly required a high performance server to compute video streams as this was not possible with the limited
performance of the web browser.

During our increasing use of Webstrates and Codestrates as a prototyping platform in research projects where
prototypes were deployed in the wild, we experienced that users’ browser extensions (like, e.g., Grammarly)
would pollute documents with annotations or, even worse, break a webstrate by removing or editing critical parts
of the document. Furthermore, libraries and frameworks we would use were built for traditional web development
and not designed with the anticipation of the DOM being persisted. For instance, Monaco10 that we used for
code editing, would write to the document in ways we had difficulties controlling. We therefore resorted to
develop an optional protected mode for a webstrate that would ensure that edits from browser extensions and
third-party libraries and frameworks would not be persisted in the DOM. However, this had the trade-off that
edits that should be persisted required a certain option added to the method called when manipulating the DOM
from JavaScript. This is an example of a trade-off between principle and pragmatism: the need for integrating
Webstrates with the world around it compromised the principle of everything in Webstrates being shared.

4.4 Codestrates v2 (2019–2020)
4.4.1 Decoupling and Generalization (2019–2020). Inspired by the shortcomings of the initial version Code-
strates v1, we took a step back and reconsidered the overall structure of Codestrates v1 and what made a
codestrate a codestrate. While reflecting over what defines the core of Codestrates v1, we found that Code-
strates v1 could be divided into three parts: (1) its computational model of paragraphs and their execution, (2) the
notebook-like UI environment consisting of paragraphs and sections, and (3) the package manager for sharing
code between notebooks. As all parts were tightly glued together and one required the other to function, we
decided that a first step would be to separate the three. We, therefore, decoupled the computational aspect of
paragraphs with their representation in the user interface. This would allow computation to behave in the same
way independently from the view. Further, this would allow to display these computational units in different
views, e.g., using a notebook-like environment, a conventional tabbed IDE interface, or visual programming
interfaces where computational units are placed on a 2D grid. Finally, we implemented a general purpose package
management system for Webstrates. The resulting architecture of components in Codestrates v2 [5] consisted of
the Webstrates Package Manager (WPM), the execution engine, and the Cauldron authoring environment.

4.4.2 From Paragraphs to Fragments (2020). We renamed the “computational units” in a document from paragraphs
to fragments as naming the computational units as “paragraphs” in Codestrates v1 was related to its notebook-like
interface. The computational engine of Codestrates v2 manages the execution of fragments, the creation of virtual
machines for executing code, as well as providing functionality to reuse code from other fragments.
Fragments could be placed anywhere in a document/in the DOM and structured arbitrarily, introducing the

possibility to create deeper hierarchies (e.g., using <div> elements as folder). Besides this structural flexibility, it
10Monaco: https://microsoft.github.io/monaco-editor/ (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://microsoft.github.io/monaco-editor/

16 • Borowski, Fog, Griggio, Eagan, and Klokmose

further allowed us to create different editors for editing the content of these fragments: It was then possible to
view fragments both in a one-dimensional notebook representation as before, but also in a tabbed editor which,
for example, can be found in usual IDEs or a two-dimensional canvas where fragments can be freely moved
around. Editors for fragments could be instantiated and placed anywhere in the user interface, and multiple
editors could simultaneously show the same fragment. This means that it was, e.g., possible to put live editable
code on a slide in a slideshow.

4.4.3 Separating the Authoring Environment (2020). While the execution engine provided helper functions to
instantiate code editors to edit fragments, it did not create them by itself and instead required an authoring
environment to browse, view, and edit fragments. To demonstrate this, we created the authoring environment
Cauldron, which allowed to browse paragraphs in a tree browser and to view and edit paragraphs in a tabbed editor.
We took the pragmatic decision to create a more conventional authoring environment over, e.g., a notebook-like
environment as in Codestrates v1, because our goals shifted from exploring the computational notebooks as a
development environment towards investigating malleability and collaboration when using a computational
medium. Therefore, Codestrates v2 and Cauldron would act more as a platform for further projects, rather than
being a research prototype in and by itself. Providing users with a UI that is closer to what they might know
from their experience with code editors and IDEs should make it easier to get started in using Codestrates v2.
Fragments are displayed in the editors in Cauldron by synchronizing the plain text content in the fragment

with a code editor instance of a client. Changes to the plain text content of fragments, again, are persisted to
the server. Thus, changes in code editor instances are persisted to the server and automatically update the code
editor instances of other clients (see Figure 4).

In Codestrates v1, the authoring environment was—per default — always loaded in the form of the notebook
interface. If a user built a full screen application with Codestrates v1 they could disable loading the authoring
environment per default to speed up loading time.11 In Codestrates v2, the authoring environment is not loaded
per default. Instead, we provide an “Edit” button in the top right corner to load the Cauldron editing environment
using the package manager and open it.

5 TENSIONS IN THE REALIZATION OF COMPUTATIONAL MEDIA
While revisiting and analyzing the development history of the Webstrates family of computational-media
platforms, we identified eight tensions that had been driving our design decisions. By “tensions” we mean two
opposing viewpoints that pull against each other, opening a spectrum in between them. These tensions reflect
conflicts between the principles of our vision and the practical hurdles involved in creating a working system
with limited resources at hand. For example, we envision software as a malleable medium, but in practice, the
more malleable a system is, the harder it is to ensure its stability. Positioning our design decisions and trade-offs
within such tensions allows us to characterize our explorations of computational media in a more structured way
and systematically look for future alternatives. Next, we present an anecdotal description of the eight tensions
we identified in our design decisions throughout the development of Webstrates and Codestrates v1 and v2:

T1: Malleability vs. Stability is the trade-off between how much the user can adapt the environment to their
own needs and how much the user can break it.

T2: What is Shared vs. What is Not Shared focuses on the complexity of managing shared, local, or personal
content in a shareable medium.

T3: Editing Directly vs. Editing Indirectly describes how directly the user interacts with the computational
medium or whether those interactions are mediated by other concepts.

11To load it with the authoring environment enable one would then have to append ?edit to the URL.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 17

T4: Big vs. Small Distance Between Development and Use Views deals with how to enable the development of an
application in the same context where it is used.

T5: Authoring Environment Developed in Itself vs. Not Developed in Itself similarly deals with whether the
development environment is bootstrapped within itself.

T6: Self-contained vs. Auto-updating Authoring Environment focuses on how independent a computational
medium is, from a self-contained entity to deeply interlinked with dependencies on other computational
media.

T7: Creating Something New vs. Offering Something Familiar raises the trade-off between creating a new, “pure”
implementation from first principles and drawing on the existing and the familiar.

T8: Working With Your Own Tools vs. Adopting Built-in Tools deals with the challenges of using custom tools or
existing ones in the editing environment.

5.1 T1: Malleability vs. Stability
A key principle of computational media is to be malleable. Thus, software created with Webstrates should be
able to be changed by users, allowing users to tailor their software in idiosyncratic ways. Malleability, however,
does not only grant users the power to modify software for good but also for ill: Erroneous modifications can
lead to problems ranging from unexpected interactive behavior to broken functionality to loss of data. This is
in stark contrast to the rigid and non-malleable applications we know, which are usually more stable as their
functionality cannot be changed and always behave in exactly the same way.
Webstrates started as a very malleable, yet unstable, platform. Using primarily the web browser’s developer

tools to modify a webstrate, everything within a webstrate could be changed. While this provided power, it also
permitted users to easily break applications, e.g., by accidentally deleting the wrong elements from the DOM.

Codestrates v1 shifted the platform to more stability: Documents were no longer edited without constraints in
the developer tools but within the web page in dedicated paragraphs. This prevented accidentally deleting DOM
elements while editing code. Code within paragraphs, however, was still highly malleable and had a global scope,
allowing users to modify existing parts of applications or adding new functionality. This global scope, on the
other hand, also allowed the code of an application built with Codestrates v1 to also affect the Codestrates v1
platform itself, potentially corrupting the platform with faulty code.
In Codestrates v2, we intentionally increased the separation between the authoring environment and the

content produced by users to boost stability. First, we exploited that it is possible to move content outside of the
<body> element: the authoring environment, Cauldron, was not part of what is typically considered the content
of a web page. This change added stability by preventing some user or third-party code from affecting Cauldron,
for example, CSS styles that could accidentally break the layout of Cauldron. Second, the implementation code
of Cauldron was loaded from another webstrate on page load and instantiated Cauldron within a transient
element. This, again, made the platform more stable as the implementation code of Cauldron could not easily be
corrupted. For example, if a user removed an element of the Cauldron UI accidentally, it would always be restored
after a page refresh. On the other hand, these changes impaired malleability, as modifications of the Cauldron
environment were not easily possible from within the document. Third and lastly, by employing the protected
mode by default, Codestrates v2 prevented elements that were not explicitly approved by programmers— such as
elements created by browser extensions or JavaScript libraries — from being persisted on the server and polluting
the DOM, adding stability. However, this also adds to the complexity of the mental model of Webstrates, which
no longer is as simple as “all changes to the DOM are persisted equally.”

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

18 • Borowski, Fog, Griggio, Eagan, and Klokmose

5.2 T2: What is Shared vs. What is Not Shared
There are different levels in which the state of an application can be shared. On the one end of the spectrum,
everything is shared with other clients: UI elements, system state, and every visible change on the screen (e.g.,
the position of an image being dragged and dropped). On the other extreme, nothing is shared and users work in
absolutely independent interfaces. Some degree of sharing is necessary to make a system collaborative, however,
one may not want to share everything all the time, e.g., if a user opens a color picker to change the text color,
they may expect the result to synchronize across clients without having the color picker appear for everyone.
The initial version of Webstrates shared the entire DOM by persisting it on the server. To have different

views on documents, one needed to transclude “document-webstrates” into different types of “editor-webstrates.”
The only part of an application that was local was the JavaScript state. This allowed to create shareable and
collaborative applications by only working in the front-end, using the DOM as a shared and persisted layer of
information.
Codestrates v1 moved towards sharing less by using transient elements to display UI elements without

persisting them on the server. Which paragraphs and sections are visible, however, was still shared across all
clients. This caused problems such as jumping content when collaborators opened or closed paragraphs during
real-time collaboration, e.g., in [9]— similar problems can occur in collaborative writing tasks in online tools like
Google Docs or Overleaf.

While Codestrates v1 shared elements by default and transient elements had to be explicitly indicated, Code-
strates v2 moved towards not sharing elements by default, using the protected mode of Webstrates. This allowed
users to interact with UI elements more freely without affecting the UI of others (e.g., if one opened a menu, the
menu would stay closed in other clients) and also prevented the pollution of the persisted DOM with elements
and properties injected by JavaScript libraries and browser extensions.

5.3 T3: Editing Directly vs. Editing Indirectly
In a malleable computational medium, the user can edit content, but that editing can be direct or indirect. In
direct editing, the user acts on the objects they perceive to effectuate a change, such as when editing a traditional
web page’s DOM through a browser’s developer tools. In indirect editing, that change is mediated through some
sort of process, such as editing an HTML file and reloading it to see the change. Of course, there is virtually
always some level of indirection. Even in the example above, the developer tools present a mediated view of the
in-memory representation of the DOM. When the user edits that representation, the browser transforms that
edited representation into the the appropriate changes to apply to its internal data structures and reflects those
in both the rendered web page and the developer view. Nonetheless, to the user, that edit would be perceived as
acting (more) directly on the DOM, while editing the HTML file would be perceived as more indirect.

Basman et al. [2] refer to this as divergence in software systems: the difference between the representation that
software has when it is running and the representation it is being edited in. Sometimes the divergence is almost
imperceptible, e.g., when editing CSS rules that are immediately parsed and applied. The divergence is, however,
more clear when editing imperative code that needs to be manually executed, and programmers quickly learn
about runtime state where there is a stack. Normally this runtime is torn down and recreated when the code
changes but in Webstrates the JavaScript runtime should ideally persist and apply changes directly.
In the different iterations of Webstrates and Codestrates, we explored different degrees of directness to

modifying software. In the original Webstrates, users could modify the DOM through the browser’s developer
tools DOM editor or by typing in a contentEditable element (which supports a limited set of in-place rich text
editing operations within a rendered web page). In both of these cases, this editing is perceived as direct, with
the system transparently mediating the user’s expression of those edits and their updates to the DOM. Those
changes to the DOM were then synchronized to the Webstrates server. Conflicts, however, could occur, especially

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 19

in the developer tools, where edits occur on a per-element granularity. As such, edits to a DOM element are only
propagated to the DOM—and hence to the server and other clients—when the user has finished editing that
element.
Codestrates v1 introduced a way to add editable elements to a webstrate through body paragraphs. As in

Webstrates, a user could edit a webstrates in two ways: (1) directly in the paragraph using the contenteditable
attribute and (2) using a HTML editor built into Codestrates v1. A user would no longer need to leave the
environment to edit the webstrate. This HTML editor works similarly to the developer tools, serializing the DOM
of a body paragraph into text that can be edited and “saved,” and deserializing the changes back into the DOM
(although with less integration and robust tracking to, say, maintain event listeners of unedited elements in the
paragraph). Due to technical challenges, the editor was not shared and, thus, like in the developer tools, conflicts
could occur when multiple users edited the same body paragraph at the same time.

In Codestrates v2, the HTML editor modifies HTML fragments backed as plain text elements in the DOM. This
change reduces conflicts as edits are now synchronized at a keystroke level of granularity rather than at the
Codestrates v1 paragraph-level. However, it also adds a degree of indirection, since changes to that text element
are then rendered into a transient DOM element (see Figure 4). As a consequence, the user does not actually
modify the DOM in the runtime, rather, the DOM is regenerated as a projection of the rendered plain text element.
If they were to modify that rendered DOM element in the developer tools, those changes would not be persisted
and, thus, not synchronized across clients.
Approaches like React’s12 virtual DOM keep a virtual version of the DOM in memory. Whenever the virtual

DOM is changed, React compares the new version of the virtual DOM with the old one, computes the changed
elements, and only updates these changed elements in the real DOM to improve performance. Unlike this
approach, applications in Codestrates v2 usually operate directly on the transient DOM generated from an HTML
fragment. Rendering this transient DOM happens independent of the user’s JavaScript code.

5.4 T4: Big vs. Small Distance Between Development and Use Views
The development and the use of applications are usually separate, e.g., developing them with an IDE and using
them in a web browser. Our vision drives us towards blurring the line between development and use, however,
many development tasks require specific tools (e.g., syntax check, debuggers), and these may need dedicated
views that would be irrelevant or unwanted when just using the application. Different levels of separation or
distance between views dedicated to using and views dedicated to developing software might affect how hard it is
to do context switching between both activities. Switching from one context to the other can involve shifting
focus from one part of the screen to another, from one application to another, or from one device to another
(e.g., when testing mobile apps on a phone). We call this the distance between the development and use views of
software, which affects the time and effort required to switch from one view to the other.

Webstrates allows for bringing the two views closer together and reduces this distance by using webstrates that
inhabit both content, computation, and an authoring environment in the same document. Initially in Webstrates,
editing happened either in the developer tools or a separate “editor-webstrate” that transcluded the webstrate
to be edited (see Figure 7). This required a back and forth between different views when developing. While
this distance was smaller than when using conventional development tools, it still provided a clear separation
between the use and the development views.

Following the literate computing paradigm [53], Codestrates v1 weaved the development environment into the
same space as the application. This avoided the need to switch between different views and narrowed the distance
between development and use. Literate computing, however, is an atypical model for developing applications and
therefore it could be sometimes difficult to mentally separate what is part of the development environment and

12React: https://reactjs.org/ (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://reactjs.org/

20 • Borowski, Fog, Griggio, Eagan, and Klokmose

what is part of the application, e.g., confusing parts of the UI of Codestrates v1 with the UI of a word processor
implemented in it [6].
With the introduction of Cauldron in Codestrates v2, we reverted the development model back to a classic

separation of development and use by increasing the distance again. This was partly to reduce the confusion
between the UI of Codestrates v1 and the UI of the software created with it. In Codestrates v2, the Cauldron
environment is separated from the application— like a browser’s developer tools inWebstrates. While the distance
is similar to the one of the developer tools in Webstrates, Cauldron allows to be independent of the web browser
and to provide targeted features for fragments. Codestrates v2, however, still allows creating software where the
distance is as low as in Codestrates v1, e.g., the simple Jupyter-notebook clone Ganymede [5].

5.5 T5: Authoring Environment Developed in Itself vs. Not Developed in Itself
Authoring environments can be either developed in themselves or not. When developed in itself, an author-
ing environment’s implementation is part of itself and is bootstrapped from within— similar to systems like
Squeak [28] or Pharo. Such an authoring environment allows users to change core interactive behavior of this
very authoring environment from within itself —without requiring additional development tools like an external
IDE. While this empowers users to change even core behavior of their applications without the need of external
software, it also brings the risk of enabling users to break core features of their software.
Codestrates v1 was the first platform that added an authoring environment to Webstrates that was written

in itself: The implementation of Codestrates v1 was written in the same types of paragraphs and sections as
applications implemented with it. A bootstrap script was used to kick off the environment on page load. As the
implementation of Codestrates v1 was part of the documents themselves, it provided means to users to change
any aspect of the authoring environment without the need for any external tools, as, for example, done in systems
like Vistrates [1], the computational labbook [50], or a collaborative writing editor [6].

In Codestrates v2, the authoring environment Cauldron was implemented using an external IDE and updated
on the Webstrates server using custom build scripts. This step was motivated by the way Codestrates v2 was
developed compared to Codestrates v1: While Codestrates v1 was developed by the researchers themselves,
Codestrates v2 was primarily developed by two professional developers, which relied on using their known tools
and workflow in order to work efficiently. While making the development process faster and more efficient, this
came at the cost of the ability to change the authoring environment from within the system, as Codestrates v2
and Cauldron were not implemented using code fragments that are otherwise used to implement applications in
Codestrates v2.

According to Justice [31], Smalltalk and HyperCard are two other examples of platforms for modifiable software
on this spectrum. Smalltalk lets the user reprogram everything down to redefining the + operator, whereas
in HyperCard the software environment itself is not written in the same language—HyperTalk— as the user
software.

5.6 T6: Self-contained vs. Auto-updating Authoring Environment
The authoring environment of a document can be either self-contained, i.e., its implementation code is part
of the persisted part of a document and was cloned from a prototype document, or automatically loaded (and
updated) into a transient element from another webstrate or repository on page load. This behavior is similar to
copy-by-value (the first case) and copy-by-reference (the second case). While being self-contained makes it easier
to experiment with modifications on the authoring environment, being loaded from another webstrate allows to
easily distribute updates to all clients. Whether the authoring environment is self-contained or auto-updating is
unrelated to where it was developed (T5): A self-contained authoring environment can be not developed in itself
and an auto-updating one can be developed in itself.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 21

In Codestrates v1, the authoring environment was self-contained in each codestrate. This made it possible that
the authoring environment could be modified locally and modifications were persisted on the server. However,
when the code of the authoring environment was changed, every codestrate individually had to be updated with
the new code.

Codestrates v2 shifted the focus on being more easily updateable: Both the implementation of Codestrates v2
and the authoring environment Cauldron were by default transiently loaded from another repository webstrate
on each page load using WPM. Thus, once the repository webstrate was updated, it only required a page reload
to update individual codestrates. While this made rolling out updates easier, modifying the implementation of
Codestrates v2 was more difficult, as modifications to the authoring environment were lost after each page load.
To mitigate this, a second mode was added to the WPM that loads packages in a persisted way into a webstrate.

5.7 T7: Creating Something New vs. Offering Something Familiar
The vision of computational media introduces a new way of thinking about software, which requires new
concepts, tools, and infrastructure. To realize this vision, we could attempt a “pure,” principled implementation
from scratch, but this would prevent us from leveraging existing solutions such as mainstream programming
languages, libraries and other resources, and users would face a steep learning curve. On the other hand, we can
build on existing technologies (such as the web) to allow us and users to benefit from prior knowledge of familiar
tools, programming languages and knowledge-exchange resources (e.g., Stack Overflow13). However, these were
built with different underlying assumptions about how software works (e.g., that end-users would not change
functionality on runtime), which impose limitations to how close we can get to our vision.
By building on existing web technologies, Webstrates allows developers to reuse existing programming

knowledge and a vast selection of JavaScript libraries. This introduced problems when the libraries were designed
under different assumptions than those of Webstrates. For example, some libraries manipulate the DOM when
they are loaded under the assumption that the changes they make are ephemeral and reset on next page load,
which is not the case with Webstrates. Developers had to rethink some of their development practices— especially
if they developed for the “normal” web before— as Webstrates meddles with some of the fundamentals of web
development such as creating persisted web application without providing an explicit back-end.14
Initially, authoring would happen through the developer tools of the browser, which were familiar to most

with web programming experience, yet atypical in how changes made through the development tools were made
persistent. The editor webstrate we built provided familiar IDE-like interface to programming, but introduced
confusion around why it could not be used to edit the HTML of a webstrate but only embedded scripts and styles.
Furthermore, it introduced confusion that editing scripts would require a reload of the webstrate to take effect
but editing styles would not.

In Codestrates v1, most of the library issues fromWebstrates persisted and were even amplified by interference
with the authoring environment in the DOM: When using the common Bootstrap15 CSS library, for example, the
CSS styles would also interfere the representation of the authoring environment, causing various display errors
like wrong fonts, colors, or margins. Users would suddenly have to reflect about how otherwise well-known
libraries would effect their authoring environment. The introduction of transient elements, however, made it
possible to manually adapt libraries to Codestrates v1, e.g., by rendering the output of visualization libraries
such as Vega-Lite16 inside a transient element instead of directly in the DOM. For users, the unconventional way
of programming in a notebook environment could cause confusion: Being able to run JavaScript code inside
an application that is already running is contrary to how web applications are usually developed. But also the
13Stack Overflow: https://stackoverflow.com/ (Retrieved December 31, 2021)
14While the Webstrates server is technically the back-end, development of applications in Webstrate usually only happens in the front-end.
15Bootstrap: https://getbootstrap.com/ (Retrieved December 31, 2021)
16Vega-Lite: https://vega.github.io/vega-lite/ (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://stackoverflow.com/
https://getbootstrap.com/
https://vega.github.io/vega-lite/

22 • Borowski, Fog, Griggio, Eagan, and Klokmose

introduction of the run-on-load feature of paragraphs caused confusion, e.g., when users were not sure how to
execute something after the page was loaded [6].
Codestrates v2 mitigated various of the library-related problems: By introducing the protected mode, DOM

elements created by libraries would by default not be persisted on the DOM, and by moving the authoring
environment outside the <body> element, it was not affected by some CSS styles that target the body anymore.
However, using the protected mode also requires the creation of persisted elements to be made explicit: if a
developer forgets to do so, the created elements are discarded after the next reload and cause confusion as they
are not persisted to other clients. For users, Codestrates v2 aimed to create a more familiar environment with
tabbed editors and a tree browser for code fragments— allowing users to reuse their experience with other code
editors or IDEs. With Cauldron, we could provide the user with a tree-like browser to inspect and organize code
fragments like files. But unlike a conventional IDE, the “files” were stored as DOM nodes and the “folders” were
<div> elements in the DOM. For simple programs, the user would not need to be aware of this distinction, but
for more complicated software with interdependence between fragments it would suddenly matter.

5.8 T8: Working With Your Own Tools vs. Adopting Built-in Tools
To modify a malleable medium, users require authoring tools. This can be either a user’s own tool that connects to
the medium, like a code editor or IDE, or built-in tools. Especially for programming activities, it can be desirable to
integrate the medium with existing tools, as this allows users to continue to use their familiar tools and workflows.
On the other hand, not every user has an established workflow or existing tools. For these users it can be useful
to provide a built-in authoring environment, which can be used without any setup. Additionally, a dedicated
authoring environment can offer medium-specific features such as run or auto-run buttons or awareness features
such as shared cursors for collaborative coding. To use conventional tools, a conventional medium such as a
file-system would have to be emulated, and medium-specific features would be ignored.

Webstrates came without a built-in authoring environment, instead users had to either use the developer tools
of their web browser or the Webstrates File System (WFS) utility. Using the developer tools introduced various
challenges: The developer tools are intended to debug but not develop applications, thus, editing code using
the developer tools had drawbacks such as a lack of code highlighting. Furthermore, some browsers, e.g., on
mobile devices, do not even provide developer tools for users. WFS on the other hand allowed users to use their
local code editor or IDE to modify a webstrate. This, however, required user to setup this local development
environment themselves, making this a utility more tailored towards advanced users.

In Codestrates v1, the authoring environment was a central part of the document and accessible right within
the web browser. This made the environment independent of devices or web browsers and allowed users to
collaboratively author documents. To manage running individual code paragraphs and preventing some to run
on load, Codestrates v1 changed how scripts are stored in the DOM: instead of in <script> tags they were stored
in <pre> tags, rendering some functionality of WFS useless, which allowed to mount <script> elements as files.

While changing the executable code from paragraphs to fragments, Codestrates v2 continued to have the same
incompatibility with WFS, pushing users towards using the built-in authoring environment over their own tools.
Even though users can copy code both in Codestrates v1 and Codestrates v2 back and forth into their local code
editor, this causes overhead and prevents users from using, e.g., collaborative coding features such as shared
cursors. Still, for some users, as, e.g., seen in [6], this was worthwhile as their local editor allowed them to use
more advanced features like refactoring or an advanced search, as well as their personalized shortcuts.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 23

5.9 Discussion of the Tensions
The tensions fall out of the overarching trade-off of what we refer to as principle vs. pragmatism. For example,
T1 (Malleability vs. Stability) manifests this challenge in the difficulty of finding the right balance between giving
the user lots of rope to work with, but with the risk that they can easily tie themselves in knots.
In T2 (What is Shared vs. What is Not Shared), the tension reveals itself through the evolution from the

conceptually simple sharing model that what is shared is “The DOM, the whole DOM, and nothing but the DOM.”
This purely shared medium needed to evolve to handle the reality that locally but not globally-pertinent content
still needs to be expressed through the DOM—hence the introduction of the notions of transients.
In T3 (Editing Directly vs. Editing Indirectly) and T5 (Authoring Environment Developed in Itself vs. Not

Developed in Itself), the challenges of bootstrapping a computational medium ran into the needs for the medium
to be editable within itself. While it is today necessary to balance these different needs, one could imagine that
some day the tools become sufficiently rich and mature as to no longer need such external tools—much as
many programming languages eventually reach sufficient maturity to no longer depend on other programming
languages to create them.
Finally, in T7 (Creating Something New vs. Offering Something Familiar) and T8 (Working With Your Own

Tools vs. Adopting Built-in Tools), novel principles run against the recognition that users are not a blank slate;
they have baggage from their prior experiences with other environments and assumptions based on their different
principles. Some mechanism is necessary to help users unlearn what they have learned or otherwise break with
those prior assumptions.

We emphasize that the list of tensions is not exhaustive for all computational media and there could be other
tensions at stake in other contexts. One of these might relate to scalability and size, e.g., “small-scale vs. large-scale
projects.” In our work, we have focused on the development of small-scale personal software for individuals or
smaller groups— in line with early visions of computational media. The tensions that we have outlined are the
ones that influenced design decisions during the development process of Webstrates and Codestrates. We discuss
implications for computational media beyond the Webstrates family in Section 10.7.

6 TENSIONS IN PAST WEBSTRATES-BASED PROJECTS
To give a sense of how we have used Webstrates in our work, we will present three projects in which Webstrates
has been the technical foundation. We will exemplify how some of the above tensions have materialized in the
projects.

6.1 Computational Labbook
We collaborated with a group of nanoscientists to explore how their use of laboratory notebooks could be
remediated as computational media [50] using Webstrates and Codestrates v1. Through a series of participatory
design activities over the course of one year, we built a prototype to support their computational design of
macromolecules—what the scientists referred to as the “dry” part of their work. In the computational labbook,
they could create a computational workflow by drag-and-dropping various tools from a tool panel, and mix it
with written notes. Figure 8 shows a notebook where an ASCII-based pattern editor for RNA structures have been
added together with a tool for visualizing the structure in 3D. We observed how most of the scientists saw dealing
with scripts and code as a necessary but secondary aspect of their work. So, contrary to traditional computational
notebooks (such as Jupyter), code was not made front and center. The implementation of the various tools was
accessible and editable, but in ordinary use, a computational workflow was created using drag-and-drop.

The computational labbook aggregated a number of scripts and tools the scientists otherwise would use through
the command-line and multiple applications. Each labbook was a self-contained computational environment
that they could configure for a particular experiment, share with colleagues through its URL, and interact with

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

24 • Borowski, Fog, Griggio, Eagan, and Klokmose

Fig. 8. The computational labbook prototype supports the computational design of RNA molecules. On the right side is a set
of tools that can be dragged into the main work area in the center. For instance, the screenshot shows a tool that converts
the ASCII representation of molecules into a 3D visualization (reprinted from [50] with authors’ permission).

and edit collaboratively. Some of the tools would rely on distributed computing, and execute computationally
heavy scripts on a dedicated server. This reduced the scientists need for maintaining a complex computational
environment locally on their computer.

In the computational labbook, stability was provided with a set of tools, or building blocks, that could be used
plug-and-play to create new computational workflows— in line with the term reconstruction [15]. However, the
scripts which were embedded in the tools are reprogrammable from within the labbook. In day to day work,
the notebook could be used as a regular piece of software, but in the critical situation where reprogramming
was needed, it was possible (T1: Malleability vs. Stability). We intentionally increased the distance between
development and use views (T4: Big vs. Small Distance Between Development and Use Views) as programming
was seen as a necessary but not primary activity by the scientists. Being able to adjust this distance for particular
situations of use, we see as a critical aspect of computational media. Each labbook contained all scripts (T6:
Self-contained vs. Auto-updating Authoring Environment). This meant that changing a script in one labbook
would not have an effect on others— for good and for ill. That changes to a script did not propagate when they
were done to, e.g., accommodate a particular experiment, was meaningful, if they, however, were done to fix a
general bug such as a memory leak, it was not. Hence, computational media requires mechanisms for managing
this tension, of which we yet only have implemented rudimentary support for expert users with our Webstrates
Package Manager.

6.2 Building Prototypes for Public Libraries
In the PLACED project [24, 65, 66], we collaborated with public libraries in Sweden, France, and Denmark on
how to digitally support and document events that happened in the libraries. This included events such as book
readings, crafts workshops, talks, courses, and more. The libraries often relied on social media pages and struggled
with documenting what had happened, been discussed, or produced during the activities. In this project, we used
Webstrates as a platform for rapid, exploratory, and iterative prototyping of new tools for both visitors to the
libraries and organizers of events.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 25

We built a prototype, PARTICIPATE, in which events were represented with what we called an activity sheet
(see Figure 9). Activity sheets were inspired by event pages on social media such as on Facebook. Participants
could share posts, images, and access books in the library related to the event. Organizers could configure the
activity sheet, enable Q&As, setup a bookshelf, and more. In many ways PARTICIPATE is a conventional web
app and does not exhibit characteristics of computational media. However, the Webstrates platform allowed us to
design high-fidelity functional prototypes with data persistence and real-time collaboration without the need for
back-end development. This is not unlike how HyperCard was used in the 1980s to create functional prototypes
in early participatory design projects [19].

From the surface perspective of the user, it was not possible to see the difference between the Webstrates-based
prototype and a regular web application. Webstrates is built within the ecology of the web and, hence, frameworks
and libraries creating a familiar look and feel could be used (T7: Creating Something New vs. Offering Something
Familiar). PARTICIPATE was developed by professional programmers that used their everyday tools by adapting

Fig. 9. The PARTICIPATE prototype. A high fidelity prototype of a web app built on top of Webstrates. It shares characteristics
with a event page on social media where participants can post messages and pictures as well as share inspiration and
references to books in the library. Instead of using a conventional server with a database, content is stored directly in a
webstrate (reprinted from [65] with authors’ permission).

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

26 • Borowski, Fog, Griggio, Eagan, and Klokmose

our Webstrates file system integration to integrate with their own version control and issue tracker system (T8:
Working With Your Own Tools vs. Adopting Built-in Tools).

With Webstrates, we have yet to realize fine grained access control. Currently, a user logged into a Webstrates
server can have read or write access to a webstrate such as an activity sheet in PARTICIPATE. Users who were
logged in with an organizer account could configure an activity sheet. However, ordinary users also need write
permission to the activity sheet to, e.g., create new posts. Hence, the security model we employed was light
(what we have been referring to as toilet door security) and the configuration UI for ordinary visitors was just
hidden through CSS. Anyone a bit web development savvy could in principle open the developer tools of their
browser and edit the activity sheet— something we never experienced. This relates to two tensions. Firstly, T1
(Malleability vs. Stability): To rapidly iterate on prototypes we leveraged a platform where all edits could be
done on the client side sacrificing the stability of server side programming. Secondly, T4 (Big vs. Small Distance
Between Development and Use Views): From the perspective of the system using and developing is technically
indistinguishable and it is impossible for the system to guess if an edit to the DOM is considered the one or the
other. This, we believe, is an inherent tension in computational media.

6.3 Programming Assignments
We have used Webstrates on multiple occasions to develop tools for teaching, and we will highlight two of them
here. In the first occasion, Webstrates and Codestrates v1 were used to facilitate programming assignments in an
interactive systems class [9]. 58 students worked in pairs developing small interactive applications, which would
be developed inside the notebook interface. Multiple exercises could co-exist in the same notebook, together with
instructions and notes. The workflow relied heavily on the use of the built-in package manager [8]: (1) Teaching
assistants (TAs) would prepare programming assignments in a private codestrate and push assignments as
packages to an assignment repository. (2) Students would then pull the assignments to a codestrate that they
collaborated on in pairs. (3) After students solved the assignment, they handed it in by pushing it to a submission
repository. (4) TAs would then pull the last submitted version before the assignment deadline— enabled by the
timestamped version history of a webstrate— into their own codestrate and grade it. (5) TAs, lastly, would push
the graded assignment back into the submission repository of each respective group.
In another occasion, Codestrates v2 has been used to develop a tool to create interactive exercise sheets for

programming (see Figure 10). These exercise sheets have been used for multiple years in an introductory class to
programming with over 100 students. The instructor would author exercises through Cauldron with an extension
for easily instantiating new exercises with various types (JavaScript, CSS, or DOM manipulation exercises). The
instructor would write small unit tests for the exercises, which would automatically be run in the students’
sheet for immediate feedback. Each student would generate their own copy of the exercise sheet of the week,
and hand-in the URL to their TA for grading. The TA could leave feedback for individual exercises simply by
appending a parameter to the URL of a codestrate, which would show a textbox per exercise for comments.
These two uses of Webstrates and Codestrates for teaching touches upon several tensions. In the case of the

exercise sheets, using them with 100 students required a certain level of stability (T1: Malleability vs. Stability).
We did not want the students to be able to break their exercise sheet unintentionally— a problem that happened
while using the less stable Codestrates v1 in the interactive systems class. We therefore hid the ubiquitous “Edit”
button, which was simply done through a line of CSS. Furthermore, the exercise sheets ran in protected mode
to avoid browser extensions to break the document. Finally, some exercises required DOM manipulation. Here,
we sandboxed the area the students manipulated in an <iframe> to avoid, e.g., a line such as the following that
would empty the whole document: document.body.innerHTML = "". It is worth noting that the students always
had the opportunity to edit an assignment through the developer tools or open Cauldron by appending the

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 27

Fig. 10. Codestrates v2 based exercise sheet for teaching programming. Left shows the students’ view of the exercise, right
shows how the instructor can edit the exercise using Cauldron.

parameter ?edit to the URL of their sheet. The latter would give access to the unit tests from where they in
principles could derive the assignments’ answers. However, we never experienced this to be a problem.

In the interactive systems class, students generally were excited by the possibility of real-time collaboration on
solving exercises. However, they also struggled with edits that would conflict in one way or the other (T2: What
is Shared vs. What is Not Shared). For example, if a student reloaded the page while another student was editing
a script that could cause the script to not run, or when a student collapsed or opened a code editor that would
make the window of the other student scroll.

As mentioned above, in the interactive systems class assignments were distributed using the package manage-
ment of Codestrates v1. This made it easier to correct mistakes in the assignment at a later point (T6: Self-contained
vs. Auto-updating Authoring Environment). Still, updating an assignment would reset the code already written
by students. In the programming exercises using Codestrates v2, the exercise framework was also dynamically
distributed as a package. The programming assignments themselves, however, were embedded into the prototype
codestrate students copied. Here, changes to the programming exercises would require students to create a new
copy and move over code from their old one.

7 THE REPROGRAMMABLE GAME CHALLENGE
After we finished the development of an initial version of Codestrates v2 and Cauldron in 2020, we used the
prototype in a study with programmers. The aim of the study was to get open-ended empirical insights on how the
particular instantiation of computational media realized through Codestrates v2 and Cauldron was experienced
by users. Additionally, to evaluate the usability and understandability of Webstrates and Codestrates v2 to further
improve the platform in the future. To make the tasks for participants more playful and explorative, and to
encourage collaboration, we decided to conduct the study as a game challenge to implement a reprogrammable
multiplayer game. That is, the outcome of the game challenge itself was supposed to be a piece of computational
media. This is described in more detail in Section 7.2.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

28 • Borowski, Fog, Griggio, Eagan, and Klokmose

Participants P1 P2 P4 P5 P6 P7 P8 P9 P10

Programming 8 2 8 8 6 8 7 8 10
Web Development 6 3 7 5 6 7 8 6 5
JavaScript 8 2 9 6 6 7 9 7 8
Game Development 5 4 5 1 3 1 2 2 6
Webstrates 8 3 7 7 2 9 4 5 1
Codestrates v1 4 3 5 6 2 1 2 5 3

Developed with Webstrates yes no yes yes no yes no no no
Developed with Codestrates v1 no no yes no no no no yes yes

Table 1. Overview of the participants’ self-assessed programming knowledge on a scale from 1 (no knowledge) to 10 (expert),
and whether they developed with Webstrates and Codestrates v1 before. (Only participants that filled out the demographic
questionnaire are listed.)

7.1 Participants
We recruited participants for the study creating posts promoting the study in the Slack workspace of Webstrates
and on Twitter, as well as inviting potential participants directly, e.g., people that used Webstrates before.
Participants were required to have experience in web development and JavaScript programming— experience
in game development or with Webstrates were not a requirement. 23 people signed up to participate in the
study, 12 of them participated in the interviews, and 9 of those filled out the demographic questionnaire. Three
interviewees described their gender as female and six as male. Interviewees’ age ranged from 24 to 37 years.
Five interviewees described their occupation as being Ph.D. students, one as a postdoc, two as researchers,
and one as a software engineer. Participants’ self-assessed programming knowledge is summarized in Table 1.
All questions were phrased as “knowledge of [skill]” on a scale from 1 (no knowledge) to 10 (expert) with no
intermediate descriptors apart from numbers. Further, participants were asked if they had previously “developed
with Webstrates/Codestrates v1” as yes-or-no questions. Some participants worked together in groups, Table 2
summarizes the groups and the games they implemented.

7.2 Procedure
The study was conducted in June 2020 and took place entirely remotely, due to the COVID-19 pandemic and the
diverse locations of participants. After recruiting participants, the study was kicked off by sending participants a
design brief describing the task and scope of the study. Next, participants had three weeks of coding time to work
on their games in their own time. After the coding time, participants presented and demonstrated their games in
a joint virtual meeting. Finally, we conducted semi-structured interviews with 12 participants. Participants were
not compensated for their time and volunteered in partaking in the study.17

7.2.1 Design Brief. In the week before the game challenge, participants received an email with the precise
schedule of the study and an invitation to a Slack workspace that we prepared for the study. At the first day of the
game challenge, participants received a design brief including the task description of the study, documentation
of the Webstrates, Codestrates v2, and Cauldron platforms, and a link to the consent form and a demographic
questionnaire.
The challenge consisted of four tiers: (1) Make a small game, (2) make it multiplayer, (3) make the rules

or part of the rules editable through programming, and (4) allow users to edit the rules collaboratively (i.e.
17A grant agreement requires us to work with subjects on a volunteer basis.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 29

Groups G1 G2 G3 G4 G5 G6 G7 G8

Participants P1 P2 P3 P4, P11, P12 P5 P6, P8 P7 P9, P10
Game Uruburu - Card Game The Teachable Game Flappy Bird Tank Game - Rouge

Table 2. Overview of the groups that worked together and the titles of the games they implemented.

anyone can change the rules at any given time). Participants were encouraged to fulfill all tiers but it was not a
requirement. There were no restrictions in what game participants could develop and they were allowed to modify
the examples we provided them with. Participants were given the opportunity to work alone or in groups with
other participants. For the challenge, participants should only use Cauldron for the development of their game
and no external editors. Participants were, however, allowed to use any JavaScript libraries, such as Phaser,18
P5.js,19 or Three.js.20

The documentation of the platform included the documentation of Webstrates, Codestrates v2, and Cauldron.
We created a “getting started” video and for each of the three platforms an introductory documentation and a full
API reference. Furthermore, we created examples of small applications using Cauldron (a todo-list and a simple
slide show application) and two games implemented in Cauldron (a “Baba Is You” inspired puzzle game and a
“Tank Trouble” inspired multiplayer game; see Section 8). The examples were intended as a starting point for
participants to see how applications and games could be implemented in Cauldron.

7.2.2 Coding Time. After receiving the design brief, participants had 16 days (later 21 days, see below) to work
on their games. Participants could themselves decide when and for how long they wanted to work on their games.
In the provided Slack workspace, participants could communicate with and receive help from each other, as
well as, receive support from the facilitators of the study and the developers of the Codestrates v2 and Cauldron
platforms. Participants were also encouraged to report any bugs they encounter in the Slack channel.

After inquiring on Slack after one week of the challenge how participants were progressing with their games,
we found that many had yet to start with the challenge. Thus, we decided to extend the timeframe by another
5 days, resulting in a total of 21 days for participants to work on the game challenge.

7.2.3 Game Demonstration. After the coding time, participants were invited to present and demonstrate their
games in a joint virtual meeting. Participants presented five games live and one game in a recorded video
presentation, as this group did not have time to participate in the meeting. After each presentation, participants
had time to discuss and comment on each other’s games. The meeting lasted one hour.

7.2.4 Interviews. In the week following the game demonstration, we conducted semi-structured interviews with
participants. We conducted ten interviews with a total of 12 participants— eight interviews with an individual
participant and two interviews with two participants. Each interview was semi-structured and covered topics such
as what game participants developed, how far they got, what inspired their ideas, as well as questions about using
the Webstrates, Codestrates v2, and Cauldron platforms. For participants who worked in groups, we also asked for
their experiences in collaborating in Cauldron. The duration of interviews varied between participants from only
around 15 minutes up to 75 minutes; most interviews lasted between 30 and 45 minutes. This depended, among
other things, on the progress that participants made on their game and their prior knowledge of Webstrates.

18Phaser: https://phaser.io/ (Retrieved December 31, 2021)
19P5.js: https://p5js.org/ (Retrieved December 31, 2021)
20Three.js: https://threejs.org/ (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://phaser.io/
https://p5js.org/
https://threejs.org/

30 • Borowski, Fog, Griggio, Eagan, and Klokmose

7.3 Data Collection
In the beginning of the game challenge, we collected demographic data about the participants (the introductory
questionnaire can be found in the supplementary material of this article). We recorded the audio and video of the
game demonstration meeting. All resulting games and their code version history were preserved on our servers.
We recorded only the audio of some interviews, while for others we also recorded video, which included screen
recordings of the participant showing their game as well as drafts and resources they used for inspiration or help
in the development process. All of these data were associated with pseudonymized IDs and stored on secure
university servers. Furthermore, we collected the game prototypes that the participants implemented.

7.4 Analysis
We first transcribed all interviews verbatim. For parts that were difficult to hear, we either omitted that section or
provided two or three likely alternatives so as to keep the transcriptions as close to the actual wordings as possible.
Some interviews were conducted in Danish, those were then translated into English, striving for equivalence in
meaning and interpretation in favor of transliteration [55]. This was less a problem in our context, as Danish and
English are closely related, and our interviewees largely share cultural backgrounds. When reporting quotes
from interviews in this paper, we show “cleaned up” versions for legibility that preserve the original meaning.
For instance, instead of “I- I- I think that” we write “I think that.”
The main goal of this analysis was to gather empirical insights about how the design decisions behind

Codestrates v2 and Cauldron affected participants’ experiences and understanding of computational media. For
this purpose, we used the eight design tensions described in Section 5 for driving the analysis of the interviews
and reflecting on how the design trade-offs that led to Codestrates v2 and Cauldron ended up helping or
obstructing the creation of computational media. Thus, the results are not intended as an exhaustive picture
of how participants used Codestrates v2 and Cauldron but as a discussion of how participants’ breakdowns,
frustrations, and confusions help us reconsider our design decisions and inspire new trade-offs when navigating
the tensions between the vision and the pragmatics of computational media.

We followed a two-stage reflective thematic analysis [10] approach. In the first stage, we used the eight tensions
in Section 5 as the guiding themes for a deductive coding of all interview transcripts. During this first stage,
we focused on identifying participant comments that reflected any of the eight tensions and their associated
concepts (e.g., comments related to malleability, stability, and the tension between them). One author coded all
interviews, while three other authors each coded two or three of them, so that all interviews had been coded
by at least two authors. The coding consisted of associating interview fragments with one or multiple tensions
in a spreadsheet, as well as annotating how the design trade-offs behind Codestrates v2 and Cauldron shaped
users’ experience and understanding of computational media (e.g., to what extent the tools met participants’
expectations of malleability and stability).

The second stage involved a detailed discussion of all interviews, mixing deductive coding (to discuss the data
in terms of the tensions) with inductive coding (to identify nuances in the data and create subthemes). Over
multiple meetings, four of the authors went through all of the interviews together, line by line, and discussed
why they were coded for which tension. As part of these discussions, we often re-watched the recorded demos
and inspected the implementation code of the games to aid in our interpretation of the interview data. The
main goal here was not to find agreement between coders for achieving more “reliable” results, but rather to use
disagreements and differences between coders as discussion drivers [47]. The discussions aimed at identifying
the most salient and interesting patterns in participants’ experiences, which led us to creating subthemes as well
as reflecting on our “lessons learned” about realizing computational media.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 31

8 THE GAMES
Before we present the results of our study in the next section, this section will summarize the games the eight
groups have worked on during the study. We refer to participants as P1 – P10 and to groups as G1 –G8 in this and
the following sections. G2 and G7 did not manage to implement a game, but we still report on their experience.

8.1 Group 1: Uruburu
P1 worked alone on his game Uruburu (see Figure 11a). The game of P1 is inspired by the video game Snake21: A
snake with two heads is used to move through a maze with the goal to reach one head with the other. This is
done by eating items to grow. The multiplayer aspect of the game would be that each head is controlled by a
different player, thus, they have to collaborate to solve puzzles.
P1 spent a considerable amount of his time ideating about the gameplay, multiplayer, and how to make the

game malleable. Being familiar with Webstrates, P1 aimed to represent the levels as SVG vector files that would
be synchronized in the DOM of Webstrates, allowing to be inspected and modified by users in the developer tools.
P1 got started by implementing the levels, design of the snake, and some basic gameplay mechanics such as

moving the snake or adding walls. One head could be controlled by using the WASD keys, the other with the
arrow keys. Further gameplay mechanics, like growing, eating items, or multiple levels, however, were not yet
implemented.

8.2 Group 2
P2 tried to use Codestrates v2 and Cauldron alone but did not succeed due to lacking programming knowledge
(see also Table 1) and time to spend on the game challenge. P2 felt overwhelmed by Cauldron and its complexity
and struggled to use basic functionality like creating fragments and toggle them to auto-run. A reason was that
the development environment in itself was not self-explanatory and did not support users in programming as
other block-based environments P2 tried out in the past. Due to these difficulties, P2 did not attempt to create a
game.

8.3 Group 3: Card Game
G3 originally consisted of P3 and one of the authors who acted as a participant-observer during the ideation
phase and early stages of the prototyping phase. The researcher let P3 be in charge of implementation details and
other technical decisions. After this, P3 worked on their own to develop and implement the game. Importantly,
the author did not participate in the demo session, was not interviewed, and did not interview P3.
G3 developed a card game based on Uno22 that would accommodate up to four players (see Figure 11b). In

contrast with the original Uno game, this game was meant to allow players to dynamically alter the rules along
the way. Further, the rules were envisioned to be arbitrary and not limited to a particular set of pre-defined rules.
Importantly, the game was designed as to not enforce rules immediately so that players could potentially break
the rules and get away with it, unless another player explicitly asked the system to check if a rule was broken.
P3 decided early on to develop the game in their own code editor Visual Studio Code with the plan to later

migrate it to Codestrates v2 and the Cauldron editor. This ended up causing issues with sharing the game among
multiple clients as will be unfolded further in the findings. Therefore, the game only worked locally on a single
computer at the time with all participants having to be co-located. This also meant that every player could
potentially see all players’ cards.

21Snake video game: https://en.wikipedia.org/wiki/Snake_(video_game_genre) (Retrieved December 31, 2021)
22Uno card game: https://en.wikipedia.org/wiki/Uno_(card_game) (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://en.wikipedia.org/wiki/Uno_(card_game)

32 • Borowski, Fog, Griggio, Eagan, and Klokmose

(a) Group 1: Uruburu.

(b) Group 3: Card Game.

(c) Group 4: The Teachable Game.

(d) Group 5: Flappy Bird.

(e) Group 6: Tank Game. (f) Group 8: Rouge.

Fig. 11. Screenshots of the games implemented by the participants.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 33

8.4 Group 4: The Teachable Game
G4 consisted of P4, P11, and P12 who based their game design on two core technologies, WebRTC and Tensorflow,
that P4 and P12 had previously worked with respectively. The game was conceived as a “hot potato”-style23 game
with either a timed bomb that you need to pass on to other players or a randomly moving bomb that you need to
avoid.
The playing field is a Windows 95-like desktop dotted with folder and terminal symbols, and each player is

represented with their live video feed in a small window that can move around based on tracking gestures (see
Figure 11c). The game allows for two different models of tracking: face and hands. To move the video feed avatar,
a player moves the respective body part around in the window based on a pre-trained machine learning model.
To alter the rules, a player must move to a “terminal” symbol, which prompts the player for a global rule

change such as reversing the X- or Y-axis or changing the tracking model. The other players are not explicitly
notified that any changes have happened though they are immediately affected by them. The game was not
fully finished as the bomb element was never written. Thus, it was possible to play the game but there were no
conditions for winning or losing.

8.5 Group 5: Flappy Bird
P5 worked alone in creating a Flappy Bird24 clone for multiple players (see Figure 11d). Each player controls a
flying bird on a continuously moving background with pipes of various lengths that they then need to avoid by
flapping. The only control is the space bar that makes the bird flap upwards to counteract gravity pulling the bird
down. The game field is synchronized among all players and each bird is likewise synchronized among everyone,
thus making it possible to see where the opponents are flying. To make the rules editable, P5 separated some of
the game logic in a single code fragment that they then exposed to the player as part of the game window. In
essence, the game window, thus, consists of both the actual game and the program code in which a player can
manipulate parameters, e.g., for the gravity or the amount of pipes. The game field is dynamically generated,
and the game ends once every bird has crashed into the ground or a pipe. The player with the highest score, i.e.
number of pipes passed, wins.

8.6 Group 6: Tank Game
P6 and and P8 worked together to create a 2D tank game (see Figure 11e). Unlike the other games that came out
of the challenge, the tank game is a direct adaptation of an example25 given to the participants by the authors.
The participants decided to keep most of the original gameplay mechanics. That is, the game is distributed among
clients, each player controlling a tank with the WASD keys and firing bullets with the space bar. If hit by any
bullets in the game, the player is then disintegrated and can respawn to play again.
P6 and P8 implemented a portal that— by shooting it —would transfer all players to a new “world” with a

different set of rules that you then would have to explore by playing. While originally considering having players
edit the rules manually in the program code, the group decided that this would break the pacing of the game and
thus opted for a different approach. When the portal is shot, a random parameter related to the game mechanics
is changed to a random value, e.g. the tanks would rotate faster or slower, or you would have more or fewer
bullets available. The portal moves around randomly on the playing field and its position is not synchronized
among players, meaning that each player sees a unique position of the portal. G6 also considered implementing a
scoring system, a leaderboard, and other game modes such as team deathmatch but, due to time constraints, did
not.

23Hot Potato game: https://en.wikipedia.org/wiki/Hot_potato (Retrieved December 31, 2021)
24Flappy Bird: https://en.wikipedia.org/wiki/Flappy_Bird (Retrieved December 31, 2021)
25Codestrates Tank Trouble example: https://demo.webstrates.net/TankCauldron/release/?copy (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://en.wikipedia.org/wiki/Hot_potato
https://en.wikipedia.org/wiki/Flappy_Bird
https://demo.webstrates.net/TankCauldron/release/?copy

34 • Borowski, Fog, Griggio, Eagan, and Klokmose

8.7 Group 7
Much like P2, P7 did not end up developing a game. In their own words, it was mainly due to lack of game
development experience. The intent was to create a game in the style of The Incredible Machine26 in which the
goal is to construct elaborate “Rube Goldberg-esque” contraptions. P7 explained how the rules that were to be
altered would then be parameters of the game physics such as gravity and bounciness of particular elements.
While they did manage to create an application through Codestrates v2 and Cauldron containing a few game
elements, P7 struggled to implement a working physics model and thus ended the challenge rather early.

8.8 Group 8: Rouge
The single-player 2D game by P9 and P10, Rouge, is an homage to the early dungeon crawler Rogue using emoji
symbols instead of textual glyphs, each taking up a 1 × 1 space in the game field (see Figure 11f). The player
controls a red lipstick that they can move around using the arrow keys. The purpose of the game is to delve deep
into the dungeon. On every level is a set of stairs through which the player will be transported to the next level,
and each level in Rouge consists of a number of automatically generated rooms and hallways that the player
must explore.
One salient feature of Rouge is the commands. By using the letter keys on the keyboard, a player is able to

write on the ground in a given direction so as to form commands that enforces rule changes, e.g., giving the
player the ability to walk through walls or becoming solid again. However, as the player moves along with the
writing and the commands have to fit inside a particular room, finding the right spot to write commands becomes
a core part of the game strategy. This was motivated by the game Baba Is You.27 G8 further planned for providing
multiple lipstick colors, each enabling a particular writing mode. Ultimately, however, the game was not fully
finished, being judged by P9 and P10 themselves to only be around halfway done.

9 RESULTS
We structure the results around the tensions from Section 5 to report on the aspects of the design of Webstrates,
Codestrates v2, and Cauldron that impacted participants the most— especially focusing on the breakdowns,
frustrations, and confusions they experienced during the challenge. We present findings on six out of the eight
tensions, because we did not identify new insights for tensions T5 (Authoring Environment Written in Itself vs.
Not Written in Itself) and T6 (Self-contained vs. Auto-updating Authoring Environment) in the data. For each of
the six tensions, we present subthemes describing salient patterns in the interview data. These subthemes are
not meant to be exhaustive of each tension; rather, they emphasize aspects that were surprising, interesting, or
otherwise illustrative of open challenges for future work on computational media. Each section is concluded
with a short summary of takeaways from the findings.

9.1 T1: Malleability vs. Stability
The tension between malleability and stability affected most participants. It manifested both in the versioning
system of Webstrates, which enables to roll back changes, as well as in defining explicit safeguards to the code by
defining hot and cold spots in the code, and in the possibility to break the development environment.

9.1.1 Versioning. Various versioning practices turned out to be central safeguards to accidents. While versioning
is core to howWebstrates operates and Webstrates provides a versioning API with an integrated revision browser
in Cauldron, not all participants perceived it as a real versioning system that could be trusted. Some explained this
was due to feeling a lack of control in what changes comprised a version and that this was “not transparent” (P10).

26The Incredible Machine: https://en.wikipedia.org/wiki/The_Incredible_Machine_(series) (Retrieved December 31, 2021)
27Baba Is You: https://en.wikipedia.org/wiki/Baba_Is_You (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://en.wikipedia.org/wiki/The_Incredible_Machine_(series)
https://en.wikipedia.org/wiki/Baba_Is_You

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 35

You don’t really know how many steps to go back. Because, is it a line of code added, is it a character, is
it like the last half-hour that I’ve been working? (P9)

Indeed, code fragments are elements in a webstrate’s HTML, thus every change to the code— including the
addition of a single character— is a change to the DOM that is persisted as a new version. However, participants
seemed to disregard that Cauldron was just a window to editing the DOM and expected a more traditional way
of versioning “just the code” of their game. For example, P3 was aware of the revision browser, but was expecting
it to focus on the changes to the code fragments and not the malleable system as a whole:

When you navigate the revisions, it shows you the website [i.e., the game]. And sometimes there were
changes in the code that weren’t reflected [in the interface]. So it was difficult to know where were the
differences in the code base. (P3)

To have a better sense of control over the code versions, G8 ended up using Google Docs as a make-shift
versioned archive. P9 considered Google Docs a “safe place” to archive their code in. Others used the cloning
capabilities of Webstrates to recreate a working version of a broken system. For example, the tank game group (G6)
had started their project by cloning one of the provided examples, so when their application broke, they created
a new copy of the example and copy-pasted their code piecemeal to identify the bug and recover from there.
An important consideration in designing future tools might be to allow users to separate versions caused

by changes in program code from versions caused by application use. As Webstrates has automatic built-in
versioning, the development and use activities are conflated with regards to versioning. This conflation of versions,
in turn, rendered the versioning system useless as illustrated by G4:

We took the kind of bad choice that we also saved where every player[’s camera feed] was, we also saved
their position in a JSON fragment. And that had the effect that every time a player moved, a new version
appeared. [. . .] We were up in like 30,000 or something [versions]. And that actually made it kind of
useless to roll back. (P4)

All participants developed working strategies to cope with breakdowns, and none experienced significant loss
of work due to the malleable nature of the system. Interestingly, some of the wishes of participants, e.g., HTML
fragments using a persisted DOM (see Section 9.2) would have exacerbated some of these issues even further,
as in these cases even simple changes to the state of the game would have created new versions in the version
history, convoluting it even further.

9.1.2 Losing Access to Cauldron. A few participants introduced bugs in the code of their games that caused them
to lose access to Cauldron, which they would have needed for fixing the bugs. Since the game and Cauldron ran
within the same browser tab, sharing state, screen real-estate and memory resources, some bugs in the game
could also break the authoring environment itself. For example, P7 introduced a bug that would prevent the page
from loading at all: “How can I even fix this error if I cannot see the code?” P3 had a similar problem where their
game was covering the “Edit” button so that they could not access Cauldron anymore.

9.1.3 Hot Spots vs. Frozen Spots. Participants made explicit efforts and code-structuring decisions to control
what parts of the games players should or should not change. A common approach to scoping the malleability of
the game relied on defining hot spots and frozen spots in the game code, i.e., code that may be changed by players
and code that should stay untouched. Participants seemed to expect most code to be frozen, except for the rules
and mechanics that players were allowed to reprogram. For instance, P1 wanted to let players change the maze
logic of his Uruburu snake game (e.g., letting the snake pass through a wall or not), so they created dedicated
fragments for two types of hot spots: an HTML fragment called “game-area” with the HTML of the maze, and
a JavaScript fragment called “uruburu-logic,” where a function associated CSS classes of game elements to a
Boolean determining whether the snake could go through them or not. In this way, players could see what CSS

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

36 • Borowski, Fog, Griggio, Eagan, and Klokmose

class to assign a maze element to let the snake go through it, or change the logic for all elements tagged with a
specific CSS class.
Some participants tried to make hot spots accessible to players by exposing code and selected parameters in

the game interface itself. P5 used the capability of Codestrates v2 to instantiate an editor in the view for a specific
code fragment to expose a part of the game logic as reprogrammable, e.g., the “gravity parameters” that affected
the Flappy bird (see Figure 11d). P3 offered players a list of text boxes for redefining the behavior of each card in
his game, where they could link the name of a card (e.g., “3-hearts”) to how many cards it would make the player
draw from the deck and whether it changed who the next player was.
We found it interesting that beyond helping players identify hot spots, most participants seemed to feel

responsible for ensuring the stability of the game themselves. Even though the goal of the challenge was to
build a reprogrammable game, there were concerns about Cauldron granting players uncontrolled access to the
whole source code: “if they can open the editor and change the way things bounce around, well they can change
anything” (P7). We believe that the more restrictive interfaces for changing the rules of the games, such as
P3’s textboxes or G4’s dropdown menu, are not only attempts to make the rule-changing easier to use but also
strategies to nudge restrictions into what users could change. For example, P5 feared that by having players
change the code directly within the game rather than by using Cauldron they were more likely to introduce
syntax errors, for which they imagined creating safeguards with block-based programming to “make it simpler
for non-programmers to understand what’s going on.”

9.1.4 Takeaway T1: Malleability vs. Stability. To ensure that users confidently can changemalleable software,
they need to be able to trust a versioning system and easily be able to roll-back changes. While Webstrates
provides extensive versioning, it is ill understood by many users rendering it useless for them. Versioning
needs to be meaningful, even more when the versioning of both the code and the application state share the
same space. When it comes to making applications malleable and reprogrammable by other users, we found
that participants were aware of these issues and considered exposing only certain hot spots of the code
to users while keeping the rest as frozen spots. Here, future computational media should provide explicit
mechanisms to support creators in making these safeguards in a flexible manner. Finally, designers of
computational media should carefully consider how to let users revert when breaking their own authoring
environment.

9.2 T2: What is Shared vs. What is Not Shared
Participants faced many confusions and surprises as they found differences between what they expected to be
automatically shared (i.e., synchronized across clients) and what Codestrates v2 actually shared. At the same
time, some parts of documents were automatically shared but participants expected them not to be shared.

9.2.1 Expecting Fragments to Share Their DOM Output Across Clients. Some participants assumed that because
fragments are shared (i.e., collaboratively editable), their output is shared as well. This association is often implied
in the way that they talked about fragments, e.g., “those sort of fragments, they are not synchronized between
clients” (P4)— fragments are synchronized between clients; their generated DOM view is not.
Participants that had previous experience with Webstrates and Codestrates v1 were confused when noticing

that the DOM output of the fragments was not automatically shared. While this decision was made to better
support collaborative editing of a fragment, participants that collaborated in Cauldron still expected the view of
fragments to synchronize as in Codestrates v1. For example, P1 carefully designed their game entirely based on
the assumption that DOM elements would be automatically synchronized across all players: “I also felt lightly

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 37

betrayed by the tools because I felt like the very fact that you didn’t have to do anything to persist [share] stuff was
the key value of Webstrates.” P4 had previous experience on Codestrates v1 and had similar expectations:

It’s as if some of the idea that everything just synchronizes, that’s removed a bit now, that it had been
drawn back. And that can be a little sort of counter-intuitive because I think, like, well my basic thought
is “okay, I have this DOM that just synchronizes.” And then all of a sudden, then, then it, it doesn’t
actually do that. (P4)

9.2.2 Expecting Fragments to Share State Across Clients. A common surprise among participants was to realize
that the automatic sharing of a webstrate’s DOM did not come with automatic sharing of state, e.g., instantiated
JavaScript objects. In other cases, some used JSON fragments to parametrize game rules and system properties
(e.g., what actions or penalties apply to a player when they draw a card from a deck) and faced similar surprises
when noticing that editing a JSON fragment did not update the state of the system but required a page refresh.

P3 designed a Uno-like card game where the cards that are drawn from a deck hold the rules about what
should happen next, e.g., “the two of hearts makes the next player draw two cards.” The deck of cards should be
shared among all players, and each player should see their own hand but not the one of other players. Rather
than developing the game with Codestrates v2 and Cauldron from the start, P3 chose to first build a prototype
with Vue.js,28 a JavaScript framework that keeps views synchronized with their models, and then move the code
to Codestrates v2 to automatically synchronize all players every time one of them changed a Vue.js model (e.g.,
when a player draws a card). However, once P3 started testing the game with multiple clients they realized that
the state of the deck and the cards in players’ hands were not shared automatically: “So we wanted all the players
to have the same shuffled deck and that’s not the model of Codestrates. You don’t share state, yes, you only share
view.” As a workaround, P3 tried to use a JSON fragment as a shared model across players, expecting it to work
as a live object with synchronized state across clients, which it, however, does not: it only synchronizes the DOM
content between clients.
G4 used a JSON fragment as a centralized model to share state across clients. In their case, each player had

a camera feed on the gameboard, and their head movements controlled the position of their feeds. The JSON
fragment was updated by each client with the coordinates of the camera feeds, and all clients listened for changes
to this fragment to reload the JSON and update the position of the players on the screen. However, it became
clear that JSON fragments were not designed to support the requirements of such real-time interactions and P12
reported that in hindsight they should have used signaling to broadcast player positions instead of persisting
them in the JSON fragment.
We find it interesting that these participants were aware of the signaling mechanism recommended to com-

municate state across clients, but still tried to find other ways of having their state automatically shared. There
seems to be an expectation that Webstrates magically takes over all management of collaboration and sharing.
This is, however, not the case as merely the DOM is synchronized by Webstrates, which in turn creates confusion
or disappointment among users. Section 9.5 elaborates on this confusion about how things were meant to be
done.

9.2.3 Expecting Canvas Elements to be Shared Across Clients. Some participants based their multiplayer games on
running examples of codestrates (e.g., the tank game) or open source, single-player games. In many cases, these
games used the HTML <canvas> tag for rendering graphics, which lacks a DOM representation and, thus, cannot
be shared across clients with Webstrates. This felt discouraging to those counting on Codestrates v2 to take care
of synchronizing the UI across players. P7 realized that the tank game example did handle synchronization of the
canvas-based game using signaling and felt that this would be “a bit scary” to do manually.

28Vue.js: https://vuejs.org/ (Retrieved December 31, 2021)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://vuejs.org/

38 • Borowski, Fog, Griggio, Eagan, and Klokmose

P8’s group (G6) worked on modifying the multiplayer tank game offered in the Codestrates v2 documentation
by adding a “portal” that changed the rules of the game every time a player shot at it. This portal moved around
the game, so that players shooting at each others’ tanks could accidentally hit it. The portal was also part of the
<canvas> element of the game, and when they noticed that its position was not synchronized across clients, they
decided to keep that as a “fun” element in the game that adds “additional randomness” (P8).
Interestingly, even participants that used signaling to synchronize the parts of a <canvas> across clients

sometimes took syncing for granted. P5 adapted a Flappy Bird game to be multiplayer, where two birds had to
jump up and down together while avoiding the same autogenerated pipes. They used signaling to synchronize
the position of the birds when players made them jump. However, it was only after testing and seeing different
game layouts across clients that P5 realized that the position of the pipes also had to be synced.

The vision of computational media lead participants to think that Codestrates v2 and Cauldron are “magical”
platforms that solve most issues in programming. Some participants, for example, developed an ideal “fantasy” of
the system solving all problems related to the synchronization of state for them. G4, for instance, handed the
responsibility of changing their state to the platform:

We probably thought, like, that: “Ah, it’s super easy, this part about synchronizing state, because it’s
practically solved for us.” And then we didn’t really spend time on writing that part of the code properly.
And it, then that turned out to bite us in the ass pretty hard. (P4)

P7 was similarly attempting to implement a game with a library that puts the game into a <canvas> element,
whose content was not synchronized in themDOM: “I was like: ‘But we haveWebstrates.’ But I get it, it’s in a canvas.”
Even though being aware of the fact that a canvas is not synchronized by Webstrates, P7 still expected Webstrates
to solve this issue. P4, further, described a feeling of Webstrates simplifying everything about implementing
games:

Then you can really have this idea or get sort of this feeling that “oh, then you can just sit and do all kinds
of things and do things and build things super fast and such.” But when things are, like, asynchronous
and it’s an event system and stuff, then you actually still have to think quite a lot if you would like to
end up with something that works in the end. (P4)

9.2.4 Running Unfinished Code. Unlike text produced in the collaborative writing of documents, e.g., as in
Google Docs, the code typed on Cauldron needs to be syntactically correct at the time of execution. Live sharing
of fragment changes across clients enables collaborative coding on Cauldron, however, the code that is being
edited by one user might be run by another at the same time, which may cause the system to break until the
editing is complete and without errors. For instance, for P11 sometimes code would “crash completely” due to
their teammate changing code in the same document. Similarly, P10 reported that syntax errors would often
occur when working with a group member at the same time in the same fragment. To avoid breaking each other’s
code, G4 often ended up splitting tasks and working on “private” copies of their game webstrate and merging
changes into their main copy once they got their part working.

9.2.5 Takeaway T2: What is Shared vs. What is Not Shared. We learned that there are many nuances to what
is expected to be shared or not in computational media. Participants’ frustrations around system elements
that were not automatically shared across clients suggest that their mental model of computational media
is that everything is shared, and the difficulties that come with syncing changes across clients are also
magically solved. Synchronizing the DOM of a website does not resolve issues around shared JavaScript
runtime state. The state of, e.g., a <canvas> is not reflected in the DOM. Users of computational media need
to be made aware of these nuances to adjust their expectations about what is shared and what is not.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 39

9.3 T3: Editing Directly vs. Editing Indirectly
Participants struggled making sense of the divergence [2] between the representation of software when it is
running (i.e, the JavaScript runtime), and the representation of the form in which it is being edited (i.e., the code
fragments). The assumptions of Cauldron allowing direct editing of the running system led some participants to
expect Codestrates v2 to support live programming environment, which caused breakdowns related to running
the same code multiple time and dealing with unexpected side effects.

9.3.1 Lack of Awareness of How Much the DOM and Code Fragments Diverge. Code fragments hold the “dead”
version of a piece of code, similar to an HTML or JavaScript file. However, participants often expected code
fragments to represent the DOM, i.e., the “live,” running system. Especially in the case of HTML fragments,
many were surprised when realizing, through trial and error, that they could not directly edit the DOM view of
fragments with Cauldron. For example, P3 complained, explaining “one thing is the DOM and the other thing is the
HTML fragment, and these two entities are different, it’s not the same.”

Some participants failed to realize the full vision of their rule-changing games because their designs were based
on the assumption that Cauldron would let them access and edit the runtime version of their games. For example,
P1 wanted users to customize the map of their snake-like game and share the resulting HTML code with others.
Based on their experience with Webstrates, they expected users to customize the map by manipulating the DOM,
i.e., right-clicking on tiles, inspecting them with the developer tools and altering their behavior by changing a
CSS class (e.g., turning a “wall” tile into a “floor” tile). However, they soon realized that the changes done via
the developer tools were not reflected on the map’s HTML fragment, so sharing the code of custom maps in
this way would not work: “I had the full assumption that when you make an HTML fragment, that is the same as
making DOM in sort of basic Webstrates” (P1). P5’s Flappy Bird exposed the JavaScript fragments of the “Bird”
class directly on the game’s interface (see Figure 11d). P5 expected users to edit values in the class definition
(e.g., the gravity property) while they played, so that the birds would immediately change their behavior. This
suggests that P5 thought they could change the behavior of the running bird instances by editing the code of the
JavaScript fragment. However, when testing, they realized that editing the JavaScript fragment simply redefined
the bird class, and that only future bird instances would behave differently.

9.3.2 Confusing Reprogrammability for Live Programming. Many participants seemed to expect Codestrates v2
and Cauldron to support live programming, even though the documentation does not suggest this is possible. We
believe that the confusion might come from the fact that, unlike JavaScript fragments, static fragments such as
HTML, CSS or Markup are re-rendered automatically after changes and do not feature a run button. We speculate
that most often, users create HTML and CSS fragments first, getting a live-programming feeling from the start.
This might also be the case for many JavaScript fragments that leave no evident side-effects after running them
manually, e.g., fragments that only define classes, functions or global variables, which simply get overwritten
after re-running the fragment. Eventually, unexpected side effects from previously ran JavaScript fragments affect
the behavior of the system, and the impression of a live programming environment breaks.
For example, many participants perceived common precautions typical of JavaScript programming as short-

comings of Codestrates v2, such as checking if a DOM element exists before creating it or keeping track of event
listeners to avoid duplications. P10 was surprised that pressing run on a JavaScript fragment would multiply
programmatically-created views: “And when we then pressed ‘run,’ it just like spawned a new window down further
down in the game.” P12 suggested a “solution” to avoid refreshing the page before running a JavaScript fragment:

It would be awesome if you could just say “run” and then say “unrun” and then make an edit and then
“run.” So you don’t need this refresh, because it’s something that takes quite a lot of time, and you are
thrown a little out of context and such. [. . .] I mean, when you say “run,” you execute a script. And if you
then press “run” again, well then it runs the same code on top of it, and that messes it up. (P12)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

40 • Borowski, Fog, Griggio, Eagan, and Klokmose

Echoing Basman et al. [2], event listeners were “a primary source of divergence,” for which P1 proposed a
solution:

Whenever I change the JavaScript fragments I have to refresh to actually have anything happen. Cauldron
theoretically allows me to re-run the code. But, in interactive code like this, which depends on mechanisms
like event listeners, that generally puts the game in a really strange state because it just keeps the existing
event listeners [. . .] and just adds the new ones on top. Because this is procedural code, it is imperative. It
says “do some stuff now,” rather than “these are the rules.” So I definitely found myself wishing that I was
working in a more declarative language or framework. (P1)

Such ideas for “solutions” suggest that these participants expected Codestrates v2 and Cauldron to support
live programming and, even though they were typing JavaScript, expected the runtime environment to work
differently. Future design iterations should either avoid expectations of liveness and help users keep track of
how state is affected by running JavaScript fragments (e.g., by supporting declarative registration of event
listeners [2]), or try to indeed support live programming in JavaScript, for example, by decoupling rendering
from event handling [60].

9.3.3 Takeaway T3: Editing Directly vs. Editing Indirectly. Cauldron automatically updates HTML and
CSS fragments for convenience, but this may have interfered in how participants made sense of the
divergence between diverse types of code fragments (e.g., HTML vs. JavaScript) and their “live versions.”
Many participants assumed that editing and re-running code fragments would directly affect the running
game (e.g., by changing existing DOM rather than re-rendering HTML), which also gave a false sense
of working in a live programming environment. Future implementations of computational media should
explore ways of mitigating confusions about how (in)directly users can edit the running system, highlighting
the limitations of the medium (e.g., that code cannot be “un-run”) to adjust users’ expectations, or fully
realizing a live programming environment.

9.4 T4: Big vs. Small Distance Between Development and Use Views
We found that the short distance between the Cauldron (the development view) and participants’ games (the
use view) supported fast context switches as we intended. For example, P4 liked that one can “just go in and see
‘okay, how is is implemented?’” and P12 that “if there then is something that suddenly doesn’t work, you can go in
and inspect what it is, [. . .] you have your development environment in the same place. It works well for this kind of
prototyping-in-the-wild-ish thing.” However, this short distance also caused problems related to shared resources
between the views and extra effort in setting up Cauldron after every page refresh.

9.4.1 Shared Resources Between Development and Use Environment. As the memory and processing resources
are shared between the development environment and the game, they can affect each other. Especially the game
affecting the development environment is a rather uncommon case in conventional programming practices. P4,
who was working with a computationally heavy application, explains this well:

As soon as it had run, and even if it had stopped again, then I had to refresh the whole browser, because it
couldn’t write anything at all. So much had it slowed things down. And you couldn’t write anything while
the application was running. I mean, you couldn’t be working with WebRTC and have those machine
learning models running, and write at the same time. (P4)

Being right besides the application in the same browser window, however, also caused problems when
participants mixed up the current context they were working in: This led some participants to accidentally write

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 41

gibberish in the open fragment in Cauldron while they thought they were interacting with the game. P8 provided
an example of the game and the Cauldron both “fighting for” keystrokes:

So we had this WASD mapping and that means when you press that [key] your tank moves around. But
that also meant that if you didn’t click out of Cauldron, it would write into the text file [fragment] that
you were working on, the W-A-A-A-A-S-D and so on. And so that causes a bit of trouble sometimes when
you went to debugging and testing if it worked what you implemented, but you will, at the same time be
messing up your file. (P8)

9.4.2 Effort in Context Switching. Since Cauldron is part of the application space, it is closed upon refreshing the
browser, causing the developer to lose their current development context, i.e. scrolling positions in the code. To
avoid this, P12 opened Cauldron in a separate window to preserve the development context while being able to
refresh the game in another tab, increasing the distance between the views himself:

So usually when I’m working on the web, I have a live environment where whatever changes I make to
the files, automatically propagated to the website and refreshes. So the experience [with Cauldron] was
quite similar. However, when I worked with Cauldron, this meant that whenever I refresh the page, I
would have to open the IDE again and go to the file that I was working at, because it wasn’t usually
opening that file that I was working at. (P8)

P1 specifically mentioned their frustrations with the time spent pressing the “Edit” button and waiting “a few
seconds for the Cauldron editor to appear” every time the website was refreshed.

9.4.3 Takeaway T4: Big vs. Small Distance Between Development and Use Views. Keeping a short distance
between the development and use views of malleable enable quick context switches but can cause break-
downs for users when they mix up the current context of the system and can, for instance, cause unwanted
changes in the development view while testing an application. By reducing the distance and running both
the game code and the development environment in the same web page, they shared the same resources,
and a slowdown of the game could cause Cauldron to be unresponsive. As the Cauldron is running the same
web page as the software being built, reloading the game by refreshing the website also caused Cauldron
to be reloaded. Future computational media should provide mechanisms to support both in-use as well as
out-of-use development when needed. The latter to, e.g., avoid the development tools and application code
fighting for the same resources.

9.5 T7: Creating Something New vs. Offering Something Familiar
Our participants had varying degrees of experience with programming and with Webstrates. Codestrates v2 and
Cauldron aimed to offer participants something familiar: a code-editor like experience for programming. However,
not all details matched up with the participants’ prior knowledge, which created confusions. Participants, for
example, had difficulties matching the concept of a fragment with their existing concept of a file. Similarly, they
expected Codestrates v2 to work in different ways depending on their prior experience with Webstrates and
Codestrates v1.

9.5.1 Conceptual Blend Between Files and Fragments. There was a clash between traditional web programming
using files and the way Codestrates v2 and Cauldron handled the execution of fragments: Many participants
compared fragments to files in a folder system, where each fragment corresponds to a separate file. While this
conceptual model worked well for HTML and CSS fragments as they are stateless, participants’ conceptual blend

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

42 • Borowski, Fog, Griggio, Eagan, and Klokmose

broke down with JavaScript fragments, as those could be both “run” and “auto-run” (see related confusions in
Section 9.3).
Participants struggled to match this execution model with their experience of executing JavaScript files in

regular web development. P10, for example, stated that they “couldn’t get that auto-update to work” while referring
to the auto-run functionality of fragments. It seems that P10 thought that auto-run would directly update their
game while they change the code instead of just running the code on page load. P8, on the other hand, who had
experience with computational notebooks like Jupyter, could match their understanding of executing fragments
individually with the one of Cauldron. P8 also mentioned that the auto-run “concept itself is pretty easy to
understand.”
We found another example of a conceptual clash in the interview with P5, who did not initially understand

that the order of fragments in the tree browser was in fact the same order as they are located in the DOM, hence,
also determining their execution order. This stood in contrast with conventional code editors, where the order of
files in folders does not matter:

After a while I realized, for example, in this window [Cauldron’s tree browser], the sequence of all these
fragments corresponds to the sequence actually in the DOM tree. [. . .] So, for example, all the codes
[fragments] get run if you let it auto-run or something like that, then the sequence corresponds to how
you put these things in the DOM so it’s, it’s run like this as we know. But then, yeah, sometimes I built
another thing later so I would just sort of arrange the sequence of these pieces to make sure it runs what I
want. (P5)

This data suggests that small conceptual differences can cause breakdowns by instilling assumptions and
expectations of how the system works. We believe that implementations of computational media that draw from
existing tools and concepts (e.g., JavaScript, files) should clearly indicate that what feels familiar can also differ
from its typical use (e.g., JavaScript fragments may look like files, but unlike files, they can be executed multiple
times independent of page load).

9.5.2 Confusions Based on Prior Knowledge ofWebstrates and Codestrates v1. Participants expected Codestrates v2
to work in different ways depending on their prior knowledge of Webstrates, Codestrates v1, or web development
in general. These expectations shaped how they approached the implementation of the game and their use of
Cauldron, which sometimes diverged from what Codestrates v2 and Cauldron actually supported. Traditionally,
anything you put in the DOM in Webstrates would be persisted on the server unless were explicit about it being
transient. In Codestrates v2, HTML fragments provided a convenient way of editing HTML. However, only the
plain text content is persisted, and the rendering of it to the DOM is transient, although automatically updated
when the HTML is edited. This caused confusion leading participants to assume that you could not just store
data in the DOM in the conventional “Webstrates way.” You could, but not by using HTML fragments, you would
have to write directly to the DOM with the conventional JavaScript DOM API. This, for example, confused P4,
who was familiar with Codestrates v1 and made use of the synchronized DOM in the past:

Well, those sort of fragments, they are not synchronized between clients. And that confused me a little
because that was actually the way a lot, I mean, that was actually some of what I had taken advantage of
in the old Codestrates [v1]. That, okay, the DOM is just being updated directly, so let’s just take advantage
of that. But that, suddenly; it’s not like that anymore, now I need to actively update the DOM myself. (P4)

P1 even felt that these new features in Codestrates v2 diverged from the original vision of Webstrates:
And the way that it was folded into the newer API, yeah, overall this gave me a sort of a sense that
this set of tools, these Codestrates [v2] and [. . .] Cauldron, that they were designs with the standards of
programmers in mind, rather than the vision of Webstrates. [. . .] And at that point I felt a big discrepancy
between my assumptions and the assumptions of the people who’ve built the tool. (P1)

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 43

Similarly, G4 was insecure about how to store state in their game and thought they could not just store it
directly in the DOM as they would normally do in Webstrates. In the documentation of Codestrates v2, we
had given an example of how state could be stored as plain text in a JSON fragment, mimicking a traditional
model-view-controller pattern, and they assumed that was the “correct” Codestrates v2 approach. However, in
practice that led to a number of performance and concurrency issues in their implementation that would not had
happened had they stored the data as DOM nodes.

9.5.3 Takeaway T7: Creating Something New vs. Fulfilling Assumptions. Trying to create something new
while offering some familiarity to existing knowledge or systems is a balancing act: By portraying fragments
as files and DOM elements as folders in the tree browser, participants built both helpful and confusing
assumptions about how these work. Thinking of fragments as files helped some participants to organize
their code, but also obscured differences about how they are executed (e.g., files are executed on page
load, fragments can be executed multiple times with the “run” button), producing unwanted side effects in
the registration of event listeners and programmatic creation of views. Participants with experience on
Webstrates and Codestrates v1 found it frustrating not to be able to do some things in the same way as
before, especially related to synchronizing state across clients. To prevent fundamental misunderstandings,
the documentation should include careful explanations of examples with clarifications of the system differs
from previous versions and traditional web programming.

9.6 T8: Working With Your Own Tools vs. Adopting Built-in Tools
We found that participants had mixed feelings about using the built-in authoring environment Cauldron, and
were reluctant to abandon their personalized tools and known workflows for developing software. However, they
also appreciated the benefit of launching Cauldron with a single click without any setup.

9.6.1 Mixed Feelings About the Integrated Authoring Environment. As already addressed in the previous section
on distance between development and use, there seems to be conflicting opinions on the authoring environment
being conflated with the application space: P7, for instance, mentioned using Webstrates File System (WFS) in
the past to develop for Webstrates, which however sometimes had “weird behaviors” or crashed. An integrated
tool like Cauldron would “avoid sort of those problems” which would be “very good.” P8, notably, seemed to be on
the fence about preferring their own IDE or using Cauldron:

What I always liked about Webstrates is that it’s so easy to have multiple people see the same content. And
so I guess whenever I have to do something on the web that’s collaborative, I would just use Webstrates
for it. And then one benefit I can see with having this Cauldron interface now is that I don’t have to
bring my own IDE. So even though I guess I would still use my own IDE, it’s nice to have the option to
just change something on the fly or to, so I guess whenever I have to do something collaborative where
multiple people work on the same content on a website, then I would use Webstrates. And since Cauldron
it is so easy to use, I probably would also use Cauldron. (P8)

P8 makes an explicit preference for their own tools but acknowledges the benefits of using Cauldron to such a
degree that it seems likely they would use it. P1 is—much like P8—on the fence about what potential benefits
and drawbacks might mean for them: While P1 liked some aspects of Cauldron like asset uploading, they did
not think Cauldron would help them “speeding up the flow of modifying things” and could even remove their
“ability to use the debugging practices [they] learned as a semi-professional programmer.” The latter point highlights
another big issue of custom integrated tools such as Cauldron: prior technical knowledge might not be able to be
carried over in using a new tool. Likewise, P3 was less convinced by the benefits of adopting new tools:

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

44 • Borowski, Fog, Griggio, Eagan, and Klokmose

I can open an HTML [file] and write the script there. Okay, I can do that in Cauldron but I can do it in a
text editor I like. And I need to import this CSS library. Is Codestrates helping me in any way to do that?
No, actually it might be a little more difficult than the document[ation] I can see online, because they
are explaining how to do it in traditional way. Just like I need to add an extra step for something that I
already know how to. And then, that’s the reason for me, like, I started it [the game] in an editor and
then I felt, now I need to do collaboration and I know this would be a pain in the ass to do it traditionally.
I need to add WebSockets or I need to add some kind of communication mechanism. Oh, Codestrates
gives me that for free, then I do a transition. So I’m always motivated by needs and there was no need
for me to move, until I reached that collaboration point. (P3)

P3 is very clear about the value that each approach might give. In this sense, P3 is more pragmatic than
idealistic in their choices: if the benefits of using one’s own tools seem greater than using the ones provided,
then they will do that until the ratio of relative benefits turns towards Cauldron.

9.6.2 Using One’s Own Tools is Not Practically Possible. The WFS utility allows for mounting script and style
elements from the DOM as separate JavaScript or CSS files in an IDE like Visual Studio Code, allowing to make use
of tools like syntax highlighting, refactoring, and autocompletion in the editor. Codestrates v2’s unconventional
approach to storing code in custom fragments requires tailoring a tool like WFS specifically for that and at the
time of the study this had not been done.29
That meant that at the time of the study it was not practically possible to use own tools for working on

Codestrates v2 but participants had to use Cauldron. This tension is, thus, just as much a reflection of what
participants might want in the future— or remember from working in earlier versions of Webstrates— as it is a
conceptual discussion about tools and tool appropriation. This issue was also echoed by P1:

I think this is a very deep issue of modifiable tools, which is, do they contain the tools for their own
modification or do they allow you to bring your own? And I get the feeling, at least for me personally,
with my own experience on preferences that Cauldron brings a bad trade-off there. (P1)

The “bad trade-off ” that P1 mentions could be addressed by developing better built-in tools or better possibilities
to use own tools— or ideally both. For Cauldron, this could mean to improve the authoring environment with
features like, e.g., a global search, refactoring, or debugging capabilities. For the ability to use own tools, an
improved version of WFS with proper support for editing fragments and uploading assets would be a solution.
Potentially provide an API for integrating awareness features for collaborative editing that, e.g., could be used in
an extension for a conventional IDE such as Visual Studio Code.

9.6.3 Takeaway T8: Working With Your Own Tools vs. Adopting Built-in Tools. Integrating an authoring
environment like Cauldron into a development platform such as Codestrates v2 enables users to directly
author content without the requirement for additional tools, which is especially useful when only small
edits need to be done. For more involved development work, experienced programmers— like most of our
participants— only rarely wanted to abandon their familiar tools. A system should ideally strive to do both:
offering an integrated authoring environment but allowing users to continue using their own tools— at
least one, however, should be done well: a powerful integrated tool or a good integration into existing tools.

10 LESSONS LEARNED
Throughout our efforts to study the vision of computational media through developing a concrete software
platform we have learned several lessons. While the takeaways from the previous section are connected to
29Later one of the authors adapted WFS to work with Codestrates v2’s fragments

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 45

individual tensions, the lessons of this section may relate to multiple tensions and are less specific to the
Webstrates platform. Some of these lessons learned may seem obvious in hindsight and they echo previous
findings in the HCI and CSCW literature. However, we deem it valuable to highlight what we learned through
our experiences that stood out in this particular case and had an impact on our current and future research.

10.1 L1: Reprogrammability Is Not the Same as Malleability
Our experiences with Webstrates have made it clear to us us that making software malleable to a user goes
beyond merely making it reprogrammable. This is a point also Tchernavskij et al. [62] make and our experiences
confirm this. Providing users with access to the code of applications in the developer tools in Webstrates, the code
paragraphs in Codestrates v1, or code fragments in Codestrates v2 is a step towards malleable software, however,
it is not enough. Even to a trained programmer, reprogrammable software written by others can be intractable,
hard to reason about, and daunting to change. Mechanisms to reason about the composition and interactive
behavior of software is necessary to gain the confidence to change it. Also, programmers have to be provided
with mechanisms to experiment without the fear permanently damaging the software. These mechanisms have
to be reliable and transparent. This is something that, for example, the Webstrates versioning mechanism was not
to our participants. Hence, malleability is a relation between the technical mechanisms for changing software,
and the user’s perception of the software and the mechanisms to change it.

10.2 L2: Support for Switching Between Synchronous and Asynchronous Collaboration is Essential
When (re)programming software collaboratively, mechanisms to support switching between synchronous and
asynchronous collaboration are essential. While real-time collaboration on code can be a blessing when working
together, it can also be a curse if code breaks, for example, when unfinished code is run by other users, causing
the software to crash. Similarly, writing code is often an iterative process and bugs in initial versions of code
should not be immediately applied for all collaborators— this is why other version control systems like Git enable
to commit changes once they are finished or even on different branches.
Synchronizing code changes immediately across all clients inhibits this way of asynchronous collaboration

and forced participants in our study to copy code into external editors or to create copies of their webstrates to
not disrupt their collaborators. Future collaborative computational media will require mechanisms for fluidly
transitioning between synchronous and asynchronous editing. Similar needs have been observed in collaborative
writing [38], hence, in the spirit of computational media, the mechanisms ideally should be similar for editing
code and editing content.

10.3 L3: Values of New Concepts Needs to Be Clear to Users
When introducing new concepts for seemingly good reasons, they demand immediate and perceptible value
for end-users to appropriate and use them. In Codestrates v2 we introduced the concept of a code fragment.
We called it a fragment as they would usually encompass a part of an application. We decided not call them
files because, while— like files— they contain code, they have different properties, such as being able to be run
independently and they live in the DOM rather than in a file system. We also decided not to call them scripts to
avoid confusion with the script tag, even though they share many of the same characteristics. The value of this
concept was not immediately clear to our participants and instead created confusion. Here, we underestimated
the need for clear communication of the semantics of new concepts to the users. However, how this should be
properly done, we have yet to master.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

46 • Borowski, Fog, Griggio, Eagan, and Klokmose

10.4 L4: Collaboration in Development and Use Requires a Fitting Code Execution Model
A medium that aims to be malleable and allows for real-time collaboration in use and development requires a
fitting code execution model. Changing the interactive behavior of applications after they are instantiated is not
a common case in regular programming with JavaScript. Merely providing access to the code and allowing users
to edit and re-run code leaves a variety of open issues. For example, the code that is visible in an editor might not
be the same version of the code running in memory, or one user might run a different version of the code.

The conventional JavaScript execution model is simply insufficient for such a task. Instead, the code execution
model should fit the vision— in our case computational media— and provide mechanisms to change the interactive
behavior of applications live, both locally and and across multiple clients or users. This insight motivated our
work on a new declarative programming model, Varv [7], suited for computational media, that, we believe,
represents the next step in our exploration of computational media. If creators of authoring tools for web-based
computational media wish to leverage people’s existing programming language skills, mediating software such
as WebAssembly allows for the use of other programming languages in the browser. This does not, however,
guarantee that users’ mental understanding of the system is congruent with the state of the system. We would
argue that this mental burden must be borne by the developer of the medium, and employing a declarative
programming language largely removes the need for end-user programmers to play state machine in their heads.

10.5 L5: The Vision Can Define Users’ Expectations
Defining characteristics of a vision shapes the expectations of users of its prototypes to a degree where its users
suspend their knowledge and critical thought. Webstrates is a shareable and distributable platform by being
accessible in the web browser and by synchronizing the DOM with the Webstrates server. It aims to make the
process of creating collaborative applications easier. The seemingly magic mechanisms of synchronizing the DOM
led participants to believe that Webstrates is taking care of everything related to collaboration— even technically
competent users suspended their reflections of what is technically possible. For example, some participants
thought that the contents of the <canvas> element would be synchronized by Webstrates, even though they
knew that these contents are not reflected in the DOM and, therefore, are not synchronized by Webstrates.
Related to L3, there were participants that were vocal in their criticism of the introduction of new concepts

and tried as much as possible to develop software according to their existing knowledge and skills. On the other
hand, we saw participants that immersed themselves in the vision of a computational medium that would ease
collaboration and programming, and felt frustration when they had to resort to the traditional way of thinking.
Where the middle ground is— and if it exists— is unclear. The mix between the traditional and the novel of
Webstrates has shown itself to be a double-edged sword.

We believe it is important to make users aware of the differences between the principled vision and a pragmatic
implementation of it when introducing them. When focusing too much on the vision users can align their
expectations with it and become frustrated or confused when the implemented platform differs from that, e.g.,
due to technical limitations.

10.6 L6: Users Create Conceptual Blends with Familiar User Interfaces
The user interface of novel platforms has a strong influence over how users form mental models of the system
and its core principles. Cauldron has the look and feel of a code editor or IDE and, yet, it lacks a lot of the
tools that are common in code editors and IDEs such as Visual Studio Code, Atom, or JetBrains WebStorm: For
instance, Cauldron supports neither searching for fragments, nor searching text in multiple fragments, nor does
it provide its own debugger. However, participants expected some of these features when using Cauldron and
were disappointed when their desired features were not available.

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 47

Another issue that we saw, was that users experienced an uncanny valley-like effect where some of our
concepts were very similar, yet not completely equal to other concepts: For example, code fragments are a central
aspect of the way Codestrates v2 works. For participants, the way they are displayed in the tree browser and how
they contain just regular code, evoked a connection to files in a file system. However, by making this connection,
participants consequently struggled to find a connection for the auto-update functionality of fragments, or that
the order of fragments reflects the order of execution. These misalignments, in turn, can cause breakdowns.

10.7 Discussion of the Lessons Learned
The lessons came from our own past and present experiences with computational media in the form of the Web-
strates family of platforms. We do believe, however, that these lessons are of value to other types of computational
media such as computational notebooks.

Computational notebooks are but one particular type of computational media, but by far the most popular kind.
While different computational notebook environments have similarities, e.g., the overall system metaphor and
structure, there are of course also differences: For instance, the programming model issues identified in L4 are also
inherent in the Jupyter [54] notebooks, where each cell is run individually and it can be difficult to understand
from which version a result is coming from [26], while the reactive model employed in Observable [52] alleviates
some of these issues. Although still based on JavaScript, this reactive model at least ensures consistency in
state between collaborators and between textual code and program state. It does not seemingly provide support
for L2 as there are no mechanisms in place to separate private and communal editing of code and content,
even if inconsistencies in state are solved. Interestingly, with regards to L5 and L6, the notebook format seems
to have largely become an established concept that constrains users’ expectations and ensures some level of
familiarity. The risk is, then, that new forms of computational media might inadvertently make users draw
upon the computational notebook as the basis for their understanding even when not meaningful or productive.
Even for existing environments this is a risk. For example, just as we saw how Cauldron manifested itself as an
“IDE-but-not-quite” to participants, Observable might also be seen as “Jupyter-but-not-quite” due to its different
code execution model.

11 CONCLUSION
Realizing visions of new types of software in a practical implementation that can be used by users can spark
tensions between following the principled vision truthfully and overcoming technical limitations to create a
running system. We revisited these tensions for our effort of realizing the vision of computational media in the
Webstrates and Codestrates platforms. We used these tensions to investigate how they affect users using the
Codestrates v2 and Cauldron platforms. Our results showed us that these tensions also influence how users
interact with the system and that divergences from the original vision can cause confusion, breakdowns, or
even frustration among users. Synthesizing these results into six lessons learned, we could uncover themes that
creators of new types of software need to take into account when creating practical implementations that diverge
from an original vision— both due to technical limitations or pragmatic decisions.

ACKNOWLEDGMENTS
We thank the participants of the game challenge and all co-authors and collaborators on the presented Webstrates
projects. This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 740548) and from Carlsbergfondet
(grant agreement No CF17-0643).

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

48 • Borowski, Fog, Griggio, Eagan, and Klokmose

REFERENCES
[1] Sriram Karthik Badam, Andreas Mathisen, Roman Rädle, Clemens N. Klokmose, and Niklas Elmqvist. 2018. Vistrates: A Component

Model for Ubiquitous Analytics. IEEE Transactions on Visualization and Computer Graphics (2018), 586–596. https://doi.org/10.1109/
TVCG.2018.2865144

[2] Antranig Basman, Luke Church, Clemens Nylandsted Klokmose, and Colin Clark. 2016. Software and How it Lives On - Embedding Live
Programs in the World Around Them. In PPIG 2016 - 27th Annual Workshop. https://www.ppig.org/papers/2016-ppig-27th-basman1/

[3] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model for Designing Post-WIMP User Interfaces. In Proceedings
of the 18th International Conference on Human Factors in Computing Systems (CHI ’00). ACM. https://doi.org/10.1145/332040.332473

[4] Michel Beaudouin-Lafon. 2017. Towards Unified Principles of Interaction. In Proceedings of the 12th Biannual Conference on Italian
SIGCHI Chapter. https://doi.org/10.1145/3125571.3125602

[5] Marcel Borowski, Janus Bager Kristensen, Rolf Bagge, and Clemens N. Klokmose. 2021. Codestrates v2: A De-
velopment Platform for Webstrates. Technical Report. Aarhus University. https://pure.au.dk/portal/en/publications/
codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html

[6] Marcel Borowski and Ida Larsen-Ledet. 2021. Lessons Learned From Using Reprogrammable Prototypes With End-User Developers. In
End-User Development (IS-EUD ’21). Springer. https://doi.org/10.1007/978-3-030-79840-6_9

[7] Marcel Borowski, Luke Murray, Rolf Bagge, Janus Bager Kristensen, Arvind Satyanarayan, and Clemens N. Klokmose. 2022. Varv:
Reprogrammable Interactive Software as a Declarative Data Structure. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (CHI ’22). ACM. https://doi.org/10.1145/3491102.3502064

[8] Marcel Borowski, Roman Rädle, and Clemens Nylandsted Klokmose. 2018. Codestrate Packages: An Alternative to “One-Size-Fits-All”
Software. In Proceedings of the 2018 CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’18). ACM.
https://doi.org/10.1145/3170427.3188563

[9] Marcel Borowski, Johannes Zagermann, Clemens N. Klokmose, Harald Reiterer, and Roman Rädle. 2020. Exploring the Benefits and
Barriers of Using Computational Notebooks for Collaborative Programming Assignments. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (SIGCSE ’20). ACM. https://doi.org/10.1145/3328778.3366887

[10] Virginia Braun and Victoria Clarke. 2006. Using Thematic Analysis in Psychology. Qualitative Research in Psychology 3, 2 (2006), 77–101.
[11] Marianela Ciolfi Felice, Sarah Fdili Alaoui, andWendy E. Mackay. 2018. Knotation: Exploring and Documenting Choreographic Processes.

In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM. https://doi.org/10.1145/3173574.3174022
[12] Peter Dalsgaard, Kim Halskov, and Clemens Nylandsted Klokmose. 2020. Chapter 7 - A study of a digital sticky note design environment.

In Sticky Creativity. Academic Press, 155–174. https://doi.org/10.1016/B978-0-12-816566-9.00007-0
[13] Andrea A. diSessa. 1982. A Principled Design for an Integrated Computational Environment. Technical Report. MIT. http://publications.

csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-223.pdf
[14] Andrea A. diSessa. 2001. Changing Minds: Computers, Learning, and Literacy. MIT Press. https://mitpress.mit.edu/books/changing-minds
[15] Andrea A. diSessa and Harold Abelson. 1986. Boxer: A Reconstructible Computational Medium. Commun. ACM 29, 9 (1986), 859–868.

https://doi.org/10.1145/6592.6595
[16] Alan Dix. 2007. Designing for Appropriation. In Proceedings of HCI 2007 The 21st British HCI Group Annual Conference University of

Lancaster (BCS-HCI ’07). BCS Learning & Development Ltd., 27–30. https://dl.acm.org/doi/abs/10.5555/1531407.1531415
[17] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011. Cracking the Cocoa Nut: User Interface Programming at

Runtime. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST ’11). ACM, 225–234.
https://doi.org/10.1145/2047196.2047226

[18] W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, and Trevor F. Smith. 2009. Experiences with Recombinant Computing: Exploring
Ad Hoc Interoperability in Evolving Digital Networks. ACM Transactions on Computer-Human Interaction 16, 1 (2009). https:
//doi.org/10.1145/1502800.1502803

[19] Pelle Ehn and Morten Kyng. 1992. Cardboard Computers: Mocking-it-up or Hands-on the Future. In Design at Work: Cooperative Design
of Computer Systems. 169–196.

[20] Clarence A. Ellis and Simon J. Gibbs. 1989. Concurrency Control in Groupware Systems. In Proceedings of the 1989 ACM SIGMOD
international conference on Management of data. 399–407. https://doi.org/10.1145/67544.66963

[21] Bjarke Vognstrup Fog and Clemens Nylandsted Klokmose. 2019. Mapping the Landscape of Literate Computing. In PPIG 2019 - 30th
Annual Workshop. https://www.ppig.org/papers/2019-ppig-30th-fog/

[22] Tony Gjerlufsen, Clemens Nylandsted Klokmose, James Eagan, Clément Pillias, and Michel Beaudouin-Lafon. 2011. Shared Substance:
Developing Flexible Multi-Surface Applications. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’11). https://doi.org/10.1145/1978942.1979446

[23] Carla F. Griggio, Arissa J. Sato, Wendy E. Mackay, and Koji Yatani. 2021. Mediating Intimacy with DearBoard: A Co-Customizable
Keyboard for Everyday Messaging. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). ACM.
https://doi.org/10.1145/3411764.3445757

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2018.2865144
https://www.ppig.org/papers/2016-ppig-27th-basman1/
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/3125571.3125602
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://pure.au.dk/portal/en/publications/codestrates-v2-a-development-platform-for-webstrates(66e1d4d9-27da-4f6b-85b3-19b0993caf22).html
https://doi.org/10.1007/978-3-030-79840-6_9
https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1145/3170427.3188563
https://doi.org/10.1145/3328778.3366887
https://doi.org/10.1145/3173574.3174022
https://doi.org/10.1016/B978-0-12-816566-9.00007-0
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-223.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TM-223.pdf
https://mitpress.mit.edu/books/changing-minds
https://doi.org/10.1145/6592.6595
https://dl.acm.org/doi/abs/10.5555/1531407.1531415
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/1502800.1502803
https://doi.org/10.1145/1502800.1502803
https://doi.org/10.1145/67544.66963
https://www.ppig.org/papers/2019-ppig-30th-fog/
https://doi.org/10.1145/1978942.1979446
https://doi.org/10.1145/3411764.3445757

Between Principle and Pragmatism: Reflections on Prototyping Computational Media with Webstrates • 49

[24] Carla Gröschel, Peter Dalsgaard, Clemens N. Klokmose, Henrik Korsgaard, Eva Eriksson, Raphaëlle Bats, Aurélien Tabard, Alix Ducros,
and Sofia E. Serholt. 2018. PARTICIPATE: Capturing Knowledge in Public Library Activities. In Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI EA ’18). ACM. https://doi.org/10.1145/3170427.3188605

[25] Jens Emil Grønbæk, Banu Saatçi, Carla F. Griggio, and Clemens Nylandsted Klokmose. 2021. MirrorBlender: Supporting Hybrid Meetings
with a Malleable Video-Conferencing System. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21).
ACM. https://doi.org/10.1145/3411764.3445698

[26] AndrewHead, Fred Hohman, Titus Barik, StevenM. Drucker, and Robert DeLine. 2019. ManagingMesses in Computational Notebooks. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM. https://doi.org/10.1145/3290605.3300500

[27] Tom Horak, Andreas Mathisen, Clemens N. Klokmose, Raimund Dachselt, and Niklas Elmqvist. 2019. Vistribute: Distributing Interactive
Visualizations in Dynamic Multi-Device Setups. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(CHI ’19). ACM. https://doi.org/10.1145/3290605.3300846

[28] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back to the Future: The Story of Squeak, a Practical
Smalltalk Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications. https://doi.org/10.1145/263698.263754

[29] Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen. 2008. The Lively Kernel A Self-supporting
System on a Web Page. In Self-Sustaining Systems. https://doi.org/10.1007/978-3-540-89275-5_2

[30] Mads Møller Jensen, Roman Rädle, Clemens N. Klokmose, and Susanne Bodker. 2018. Remediating a Design Tool: Implications of
Digitizing Sticky Notes. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM. https:
//doi.org/10.1145/3173574.3173798

[31] Josh Justice. 2021. Modifiable Software Systems: Smalltalk and HyperCard. (2021). https://2021.splashcon.org/details/live-2021-papers/
9/Modifiable-Software-Systems-Smalltalk-and-HyperCard The Seventh Workshop on Live Programming (LIVE 2021).

[32] Alan Kay and Adele Goldberg. 1977. Personal Dynamic Media. Comput. J. 10, 3 (1977), 31–41. https://doi.org/10.1109/c-m.1977.217672
[33] Alan C. Kay. 1972. A Personal Computer for Children of All Ages. In Proceedings of the ACM Annual Conference - Volume 1 (ACM ’72).

ACM. https://dl.acm.org/doi/abs/10.1145/800193.1971922
[34] Clemens Nylandsted Klokmose and Michel Beaudouin-Lafon. 2009. VIGO: Instrumental Interaction in Multi-Surface Environments. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09). 869–878. https://doi.org/10.1145/1518701.1518833
[35] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and Michel Beaudouin-Lafon. 2015. Webstrates: Shareable

Dynamic Media. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology (UIST ’15). ACM, 280–290.
https://doi.org/10.1145/2807442.2807446

[36] Clemens Nylandsted Klokmose, Christian Remy, Janus Bager Kristensen, Rolf Bagge, Michel Beaudouin-Lafon, and Wendy Mackay. 2019.
Videostrates: Collaborative, Distributed and Programmable Video Manipulation. In Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology (UIST ’19). ACM, 233–247. https://doi.org/10.1145/3332165.3347912

[37] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica
Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. 2016. Jupyter Notebooks—a
publishing format for reproducible computational workflows. Positioning and Power in Academic Publishing: Players, Agents and Agendas
(2016). https://doi.org/10.3233/978-1-61499-649-1-87

[38] Ida Larsen-Ledet and Henrik Korsgaard. 2019. Territorial Functioning in Collaborative Writing. Computer Supported Cooperative Work
(CSCW) (2019), 391–433. https://doi.org/10.1007/s10606-019-09359-8

[39] Sam Lau, Ian Drosos, Julia M. Markel, and Philip J. Guo. 2020. The Design Space of Computational Notebooks: An Analysis of 60
Systems in Academia and Industry. In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE.
https://doi.org/10.1109/VL/HCC50065.2020.9127201

[40] Jiali Liu and James Eagan. 2021. ADQDA: A Cross-Device Affinity Diagramming Tool for Fluid and Holistic Qualitative Data Analysis.
Proceedings of the ACM on Human-Computer Interaction 5, ISS, Article 489 (2021). https://doi.org/10.1145/3488534

[41] Wendy E. Mackay. 1990. Patterns of Sharing Customizable Software. In Proceedings of the 1990 ACM conference on Computer-supported
cooperative work (CSCW ’90). ACM, 209–221. https://doi.org/10.1145/99332.99356

[42] Wendy E. Mackay. 1991. Triggers and Barriers to Customizing Software. In Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI ’91). ACM, 153–160. https://doi.org/10.1145/108844.108867

[43] Wendy E. Mackay. 2000. Responding to Cognitive Overload: Co-adaptation Between Users and Technology. Intellectica 30, 1 (2000),
177–193.

[44] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. 1990. User-Tailorable Systems: Pressing the Issues with
Buttons. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’90). ACM, 175–182. https://doi.org/10.
1145/97243.97271

[45] John Maloney. 1995. Morphic: The Self User Interface Framework. Self 4.0 Release Documentation (1995).
[46] Andreas Mathisen, Tom Horak, Clemens N. Klokmose, Kaj Grønbæk, and Niklas Elmqvist. 2019. InsideInsights: Integrating Data-Driven

Reporting in Collaborative Visual Analytics. Computer Graphics Forum 38, 3 (2019), 649–661. https://doi.org/10.1111/cgf.13717

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://doi.org/10.1145/3170427.3188605
https://doi.org/10.1145/3411764.3445698
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300846
https://doi.org/10.1145/263698.263754
https://doi.org/10.1007/978-3-540-89275-5_2
https://doi.org/10.1145/3173574.3173798
https://doi.org/10.1145/3173574.3173798
https://2021.splashcon.org/details/live-2021-papers/9/Modifiable-Software-Systems-Smalltalk-and-HyperCard
https://2021.splashcon.org/details/live-2021-papers/9/Modifiable-Software-Systems-Smalltalk-and-HyperCard
https://doi.org/10.1109/c-m.1977.217672
https://dl.acm.org/doi/abs/10.1145/800193.1971922
https://doi.org/10.1145/1518701.1518833
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/3332165.3347912
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1007/s10606-019-09359-8
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://doi.org/10.1145/3488534
https://doi.org/10.1145/99332.99356
https://doi.org/10.1145/108844.108867
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/97243.97271
https://doi.org/10.1111/cgf.13717

50 • Borowski, Fog, Griggio, Eagan, and Klokmose

[47] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and Inter-Rater Reliability in Qualitative Research: Norms
and Guidelines for CSCW and HCI Practice. Proceedings of the ACM on Human-Computer Interaction 3, 72, Article 72 (2019). https:
//doi.org/10.1145/3359174

[48] K. Jarrod Millman and Fernando Pérez. 2014. Developing Open-Source Scientific Practice. In Implementing Reproducible Research. CRC
Press, 149–183. https://doi.org/10.1201/9781315373461-6

[49] Theodor Holm Nelson. 1995. The Heart of Connection: Hypermedia Unified by Transclusion. Commun. ACM 38, 8 (1995), 31–33.
https://doi.org/10.1145/208344.208353

[50] Midas Nouwens, Marcel Borowski, Bjarke Fog, and Clemens Nylandsted Klokmose. 2020. Between Scripts and Applications: Computa-
tional Media for the Frontier of Nanoscience. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20).
https://doi.org/10.1145/3313831.3376287

[51] Midas Nouwens and Clemens Nylandsted Klokmose. 2018. The Application and Its Consequences for Non-Standard Knowledge Work.
In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). https://doi.org/10.1145/3173574.3173973

[52] Observable, Inc. [n.d.]. Observable. Retrieved December 31, 2021 from https://observablehq.com
[53] Fernando Pérez. 2013. "Literate computing" and computational reproducibility: IPython in the age of data-driven journalism. Retrieved

December 31, 2021 from http://blog.fperez.org/2013/04/literate-computing-and-computational.html
[54] Project Jupyter. [n.d.]. Jupyter Notebook. Retrieved December 31, 2021 from https://jupyter.org
[55] Krishna Regmi, Jennie Naidoo, and Paul Pilkington. 2010. Understanding the Processes of Translation and Transliteration in Qualitative

Research. International Journal of Qualitative Methods 9, 1 (2010). https://doi.org/10.1177/160940691000900103
[56] George G. Robertson, D. Austin Henderson, and Stuart K. Card. 1991. Buttons as First Class Objects on an X Desktop. In Proceedings of

the 4th Annual ACM Symposium on User Interface Software and Technology (UIST ’91). ACM, 35–44. https://doi.org/10.1145/120782.120786
[57] Mike Robinson. 1993. Design for unanticipated use.... In Proceedings of the Third European Conference on Computer-Supported Cooperative

Work (ECSCW ’93). Springer, 187–202. https://dl.eusset.eu/handle/20.500.12015/2541
[58] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration and Explanation in Computational Notebooks. In Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18). ACM. https://doi.org/10.1145/3173574.3173606
[59] Roman Rädle, Midas Nouwens, Kristian Antonsen, James R. Eagan, and Clemens N. Klokmose. 2017. Codestrates: Literate Computing

with Webstrates. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST ’17). ACM.
https://doi.org/10.1145/3126594.3126642

[60] Christopher Schuster and Cormac Flanagan. 2015. Live Programming for Event-Based Languages. In Proceedings of the 2015 Reactive
and Event-based Languages and Systems Workshop (REBLS ’15), Vol. 15. https://chris-schuster.net/rebls15/rebls2015-final.pdf

[61] Mark Stefik, Daniel G. Bobrow, Gregg Foster, Stan Lanning, and Deborah Tatar. 1987. WYSIWIS Revised: Early Experiences With
Multiuser Interfaces. ACM Transactions on Information Systems (TOIS) 5, 2 (1987), 147–167. https://doi.org/10.1145/27636.28056

[62] Philip Tchernavskij, Clemens Nylandsted Klokmose, and Michel Beaudouin-Lafon. 2017. What Can Software Learn From Hypermedia?.
In Proceedings of the International Conference on the Art, Science, and Engineering of Programming (Programming ’17). ACM. https:
//doi.org/10.1145/3079368.3079408

[63] Pierre Tchounikine. 2017. Designing for Appropriation: A Theoretical Account. Human–Computer Interaction 32, 4 (2017), 155–195.
https://doi.org/10.1080/07370024.2016.1203263

[64] Mark Weiser. 1991. The Computer for the 21st Century. Scientific American (1991). https://doi.org/10.1038/scientificamerican0991-94
[65] Daisy Yoo, Peter Dalsgaard, Alix Ducros, Aurélien Tabard, Eva Eriksson, and Clemens Nylandsted Klokmose. 2020. Putting Down

Roots: Exploring the Placeness of Virtual Collections in Public Libraries. In Proceedings of the 2020 ACM Designing Interactive Systems
Conference (DIS ’20). ACM, 723–734. https://doi.org/10.1145/3357236.3395587

[66] Daisy Yoo, Aurélien Tabard, Alix Ducros, Peter Dalsgaard, Clemens Nylandsted Klokmose, Eva Eriksson, and Sofia Serholt. 2020.
Computational Alternatives Vignettes for Place- and Activity-Centered Digital Services in Public Libraries. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems (CHI ’20). ACM. https://doi.org/10.1145/3313831.3376597

ACM Trans. Comput.-Hum. Interact., Vol. Author Version, No. To Appear, Article . Publication date: October 2022.

https://doi.org/10.1145/3359174
https://doi.org/10.1145/3359174
https://doi.org/10.1201/9781315373461-6
https://doi.org/10.1145/208344.208353
https://doi.org/10.1145/3313831.3376287
https://doi.org/10.1145/3173574.3173973
https://observablehq.com
http://blog.fperez.org/2013/04/literate-computing-and-computational.html
https://jupyter.org
https://doi.org/10.1177/160940691000900103
https://doi.org/10.1145/120782.120786
https://dl.eusset.eu/handle/20.500.12015/2541
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3126594.3126642
https://chris-schuster.net/rebls15/rebls2015-final.pdf
https://doi.org/10.1145/27636.28056
https://doi.org/10.1145/3079368.3079408
https://doi.org/10.1145/3079368.3079408
https://doi.org/10.1080/07370024.2016.1203263
https://doi.org/10.1038/scientificamerican0991-94
https://doi.org/10.1145/3357236.3395587
https://doi.org/10.1145/3313831.3376597

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Webstrates and Codestrates
	3.1 Webstrates Overview
	3.2 Codestrates v1 Overview
	3.3 Codestrates v2 Overview

	4 Realizing the Vision of Computational Media
	4.1 Pre-Webstrates (2008–2011)
	4.2 Webstrates (2012–2016)
	4.3 Codestrates v1 (2016–2019)
	4.4 Codestrates v2 (2019–2020)

	5 Tensions in the Realization of Computational Media
	5.1 T1: Malleability vs. Stability
	5.2 T2: What is Shared vs. What is Not Shared
	5.3 T3: Editing Directly vs. Editing Indirectly
	5.4 T4: Big vs. Small Distance Between Development and Use Views
	5.5 T5: Authoring Environment Developed in Itself vs. Not Developed in Itself
	5.6 T6: Self-contained vs. Auto-updating Authoring Environment
	5.7 T7: Creating Something New vs. Offering Something Familiar
	5.8 T8: Working With Your Own Tools vs. Adopting Built-in Tools
	5.9 Discussion of the Tensions

	6 Tensions in Past Webstrates-based Projects
	6.1 Computational Labbook
	6.2 Building Prototypes for Public Libraries
	6.3 Programming Assignments

	7 The Reprogrammable Game Challenge
	7.1 Participants
	7.2 Procedure
	7.3 Data Collection
	7.4 Analysis

	8 The Games
	8.1 Group 1: Uruburu
	8.2 Group 2
	8.3 Group 3: Card Game
	8.4 Group 4: The Teachable Game
	8.5 Group 5: Flappy Bird
	8.6 Group 6: Tank Game
	8.7 Group 7
	8.8 Group 8: Rouge

	9 Results
	9.1 T1: Malleability vs. Stability
	9.2 T2: What is Shared vs. What is Not Shared
	9.3 T3: Editing Directly vs. Editing Indirectly
	9.4 T4: Big vs. Small Distance Between Development and Use Views
	9.5 T7: Creating Something New vs. Offering Something Familiar
	9.6 T8: Working With Your Own Tools vs. Adopting Built-in Tools

	10 Lessons Learned
	10.1 L1: Reprogrammability Is Not the Same as Malleability
	10.2 L2: Support for Switching Between Synchronous and Asynchronous Collaboration is Essential
	10.3 L3: Values of New Concepts Needs to Be Clear to Users
	10.4 L4: Collaboration in Development and Use Requires a Fitting Code Execution Model
	10.5 L5: The Vision Can Define Users' Expectations
	10.6 L6: Users Create Conceptual Blends with Familiar User Interfaces
	10.7 Discussion of the Lessons Learned

	11 Conclusion
	Acknowledgments
	References

